1
|
Palomo Atance E, Sánchez Ruiz P, Reyzábal Ereño E, Sánchez Tudela P, Acero García de la Santa L. Alterations in MORC2 gene and DIGFAN syndrome: A rare cause of short stature. ENDOCRINOL DIAB NUTR 2025; 72:101537. [PMID: 40180834 DOI: 10.1016/j.endien.2025.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 04/05/2025]
Affiliation(s)
- Enrique Palomo Atance
- Endocrinología Pediátrica, Servicio de Pediatría, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain.
| | - Prado Sánchez Ruiz
- Neurología Pediátrica, Servicio de Pediatría, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Elena Reyzábal Ereño
- Endocrinología Pediátrica, Servicio de Pediatría, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | - Paola Sánchez Tudela
- Endocrinología Pediátrica, Servicio de Pediatría, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | | |
Collapse
|
2
|
Zhao X, Miao J. Biological functions and molecular mechanisms of MORC2 in human diseases. Mol Cells 2025; 48:100166. [PMID: 39637946 PMCID: PMC11731582 DOI: 10.1016/j.mocell.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Microrchidia family CW-type zinc finger 2 (MORC2) is a nuclear protein that has been highly conserved throughout evolution. MORC2 consists of an ATPase domain at the N-terminus, a CW-type zinc finger domain in the middle, and coiled-coil domains at the C-terminus. MORC2 is involved in various important biological processes such as transcriptional regulation, chromatin remodeling, DNA damage repair, and metabolism. Recent studies suggest that MORC2 may serve as a potential biomarker and therapeutic target for hereditary neurological diseases and cancers. However, the exact molecular functions and pathogenic mechanisms of MORC2 in human diseases remain to be explored. In this review, we provide an overview of recent advancements in understanding the molecular functions of MORC2, as well as the characteristics and mechanisms of MORC2-related diseases, which will be valuable for future studies.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Zhu F, Gao C, Zhu X, Jiang H, Huang M, Zhou Y. Case Report: Charcot-marie-tooth disease caused by a de novo MORC2 gene mutation - novel insights into pathogenicity and treatment. Front Genet 2024; 15:1400906. [PMID: 39464795 PMCID: PMC11512448 DOI: 10.3389/fgene.2024.1400906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a hereditary peripheral neuropathy involving approximately 80 pathogenic genes. Whole-exome sequencing (WES) and confirmatory Sanger sequencing analysis was applied to identify the disease-causing mutations in a Chinese patient with lower limb weakness. We present an 18-year-old male with a 2.5-year history of progressive lower limb weakness and an unsteady gait. Upon admission, a physical examination revealed hands tremulousness, bilateral calf muscle wasting and weakness, pes cavus, and elevated serum creatine kinase (CK) levels. Electromyography demonstrated axonal neuropathy affecting both upper and lower limbs. A de novo heterozygous missense mutation was identified in the MORC2 gene, NM_001303256.3: c.1199A>G, NP_001290186.1: p.Gln400Arg. Consequently, these clinical and genetic findings suggested a diagnosis of hereditary peripheral neuropathy, CMT type 2Z. Oral mecobalamin and coenzyme Q10 was initiated as subsequent treatment. Our study firstly reports the MORC2 c.1199A>G mutation occurring de novo, highlighting its causal association with CMT2Z, and prompting its reclassification as likely pathogenic. Oral mecobalamin and coenzyme Q10 might be a potential treatment approach for early-stage CMT2Z. We recommend genetic testing for CMT patients to identify the genetic etiology, thereby improving clinical management and facilitating genetic counseling.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Chengcheng Gao
- Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Xiangxiang Zhu
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Huihua Jiang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Mingchun Huang
- Supply-Room, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Yuanlin Zhou
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
4
|
Hanada K, Osaki Y, Miyamoto R, Muto K, Haji S, Nazere K, Kuwano Y, Morino H, Azuma Y, Miyatake S, Matsumoto N, Izumi Y. Intermediate phenotype between CMT2Z and DIGFAN associated with a novel MORC2 variant: a case report. Hum Genome Var 2024; 11:29. [PMID: 39143067 PMCID: PMC11324651 DOI: 10.1038/s41439-024-00287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Charcot-Marie-Tooth disease type 2Z is caused by MORC2 mutations and presents with axonal neuropathy. MORC2 mutations can also manifest as developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy (DIGFAN). We report a patient exhibiting an intermediate phenotype between these diseases associated with a novel MORC2 variant. A literature review revealed that the genotype‒phenotype correlation in MORC2-related disorders is complex and that the same mutation can cause a variety of phenotypes.
Collapse
Affiliation(s)
- Kenta Hanada
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
- Naka Municipal Kaminaka Hospital, Naka, Japan.
| | - Yusuke Osaki
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryosuke Miyamoto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kohei Muto
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shotaro Haji
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keyoumu Nazere
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yuki Kuwano
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroyuki Morino
- Department of Medical Genetics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
5
|
Figueiredo FB, Tomaselli PJ, Hallak J, Mattiello-Sverzut AC, Covaleski APPM, Sobreira CFDR, de Paula Gouvêa S, Marques W. Genetic diversity in hereditary axonal neuropathy: Analyzing 53 Brazilian children. J Peripher Nerv Syst 2024; 29:97-106. [PMID: 38375759 DOI: 10.1111/jns.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND AIMS The genetic epidemiology of inherited neuropathies in children remains largely unknown. In this study, we specifically investigated the genetic profile of a Brazilian cohort of pediatric patients with pure or complex axonal neuropathies, a crucial knowledge in the near future for establishing treatment priorities and perspectives for this group of patients. METHODS Fifty-three pediatric patients who were assessed prior to reaching the age of 20, and who had clinical diagnoses of axonal hereditary neuropathy or presented with axonal neuropathy as the primary clinical feature, were included in the study. The recruitment of these cases took place from January 1, 2018, to December 31, 2020. The diagnosis was based on clinical and electrophysiological data. A molecular assessment was made using target-gene panel or whole-exome sequencing. Subsequently, segregation analysis was performed on available family members, and all candidate variants found were confirmed through Sanger. RESULTS A molecular diagnosis was reached in 68% of the patients (n = 36/53), considering only pathogenic and probably pathogenic variants. Variants in MFN2 (n = 15) and GJB1 (n = 3) accounted for half of the genetically confirmed patients (50%; n = 18/36). The other 18 genetically diagnosed patients had variants in several less common genes. INTERPRETATION Apart from MFN2 and GJB1 genes, universally recognized as a frequent cause of axonal neuropathies in most studied population, our Brazilian cohort of children with axonal neuropathies showed an important genetic heterogeneity, probably reflecting the multi ethnicity of the Brazilian population. Diagnostic, counseling, and future interventions should consider this characteristic.
