1
|
Albini D, Ransome E, Dumbrell AJ, Pawar S, O'Gorman EJ, Smith TP, Bell T, Jackson MC, Woodward G. Warming alters plankton body-size distributions in a large field experiment. Commun Biol 2025; 8:162. [PMID: 39900706 PMCID: PMC11790927 DOI: 10.1038/s42003-024-07380-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
The threat of climate change has renewed interest in the responses of communities and ecosystems to warming, with changes in size spectra expected to signify fundamental shifts in the structure and dynamics of these multispecies systems. While substantial empirical evidence has accumulated in recent years on such changes, we still lack general insights due to a limited coverage of warming scenarios that span spatial and temporal scales of relevance to natural systems. We addressed this gap by conducting an extensive freshwater mesocosm experiment across 36 large field mesocosms exposed to intergenerational warming treatments of up to +8 °C above ambient levels. We found a nonlinear decrease in the overall mean body size of zooplankton with warming, with a 57% reduction at +8 °C. This pattern was broadly consistent over two tested seasons and major taxonomic groups. We also detected some breakpoints in the community-level size-temperature relationship, indicating that the system's response shifts noticeably above a certain level of warming. These results underscore the need to capture intergenerational responses to large gradients in warming at appropriate scales in time and space in order to better understand the effects of warming on natural communities and ecosystems.
Collapse
Affiliation(s)
- Dania Albini
- Department of Biology, University of Oxford, Oxford, UK.
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK.
- School of Life Sciences, University of Essex, Colchester, UK.
- Somerville College, University of Oxford, Oxford, UK.
- University of Exeter, Exeter, UK.
| | - Emma Ransome
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, UK
| | - Samraat Pawar
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Eoin J O'Gorman
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Thomas P Smith
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Thomas Bell
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK
| | - Michelle C Jackson
- Department of Biology, University of Oxford, Oxford, UK.
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK.
- Somerville College, University of Oxford, Oxford, UK.
| | - Guy Woodward
- The Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK.
| |
Collapse
|
2
|
Shokri M, Lezzi L, Basset A. The seasonal response of metabolic rate to projected climate change scenarios in aquatic amphipods. J Therm Biol 2024; 124:103941. [PMID: 39163749 DOI: 10.1016/j.jtherbio.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
The responses of organisms to climate change are mediated primarily by its impact on their metabolic rates, which, in turn, drive various biological and ecological processes. Although there have been numerous seminal studies on the sensitivity of metabolic rate to temperature, little is empirically known about how this rate responds to seasonal temperature ranges and beyond under conservative IPCC climate change scenarios. Here, we measured the SMR of the aquatic amphipod, Gammarus insensibilis, which served as our subject species, with body masses ranging from 0.20 to 7.74 mg ash free weight. We assessed the response of the SMR across nine temperature levels ranging from 12 to 30.2 °C. These temperatures match seasonal temperature norms, with an incremental increase of 0.6-1.2 °C above each seasonal baseline, as projected for the years 2040 and 2100 under the modest climate change scenarios. Overall, our findings showed that the effect of temperature on SMR varies with body mass, as indicated by a negative size-temperature interaction, with larger conspecifics exhibiting less sensitivity to temperature changes than smaller ones. From the cold to warm season, the SMR increased by an average of 14% °C-1, with increases of 18.4% °C-1 in smaller individuals and 11.4% °C-1 in larger ones. The SMR of smaller individuals peaked at a 0.6 °C increase from the current summer baseline (15.08% °C-1, Q10 = 4.2), while in larger ones it peaked with a 1.2 °C increase beyond autumn temperatures (14.9% °C-1, Q10 = 3.9). However, at temperatures reflecting global warming that exceed summer temperatures, the SMR of larger individuals levelled off, while that of smaller ones continued to increase. Overall, our findings suggest that smaller-sized individuals have a broader thermal window for SMR performance, while the SMR of larger-sized ones will become increasingly constrained at summer temperatures as those summer temperatures become hotter.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Ludovico Lezzi
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of the Salento, 73100, Lecce, Italy; NBFC, National Biodiversity Future Center, 90133, Palermo, Italy; CNR, National Research Council of Italy, Monterotondo Scalo, 00015, Rome, Italy
| |
Collapse
|
3
|
Sentis A, Bazin S, Boukal DS, Stoks R. Ecological consequences of body size reduction under warming. Proc Biol Sci 2024; 291:20241250. [PMID: 39166384 PMCID: PMC11337126 DOI: 10.1098/rspb.2024.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
Body size reduction is a universal response to warming, but its ecological consequences across biological levels, from individuals to ecosystems, remain poorly understood. Most biological processes scale with body size, and warming-induced changes in body size can therefore have important ecological consequences. To understand these consequences, we propose a unifying, hierarchical framework for the ecological impacts of intraspecific body size reductions due to thermal plasticity that explicitly builds on three key pathways: morphological constraints, bioenergetic constraints and surface-to-volume ratio. Using this framework, we synthesize key consequences of warming-induced body size reductions at multiple levels of biological organization. We outline how this trait-based framework can improve our understanding, detection and generalization of the ecological impacts of warming.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne-CS 40061, Aix-en-Provence Cedex 513182, France
| | - Simon Bazin
- INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne-CS 40061, Aix-en-Provence Cedex 513182, France
| | - David S. Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice37005, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice37005, Czech Republic
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, Leuven3000, Belgium
| |
Collapse
|
4
|
Gjoni V, Marchessaux G, Glazier DS, Wesner JS, Bosch-Belmar M, Mancuso FP, Tantillo MF, Marsiglia N, Sarà G. Metabolic scaling of an invasive mussel depends on temperature and chemical cues from an invasive predator. Biol Lett 2024; 20:20240066. [PMID: 38836647 DOI: 10.1098/rsbl.2024.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024] Open
Abstract
Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear. Our study explored the role of temperature and predation pressure in shaping the metabolic scaling of an invasive mussel species (Brachidontes pharaonis). Specifically, we performed laboratory-based experiments to assess the effects of phenotypic plasticity on the metabolic scaling by exposing the mussels to water conditions with and without predator cues from another invasive species (the blue crab, Callinectes sapidus) across various temperature regimes. We found that temperature effects on metabolic scaling of the invasive mussels are mediated by the presence of chemical cues of an invasive predator, the blue crab. Investigating temperature-predator interactions underscores the importance of studying the ecological effects of global warming. Our research advances our understanding of how environmental factors jointly impact physiological processes.
Collapse
Affiliation(s)
- V Gjoni
- Department of Earth and Marine Science (DiSTeM), University of Palermo , Palermo, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| | - G Marchessaux
- Department of Earth and Marine Science (DiSTeM), University of Palermo , Palermo, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| | - D S Glazier
- Department of Biology, Juniata College , Huntingdon, PA, USA
| | - J S Wesner
- Department of Biology, University of South Dakota , Vermillion, SD, USA
| | - M Bosch-Belmar
- Department of Earth and Marine Science (DiSTeM), University of Palermo , Palermo, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| | - F P Mancuso
- Department of Earth and Marine Science (DiSTeM), University of Palermo , Palermo, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| | - M F Tantillo
- Department of Earth and Marine Science (DiSTeM), University of Palermo , Palermo, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| | - N Marsiglia
- Department of Earth and Marine Science (DiSTeM), University of Palermo , Palermo, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| | - G Sarà
- Department of Earth and Marine Science (DiSTeM), University of Palermo , Palermo, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| |
Collapse
|
5
|
Glazier DS, Gjoni V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220489. [PMID: 38186280 PMCID: PMC10772614 DOI: 10.1098/rstb.2022.0489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/16/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolism energizes all biological processes, and its tempo may importantly influence the ecological success and evolutionary fitness of organisms. Therefore, understanding the broad variation in metabolic rate that exists across the living world is a fundamental challenge in biology. To further the development of a more reliable and holistic picture of the causes of this variation, we review several examples of how various intrinsic (biological) and extrinsic (environmental) factors (including body size, cell size, activity level, temperature, predation and other diverse genetic, cellular, morphological, physiological, behavioural and ecological influences) can interactively affect metabolic rate in synergistic or antagonistic ways. Most of the interactive effects that have been documented involve body size, temperature or both, but future research may reveal additional 'hub factors'. Our review highlights the complex, intimate inter-relationships between physiology and ecology, knowledge of which can shed light on various problems in both disciplines, including variation in physiological adaptations, life histories, ecological niches and various organism-environment interactions in ecosystems. We also discuss theoretical and practical implications of interactive effects on metabolic rate and provide suggestions for future research, including holistic system analyses at various hierarchical levels of organization that focus on interactive proximate (functional) and ultimate (evolutionary) causal networks. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
| | - Vojsava Gjoni
- Department of Biology, University of South Dakota, Vermillion, SD 57609, USA
| |
Collapse
|
6
|
Audzijonyte A, Delius GW, Stuart-Smith RD, Novaglio C, Edgar GJ, Barrett NS, Blanchard JL. Changes in sea floor productivity are crucial to understanding the impact of climate change in temperate coastal ecosystems according to a new size-based model. PLoS Biol 2023; 21:e3002392. [PMID: 38079442 PMCID: PMC10712853 DOI: 10.1371/journal.pbio.3002392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/19/2023] [Indexed: 12/18/2023] Open
Abstract
The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species' biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.
Collapse
Affiliation(s)
- Asta Audzijonyte
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| | - Gustav W. Delius
- Department of Mathematics, University of York, York, United Kingdom
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Camilla Novaglio
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Neville S. Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| |
Collapse
|
7
|
Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA. Urchin grazing of kelp gametophytes in warming oceans. JOURNAL OF PHYCOLOGY 2023; 59:838-855. [PMID: 37432133 DOI: 10.1111/jpy.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Sea urchins can cause extensive damage to kelp forests, and their overgrazing can create extensive barren areas, leading to a loss of biodiversity. Barrens may persist when the recruitment of kelp, which occurs through the microscopic haploid gametophyte stage, is suppressed. However, the ecology of kelp gametophytes is poorly understood, and here we investigate if grazing by juvenile urchins on kelp gametophytes can suppress kelp recruitment and if this is exacerbated by climate change. We compared grazing of Ecklonia radiata gametophytes by two species of juvenile urchins, the tropical Tripneustes gratilla and the temperate Centrostephanus rodgersii, at winter (19°C), summer (23°C), and ocean warming (26°C) temperatures for the low-latitude range edge of E. radiata, which is vulnerable to ocean warming. We examined the rate of recovery of gametophytes following grazing and determined whether they survived and formed sporophytes after ingestion by sea urchins. Both T. gratilla and C. rodgersii grazed E. radiata gametophytes, reducing their abundance compared to no grazing controls. Surprisingly, temperature did not influence grazing rates, but gametophytes did not recover from grazing in the ocean warming (26°C) treatment. Gametophytes survived ingestion by both species of sea urchin and formed sporophytes after ingestion by T. gratilla, but not C. rodgersii. These results suggest complex grazer-gametophyte interactions, in which both negative (reduced abundance and poor recovery with warming) and positive (facilitated recruitment) effects are possible. Small grazers may play a more important role in kelp ecosystem function than previously thought and should be considered in our understanding of alternate stable states.
Collapse
Affiliation(s)
- Reina J Veenhof
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Curtis Champion
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Symon A Dworjanyn
- National Marine Science Centre, Faculty of Environment, Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
8
|
Richard R, Zhang YK, Hung KW. Thermal dependence of Daphnia life history reveals asymmetries between key vital rates. J Therm Biol 2023; 115:103653. [PMID: 37453218 DOI: 10.1016/j.jtherbio.2023.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Temperature variation affects virtually every aspect of ectotherms' ecological performance, such as their foraging rate, reproduction, and survival. Although these changes influence what happens at higher levels of organizations, such as populations and communities, qualitative changes in dynamics usually require some degree of asymmetry between key vital rates, i.e. that different vital rates, such as growth, development, fecundity and mortality rates, respond differently to temperature. In order to identify possible asymmetries among vital rates and/or life stages, we characterized the thermal response of individuals a clone of Daphnia sinensis, drawn from a high-mountain environment in Taiwan, and examined the temperature dependence of growth, maturation, reproduction, and mortality rates, as well as fitness measures (r and R0) at eight temperatures. Daphnia sinensis was able to maintain reproductive success over a broad range of temperatures, much wider than the one experienced in its environment. However, negative effects of temperature were perceptible at temperatures much lower than the highest one at which they can achieve reproductive success. Adult mortality greatly increased for temperatures above 23 °C, and other vital rates started to decelerate, resulting in a large drop in lifetime reproductive success. This finding implies that D. sinensis may be able to persist over a wide range of temperatures, but also that it may become more sensitive to the detrimental effect of species interactions at increased temperatures. Different vital rates responded relatively similarly at low temperatures, but the degree of asymmetry among these rates was much more pronounced at higher temperatures. In particular, rates associated with adult performance decelerated more strongly than juveniles' rates. These findings indicate that elevated temperatures affect the balance between juvenile and adult performance, which is known to have a crucial role in Daphnia population dynamics. We discuss the implications of these results for the dynamics of structured populations.
Collapse
Affiliation(s)
- Romain Richard
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan.
| | - Yi-Kuan Zhang
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Kuan-Wei Hung
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| |
Collapse
|
9
|
DiFiore BP, Stier AC. Variation in body size drives spatial and temporal variation in lobster-urchin interaction strength. J Anim Ecol 2023; 92:1075-1088. [PMID: 37038648 DOI: 10.1111/1365-2656.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/06/2023] [Indexed: 03/20/2023]
Abstract
How strongly predators and prey interact is both notoriously context dependent and difficult to measure. Yet across taxa, interaction strength is strongly related to predator size, prey size and prey density, suggesting that general cross-taxonomic relationships could be used to predict how strongly individual species interact. Here, we ask how accurately do general size-scaling relationships predict variation in interaction strength between specific species that vary in size and density across space and time? To address this question, we quantified the size and density dependence of the functional response of the California spiny lobster Panulirus interruptus, foraging on a key ecosystem engineer, the purple sea urchin Strongylocentrotus purpuratus, in experimental mesocosms. Based on these results, we then estimated variation in lobster-urchin interaction strength across five sites and 9 years of observational data. Finally, we compared our experimental estimates to predictions based on general size-scaling relationships from the literature. Our results reveal that predator and prey body size has the greatest effect on interaction strength when prey abundance is high. Due to consistently high urchin densities in the field, our simulations suggest that body size-relative to density-accounted for up to 87% of the spatio-temporal variation in interaction strength. However, general size-scaling relationships failed to predict the magnitude of interactions between lobster and urchin; even the best prediction from the literature was, on average, an order of magnitude (+18.7×) different than our experimental predictions. Harvest and climate change are driving reductions in the average body size of many marine species. Anticipating how reductions in body size will alter species interactions is critical to managing marine systems in an ecosystem context. Our results highlight the extent to which differences in size-frequency distributions can drive dramatic variation in the strength of interactions across narrow spatial and temporal scales. Furthermore, our work suggests that species-specific estimates for the scaling of interaction strength with body size, rather than general size-scaling relationships, are necessary to quantitatively predict how reductions in body size will alter interaction strengths.
Collapse
Affiliation(s)
- Bartholomew P DiFiore
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, 93106, USA
| | - Adrian C Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, 93106, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, 93116, USA
| |
Collapse
|
10
|
Twardochleb LA, Zarnetske PL, Klausmeier CA. Life-history responses to temperature and seasonality mediate ectotherm consumer-resource dynamics under climate warming. Proc Biol Sci 2023; 290:20222377. [PMID: 37122251 PMCID: PMC10130723 DOI: 10.1098/rspb.2022.2377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Climate warming is altering life cycles of ectotherms by advancing phenology and decreasing generation times. Theoretical models provide powerful tools to investigate these effects of climate warming on consumer-resource population dynamics. Yet, existing theory primarily considers organisms with simplified life histories in constant temperature environments, making it difficult to predict how warming will affect organisms with complex life cycles in seasonal environments. We develop a size-structured consumer-resource model with seasonal temperature dependence, parameterized for a freshwater insect consuming zooplankton. We simulate how climate warming in a seasonal environment could alter a key life-history trait of the consumer, number of generations per year, mediating responses of consumer-resource population sizes and consumer persistence. We find that, with warming, consumer population sizes increase through multiple mechanisms. First, warming decreases generation times by increasing rates of resource ingestion and growth and/or lengthening the growing season. Second, these life-history changes shorten the juvenile stage, increasing the number of emerging adults and population-level reproduction. Unstructured models with similar assumptions found that warming destabilized consumer-resource dynamics. By contrast, our size-structured model predicts stability and consumer persistence. Our study suggests that, in seasonal environments experiencing climate warming, life-history changes that lead to shorter generation times could delay population extinctions.
Collapse
Affiliation(s)
- Laura A. Twardochleb
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Phoebe L. Zarnetske
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher A. Klausmeier
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| |
Collapse
|
11
|
Eloranta AP, Perälä T, Kuparinen A. Effects of temporal abiotic drivers on the dynamics of an allometric trophic network model. Ecol Evol 2023; 13:e9928. [PMID: 36969931 PMCID: PMC10034489 DOI: 10.1002/ece3.9928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 03/25/2023] Open
Abstract
Current ecological research and ecosystem management call for improved understanding of the abiotic drivers of community dynamics, including temperature effects on species interactions and biomass accumulation. Allometric trophic network (ATN) models, which simulate material (carbon) transfer in trophic networks from producers to consumers based on mass‐specific metabolic rates, provide an attractive framework to study consumer–resource interactions from organisms to ecosystems. However, the developed ATN models rarely consider temporal changes in some key abiotic drivers that affect, for example, consumer metabolism and producer growth. Here, we evaluate how temporal changes in carrying capacity and light‐dependent growth rate of producers and in temperature‐dependent mass‐specific metabolic rate of consumers affect ATN model dynamics, namely seasonal biomass accumulation, productivity, and standing stock biomass of different trophic guilds, including age‐structured fish communities. Our simulations of the pelagic Lake Constance food web indicated marked effects of temporally changing abiotic parameters on seasonal biomass accumulation of different guild groups, particularly among the lowest trophic levels (primary producers and invertebrates). While the adjustment of average irradiance had minor effect, increasing metabolic rate associated with 1–2°C temperature increase led to a marked decline of larval (0‐year age) fish biomass, but to a substantial biomass increase of 2‐ and 3‐year‐old fish that were not predated by ≥4‐year‐old top predator fish, European perch (Perca fluviatilis). However, when averaged across the 100 simulation years, the inclusion of seasonality in abiotic drivers caused only minor changes in standing stock biomasses and productivity of different trophic guilds. Our results demonstrate the potential of introducing seasonality in and adjusting the average values of abiotic ATN model parameters to simulate temporal fluctuations in food‐web dynamics, which is an important step in ATN model development aiming to, for example, assess potential future community‐level responses to ongoing environmental changes.