Collapse
Affiliation(s)
- Fernanda Barbosa Figueiredo
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pedro José Tomaselli
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jaime Hallak
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Sciences and Technology-INCT-Translational Medicine-CNPq/FAPESP, Ribeirao Preto, Brazil
| | | | | | | | - Silmara de Paula Gouvêa
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Wilson Marques
- Neuroscience and Behavior Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- National Institute of Sciences and Technology-INCT-Translational Medicine-CNPq/FAPESP, Ribeirao Preto, Brazil
| |
Collapse
|
6
|
Zhang S, Guo A, Wang H, Liu J, Dong C, Ren J, Wang G. Oncogenic MORC2 in cancer development and beyond. Genes Dis 2024; 11:861-873. [PMID: 37692502 PMCID: PMC10491978 DOI: 10.1016/j.gendis.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Microrchidia CW-type zinc finger 2 (MORC2) is a member of the MORC superfamily of nuclear proteins. Growing evidence has shown that MORC2 not only participates in gene transcription and chromatin remodeling but also plays a key in human disease and tumor development by regulating the expression of downstream oncogenes or tumor suppressors. The present review provides an updated overview of MORC2 in the aspect of cancer hallmark and therapeutic resistance and summarizes its upstream regulators and downstream target genes. This systematic review may provide a favorable theoretical basis for emerging players of MORC2 in tumor development and new insight into the potential clinical application of basic science discoveries in the future.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ayao Guo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huan Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Jia Liu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Junyi Ren
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
7
|
Arbide D, Elkhateeb N, Goljan E, Gonzalez CP, Maw A, Park SM. A Novel Heterozygous De Novo MORC2 Missense Variant Causes an Early Onset and Severe Neurodevelopmental Disorder. Case Rep Genet 2024; 2024:5906936. [PMID: 38204468 PMCID: PMC10776187 DOI: 10.1155/2024/5906936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Microrchidia CW-type zinc finger protein 2 (MORC2) is an ATPase-containing nuclear protein which regulates transcription through chromatin remodelling and epigenetic silencing. MORC2 may have a role in the development of neurones, and dominant variants in this gene have recently been linked with disorders including Charcot-Marie-Tooth type 2Z disease, spinal muscular atrophy and, more recently, a neurodevelopmental syndrome consisting of developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy (DIGFAN), presenting with hypotonia, microcephaly, brain atrophy, intellectual disability, hearing loss, faltering growth, and craniofacial dysmorphism. Notably, variants in MORC2 have shown clinical features overlapping with those of Cockayne and Leigh syndromes. Here, we report a case of MORC2-related DIGFAN syndrome in a female infant caused by a novel heterozygous de novo variant. The condition was early onset and severe, further expanding the range of genotypes associated with this disorder. Clinical features included unilateral hearing loss, developmental delay and regression within the first year of life, microcephaly, severe feeding difficulties, and faltering growth, resulting in death at 13 months of age.
Collapse
Affiliation(s)
- Daniel Arbide
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ewa Goljan
- Exeter Genomic Laboratory Hub, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Carolina Perez Gonzalez
- Department of Paediatric Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Anna Maw
- Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
8
|
Zhao P, Ning J, Huang J, Wei B, Wang Z, Huang X. High Expression of MORC2 is Associated with Poor Clinical Outcomes and Immune Infiltrates in Colon Adenocarcinoma. Int J Gen Med 2023; 16:4595-4615. [PMID: 37850194 PMCID: PMC10577261 DOI: 10.2147/ijgm.s420715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose Microrchidia 2 (MORC2) is a universally expressed molecule that has recently been identified as a chromatin modulator and elevated in many malignancies. However, its prognostic value and immunological role of MORC2 in colon adenocarcinoma (COAD) have never been illustrated. Methods The clinical parameters and MORC2 expression datasets of COAD patients were obtained from The Cancer Genome Atlas (TCGA). Cancer and adjacent tissue specimens from surgically resected COAD patients were collected, and quantitative real-time PCR was used to detect MORC2 expression. Differentially expressed genes related to MORC2 were discovered and used for functional enrichment analysis. The diagnostic and prognostic values of MORC2 in COAD were conducted using receiver operating characteristics (ROC), Kaplan-Meier survival curve analysis, PrognoScan, Gene Expression Profiling Interactive Analysis (GEPIA) public databases and nomograms. Eventually, the association of MORC2 with tumor microenvironment was analyzed by using TIMER and GSVA package of R (v3.6.3). Results MORC2 expression was upregulated in COAD tissues, and the RT-qPCR results further verified the reliability of our differential analysis at the transcriptional level. Additionally, higher expression of MORC2 was correlated to a poor prognosis for COAD patients. MORC2 was an independent prognostic factor for COAD and could be a diagnostic factor for early COAD. Furthermore, MORC2 expression was positively correlated with immune cells such as NK cells, TFH cells and so on. Conclusion The findings demonstrated that overexpression of MORC2 was correlated with worse prognosis and immune infiltrates of COAD. MORC2 can serve as a reliable diagnostic and prognostic biomarker and a target of immunotherapy for COAD patients.
Collapse
Affiliation(s)
- Peizhuang Zhao
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiajia Ning
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jun Huang
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Binqian Wei
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhen Wang
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xue Huang
- Department of Geriatrics and Gastroenterology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
9
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
10
|
Hu SY, Qian JX, Yang SY, Andriani L, Liao L, Deng L, Huang MY, Zhang YL, Zhang FL, Shao ZM, Li DQ. Destabilization of microrchidia family CW-type zinc finger 2 via the cyclin-dependent kinase 1-chaperone-mediated autophagy pathway promotes mitotic arrest and enhances cancer cellular sensitivity to microtubule-targeting agents. Clin Transl Med 2023; 13:e1210. [PMID: 36967563 PMCID: PMC10040724 DOI: 10.1002/ctm2.1210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/29/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Microtubule-targeing agents (MTAs), such as paclitaxel (PTX) and vincristine (VCR), kill cancer cells through activtion of the spindle assembly checkpoint (SAC) and induction of mitotic arrest, but the development of resistance poses significant clinical challenges. METHODS Immunoblotting and RT-qPCR were used to investigate potential function and related mechanism of MORC2. Flow cytometry analyses were carried out to determine cell cycle distribution and apoptosis. The effect of MORC2 on cellular sensitivity to PTX and VCR was determined by immunoblotting, flow cytometry, and colony formation assays. Immunoprecipitation assays and immunofluorescent staining were utilized to investigate protein-protein interaction and protein co-localization. RESULTS Here, we identified microrchidia family CW-type zinc finger 2 (MORC2), a poorly characterized oncoprotein, as a novel regulator of SAC activation, mitotic progression, and resistance of cancer cells to PTX and VCR. Mechanically, PTX and VCR activate cyclin-dependent kinase 1, which in turn induces MORC2 phosphorylation at threonine 717 (T717) and T733. Phosphorylated MORC2 enhances its interation with HSPA8 and LAMP2A, two essential components of the chaperone-mediated autophagy (CMA) mechinery, resulting in its autophagic degradation. Degradation of MORC2 during mitosis leads to SAC activation through stabilizing anaphase promoting complex/cyclosome activator protein Cdc20 and facilitating mitotic checkpoint complex assembly, thus contributing to mitotic arrest induced by PTX and VCR. Notably, knockdown of MORC2 promotes mitotic arrest induced by PTX and VCR and enhances the sensitivity of cancer cells to PTX and VCR. CONCLUSIONS Collectively, these findings unveil a previously unrecognized function and regulatory mechanism of MORC2 in mitotic progression and resistance of cancer cells to MTAs. These results also provide a new clue for developing combined treatmentstrategy by targeting MORC2 in combination with MTAs against human cancer.