Collapse
Affiliation(s)
- Antti P. Eloranta
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Tommi Perälä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
12
|
Lin T, Chen Y, Chen Y, Lin S, Hu J, Zhao J, Yang G, Yang F, Wei H. Temperature-dependent Functional Response of the Arboreal Rove Beetle, Oligota flavicornis (Coleoptera: Staphylinidae), a Voracious Predator of Tetranychus urticae (Acarina: Tetranychidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:90-97. [PMID: 36373876 DOI: 10.1093/jee/toac170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 06/16/2023]
Abstract
The functional responses of Oligota flavicornis (Boisduval & Lacordaire) (Coleoptera: Staphylinidae) preying on the eggs of Tetranychus urticae Koch (Acarina: Tetranychidae) were examined at seven constant temperature settings (12, 15, 18, 22, 25, 30, and 32°C) to elucidate the predator-prey interactions between them. Logistic regression showed that O. flavicornis exhibited type II functional responses to T. urticae eggs at different temperatures. The reciprocal of handling time declined exponentially with warming, and the search rate presented a single hump-shaped relationship with temperature. For the search rate, the lower temperature thresholds were 9.1°C (linear) and 8.7°C (Briere). The optimal temperature and upper temperature threshold were 29.1 and 37.8°C for Logan and 29.7 and 35.8°C for Briere, respectively. The predation threshold window of O. flavicornis reached 27.1°C with a range of 8.7-35.8°C. The predator could consume 244.7-388.4 T. urticae eggs in a day in the optimal temperature range (18-32°C). The voracious predatory behavior of O. flavicornis against T. urticae eggs over a broad temperature range indicates that the predator shows promise as a potential biological control agent and that temperature-dependent predation could be a basis for formulating strategies to control tetranychid mites.
Collapse
Affiliation(s)
- Tao Lin
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yixin Chen
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Yong Chen
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Shuo Lin
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Jianwei Zhao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fenghua Yang
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| | - Hui Wei
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian, China
| |
Collapse
|
13
|
Agiadi K, Quillévéré F, Nawrot R, Sommeville T, Coll M, Koskeridou E, Fietzke J, Zuschin M. Palaeontological evidence for community-level decrease in mesopelagic fish size during Pleistocene climate warming in the eastern Mediterranean. Proc Biol Sci 2023; 290:20221994. [PMID: 36629116 PMCID: PMC9832546 DOI: 10.1098/rspb.2022.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mesopelagic fishes are an important element of marine food webs, a huge, still mostly untapped food resource and great contributors to the biological carbon pump, whose future under climate change scenarios is unknown. The shrinking of commercial fishes within decades has been an alarming observation, but its causes remain contended. Here, we investigate the effect of warming climate on mesopelagic fish size in the eastern Mediterranean Sea during a glacial-interglacial-glacial transition of the Middle Pleistocene (marine isotope stages 20-18; 814-712 kyr B.P.), which included a 4°C increase in global seawater temperature. Our results based on fossil otoliths show that the median size of lanternfishes, one of the most abundant groups of mesopelagic fishes in fossil and modern assemblages, declined by approximately 35% with climate warming at the community level. However, individual mesopelagic species showed different and often opposing trends in size across the studied time interval, suggesting that climate warming in the interglacial resulted in an ecological shift toward increased relative abundance of smaller sized mesopelagic fishes due to geographical and/or bathymetric distribution range shifts, and the size-dependent effects of warming.
Collapse
Affiliation(s)
- Konstantina Agiadi
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090, Vienna, Austria
| | - Frédéric Quillévéré
- Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, 69622 Villeurbanne, France
| | - Rafał Nawrot
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090, Vienna, Austria
| | - Theo Sommeville
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090, Vienna, Austria,IMBRSea Program, Ghent University - Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium
| | - Marta Coll
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Efterpi Koskeridou
- Department of Historical Geology and Paleontology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784, Athens, Greece
| | - Jan Fietzke
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, UZA II, 1090, Vienna, Austria
| |
Collapse
|
14
|
Letcher BH, Nislow KH, O'Donnell MJ, Whiteley AR, Coombs JA, Dubreuil TL, Turek DB. Identifying mechanisms underlying individual body size increases in a changing, highly seasonal environment: The growing trout of West brook. J Anim Ecol 2023; 92:78-96. [PMID: 36321190 DOI: 10.1111/1365-2656.13833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
Abstract
As air temperature increases, it has been suggested that smaller individual body size may be a general response to climate warming. However, for ectotherms inhabiting cold, highly seasonal environments, warming temperatures may increase the scope for growth and result in larger body size. In a long-term study of individual brook trout Salvelinus fontinalis and brown trout Salmo trutta inhabiting a small stream network, individual lengths increased over the course of 15 years. As size-selective gains and losses to the population acted to reduce body sizes and mean body size at first tagging in the autumn (<60 mm) were not observed to change substantially over time, the increase in body size was best explained by higher individual growth rates. For brook trout, increasing water temperatures during the spring (when both trout species accomplish most of their total annual growth) was the primary driver of growth rate for juvenile fish and the environmental factor which best explained increases in individual body size over time. For brown trout, by contrast, reduction in and subsequent elimination of juvenile Atlantic salmon Salmo salar midway through the study period explained most of the increases in juvenile growth and body size. In addition to these major trends, a considerable amount of interannual variation in trout growth and body size was explained by other abiotic (stream flow) and biotic (population density) factors with the direction and magnitude of these effects differing by season, age-class and species. For example, stream flow was the dominant growth rate driver for adult fish with strong positive effects in the summer and autumn, but flow variation could not explain increases in body size as we observed no trend in flow. Overall, our work supports the general contention that for high-latitude ectotherms, increasing spring temperatures associated with a warming climate can result in increased growth and individual body size (up to a point), but context-dependent change in other factors can substantially contribute to both interannual variation and longer-term effects.
Collapse
Affiliation(s)
- Benjamin H Letcher
- U. S. Geological Survey, Eastern Ecological Science Center, Silvio O. Conte Research Laboratory, Turners Falls, Massachusetts, USA
| | - Keith H Nislow
- US Forest Service, Northern Research Station, Amherst, Massachusetts, USA
| | - Matthew J O'Donnell
- U. S. Geological Survey, Eastern Ecological Science Center, Silvio O. Conte Research Laboratory, Turners Falls, Massachusetts, USA
| | - Andrew R Whiteley
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, Franke College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Jason A Coombs
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Todd L Dubreuil
- U. S. Geological Survey, Eastern Ecological Science Center, Silvio O. Conte Research Laboratory, Turners Falls, Massachusetts, USA
| | - Daniel B Turek
- Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts, USA
| |
Collapse
|
15
|
Shokri M, Cozzoli F, Vignes F, Bertoli M, Pizzul E, Basset A. Metabolic rate and climate change across latitudes: evidence of mass-dependent responses in aquatic amphipods. J Exp Biol 2022; 225:280993. [PMID: 36337048 PMCID: PMC9720750 DOI: 10.1242/jeb.244842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Predictions of individual responses to climate change are often based on the assumption that temperature affects the metabolism of individuals independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual standard metabolic rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC RCP2.6. As a model organism, we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species' distributional range, with individuals varying in body mass (0.4-13.57 mg). Overall, we found that the effect of temperature on SMR is mass dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old individuals (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the mass-specific SMR of large individuals responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) owing to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Research Institute on Terrestrial Ecosystems (IRET–URT Lecce), National Research Council of Italy (CNR), Campus Ecotekne, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Marco Bertoli
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
16
|
Audzijonyte A, Jakubavičiūtė E, Lindmark M, Richards SA. Mechanistic Temperature-Size Rule Explanation Should Reconcile Physiological and Mortality Responses to Temperature. THE BIOLOGICAL BULLETIN 2022; 243:220-238. [PMID: 36548974 DOI: 10.1086/722027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractThe temperature-size rule is one of the universal rules in ecology and states that ectotherms in warmer waters will grow faster as juveniles, mature at smaller sizes and younger ages, and reach smaller maximum body sizes. Many models have unsuccessfully attempted to reproduce temperature-size rule-consistent life histories by using two-term (anabolism and catabolism) Pütter-type growth models, such as the von Bertalanffy. Here, we present a physiologically structured individual growth model, which incorporates an energy budget and optimizes energy allocation to growth, reproduction, and reserves. Growth, maturation, and reproductive output emerge as a result of life-history optimization to specific physiological rates and mortality conditions. To assess which processes can lead to temperature-size rule-type life histories, we simulate 42 scenarios that differ in temperature and body size dependencies of intake, metabolism, and mortality rates. Results show that the temperature-size rule can emerge in two ways. The first way requires both intake and metabolism to increase with temperature, but the temperature-body size interaction of the two rates must lead to relatively faster intake increase in small individuals and relatively larger metabolism increase in large ones. The second way requires only higher temperature-driven natural mortality and faster intake rates in early life (no change in metabolic rates is needed). This selects for faster life histories with earlier maturation and increased reproductive output. Our model provides a novel mechanistic and evolutionary framework for identifying the conditions necessary for the temperature-size rule. It shows that the temperature-size rule is likely to reflect both physiological changes and life-history optimization and that use of von Bertalanffy-type models, which do not include reproduction processes, can hinder our ability to understand and predict ectotherm responses to climate change.
Collapse
|
17
|
Abstract
The recent and ever-growing problem of boar (Sus scrofa forms including wild boar, hybrid and feral pig) expansion is a very complex issue in wildlife management. The damages caused to biodiversity and the economies are addressed in different ways by the various countries, but research is needed to shed light on the causal factors of this emergency before defining a useful collaborative management policy. In this review, we screened more than 280 references published between 1975–2022, identifying and dealing with five hot factors (climate change, human induced habitat modifications, predator regulation on the prey, hybridization with domestic forms, and transfaunation) that could account for the boar expansion and its niche invasion. We also discuss some issues arising from this boar emergency, such as epizootic and zoonotic diseases or the depression of biodiversity. Finally, we provide new insights for the research and the development of management policies.
Collapse
|
18
|
Atkins RL, Clancy KM, Ellis WT, Osenberg CW. Thermal Traits Vary with Mass and across Populations of the Marsh Periwinkle, Littoraria irrorata. THE BIOLOGICAL BULLETIN 2022; 242:173-196. [PMID: 35767414 DOI: 10.1086/719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractPhysiological processes influence how individuals perform in various environmental contexts. The basis of such processes, metabolism, scales allometrically with body mass and nonlinearly with temperature, as described by a thermal performance curve. Past studies of thermal performance curves tend to focus on effects of temperature on a single body size or population, rather than variation in the thermal performance curve across sizes and populations. Here, we estimate intraspecific variation in parameters of the thermal performance curve in the salt marsh gastropod Littoraria irrorata. First, we quantify the thermal performance curve for respiration rate as a function of both temperature and body size in Littoraria and evaluate whether the thermal parameters and body size scaling are interdependent. Next, we quantify how parameters in the thermal performance curve for feeding rate vary between three Littoraria populations that occur along a latitudinal gradient. Our work suggests that the thermal traits describing Littoraria respiration are dependent on body mass and that both the thermal traits and the mass scaling of feeding vary across sites. We found limited evidence to suggest that mass scaling of Littoraria feeding or respiration rates depends on temperature. Variation in the thermal performance curves interacts with the size structure of the Littoraria population to generate divergent population-level responses to temperature. These results highlight the importance of considering variation in population size structure and physiological allometry when attempting to predict how temperature change will affect physiological responses and consumer-resource interactions.
Collapse
|
19
|
Réveillon T, Rota T, Chauvet É, Lecerf A, Sentis A. Energetic mismatch induced by warming decreases leaf litter decomposition by aquatic detritivores. J Anim Ecol 2022; 91:1975-1987. [PMID: 35471565 DOI: 10.1111/1365-2656.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 11/26/2022]
Abstract
1. The balance of energetic losses and gains is of paramount importance for understanding and predicting the persistence of populations and ecosystem processes in a rapidly changing world. Previous studies suggested that metabolic rate often increases faster with warming than resource ingestion rate, leading to an energetic mismatch at high temperature. However, little is known about the ecological consequences of this energetic mismatch for population demography and ecosystem functions. 2. Here, we combined laboratory experiments and modeling to investigate the energetic balance of a stream detritivore (Gammarus fossarum) along a temperature gradient and the consequences for detritivore populations and organic matter decomposition. 3. We experimentally measured the energetic losses (metabolic rate) and supplies (ingestion rate) of Gammarus and we modeled the impact of rising temperatures and changes in Gammarus body size induced by warming on population dynamics and benthic organic matter dynamics in freshwater systems. 4. Our experimental results indicated an energetic mismatch in a Gammarus population where losses via metabolic rate increase faster than supplies via food ingestion with warming, which translated in a decrease of energetic efficiency with temperature rising from 5 to 20 °C. Moreover, our consumer-resource model predicts a decrease in the biomass of Gammarus population with warming, associated with lower maximum abundances and steeper abundance decreases after biomass annual peaks. These changes resulted in a decrease of leaf litter decomposition rate and thus longer persistence of leaf litter standing stock over years in the simulations. In addition, Gammarus body size reductions led to shorter persistence for both leaf litter and Gammarus biomasses at low temperature and the opposite trend at high temperature, revealing that body size reduction was weakening the effect of temperature on resource and consumer persistence. 5. Our model contributes to identifying the mechanisms that explain how thermal effects at the level of individuals may cascade through trophic interactions and influence important ecosystem processes. Considering the balance of physiological processes is crucial to improve our ability to predict the impact of climate change on carbon stocks and ecosystem functions.
Collapse
Affiliation(s)
- Tom Réveillon
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Thibaut Rota
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Éric Chauvet
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Antoine Lecerf
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Arnaud Sentis
- INRAE, Aix Marseille Université, UMR RECOVER, 3275 route Cézanne, FR-13182, Aix-en-Provence, France
| |
Collapse
|
20
|
Lindmark M, Ohlberger J, Gårdmark A. Optimum growth temperature declines with body size within fish species. GLOBAL CHANGE BIOLOGY 2022; 28:2259-2271. [PMID: 35060649 DOI: 10.1111/gcb.16067] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/18/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
According to the temperature-size rule, warming of aquatic ecosystems is generally predicted to increase individual growth rates but reduce asymptotic body sizes of ectotherms. However, we lack a comprehensive understanding of how growth and key processes affecting it, such as consumption and metabolism, depend on both temperature and body mass within species. This limits our ability to inform growth models, link experimental data to observed growth patterns, and advance mechanistic food web models. To examine the combined effects of body size and temperature on individual growth, as well as the link between maximum consumption, metabolism, and body growth, we conducted a systematic review and compiled experimental data on fishes from 52 studies that combined body mass and temperature treatments. By fitting hierarchical models accounting for variation between species, we estimated how maximum consumption and metabolic rate scale jointly with temperature and body mass within species. We found that whole-organism maximum consumption increases more slowly with body mass than metabolism, and is unimodal over the full temperature range, which leads to the prediction that optimum growth temperatures decline with body size. Using an independent dataset, we confirmed this negative relationship between optimum growth temperature and body size. Small individuals of a given population may, therefore, exhibit increased growth with initial warming, whereas larger conspecifics could be the first to experience negative impacts of warming on growth. These findings help advance mechanistic models of individual growth and food web dynamics and improve our understanding of how climate warming affects the growth and size structure of aquatic ectotherms.
Collapse
Affiliation(s)
- Max Lindmark
- Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, Öregrund, Sweden
| | - Jan Ohlberger
- School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, Washington, USA
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Öregrund, Sweden
| |
Collapse
|
21
|
Uszko W, Huss M, Gårdmark A. Smaller species but larger stages: Warming effects on inter- and intraspecific community size structure. Ecology 2022; 103:e3699. [PMID: 35352827 PMCID: PMC9285768 DOI: 10.1002/ecy.3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Global warming can alter size distributions of animal communities, but the contribution of size shifts within versus between species to such changes remains unknown. In particular, it is unclear if expected body size shrinkage in response to warming, observed at the interspecific level, can be used to infer similar size shifts within species. In this study, we compare warming effects on interspecific (relative species abundance) versus intraspecific (relative stage abundance) size structure of competing consumers by analyzing stage‐structured bioenergetic food web models consisting of one or two consumer species and two resources, parameterized for pelagic plankton. Varying composition and temperature and body size dependencies in these models, we predicted interspecific versus intraspecific size structure across temperature. We found that warming shifted community size structure toward dominance of smaller species, in line with empirical evidence summarized in our review of 136 literature studies. However, this result emerged only given a size–temperature interaction favoring small over large individuals in warm environments. In contrast, the same mechanism caused an intraspecific shift toward dominance of larger (adult) stages, reconciling disparate observations of size responses within and across zooplankton species in the literature. As the empirical evidence for warming‐driven stage shifts is scarce and equivocal, we call for more experimental studies on intraspecific size changes with warming. Understanding the global warming impacts on animal communities requires that we consider and quantify the relative importance of mechanisms concurrently shaping size distributions within and among species.