Collapse
Affiliation(s)
- Shu-Yuan Hu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin-Xian Qian
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shao-Ying Yang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Liao
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Deng
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min-Ying Huang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yin-Ling Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Lin Zhang
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Min Shao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Jacquier A, Ribault S, Mendes M, Lacoste N, Risson V, Carras J, Latour P, Nadaj-Pakleza A, Stojkovic T, Schaeffer L. Expanding the phenotypic variability of MORC2 gene mutations: From Charcot-Marie-Tooth disease to late-onset pure motor neuropathy. Hum Mutat 2022; 43:1898-1908. [PMID: 35904125 PMCID: PMC10087860 DOI: 10.1002/humu.24445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/09/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023]
Abstract
MORC2 gene encodes a ubiquitously expressed nuclear protein involved in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous mutations in MORC2 gene have been associated with a spectrum of disorders affecting the peripheral nervous system such as Charcot-Marie-Tooth (CMT2Z), spinal muscular atrophy-like with or without cerebellar involvement, and a developmental syndrome associated with impaired growth, craniofacial dysmorphism and axonal neuropathy (DIGFAN syndrome). Such variability in clinical manifestations associated with the increasing number of variants of unknown significance detected by next-generation sequencing constitutes a serious diagnostic challenge. Here we report the characterization of an in vitro model to evaluate the pathogenicity of variants of unknown significance based on MORC2 overexpression in a neuroblastoma cell line SH-EP or cortical neurons. Likewise, we show that MORC2 mutants affect survival and trigger apoptosis over time in SH-EP cell line. Furthermore, overexpression in primary cortical neurons increases apoptotic cell death and decreases neurite outgrowth. Altogether, these approaches establish the pathogenicity of two new variants p.Gly444Arg and p.His446Gln in three patients from two families. These new mutations in MORC2 gene are associated with autosomal dominant CMT and with adult late onset proximal motor neuropathy, further increasing the spectrum of clinical manifestations associated with MORC2 mutations.
Collapse
Affiliation(s)
- Arnaud Jacquier
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France.,Centre de Biotechnologie Cellulaire, CBC Biotec, CHU de Lyon-HCL groupement Est, Bron, France
| | - Shams Ribault
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France.,Service de Médecine Physique et de Réadaptation, Hôpital Henry Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France
| | - Michel Mendes
- Service de Neurologie, Centro Hospitalar Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Nicolas Lacoste
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France
| | - Valérie Risson
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France
| | - Julien Carras
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France.,Centre de Biotechnologie Cellulaire, CBC Biotec, CHU de Lyon-HCL groupement Est, Bron, France
| | - Philippe Latour
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France.,Unité fonctionnelle de neurogénétique moléculaire, CHU de Lyon-HCL groupement Est, Bron, France
| | - Aleksandra Nadaj-Pakleza
- Centre de Référence des maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Tanya Stojkovic
- Institut de Myologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Laurent Schaeffer
- PGNM, Institut NeuroMyoGène, Université Lyon1-CNRS UMR5261-INSERM U1315, Lyon, France.,Centre de Biotechnologie Cellulaire, CBC Biotec, CHU de Lyon-HCL groupement Est, Bron, France
| |
Collapse
|
12
|
Expanding the phenotypic spectrum of Dejerine-Sottas syndrome caused by the trembler mutation. Neurogenetics 2022; 23:275-277. [DOI: 10.1007/s10048-022-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
|
13
|
Jacquier A, Roubille S, Lomonte P, Schaeffer L. Microrchidia CW-Type Zinc Finger 2, a Chromatin Modifier in a Spectrum of Peripheral Neuropathies. Front Cell Neurosci 2022; 16:896854. [PMID: 35722617 PMCID: PMC9203694 DOI: 10.3389/fncel.2022.896854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Microrchidia CW-type zinc finger 2 (MORC2) gene encodes a protein expressed in all tissues and enriched in the brain. MORC2 protein is composed of a catalytic ATPase domain, three coil-coiled domains allowing dimerization or protein complex interaction, a zinc-finger CW domain allowing DNA interaction, and a CHROMO-like (CHRromatin Organization Modifier) domain. Recently, de novo or dominantly inherited heterozygous mutations have been associated with a spectrum of disorders affecting the peripheral nervous system such as the Charcot-Marie-Tooth disease, spinal muscular atrophy-like phenotype disorder, or a neurodevelopmental syndrome associated with developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy (DIGFAN). In this review, we detail the various mutations of MORC2 and their consequences on clinical manifestations. Possible genotype-phenotype correlations as well as intra and inter-family variability are discussed. MORC2 molecular functions such as transcriptional modulation, DNA damage repair, and lipid metabolism are then reviewed. We further discuss the impact of MORC2 mutations on the epigenetic landscape in the neuromuscular system and hypothesize probable pathophysiological mechanisms underlying the phenotypic variability observed.
Collapse
Affiliation(s)
- Arnaud Jacquier
- INMG-Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Simon Roubille
- INMG-Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Patrick Lomonte
- INMG-Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Laurent Schaeffer
- INMG-Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Hospices Civils de Lyon, Groupement Est, Bron, France
| |
Collapse
|
14
|
Brooks JK, Porter NC, Bisordi KA, Miclat CE, Greene CL. Review of general and head and neck/oral and maxillofacial features of Charcot-Marie-Tooth disease and dental management considerations. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:e170-e177. [PMID: 35305937 DOI: 10.1016/j.oooo.2021.12.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 01/15/2023]
Abstract
Charcot-Marie-Tooth disease (CMTD) is an uncommon progressive neuromuscular disorder of the peripheral nervous system and primarily leads to distal extremity weakness and sensory deficits. Frequently, affected patients manifest pes cavus, drop foot, and digit contractures that may pose significant challenges in ambulation and grasping objects. Although there are numerous articles of this syndrome in the medical literature, there is a limited number of dental publications. The objective of this article is to review the general and head and neck/oral and maxillofacial features of CMTD. General guidelines for dental management are also provided.
Collapse
Affiliation(s)
- John K Brooks
- Clinical Professor, Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA.
| | - Neil C Porter
- Assistant Professor, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katharine A Bisordi
- Instructor and Genetic Counselor, Department of Pediatrics, Division of Human Genetics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claire E Miclat
- Predoctoral student, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Carol L Greene
- Professor, Director of Clinical Genetics Service, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Ando M, Higuchi Y, Yuan JH, Yoshimura A, Kitao R, Morimoto T, Taniguchi T, Takeuchi M, Takei J, Hiramatsu Y, Sakiyama Y, Hashiguchi A, Okamoto Y, Mitsui J, Ishiura H, Tsuji S, Takashima H. Novel de novo POLR3B mutations responsible for demyelinating Charcot-Marie-Tooth disease in Japan. Ann Clin Transl Neurol 2022; 9:747-755. [PMID: 35482004 PMCID: PMC9082381 DOI: 10.1002/acn3.51555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background Biallelic POLR3B mutations cause a rare hypomyelinating leukodystrophy. De novo POLR3B heterozygous mutations were recently associated with afferent ataxia, spasticity, variable intellectual disability, and epilepsy, and predominantly demyelinating sensorimotor peripheral neuropathy. Methods We performed whole‐exome sequencing (WES) of DNA samples from 804 Charcot–Marie–Tooth (CMT) cases that could not be genetically diagnosed by DNA‐targeted resequencing microarray using next‐generation sequencers. Using WES data, we analyzed the POLR3B mutations and confirmed their clinical features. Results We identified de novo POLR3B heterozygous missense mutations in two patients. These patients presented with early‐onset demyelinating sensorimotor neuropathy without ataxia, spasticity, or cognitive impairment. Patient 1 showed mild cerebellar atrophy and spinal cord atrophy on magnetic resonance imaging and eventually died of respiratory failure in her 50s. We classified these mutations as pathogenic based on segregation studies, comparison with control database, and in silico analysis. Conclusion Our study is the third report on patients with demyelinating CMT harboring heterozygous POLR3B mutations and verifies the pathogenicity of POLR3B mutations in CMT. Although extremely rare in our large Japanese case series, POLR3B mutations should be added to the CMT‐related gene panel for comprehensive genetic screening, particularly for patients with early‐onset demyelinating CMT.