Collapse
Affiliation(s)
- Wojciech Uszko
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Skolgatan 6, Öregrund, Sweden
| |
Collapse
|
22
|
Wootton HF, Morrongiello JR, Schmitt T, Audzijonyte A. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol Lett 2022; 25:1177-1188. [PMID: 35266600 PMCID: PMC9545254 DOI: 10.1111/ele.13989] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Fish and other ectotherms living in warmer waters often grow faster as juveniles, mature earlier, but become smaller adults. Known as the temperature‐size rule (TSR), this pattern is commonly attributed to higher metabolism in warmer waters, leaving fewer resources for growth. An alternative explanation focuses on growth and reproduction trade‐offs across temperatures. We tested these hypotheses by measuring growth, maturation, metabolism and reproductive allocation from zebrafish populations kept at 26 and 30°C across six generations. Zebrafish growth and maturation followed TSR expectations but were not explained by baseline metabolic rate, which converged between temperature treatments after a few generations. Rather, we found that females at 30°C allocated more to reproduction, especially when maturing at the smallest sizes. We show that elevated temperatures do not necessarily increase baseline metabolism if sufficient acclimation is allowed and call for an urgent revision of modelling assumptions used to predict population and ecosystem responses to warming.
Collapse
Affiliation(s)
- Henry F Wootton
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - John R Morrongiello
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Schmitt
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Asta Audzijonyte
- IMAS, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Marine Socioecology, Hobart, Tasmania, Australia
| |
Collapse
|
23
|
Benavente JN, Fryxell DC, Kinnison MT, Palkovacs EP, Simon KS. Plasticity and evolution shape the scaling of metabolism and excretion along a geothermal temperature gradient. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - David C Fryxell
- University of Auckland School of Environment Auckland New Zealand
| | | | - Eric P Palkovacs
- University of California Santa Cruz Department of Ecology and Evolutionary Biology Santa Cruz CA USA
| | - Kevin S Simon
- University of Auckland School of Environment Auckland New Zealand
| |
Collapse
|
24
|
The effect of hunter-wild boar interactions and landscape heterogeneity on wild boar population size: A simulation study. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Effects of Habitat-Specific Primary Production on Fish Size, Biomass, and Production in Northern Oligotrophic Lakes. Ecosystems 2022. [DOI: 10.1007/s10021-021-00733-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractEcological theory predicts that the relative distribution of primary production across habitats influence fish size structure and biomass production. In this study, we assessed individual, population, and community-level consequences for brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) of variation in estimated habitat specific (benthic and pelagic) and total whole lake (GPPwhole) gross primary production in 27 northern oligotrophic lakes. We found that higher contribution of benthic primary production to GPPwhole was associated with higher community biomass and larger maximum and mean sizes of fish. At the population level, species-specific responses differed. Increased benthic primary production (GPPBenthic) correlated to higher population biomass of brown trout regardless of being alone or in sympatry, while Arctic char responded positively to pelagic primary production (GPPPelagic) in sympatric populations. In sympatric lakes, the maximum size of both species was positively related to both GPPBenthic and the benthic contribution to GPPWhole. In allopatric lakes, brown trout mean and maximum size and Arctic char mean size were positively related to the benthic proportion of GPPWhole. Our results highlight the importance of light-controlled benthic primary production for fish biomass production in oligotrophic northern lakes. Our results further suggest that consequences of ontogenetic asymmetry and niche shifts may cause the distribution of primary production across habitats to be more important than the total ecosystem primary production for fish size, population biomass, and production. Awareness of the relationships between light availability and asymmetric resource production favoring large fish and fish production may allow for cost-efficient and more informed management actions in northern oligotrophic lakes.
Collapse
|
26
|
Linking microbial body size to community co-occurrences and stability at multiple geographical scales in agricultural soils. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Chiu MC, Chang SH, Yen YT, Liao LY, Lin HJ. Timing and magnitude of climatic extremes differentially elevate mortality but enhance recovery in a fish population. GLOBAL CHANGE BIOLOGY 2021; 27:6117-6128. [PMID: 34520600 DOI: 10.1111/gcb.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/04/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The countervailing effects of disturbances (e.g., high mortality and enhanced recovery) on population dynamics can occur through demographic processes under rapidly increasing climatic extremes. Across an extreme-event gradient, we mechanistically demonstrated how dramatic changes in streamflow have affected the population persistence of endangered salmon in monsoonal Taiwan over a three-decade period. Our modeling indicated that the dynamics of the age-structured population were attributed to demographic processes, in which extensive mortality was characterized as a function of climatic extremes and vulnerability in the young stage of fish. In the stochastic simulations, we found that the extensive mortality and high proportion of large fish resulted from extreme flooding, which caused high values of postimpact population recovery. Our empirical evidence suggests that the magnitudes and timing of disturbance can explain the population persistence when facing climatic extremes and thereby challenges the understanding of the mechanistic drivers of these countervailing phenomena under changing environmental conditions.
Collapse
Affiliation(s)
- Ming-Chih Chiu
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Hsun Chang
- Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ting Yen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lin-Yan Liao
- Wuling Station, Shei-Pa National Park, Taichung, Taiwan
| | - Hsing-Juh Lin
- Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
28
|
Khwarahm NR, Ararat K, HamadAmin BA, Najmaddin PM, Rasul A, Qader S. Spatial distribution modeling of the wild boar (Sus scrofa) under current and future climate conditions in Iraq. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00936-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Thunell V, Lindmark M, Huss M, Gårdmark A. Effects of Warming on Intraguild Predator Communities with Ontogenetic Diet Shifts. Am Nat 2021; 198:706-718. [PMID: 34762572 DOI: 10.1086/716927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractSpecies interactions mediate how warming affects community composition via individual growth and population size structure. While predictions on how warming affects composition of size- or stage-structured communities have so far focused on linear (food chain) communities, mixed competition-predation interactions, such as intraguild predation, are common. Intraguild predation often results from changes in diet over ontogeny ("ontogenetic diet shifts") and strongly affects community composition and dynamics. Here, we study how warming affects a community of intraguild predators with ontogenetic diet shifts, consumers, and shared prey by analyzing a stage-structured bioenergetics multispecies model with temperature- and body size-dependent individual-level rates. We find that warming can strengthen competition and decrease predation, leading to a loss of a cultivation mechanism (the feedback between predation on and competition with consumers exerted by predators) and ultimately predator collapse. Furthermore, we show that the effect of warming on community composition depends on the extent of the ontogenetic diet shift and that warming can cause a sequence of community reconfigurations in species with partial diet shifts. Our findings contrast previous predictions concerning individual growth of predators and the mechanisms behind predator loss in warmer environments and highlight how feedbacks between temperature and intraspecific size structure are important for understanding such effects on community composition.
Collapse
|
30
|
Huss M, van Dorst RM, Gårdmark A. Larval fish body growth responses to simultaneous browning and warming. Ecol Evol 2021; 11:15132-15140. [PMID: 34765165 PMCID: PMC8571572 DOI: 10.1002/ece3.8194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Organisms are facing global climate change and other anthropogenic pressures, but most research on responses to such changes only considers effects of single drivers. Observational studies and physiological experiments suggest temperature increases will lead to faster growth of small fish. Whether this effect of warming holds in more natural food web settings with concurrent changes in other drivers, such as darkening water color ("browning") is, however, unknown. Here, we set up a pelagic mesocosm experiment with large bags in the Baltic Sea archipelago, inoculated with larval Eurasian perch (Perca fluviatilis) and zooplankton prey and varying in temperature and color, to answer the question how simultaneous warming and browning of coastal food webs impact body growth and survival of larval perch. We found that browning decreased body growth and survival of larval perch, whereas warming increased body growth but had no effect on survival. Based on daily fish body growth estimates based on otolith microstructure analysis, and size composition and abundance of available prey, we explain how these results may come about through a combination of physiological responses to warming and lower foraging efficiency in brown waters. We conclude that larval fish responses to climate change thus may depend on the relative rate and extent of both warming and browning, as they may even cancel each other out.
Collapse
Affiliation(s)
- Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Renee M. van Dorst
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| |
Collapse
|
31
|
Bærum KM, Finstad AG, Ulvan EM, Haugen TO. Population consequences of climate change through effects on functional traits of lentic brown trout in the sub-Arctic. Sci Rep 2021; 11:15246. [PMID: 34315914 PMCID: PMC8316365 DOI: 10.1038/s41598-021-94350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Climate-induced plasticity in functional traits has received recent attention due to the immense importance phenotypic variation plays in population level responses. Here, we explore the effect of different climate-change scenarios on lentic populations of a freshwater ectotherm, the brown trout (Salmo trutta L.), through climate effects on functional traits. We first parameterize models of climate variables on growth, spawning probability and fecundity. The models are utilized to inform a dynamic age-structured projection matrix, enabling long-term population viability projections under climate and population density variation. Ambient temperature and winter conditions had a substantial effect on population growth rate. In general, warmer summer temperatures resulted in faster growth rates for young fish but ended in smaller size at age as fish got older. Increasing summer temperatures also induced maturation at younger age and smaller size. In addition, we found effects of first-year growth on later growth trajectories for a fish, indicating that environmental conditions experienced the first year will also influence size at age later in life. At the population level, increasing temperatures average (up to 4 °C increase in areas with mean summer temperature at approximately 12 °C) resulted in a positive effect on population growth rate (i.e. smaller but more fish) during climate simulations including increasing and more variable temperatures.