Collapse
Affiliation(s)
- Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ruriko Kitao
- Department of Neurology, National Hospital Organization Hakone Hospital, Kanagawa, Japan
| | - Takehiko Morimoto
- Department of Pediatrics, Asahigawaso Minamiehime Rehabilitation Hospital, Ehime, Japan
| | - Takaki Taniguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Neurology, Imakiire General Hospital, Kagoshima, Japan
| | - Mika Takeuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun Takei
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yu Hiramatsu
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yusuke Sakiyama
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Chiba, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Chiba, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Chiba, Japan.,Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
16
|
Liu YY, Liu HY, Yu TJ, Lu Q, Zhang FL, Liu GY, Shao ZM, Li DQ. O-GlcNAcylation of MORC2 at threonine 556 by OGT couples TGF-β signaling to breast cancer progression. Cell Death Differ 2022; 29:861-873. [PMID: 34974534 PMCID: PMC8991186 DOI: 10.1038/s41418-021-00901-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme involved in DNA damage response and gene transcription, and its dysregulation has been linked with Charcot-Marie-Tooth disease, neurodevelopmental disorder, and cancer. Despite its functional importance, how MORC2 is regulated remains enigmatic. Here, we report that MORC2 is O-GlcNAcylated by O-GlcNAc transferase (OGT) at threonine 556. Mutation of this site or pharmacological inhibition of OGT impairs MORC2-mediated breast cancer cell migration and invasion in vitro and lung colonization in vivo. Moreover, transforming growth factor-β1 (TGF-β1) induces MORC2 O-GlcNAcylation through enhancing the stability of glutamine-fructose-6-phosphate aminotransferase (GFAT), the rate-limiting enzyme for producing the sugar donor for OGT. O-GlcNAcylated MORC2 is required for transcriptional activation of TGF-β1 target genes connective tissue growth factor (CTGF) and snail family transcriptional repressor 1 (SNAIL). In support of these observations, knockdown of GFAT, SNAIL or CTGF compromises TGF-β1-induced, MORC2 O-GlcNAcylation-mediated breast cancer cell migration and invasion. Clinically, high expression of OGT, MORC2, SNAIL, and CTGF in breast tumors is associated with poor patient prognosis. Collectively, these findings uncover a previously unrecognized mechanistic role for MORC2 O-GlcNAcylation in breast cancer progression and provide evidence for targeting MORC2-dependent breast cancer through blocking its O-GlcNAcylation.
Collapse
Affiliation(s)
- Ying-Ying Liu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hong-Yi Liu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Tian-Jian Yu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Qin Lu
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Fang-Lin Zhang
- grid.8547.e0000 0001 0125 2443Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Guang-Yu Liu
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Nagappa M, Sharma S, Govindaraj P, Chickabasaviah Y, Siram R, Shroti A, Seshagiri D, Debnath M, Bindu P, Taly A. Genetic spectrum of inherited neuropathies in India. Ann Indian Acad Neurol 2022; 25:407-416. [PMID: 35936615 PMCID: PMC9350795 DOI: 10.4103/aian.aian_269_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Charcot-Marie-Tooth (CMT) disease is the commonest inherited neuromuscular disorder and has heterogeneous manifestations. Data regarding genetic basis of CMT from India is limited. This study aims to report the variations by using high throughput sequencing in Indian CMT cohort. Methods: Fifty-five probands (M:F 29:26) with suspected inherited neuropathy underwent genetic testing (whole exome: 31, clinical exome: 17 and targeted panel: 7). Their clinical and genetic data were analysed. Results: Age at onset ranged from infancy to 54 years. Clinical features included early-onset neuropathy (n=23), skeletal deformities (n=45), impaired vision (n=8), impaired hearing (n=6), facial palsy (n=8), thickened nerves (n=4), impaired cognition (n=5), seizures (n=5), pyramidal signs (n=7), ataxia (n=8) and vocal cord palsy, slow tongue movements and psychosis in one patient each. Twenty-eight patients had demyelinating electrophysiology. Abnormal visual and auditory evoked potentials were noted in 60.60% and 37.5% respectively. Sixty two variants were identified in 37 genes including variants of uncertain significance (n=34) and novel variants (n=45). Eleven patients had additional variations in genes implicated in CMTs/ other neurological disorders. Ten patients did not have variations in neuropathy associated genes, but had variations in genes implicated in other neurological disorders. In seven patients, no variations were detected. Conclusion: In this single centre cohort study from India, genetic diagnosis could be established in 87% of patients with inherited neuropathy. The identified spectrum of genetic variations adds to the pool of existing data and provides a platform for validation studies in cell culture or animal model systems.
Collapse
|
18
|
Gentile L, Russo M, Taioli F, Ferrarini M, Aguennouz M, Rodolico C, Toscano A, Fabrizi GM, Mazzeo A. Rare among Rare: Phenotypes of Uncommon CMT Genotypes. Brain Sci 2021; 11:brainsci11121616. [PMID: 34942918 PMCID: PMC8699517 DOI: 10.3390/brainsci11121616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022] Open
Abstract
(1) Background: Charcot–Marie–Tooth disease (CMT) is the most frequent form of inherited chronic motor and sensory polyneuropathy. Over 100 CMT causative genes have been identified. Previous reports found PMP22, GJB1, MPZ, and MFN2 as the most frequently involved genes. Other genes, such as BSCL2, MORC2, HINT1, LITAF, GARS, and autosomal dominant GDAP1 are responsible for only a minority of CMT cases. (2) Methods: we present here our records of CMT patients harboring a mutation in one of these rare genes (BSCL2, MORC2, HINT1, LITAF, GARS, autosomal dominant GDAP1). We studied 17 patients from 8 unrelated families. All subjects underwent neurologic evaluation and genetic testing by next-generation sequencing on an Ion Torrent PGM (Thermo Fischer) with a 44-gene custom panel. (3) Results: the following variants were found: BSCL2 c.263A > G p.Asn88Ser (eight subjects), MORC2 c.1503A > T p.Gln501His (one subject), HINT1 c.110G > C p.Arg37Pro (one subject), LITAF c.404C > G p.Pro135Arg (two subjects), GARS c.1660G > A p.Asp554Asn (three subjects), GDAP1 c.374G > A p.Arg125Gln (two subjects). (4) Expanding the spectrum of CMT phenotypes is of high relevance, especially for less common variants that have a higher risk of remaining undiagnosed. The necessity of reaching a genetic definition for most patients is great, potentially making them eligible for future experimentations.
Collapse
Affiliation(s)
- Luca Gentile
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
- Correspondence:
| | - Massimo Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Federica Taioli
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - Moreno Ferrarini
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
| | - M’Hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| | - Gian Maria Fabrizi
- Department of Neurological Sciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (F.T.); (M.F.); (G.M.F.)