Collapse
Affiliation(s)
- Kim Magnus Bærum
- Norwegian Institute for Nature Research, Fakkelgården, 2624, Lillehammer, Norway.
| | - Anders G Finstad
- Department of Natural History, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Eva Marita Ulvan
- Norwegian Institute for Nature Research, 7485, Trondheim, Norway
| | - Thrond O Haugen
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P. O. Box 5003, NO-1432, Aas, Norway
| |
Collapse
|
32
|
Hernández‐Pacheco R, Plard F, Grayson KL, Steiner UK. Demographic consequences of changing body size in a terrestrial salamander. Ecol Evol 2021; 11:174-185. [PMID: 33437421 PMCID: PMC7790640 DOI: 10.1002/ece3.6988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/12/2022] Open
Abstract
Changes in climate can alter individual body size, and the resulting shifts in reproduction and survival are expected to impact population dynamics and viability. However, appropriate methods to account for size-dependent demographic changes are needed, especially in understudied yet threatened groups such as amphibians. We investigated individual- and population-level demographic effects of changes in body size for a terrestrial salamander using capture-mark-recapture data. For our analysis, we implemented an integral projection model parameterized with capture-recapture likelihood estimates from a Bayesian framework. Our study combines survival and growth data from a single dataset to quantify the influence of size on survival while including different sources of uncertainty around these parameters, demonstrating how selective forces can be studied in populations with limited data and incomplete recaptures. We found a strong dependency of the population growth rate on changes in individual size, mediated by potential changes in selection on mean body size and on maximum body size. Our approach of simultaneous parameter estimation can be extended across taxa to identify eco-evolutionary mechanisms acting on size-specific vital rates, and thus shaping population dynamics and viability.
Collapse
Affiliation(s)
- Raisa Hernández‐Pacheco
- Department of Biological SciencesCalifornia State University‐Long BeachLong BeachCAUSA
- Department of BiologyUniversity of RichmondRichmondVAUSA
| | - Floriane Plard
- Swiss Ornithological InstituteSempachSwitzerland
- UMR CNRS 5558 Biométrie et Biologie EvolutiveUniversity Claude Bernard Lyon 1VilleurbanneFrance
| | | | - Ulrich K. Steiner
- Evolutionary BiologyInstitut für BiologieFreie Universität BerlinBerlinGermany
| |
Collapse
|
33
|
Dee LE, Okamtoto D, Gårdmark A, Montoya JM, Miller SJ. Temperature variability alters the stability and thresholds for collapse of interacting species. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190457. [PMID: 33131433 PMCID: PMC7662192 DOI: 10.1098/rstb.2019.0457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Temperature variability and extremes can have profound impacts on populations and ecological communities. Predicting impacts of thermal variability poses a challenge, because it has both direct physiological effects and indirect effects through species interactions. In addition, differences in thermal performance between predators and prey and nonlinear averaging of temperature-dependent performance can result in complex and counterintuitive population dynamics in response to climate change. Yet the combined consequences of these effects remain underexplored. Here, modelling temperature-dependent predator-prey dynamics, we study how changes in temperature variability affect population size, collapse and stable coexistence of both predator and prey, relative to under constant environments or warming alone. We find that the effects of temperature variation on interacting species can lead to a diversity of outcomes, from predator collapse to stable coexistence, depending on interaction strengths and differences in species' thermal performance. Temperature variability also alters predictions about population collapse-in some cases allowing predators to persist for longer than predicted when considering warming alone, and in others accelerating collapse. To inform management responses that are robust to future climates with increasing temperature variability and extremes, we need to incorporate the consequences of temperature variation in complex ecosystems. This article is part of the theme issue 'Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Laura E. Dee
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA,e-mail:
| | - Daniel Okamtoto
- Department of Biological Science, Florida State University, Tallahassee, FL 32303, USA
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Öregrund, Sweden
| | - Jose M. Montoya
- Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France
| | - Steve J. Miller
- Environmental Studies Program, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
34
|
Ikpewe IE, Baudron AR, Ponchon A, Fernandes PG. Bigger juveniles and smaller adults: Changes in fish size correlate with warming seas. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Alan R. Baudron
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | - Aurore Ponchon
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | | |
Collapse
|
35
|
Kim SL, Zeichner SS, Colman AS, Scher HD, Kriwet J, Mörs T, Huber M. Probing the Ecology and Climate of the Eocene Southern Ocean With Sand Tiger Sharks Striatolamia macrota. PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY 2020; 35:e2020PA003997. [PMID: 34222817 PMCID: PMC8246854 DOI: 10.1029/2020pa003997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 06/13/2023]
Abstract
Many explanations for Eocene climate change focus on the Southern Ocean-where tectonics influenced oceanic gateways, ocean circulation reduced heat transport, and greenhouse gas declines prompted glaciation. To date, few studies focus on marine vertebrates at high latitudes to discern paleoecological and paleoenvironmental impacts of this climate transition. The Tertiary Eocene La Meseta (TELM) Formation has a rich fossil assemblage to characterize these impacts; Striatolamia macrota, an extinct (†) sand tiger shark, is abundant throughout the La Meseta Formation. Body size is often tracked to characterize and integrate across multiple ecological dimensions. †S. macrota body size distributions indicate limited changes during TELMs 2-5 based on anterior tooth crown height (n = 450, mean = 19.6 ± 6.4 mm). Similarly, environmental conditions remained stable through this period based on δ18OPO4 values from tooth enameloid (n = 42; 21.5 ± 1.6‰), which corresponds to a mean temperature of 22.0 ± 4.0°C. Our preliminary ε Nd (n = 4) results indicate an early Drake Passage opening with Pacific inputs during TELM 2-3 (45-43 Ma) based on single unit variation with an overall radiogenic trend. Two possible hypotheses to explain these observations are (1) †S. macrota modified its migration behavior to ameliorate environmental changes related to the Drake Passage opening, or (2) the local climate change was small and gateway opening had little impact. While we cannot rule out an ecological explanation, a comparison with climate model results suggests that increased CO2 produces warm conditions that also parsimoniously explain the observations.
Collapse
Affiliation(s)
- Sora L. Kim
- Department of Geophysical SciencesUniversity of ChicagoChicagoILUSA
- Department of Life and Environmental SciencesUniversity of CaliforniaMercedCAUSA
| | - Sarah S. Zeichner
- Department of Geophysical SciencesUniversity of ChicagoChicagoILUSA
- Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| | - Albert S. Colman
- Department of Geophysical SciencesUniversity of ChicagoChicagoILUSA
- Department of Earth, Environment, and Planetary SciencesRice UniversityHoustonTXUSA
| | - Howie D. Scher
- Department of Earth, Ocean, and EnvironmentUniversity of South CarolinaColumbiaSCUSA
| | - Jürgen Kriwet
- Department of PalaeontologyUniversity of ViennaViennaAustria
| | - Thomas Mörs
- Department of PalaeobiologySwedish Museum of Natural HistoryStockholmSweden
- Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Matthew Huber
- Department of Earth, Atmosphere, and Planetary SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
36
|
Stoffels RJ, Weatherman KE, Bond NR, Morrongiello JR, Thiem JD, Butler G, Koster W, Kopf RK, McCasker N, Ye Q, Zampatti B, Broadhurst B. Stage-dependent effects of river flow and temperature regimes on the growth dynamics of an apex predator. GLOBAL CHANGE BIOLOGY 2020; 26:6880-6894. [PMID: 32970901 DOI: 10.1111/gcb.15363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
In the world's rivers, alteration of flow is a major driver of biodiversity decline. Global warming is now affecting the thermal and hydrological regimes of rivers, compounding the threat and complicating conservation planning. To inform management under a non-stationary climate, we must improve our understanding of how flow and thermal regimes interact to affect the population dynamics of riverine biota. We used long-term growth biochronologies, spanning 34 years and 400,000 km2 , to model the growth dynamics of a long-lived, apex predator (Murray cod) as a function of factors extrinsic (river discharge; air temperature; sub-catchment) and intrinsic (age; individual) to the population. Annual growth of Murray cod showed significant, curvilinear, life-stage-specific responses to an interaction between annual discharge and temperature. Growth of early juveniles (age 1+ and 2+ years) exhibited a unimodal relationship with annual discharge, peaking near median annual discharge. Growth of late juveniles (3+ to 5+) and adults (>5+) increased with annual discharge, with the rate of increase being particularly high in adults, whose growth peaked during years with flooding. Years with very low annual discharge, as experienced during drought and under high abstraction, suppress growth rates of all Murray cod life-stages. Unimodal relationships between growth and annual temperature were evident across all life stages. Contrary to expectations of the Temperature Size Rule, the annual air temperature at which maximum growth occurred increased with age. The stage-specific response of Murray cod to annual discharge indicates that no single magnitude of annual discharge is optimal for cod populations, adding further weight to the case for maintaining and/or restoring flow variability in riverine ecosystems. With respect to climate change impacts, on balance our results indicate that the primary mechanism by which climate change threatens Murray cod growth is through alteration of river flows, not through warming annual mean temperatures per se.