- Azienda Ospedaliera Universitaria Integrata Verona—Borgo Roma, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Anna Mazzeo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.R.); (M.A.); (C.R.); (A.T.); (A.M.)
| |
Collapse
|
19
|
MORC protein family-related signature within human disease and cancer. Cell Death Dis 2021; 12:1112. [PMID: 34839357 PMCID: PMC8627505 DOI: 10.1038/s41419-021-04393-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
The microrchidia (MORC) family of proteins is a highly conserved nuclear protein superfamily, whose members contain common domain structures (GHKL-ATPase, CW-type zinc finger and coiled-coil domain) yet exhibit diverse biological functions. Despite the advancing research in previous decades, much of which focuses on their role as epigenetic regulators and in chromatin remodeling, relatively little is known about the role of MORCs in tumorigenesis and pathogenesis. MORCs were first identified as epigenetic regulators and chromatin remodelers in germ cell development. Currently, MORCs are regarded as disease genes that are involved in various human disorders and oncogenes in cancer progression and are expected to be the important biomarkers for diagnosis and treatment. A new paradigm of expanded MORC family function has raised questions regarding the regulation of MORCs and their biological role at the subcellular level. Here, we systematically review the progress of researching MORC members with respect to their domain architectures, diverse biological functions, and distribution characteristics and discuss the emerging roles of the aberrant expression or mutation of MORC family members in human disorders and cancer development. Furthermore, the illustration of related mechanisms of the MORC family has made MORCs promising targets for developing diagnostic tools and therapeutic treatments for human diseases, including cancers.
Collapse
|
20
|
Frongia I, Rizzi S, Baga M, Ceteroni LM, Spagnoli C, Salerno GG, Frattini D, Kaare M, Pisani F, Fusco C. Infantile-Onset Charcot-Marie-Tooth Disease With Pyramidal Features and White Matter Abnormalities Due to a De novo MORC2 Gene Variant: A Case Report and Brief Review of the Literature. Front Neurol 2021; 12:718808. [PMID: 34630290 PMCID: PMC8493287 DOI: 10.3389/fneur.2021.718808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/19/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Charcot–Marie–Tooth (CMT) is the most frequent group of inherited neuropathies and includes several heterogeneous phenotypes. Over 80 causative genes have been described so far. Variants in the microrchidia family CW-type zinc finger 2 (MORC2) gene have been described in several axonal polyneuropathy (CMT2) patients with childhood or adult onset. Occasionally more complex phenotypes with delayed milestones, severe hypotonia, intellectual disability, dystonic postures, pyramidal signs, and neuroimaging abnormalities have been reported. Case Presentation: We report on a patient with a de novo MORC2 gene variant (c.1181A>G p.Tyr394Cys) with a history of developmental delay, axial hypotonia, progressive gait disorder with dystonic features, and intentional tremor. At the age of 8 years, he showed bilateral pyramidal signs (clonus, increased tendon reflexes, and Babinski sign) and bilateral pes cavus. The first neuroimaging performed at the age of 3 years demonstrated white matter abnormalities in the posterior periventricular zone, in the frontal lobes bilaterally and at the midbrain, stable during childhood and adolescence. Nerve conduction studies (NCS) were negative until the age of 15 years, when a sensory axonal neuropathy appeared. The association between pyramidal signs and neuropathy due to the MORC2 gene variant is increasingly being highlighted, although a neuroradiological correlate is evident only in about half of the cases. Longitudinal nerve conduction velocity (NCV) are helpful to identify late-onset features and provide useful information for diagnosis in patients with rare neurogenetic disorders. Conclusions: Characterization of complex neurological disorders is important to delineate the expanding phenotypic spectrum of MORC2-related disease, to confirm if possible the pathogenicity of the variants and to deepen the genotype–phenotype correlation.
Collapse
Affiliation(s)
- Ivana Frongia
- Struttura Complessa di Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Unità Sanitaria Locale - Istituto di Ricerca e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy
| | - Susanna Rizzi
- Struttura Complessa di Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Unità Sanitaria Locale - Istituto di Ricerca e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy
| | - Margherita Baga
- Struttura Complessa di Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Unità Sanitaria Locale - Istituto di Ricerca e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy
| | - Laura Maria Ceteroni
- Struttura Complessa di Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Unità Sanitaria Locale - Istituto di Ricerca e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Struttura Complessa di Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Unità Sanitaria Locale - Istituto di Ricerca e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy
| | - Grazia Gabriella Salerno
- Struttura Complessa di Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Unità Sanitaria Locale - Istituto di Ricerca e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Frattini
- Struttura Complessa di Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Unità Sanitaria Locale - Istituto di Ricerca e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy
| | | | - Francesco Pisani
- Child Neuropsychiatry Unit, Medicine and Surgery Department, Neuroscience Section, University of Parma, Parma, Italy
| | - Carlo Fusco
- Struttura Complessa di Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Unità Sanitaria Locale - Istituto di Ricerca e Cura a Carattere Scientifico di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
21
|
Lee GS, Kwak G, Bae JH, Han JP, Nam SH, Lee JH, Song S, Kim GD, Park TS, Choi YK, Choi BO, Yeom SC. Morc2a p.S87L mutant mice develop peripheral and central neuropathies associated with neuronal DNA damage and apoptosis. Dis Model Mech 2021; 14:dmm049123. [PMID: 34695197 PMCID: PMC8560500 DOI: 10.1242/dmm.049123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/06/2021] [Indexed: 01/07/2023] Open
Abstract
The microrchidia (MORC)-family CW-type zinc finger 2 (MORC2) gene is related to DNA repair, adipogenesis and epigenetic silencing via the human silencing hub (HUSH) complex. MORC2 missense mutation is known to cause peripheral neuropathy of Charcot-Marie-Tooth disease type 2 Z (CMT2Z). However, there have been reports of peripheral and central neuropathy in patients, and the disease has been co-categorized with developmental delay, impaired growth, dysmorphic facies and axonal neuropathy (DIGFAN). The etiology of MORC2 mutation-mediated neuropathy remains uncertain. Here, we established and analyzed Morc2a p.S87L mutant mice. Morc2a p.S87L mice displayed the clinical symptoms expected in human CMT2Z patients, such as axonal neuropathy and skeletal muscle weakness. Notably, we observed severe central neuropathy with cerebella ataxia, cognition disorder and motor neuron degeneration in the spinal cord, and this seemed to be evidence of DIGFAN. Morc2a p.S87L mice exhibited an accumulation of DNA damage in neuronal cells, followed by p53/cytochrome c/caspase 9/caspase 3-mediated apoptosis. This study presents a new mouse model of CMT2Z and DIGFAN with a Morc2a p.S87L mutation. We suggest that neuronal apoptosis is a possible target for therapeutic approach in MORC2 missense mutation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Geon Seong Lee
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Geon Kwak
- Department of Neurology, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
| | - Ji Hyun Bae
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Soo Hyun Nam
- Department of Neurology, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
| | - Jeong Hyeon Lee
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Sumin Song
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
| | - Yang Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Nueungdong-ro, Gwangjin, Seoul 05029, South Korea
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
- Department of Health Science and Technology, SAIHST, Sungkyunkwan University School of Medicine, 81 Irwonr-ro, Gangnam, Seoul 06351, South Korea
- Stem Cell and Regenerative Medicine Institute, Samgsung Medical Center, Seoul 06351, South Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-Ro, Daewha, Pyeongchang, Kangwon 25354, South Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanank, Seoul 08826, South Korea
| |
Collapse
|
22
|
Yang H, Yang S, Kang Q, Yang L, Liao H, Wu L. MORC2 gene de novo mutation leads to Charcot-Marie-Tooth disease type 2Z: A pediatric case report and literature review. Medicine (Baltimore) 2021; 100:e27208. [PMID: 34664855 PMCID: PMC8448061 DOI: 10.1097/md.0000000000027208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/27/2021] [Indexed: 02/01/2023] Open
Abstract
RATIONALE Mutations of the MORC2 gene have most commonly been associated with autosomal-dominant Charcot-Marie-Tooth disease type 2Z (CMT 2Z), while the impact of MORC2 mutations in CMT 2Z on neuronal biology and their phenotypic consequences in patients remain to be clarified. PATIENT CONCERNS We reported a 27-month-old child with a developmental lag of more than 1 year. He had progressive fatigue for 4 months, accompanied by dysphagia, choking while eating, and progressive aggravation. A genetic study revealed a de novo variant of MORC2, which has not yet been reported. DIAGNOSIS According to the child's clinical manifestations, genetic pattern, and American College of Medical Genetics and Genomics pathogenicity analysis, the patient was diagnosed with CMT 2Z caused by MORC2 gene mutation. INTERVENTIONS Mitochondrial cocktail therapy (arginine, vitamin B1 tablets, vitamin B2 tablets, coenzyme Q10 capsules, L-carnitine oral liquid, idebenone tablets, etc) was given. OUTCOMES Mitochondrial cocktail therapy did not significantly improve the child's condition, head magnetic resonance imaging lesions were not significantly improved at outpatient follow-up more than 1 month later, and the lesions were basically unchanged. LESSONS The clinical manifestations of the disease were similar to those of Leigh syndrome, and they were not significantly improved by cocktail therapy. This site has not been reported in the literature domestically or abroad, and the pathogenesis of CMT 2Z caused by this site mutation is indeed not related to mitochondrial dysfunction. Our study is helpful for clinicians with regard to the differential diagnosis of Leigh syndrome and CMT 2Z and improvement of clinicians' understanding of CMT 2Z disease.