Collapse
Affiliation(s)
- Rick J Stoffels
- National Institute of Water and Atmospheric Research (NIWA), Christchurch, New Zealand
| | - Kyle E Weatherman
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Vic., Australia
| | - Nick R Bond
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Vic., Australia
| | - John R Morrongiello
- School of BioSciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Jason D Thiem
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, Australia
| | - Gavin Butler
- Department of Primary Industries, Grafton Fisheries Centre, Grafton, NSW, Australia
| | - Wayne Koster
- Arthur Rylah Institute, Melbourne, Vic., Australia
| | - R Keller Kopf
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Nicole McCasker
- Institute of Land, Water and Society, Charles Sturt University, Albury, NSW, Australia
| | - Qifeng Ye
- South Australian Research and Development Institute, West Beach, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Brenton Zampatti
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Ben Broadhurst
- Centre for Applied Water Science, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
37
|
Gårdmark A, Huss M. Individual variation and interactions explain food web responses to global warming. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190449. [PMID: 33131431 PMCID: PMC7662199 DOI: 10.1098/rstb.2019.0449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding food web responses to global warming, and their consequences for conservation and management, requires knowledge on how responses vary both among and within species. Warming can reduce both species richness and biomass production. However, warming responses observed at different levels of biological organization may seem contradictory. For example, higher temperatures commonly lead to faster individual body growth but can decrease biomass production of fishes. Here we show that the key to resolve this contradiction is intraspecific variation, because (i) community dynamics emerge from interactions among individuals, and (ii) ecological interactions, physiological processes and warming effects often vary over life history. By combining insights from temperature-dependent dynamic models of simple food webs, observations over large temperature gradients and findings from short-term mesocosm and multi-decadal whole-ecosystem warming experiments, we resolve mechanisms by which warming waters can affect food webs via individual-level responses and review their empirical support. We identify a need for warming experiments on food webs manipulating population size structures to test these mechanisms. We stress that within-species variation in both body size, temperature responses and ecological interactions are key for accurate predictions and appropriate conservation efforts for fish production and food web function under a warming climate. This article is part of the theme issue ‘Integrative research perspectives on marine conservation'.
Collapse
Affiliation(s)
- Anna Gårdmark
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Skolgatan 6, SE-742 42 Öregrund, Sweden
| | - Magnus Huss
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Skolgatan 6, SE-742 42 Öregrund, Sweden
| |
Collapse
|
38
|
de Roos AM. Effects of life history and individual development on community dynamics: A review of counterintuitive consequences. Ecol Res 2020; 35:930-946. [PMID: 33380774 PMCID: PMC7756606 DOI: 10.1111/1440-1703.12174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 11/27/2022]
Abstract
Even though individual life history is the focus of much ecological research, its importance for the dynamics and structure of ecological communities is unclear, or is it a topic of much ongoing research. In this paper I highlight the key life history traits that may lead to effects of life history or ontogeny on ecological communities. I show that asymmetries in the extent of food limitation between individuals in different life stage can give rise to an increase in efficiency with which resources are used for population growth when conditions change. This change in efficiency may result in a positive relationship between stage-specific density and mortality. The positive relationship between density and mortality in turn leads to predictions about community structure that are not only diametrically opposite to the expectations based on theory that ignores population structure but are also intuitively hard to accept. I provide a few examples that illustrate how taking into account intraspecific differences due to ontogeny radically changes the theoretical expectations regarding the possible outcomes of community dynamics. As the most compelling example I show how a so-called double-handicapped looser, that is, a consumer species that is both competitively inferior in the absence of predators and experiences higher mortality when predators are present, can nonetheless oust its opponent that it competes with for the same resource and is exposed to the same predator.
Collapse
Affiliation(s)
- André M. de Roos
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamNetherlands
- The Santa Fe InstituteSanta FeNew MexicoUSA
| |
Collapse
|
39
|
García-Roa R, Garcia-Gonzalez F, Noble DWA, Carazo P. Temperature as a modulator of sexual selection. Biol Rev Camb Philos Soc 2020; 95:1607-1629. [PMID: 32691483 DOI: 10.1111/brv.12632] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).
Collapse
Affiliation(s)
- Roberto García-Roa
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Daniel W A Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 2061, Australia
| | - Pau Carazo
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| |
Collapse
|
40
|
Rollins HB, Benard MF. Challenges in predicting the outcome of competition based on climate change-induced phenological and body size shifts. Oecologia 2020; 193:749-759. [PMID: 32654046 DOI: 10.1007/s00442-020-04705-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/04/2020] [Indexed: 11/25/2022]
Abstract
Climate change is creating warmer, earlier springs, which are causing the phenology of many organisms to shift. Additionally, as temperatures increase, the body size of many ectotherms is decreasing. However, phenological and body size shifts are not occurring at the same rates across species, even in species that live in close proximity or have similar life history. Differing rates of phenological and body-size shifts may affect ecological interactions. We investigated whether shifts in phenology and body size had a predictable effect on interspecific competition. We tested three hypotheses. First, priority effects would indicate early arriving organisms gain a competitive advantage. Second, larger organisms would be competitively superior. Third, similarly sized organisms would compete more strongly. We manipulated aquatic larval conditions to create variation in wood frog (Rana sylvatica) size at and date of metamorphosis. Wood frogs were placed in terrestrial enclosures with unmanipulated juvenile American toads (Anaxyrus americanus) where we tracked amphibian growth over 3 months. Consistent with the size superiority hypothesis, initially smaller wood frogs did not compete as strongly with toads. However, the results of the phenological shift were the opposite of our priority effects prediction: early arrival by frogs increased toad mass. Our results could indicate that toads would experience fewer negative effects of competition with wood frogs that metamorphose earlier and smaller under climate change. Our study highlights the challenges of predicting how climate change will affect interspecific interactions and emphasizes the need to investigate the role of shifts in both phenology and body size.
Collapse
Affiliation(s)
- Hilary B Rollins
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Michael F Benard
- Department of Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
41
|
Gjoni V, Basset A, Glazier DS. Temperature and predator cues interactively affect ontogenetic metabolic scaling of aquatic amphipods. Biol Lett 2020; 16:20200267. [PMID: 32673549 PMCID: PMC7423044 DOI: 10.1098/rsbl.2020.0267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
A common belief is that body mass scaling of metabolic rate results chiefly from intrinsic body-design constraints. However, several studies have shown that multiple ecological factors affect metabolic scaling. The mechanistic basis of these effects is largely unknown. Here, we explore whether abiotic and biotic environmental factors have interactive effects on metabolic scaling. To address this question, we studied the simultaneous effects of temperature and predator cues on the ontogenetic metabolic scaling of amphipod crustaceans inhabiting two different aquatic ecosystems, a freshwater spring and a saltwater lagoon. We assessed effects of phenotypic plasticity on metabolic scaling by exposing amphipods in the laboratory to water with and without fish cues at multiple temperatures. Temperature interacts significantly with predator cues to affect metabolic scaling. Our results suggest that metabolic scaling is highly malleable in response to short-term acclimation. The interactive effects of temperature and predators show the importance of studying effects of global warming in realistic ecological contexts.
Collapse
Affiliation(s)
- V. Gjoni
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, Ecotekne 73100, LE, Italy
| | - A. Basset
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, Ecotekne 73100, LE, Italy
| | - D. S. Glazier
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| |
Collapse
|
42
|
Büntgen U, Jenny H, Galván JD, Piermattei A, Krusic PJ, Bollmann K. Stable body size of Alpine ungulates. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200196. [PMID: 32874622 PMCID: PMC7428221 DOI: 10.1098/rsos.200196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
In many species, decreasing body size has been associated with increasing temperatures. Although climate-induced phenotypic shifts, and evolutionary impacts, can affect the structure and functioning of marine and terrestrial ecosystems through biological and metabolic rules, evidence for shrinking body size is often challenged by (i) relatively short intervals of observation, (ii) a limited number of individuals, and (iii) confinement to small and isolated populations. To overcome these issues and provide important multi-species, long-term information for conservation managers and scientists, we compiled and analysed 222 961 measurements of eviscerated body weight, 170 729 measurements of hind foot length and 145 980 measurements of lower jaw length, in the four most abundant Alpine ungulate species: ibex (Capra ibex), chamois (Rupicapra rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Regardless of age, sex and phylogeny, the body mass and size of these sympatric animals, from the eastern Swiss Alps, remained stable between 1991 and 2013. Neither global warming nor local hunting influenced the fitness of the wild ungulates studied at a detectable level. However, we cannot rule out possible counteracting effects of enhanced nutritional resources associated with longer and warmer growing seasons, as well as the animals' ability to migrate along extensive elevational gradients in the highly diversified alpine landscape of this study.
Collapse
Affiliation(s)
- Ulf Büntgen
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
- Global Change Research Centre (CzechGlobe), 603 00 Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, 613 00 Brno, Czech Republic
| | - Hannes Jenny
- Department of Wildlife and Fishery Service Grisons, Canton of Grisons, Loëstrasse 14, 7001 Chur, Switzerland
| | - J. Diego Galván
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| | - Alma Piermattei
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
| | - Paul J. Krusic
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
- Department of Physical Geography, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kurt Bollmann
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
43
|
Corrigendum. Ecol Lett 2020; 23:1175. [DOI: 10.1111/ele.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Activity alters how temperature influences intraspecific metabolic scaling: testing the metabolic-level boundaries hypothesis. J Comp Physiol B 2020; 190:445-454. [DOI: 10.1007/s00360-020-01279-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
|
45
|
How climate change and wildlife management affect population structure in wild boars. Sci Rep 2020; 10:7298. [PMID: 32350377 PMCID: PMC7190818 DOI: 10.1038/s41598-020-64216-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/08/2020] [Indexed: 11/08/2022] Open
Abstract
Global climate change affects many species and contributes to the exceptional population growth of wild boar populations and thus to increasing human-wildlife conflicts. To investigate the impact of climate change on wild boar populations we extended existing models on population dynamics. We included for the first time different juvenile conditions to account for long-lasting effects of juvenile body mass on adult body mass and reproductive success. Our analysis shows that incorporating phenotypes, like body mass differences within age classes, has strong effects on projected population growth rates, population structures and the relative importance of certain vital rates. Our models indicated that an increase in winter temperatures and food availability will cause a decrease in mean body mass and litter size within Central European wild boar populations. We further analysed different hunting regimes to identify their effects on the population structure as well as their efficiency in limiting population growth. While targeting juveniles had the lowest effect on population structure, such strategies are, however, rather ineffective. In contrast, culling predominantly yearlings seems very effective. Despite being equally effective, only focusing on adults will not result in a reduction of population size due to their low proportion within populations.
Collapse
|
46
|
Rubalcaba JG, Olalla-Tárraga MÁ. The biogeography of thermal risk for terrestrial ectotherms: Scaling of thermal tolerance with body size and latitude. J Anim Ecol 2020; 89:1277-1285. [PMID: 31990044 DOI: 10.1111/1365-2656.13181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
Many organisms are shrinking in size in response to global warming. However, we still lack a comprehensive understanding of the mechanisms linking body size and temperature of organisms across their geographical ranges. Here we investigate the biophysical mechanisms determining the scaling of body temperature with size across latitudes in terrestrial ectotherms. Using biophysical models, we simulated operative temperatures experienced by lizard-like ectotherms as a function of microclimatic variables, body mass and latitude and used them to generate null predictions for the effect of size on temperature across geographical gradients. We then compared model predictions against empirical data on lizards' field body temperature (Tb ) and thermal tolerance limits (CTmax and CTmin ). Our biophysical models predict that the allometric scaling of operative temperatures with body size varies with latitude, with a positive relationship at low latitudes that vanishes with increasing latitude. The analyses of thermal traits of lizards show a significant interaction of body size and latitude on Tb and CTmax and no effect of body mass on CTmin , consistent with model's predictions. The estimated scaling coefficients are within the ranges predicted by the biophysical model. The effect of body mass, however, becomes non-significant after controlling for the phylogenetic relatedness between species. We propose that large-bodied terrestrial ectotherms exhibit higher risk of overheating at low latitudes, while size differences in thermal sensitivity vanish towards higher latitudes. Our work highlights the potential of combining mechanistic models with empirical data to investigate the mechanisms underpinning broad-scale patterns and ultimately provide a null model to develop baseline expectations for further empirical research.
Collapse
Affiliation(s)
- Juan G Rubalcaba
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Miguel Á Olalla-Tárraga
- Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| |
Collapse
|
47
|
Wang W, Sun S, Sun X, Zhang G, Zhang F. Spatial patterns of zooplankton size structure in relation to environmental factors in Jiaozhou Bay, South Yellow Sea. MARINE POLLUTION BULLETIN 2020; 150:110698. [PMID: 31744604 DOI: 10.1016/j.marpolbul.2019.110698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The spatial variation in size structure of mesozooplankton and its relationship with environmental factors were studied from January 2006 to December 2010 in Jiaozhou Bay. The spatial body-size patterns of zooplankton differed significantly from the inner to the outer bay, and have a significant correlation with environmental variables, especially nutrients, salinity and water depth. The abundance of total zooplankton and small size ranks presented a decreasing gradient from the inner to the outer part, and was positive correlated with nutrients and negative with salinity, while the abundance of large size ranks exhibited an opposite gradient, and was positive correlated with water depth and negative with nutrients. The size spectra slope and size diversity were generally low in the inner part and closely related to body size ranks. Our results suggest that size structure patterns of zooplankton showed a clear spatial pattern and significantly associated with environmental factors in marine ecosystems.
Collapse
Affiliation(s)
- Weicheng Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Song Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Xiaoxia Sun
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Guangtao Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Fang Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
48
|
Hillaert J, Vandegehuchte ML, Hovestadt T, Bonte D. Habitat loss and fragmentation increase realized predator–prey body size ratios. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jasmijn Hillaert
- Department of Biology Terrestrial Ecology Unit Ghent University Ghent Belgium
| | | | - Thomas Hovestadt
- Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Würzburg Germany
| | - Dries Bonte
- Department of Biology Terrestrial Ecology Unit Ghent University Ghent Belgium
| |
Collapse
|
49
|
Gunderson AR, Abegaz M, Ceja AY, Lam EK, Souther BF, Boyer K, King EE, You Mak KT, Tsukimura B, Stillman JH. Hot Rocks and Not-So-Hot Rocks on the Seashore: Patterns and Body-Size Dependent Consequences of Microclimatic Variation in Intertidal Zone Boulder Habitat. Integr Org Biol 2019; 1:obz024. [PMID: 33791538 PMCID: PMC7671146 DOI: 10.1093/iob/obz024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microclimatic variation has emerged as an important driver of many ecological and evolutionary processes. Nonetheless, fine-scale temperature data are still rare in most habitats, limiting our ability to understand the consequences of microclimatic variation under current and future conditions. We measured fine-scale thermal variation in a common, species-rich, but rarely studied habitat with respect to temperature: the airspaces under rocks on intertidal zone boulder shores. The effects of thermal variation were investigated using physiological, behavioral, and demographic responses of the porcelain crab Petrolisthes cinctipes. Habitat temperatures were measured at fine spatial and temporal resolution over 18 months, producing 424,426 temperature records. Microclimatic variation increased with increasing intertidal elevation, particularly with respect to heat extremes. However, mean temperatures were similar across the entire intertidal zone. Overheating risk for P. cinctipes increases with intertidal elevation but is size dependent, as large animals are more heat sensitive than small animals. Still, microclimatic variation high in the intertidal zone provided thermal refugia even under the warmest conditions. Size-dependent thermal responses predicted that large crabs should be rare high in the intertidal zone, which was supported by demographic data. Furthermore, simulations parameterized by our microclimate and organismal data recapitulated demographic patterns. Therefore, interactions between microclimatic variation and size-dependent thermal responses may have significant ecological repercussions that warrant greater attention.
Collapse
Affiliation(s)
- A R Gunderson
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA.,Department of Integrative Biology, University of California, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA.,Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - M Abegaz
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA
| | - A Y Ceja
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA
| | - E K Lam
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA
| | - B F Souther
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA
| | - K Boyer
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA
| | - E E King
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA.,Department of Integrative Biology, University of California, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA
| | - K T You Mak
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA
| | - B Tsukimura
- Department of Biology, California State University, Fresno, CA 93740, USA
| | - J H Stillman
- Estuary & Ocean Science Center, Romberg Tiburon Campus, San Francisco State University, 3150 Paradise Drive, Tiburon, CA 94920, USA.,Department of Integrative Biology, University of California, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA.,Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
50
|
Jerde CL, Kraskura K, Eliason EJ, Csik SR, Stier AC, Taper ML. Strong Evidence for an Intraspecific Metabolic Scaling Coefficient Near 0.89 in Fish. Front Physiol 2019; 10:1166. [PMID: 31616308 PMCID: PMC6763608 DOI: 10.3389/fphys.2019.01166] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
As an example of applying the evidential approach to statistical inference, we address one of the longest standing controversies in ecology, the evidence for, or against, a universal metabolic scaling relationship between metabolic rate and body mass. Using fish as our study taxa, we curated 25 studies with measurements of standard metabolic rate, temperature, and mass, with 55 independent trials and across 16 fish species and confronted this data with flexible random effects models. To quantify the body mass - metabolic rate relationship, we perform model selection using the Schwarz Information Criteria (ΔSIC), an established evidence function. Further, we formulate and justify the use of ΔSIC intervals to delineate the values of the metabolic scaling relationship that should be retained for further consideration. We found strong evidence for a metabolic scaling coefficient of 0.89 with a ΔSIC interval spanning 0.82 to 0.99, implying that mechanistically derived coefficients of 0.67, 0.75, and 1, are not supported by the data. Model selection supports the use of a random intercepts and random slopes by species, consistent with the idea that other factors, such as taxonomy or ecological or lifestyle characteristics, may be critical for discerning the underlying process giving rise to the data. The evidentialist framework applied here, allows for further refinement given additional data and more complex models.
Collapse
Affiliation(s)
- Christopher L. Jerde
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Krista Kraskura
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Erika J. Eliason
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Samantha R. Csik
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Adrian C. Stier
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Mark L. Taper
- Department of Ecology, Montana State University, Bozeman, MT, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|