Collapse
|
23
|
Sivera R, Lupo V, Frasquet M, Argente-Escrig H, Alonso-Pérez J, Díaz-Manera J, Querol L, Del Mar García-Romero M, Ignacio Pascual S, García-Sobrino T, Paradas C, Francisco Vázquez-Costa J, Muelas N, Millet E, Jesús Vílchez J, Espinós C, Sevilla T. Charcot-Marie-Tooth disease due to MORC2 mutations in Spain. Eur J Neurol 2021; 28:3001-3011. [PMID: 34189813 DOI: 10.1111/ene.15001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/16/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE MORC2 mutations have been described as a rare cause of axonal Charcot-Marie-Tooth disease (CMT2Z). The aim of this work was to determine the frequency and distribution of these mutations throughout Spain, to provide a comprehensive phenotypical description and, if possible, to establish a genotype-phenotype correlation. METHODS Retrospectively, data on patients diagnosed with CMT2Z in Spain were collected and clinical, electrophysiological and muscle imaging information were analysed. RESULTS Fifteen patients with CMT2Z were identified throughout Spain, seven of them belonging to a single kindred, whilst the rest were sporadic. The most common mutation was p.R252W, and four new mutations were identified. Eleven patients were categorized as having a scapuloperoneal phenotype, with asymmetric muscle weakness, early proximal upper limb involvement and frequent spontaneous muscular activity with distal sensory impairment and pes cavus, whilst two presented with a more classic length dependent sensory motor phenotype. This distinction was corroborated by the distribution of muscle fatty infiltration in muscle imaging. Two other patients were classified as having a neurodevelopmental phenotype consisting in congenital or early onset, delay in motor milestones, and global developmental delay in one of them. Nerve conduction studies revealed an unequivocally axonal neuropathy with frequent spontaneous activity, and serum creatine kinase levels were increased in 50% of the patients. CONCLUSIONS MORC2 mutations are a rare cause of CMT in Spain, but in-depth phenotyping reveals a recognizable phenotypic spectrum that will be clinically relevant for future identification of this disease.
Collapse
Affiliation(s)
- Rafael Sivera
- Department of Neurology, Hospital Francesc de Borja, Gandía, Spain
| | - Vincenzo Lupo
- Unit of Rare Neurodegenerative Diseases Felipe, Centro de Investigación Príncipe, Valencia, Spain
| | - Marina Frasquet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Herminia Argente-Escrig
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jordi Díaz-Manera
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autonoma de Barcelona, Barcelona, Spain.,John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle Upon Tyne, UK
| | - Luis Querol
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Universitat Autonoma de Barcelona, Barcelona, Spain
| | - María Del Mar García-Romero
- Neuropaediatrics Department, Hospital Universitario La Paz, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Samuel Ignacio Pascual
- Neuropaediatrics Department, Hospital Universitario La Paz, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tania García-Sobrino
- Department of Neurology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carmen Paradas
- Department of Neurology, Hospital Universitario Virgen del Rocío, Sevilla, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Nuria Muelas
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Elvira Millet
- Neuromuscular Diseases Unit, Department of Clinical Neurophysiology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Juan Jesús Vílchez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| | - Carmen Espinós
- Unit of Rare Neurodegenerative Diseases Felipe, Centro de Investigación Príncipe, Valencia, Spain
| | - Teresa Sevilla
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universitat de València, Valencia, Spain
| |
Collapse
|
24
|
Xie Y, Lin Z, Liu L, Li X, Huang S, Zhao H, Wang B, Zeng S, Cao W, Li L, Zhu X, Huang S, Yang H, Wang M, Hu Z, Wang J, Guo J, Shen L, Jiang H, Zuchner S, Tang B, Zhang R. Genotype and phenotype distribution of 435 patients with Charcot-Marie-Tooth disease from central south China. Eur J Neurol 2021; 28:3774-3783. [PMID: 34255403 DOI: 10.1111/ene.15024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE The purpose was to provide an overview of genotype and phenotype distribution in a cohort of patients with Charcot-Marie-Tooth disease (CMT) and related disorders from central south China. METHODS In all, 435 patients were enrolled and detailed clinical data were collected. Multiplex ligation-dependent probe amplification for PMP22 duplication/deletion and CMT multi-gene panel sequencing were performed. Whole exome sequencing was further applied in the remaining patients who failed to achieve molecular diagnosis. RESULTS Among the 435 patients, 216 had CMT1, 14 had hereditary neuropathy with pressure palsies (HNPP), 178 had CMT2, 24 had distal hereditary motor neuropathy (dHMN) and three had hereditary sensory and autonomic neuropathy (HSAN). The overall molecular diagnosis rate was 70%: 75.7% in CMT1, 100% in HNPP, 64.6% in CMT2, 41.7% in dHMN and 33.3% in HSAN. The most common four genotypes accounted for 68.9% of molecular diagnosed patients. Relatively frequent causes were missense changes in PMP22 (4.6%) and SH3TC2 (2.3%) in CMT1; and GDAP1 (5.1%), IGHMBP2 (4.5%) and MORC2 (3.9%) in CMT2. Twenty of 160 detected pathogenic variants and the associated phenotypes have not been previously reported. Broad phenotype spectra were observed in six genes, amongst which the pathogenic variants in BAG3 and SPTLC1 were detected in two sporadic patients presenting with the CMT2 phenotype. CONCLUSIONS Our results provided a unique genotypic and phenotypic landscape of patients with CMT and related disorders from central south China, including a relatively high proportion of CMT2 and lower occurrence of PMP22 duplication. The broad phenotype spectra in certain genes have advanced our understanding of CMT.
Collapse
Affiliation(s)
- Yongzhi Xie
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China.,Health Management Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Binghao Wang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Sen Zeng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wanqian Cao
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lu Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiying Zhu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Siwei Huang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Honglan Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengli Wang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Lift Sciences, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Stephan Zuchner
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Duan X, Liu X, Wang G, Gu W, Xu M, Hao Y, Dong M, Sun Q, Sun S, Chen Y, Wang W, Li J, Zhang Y, Cao Z, Fan D, Wang R, Da Y. Characterization of genotype-phenotype correlation with MORC2 mutated Axonal Charcot-Marie-Tooth disease in a cohort of Chinese patients. Orphanet J Rare Dis 2021; 16:244. [PMID: 34059105 PMCID: PMC8166055 DOI: 10.1186/s13023-021-01881-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) disease is an exciting field of study, with a growing number of causal genes and an expanding phenotypic spectrum. The microrchidia family CW-type zinc finger 2 gene (MORC2) was newly identified as a causative gene of CMT2Z in 2016. We aimed to describe the phenotypic-genetic spectrum of MORC2-related diseases in the Chinese population. METHODS With the use of Sanger sequencing and Next Generation Sequencing (NGS) technologies, we screened a cohort of 284 unrelated Chinese CMT2 families. Pathogenicity assessments of MORC2 variants were interpreted according to the ACMG guidelines. Potential pathogenic variants were confirmed by Sanger sequencing. RESULTS We identified 4 different heterozygous MORC2 mutations in four unrelated families, accounting for 1.4% (4/284). A novel mutation c.1397A>G p. D466G was detected in family 1 and all affected patients presented with later onset axonal CMT with hyperCKemia. The patient in family 2 showed a spinal muscular atrophy (SMA)-like disease with cerebellar hypoplasia and mental retardation, with a hot spot de novo mutation c.260C>T p. S87L. The twin sisters in family 3 were identified as having the most common mutation c.754C>T p. R252W and suffered from axonal motor neuropathy with high variability in disease severity and duration. The patient in family 4 developed an early onset axonal motor and sensory neuropathy, with a reported mutation c.1220G>A p.C407Y. All identified mutations associated with MORC2-related neuropathies are localized in the N-terminal ATPase module. CONCLUSIONS Our study confirmed that MORC2-related neuropathies exist in the Chinese population at a relatively high mutation rate. We revealed a complex genotype-phenotype correlation with MORC2 mutations. This report adds a new piece to the puzzle of the genetics of CMT and contributes to a better understanding of the disease mechanisms.
Collapse
Affiliation(s)
- Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Guochun Wang
- Department of Rheumatology and Immunology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Weihong Gu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Chang Chun Street, Beijing, 100053, People's Republic of China
| | - Ying Hao
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Mingrui Dong
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Qing Sun
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shaojie Sun
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yuanyuan Chen
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jing Li
- Department of Clinical Research Institute, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yuting Zhang
- Department of Clinical Research Institute, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Zhenhua Cao
- Running Gene Inc., Beijing, 100191, People's Republic of China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Renbin Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Chang Chun Street, Beijing, 100053, People's Republic of China.
| |
Collapse
|
26
|
Vujovic D, Cornblath DR, Scherer SS. A recurrent MORC2 mutation causes Charcot-Marie-Tooth disease type 2Z. J Peripher Nerv Syst 2021; 26:184-186. [PMID: 33844363 DOI: 10.1111/jns.12443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/15/2023]
Abstract
We found a p.Ala406Val (c.1217C > T) mutation in MORC2 in three individuals, from two families. All three individuals were evaluated and clinical electrophysiology was completed. The neuropathy began in childhood to early adulthood, with distal weakness progressing to proximal weakness. Vinblastine (for Hodgkin lymphoma) acutely worsened the weakness in one patient. This finding confirms that that the p.Ala406Val mutation in MORC2 causes severe neuropathy. In addition, we report the first case of vinblastine neurotoxicity in Charcot-Marie-Tooth disease type 2Z.
Collapse
Affiliation(s)
- Dragan Vujovic
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R Cornblath
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Yamamoto D, Oda R, Hisahara S, Ishikawa A, Ogi T, Shimohama S. [A case of Charcot-Marie-Tooth disease type 2Z caused by MORC2 S87L mutation mimicking spinal muscular atrophy]. Rinsho Shinkeigaku 2021; 61:262-264. [PMID: 33762496 DOI: 10.5692/clinicalneurol.cn-001542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 33-year-old man with an unremarkable family history has had limb muscle weakness, joint contracture and skeleton deformation from early childhood. He was diagnosed with spinal muscular atrophy (SMA) by a pediatrician. He needed assistance and used orthoses in his daily life. There was no subjective sensory disturbance. However, physical examination showed slight sensory impairment, and nerve conduction study indicated sensory motor axonal neuropathy. This finding suggested Charcot-Marie-Tooth disease (CMT). Gene analysis detected MORC2 S87L mutation, leading to a diagnosis of CMT type 2Z. Patients with MORC2 S87L mutation are known to exhibit a severe phenotype, and may mimic SMA. It is important to demonstrate subclinical sensory neuropathy in patients with MORC2 S87L mutation mimicking SMA.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Neurology, Sapporo Medical University School of Medicine
| | - Ryosuke Oda
- Department of Neurology, Sapporo Medical University School of Medicine
| | - Shin Hisahara
- Department of Neurology, Sapporo Medical University School of Medicine
| | - Aki Ishikawa
- Department of Medical Genetics and Genomics, Sapporo Medical University School of Medicine
| | - Tomoo Ogi
- Department of Research Institute of Environmental Medicine, Nagoya University
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University School of Medicine
| |
Collapse
|
28
|
Guillen Sacoto MJ, Tchasovnikarova IA, Torti E, Forster C, Andrew EH, Anselm I, Baranano KW, Briere LC, Cohen JS, Craigen WJ, Cytrynbaum C, Ekhilevitch N, Elrick MJ, Fatemi A, Fraser JL, Gallagher RC, Guerin A, Haynes D, High FA, Inglese CN, Kiss C, Koenig MK, Krier J, Lindstrom K, Marble M, Meddaugh H, Moran ES, Morel CF, Mu W, Muller EA, Nance J, Natowicz MR, Numis AL, Ostrem B, Pappas J, Stafstrom CE, Streff H, Sweetser DA, Szybowska M, Walker MA, Wang W, Weiss K, Weksberg R, Wheeler PG, Yoon G, Kingston RE, Juusola J, Juusola J. De Novo Variants in the ATPase Module of MORC2 Cause a Neurodevelopmental Disorder with Growth Retardation and Variable Craniofacial Dysmorphism. Am J Hum Genet 2020; 107:352-363. [PMID: 32693025 DOI: 10.1016/j.ajhg.2020.06.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.
Collapse
|
29
|
Liu HY, Liu YY, Yang F, Zhang L, Zhang FL, Hu X, Shao ZM, Li DQ. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res 2020; 48:3638-3656. [PMID: 32112098 PMCID: PMC7144926 DOI: 10.1093/nar/gkaa130] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
MORC family CW-type zinc finger 2 (MORC2) is an oncogenic chromatin-remodeling enzyme with an emerging role in DNA repair. Here, we report a novel function for MORC2 in cell-cycle checkpoint control through an acetylation-dependent mechanism. MORC2 is acetylated by the acetyltransferase NAT10 at lysine 767 (K767Ac) and this process is counteracted by the deacetylase SIRT2 under unperturbed conditions. DNA-damaging chemotherapeutic agents and ionizing radiation stimulate MORC2 K767Ac through enhancing the interaction between MORC2 and NAT10. Notably, acetylated MORC2 binds to histone H3 phosphorylation at threonine 11 (H3T11P) and is essential for DNA damage-induced reduction of H3T11P and transcriptional repression of its downstream target genes CDK1 and Cyclin B1, thus contributing to DNA damage-induced G2 checkpoint activation. Chemical inhibition or depletion of NAT10 or expression of an acetylation-defective MORC2 (K767R) forces cells to pass through G2 checkpoint, resulting in hypersensitivity to DNA-damaging agents. Moreover, MORC2 acetylation levels are associated with elevated NAT10 expression in clinical breast tumor samples. Together, these findings uncover a previously unrecognized role for MORC2 in regulating DNA damage-induced G2 checkpoint through NAT10-mediated acetylation and provide a potential therapeutic strategy to sensitize breast cancer cells to DNA-damaging chemotherapy and radiotherapy by targeting NAT10.
Collapse
Affiliation(s)
- Hong-Yi Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying-Ying Liu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fan Yang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai 200032, China
| |
Collapse
|
30
|
Sancho P, Bartesaghi L, Miossec O, García-García F, Ramírez-Jiménez L, Siddell A, Åkesson E, Hedlund E, Laššuthová P, Pascual-Pascual SI, Sevilla T, Kennerson M, Lupo V, Chrast R, Espinós C. Characterization of molecular mechanisms underlying the axonal Charcot-Marie-Tooth neuropathy caused by MORC2 mutations. Hum Mol Genet 2020; 28:1629-1644. [PMID: 30624633 DOI: 10.1093/hmg/ddz006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in MORC2 lead to an axonal form of Charcot-Marie-Tooth (CMT) neuropathy type 2Z. To date, 31 families have been described with mutations in MORC2, indicating that this gene is frequently involved in axonal CMT cases. While the genetic data clearly establish the causative role of MORC2 in CMT2Z, the impact of its mutations on neuronal biology and their phenotypic consequences in patients remains to be clarified. We show that the full-length form of MORC2 is highly expressed in both embryonic and adult human neural tissues and that Morc2 expression is dynamically regulated in both the developing and the maturing murine nervous system. To determine the effect of the most common MORC2 mutations, p.S87L and p.R252W, we used several in vitro cell culture paradigms. Both mutations induced transcriptional changes in patient-derived fibroblasts and when expressed in rodent sensory neurons. These changes were more pronounced and accompanied by abnormal axonal morphology, in neurons expressing the MORC2 p.S87L mutation, which is associated with a more severe clinical phenotype. These data provide insight into the neuronal specificity of the mutated MORC2-mediated phenotype and highlight the importance of neuronal cell models to study the pathophysiology of CMT2Z.
Collapse
Affiliation(s)
- Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Luca Bartesaghi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Olivia Miossec
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Francisco García-García
- Unit of Bioinformatics and Biostatistics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Laura Ramírez-Jiménez
- Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Anna Siddell
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord NSW, Australia.,Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Elisabet Åkesson
- Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,The R&D Unit, Stiftelsen Stockholms Sjukhemm, 14152, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Petra Laššuthová
- Department of Pediatric Neurology, DNA Laboratory, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | | | - Teresa Sevilla
- Department of Neurology, Hospital Universitari i Politècnic La Fe, and CIBER of Rare Diseases (CIBERER), Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord NSW, Australia.,Sydney Medical School, University of Sydney, Sydney NSW, Australia.,Molecular Medicine Laboratory, Concord Hospital, Concord NSW, Australia
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,INCLIVA & IIS-La Fe Rare Diseases Joint Units, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Department of Genomics and Translational Genetics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,INCLIVA & IIS-La Fe Rare Diseases Joint Units, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
31
|
Lee DC, Dankwa L, Edmundson C, Cornblath DR, Scherer SS. Yield of next-generation neuropathy gene panels in axonal neuropathies. J Peripher Nerv Syst 2019; 24:324-329. [PMID: 31701603 DOI: 10.1111/jns.12356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022]
Abstract
The use and utility of targeted gene panels for diagnosing the type of Charcot-Marie-Tooth have grown rapidly because commercial gene panels that contain most of the relevant genes are available and affordable for many patients. We used a targeted gene panel to analyze 175 patients who had an unexplained axonal polyneuropathy affecting large myelinated axons, 86 of whom reported a family history of neuropathy, and 89 of whom did not. In patients reporting a family history, the panel identified a pathogenic variant causing the neuropathy in six cases (7%); in patients not reporting a family history, the gene panel identified pathogenic variants causing neuropathy in two patients (2%). Interpretation in a tertiary referral setting, current gene panels identify the genetic cause of neuropathy in a small minority of patients who have an unexplained axonal neuropathy, even in those reporting a family history.
Collapse
Affiliation(s)
- Diana C Lee
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lois Dankwa
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christyn Edmundson
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David R Cornblath
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Yoshimura A, Yuan JH, Hashiguchi A, Ando M, Higuchi Y, Nakamura T, Okamoto Y, Nakagawa M, Takashima H. Genetic profile and onset features of 1005 patients with Charcot-Marie-Tooth disease in Japan. J Neurol Neurosurg Psychiatry 2019; 90:195-202. [PMID: 30257968 PMCID: PMC6518473 DOI: 10.1136/jnnp-2018-318839] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/19/2018] [Accepted: 08/26/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVE : To identify the genetic characteristics in a large-scale of patients with Charcot-Marie-Tooth disease (CMT). METHODS: From May 2012 to August 2016, we collected 1005 cases with suspected CMT throughout Japan, whereas PMP22 duplication/deletion were excluded in advance for demyelinating CMT cases. We performed next-generation sequencing targeting CMT-related gene panels using Illumina MiSeq or Ion Proton, then analysed the gene-specific onset age of the identified cases and geographical differences in terms of their genetic spectrum. RESULTS : From 40 genes, we identified pathogenic or likely pathogenic variants in 301 cases (30.0%). The most common causative genes were GJB1 (n=66, 21.9%), MFN2 (n=66, 21.9%) and MPZ (n=51, 16.9%). In demyelinating CMT, variants were detected in 45.7% cases, and the most common reasons were GJB1 (40.3%), MPZ (27.1%), PMP22 point mutations (6.2%) and NEFL (4.7%). Axonal CMT yielded a relatively lower detection rate (22.9%), and the leading causes, occupying 72.4%, were MFN2 (37.2%), MPZ (9.0%), HSPB1 (8.3%), GJB1 (7.7%), GDAP1 (5.1%) and MME (5.1%). First decade of life was found as the most common disease onset period, and early-onset CMT cases were most likely to receive a molecular diagnosis. Geographical distribution analysis indicated distinctive genetic spectrums in different regions of Japan. CONCLUSIONS : Our results updated the genetic profile within a large-scale of Japanese CMT cases. Subsequent analyses regarding onset age and geographical distribution advanced our understanding of CMT, which would be beneficial for clinicians.
Collapse
Affiliation(s)
- Akiko Yoshimura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jun-Hui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomonori Nakamura
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
33
|
Schapira AHV. Progress in neurology 2017-2018. Eur J Neurol 2018; 25:1389-1397. [DOI: 10.1111/ene.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. H. V. Schapira
- Department of Clinical and Movement Neurosciences; UCL Queen Square Institute of Neurology; London UK
| |
Collapse
|