1
|
Cruaud A, Rasplus JY, Zhang J, Burks R, Delvare G, Fusu L, Gumovsky A, Huber JT, Janšta P, Mitroiu MD, Noyes JS, van Noort S, Baker A, Böhmová J, Baur H, Blaimer BB, Brady SG, Bubeníková K, Chartois M, Copeland RS, Dale-Skey Papilloud N, Dal Molin A, Dominguez C, Gebiola M, Guerrieri E, Kresslein RL, Krogmann L, Lemmon E, Murray EA, Nidelet S, Nieves-Aldrey JL, Perry RK, Peters RS, Polaszek A, Sauné L, Torréns J, Triapitsyn S, Tselikh EV, Yoder M, Lemmon AR, Woolley JB, Heraty JM. The Chalcidoidea bush of life: evolutionary history of a massive radiation of minute wasps. Cladistics 2024; 40:34-63. [PMID: 37919831 DOI: 10.1111/cla.12561] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Chalcidoidea are mostly parasitoid wasps that include as many as 500 000 estimated species. Capturing phylogenetic signal from such a massive radiation can be daunting. Chalcidoidea is an excellent example of a hyperdiverse group that has remained recalcitrant to phylogenetic resolution. We combined 1007 exons obtained with Anchored Hybrid Enrichment with 1048 ultra-conserved elements (UCEs) for 433 taxa including all extant families, >95% of all subfamilies, and 356 genera chosen to represent the vast diversity of the superfamily. Going back and forth between the molecular results and our collective knowledge of morphology and biology, we detected bias in the analyses that was driven by the saturation of nucleotide data. Our final results are based on a concatenated analysis of the least saturated exons and UCE datasets (2054 loci, 284 106 sites). Our analyses support an expected sister relationship with Mymarommatoidea. Seven previously recognized families were not monophyletic, so support for a new classification is discussed. Natural history in some cases would appear to be more informative than morphology, as illustrated by the elucidation of a clade of plant gall associates and a clade of taxa with planidial first-instar larvae. The phylogeny suggests a transition from smaller soft-bodied wasps to larger and more heavily sclerotized wasps, with egg parasitism as potentially ancestral for the entire superfamily. Deep divergences in Chalcidoidea coincide with an increase in insect families in the fossil record, and an early shift to phytophagy corresponds with the beginning of the "Angiosperm Terrestrial Revolution". Our dating analyses suggest a middle Jurassic origin of 174 Ma (167.3-180.5 Ma) and a crown age of 162.2 Ma (153.9-169.8 Ma) for Chalcidoidea. During the Cretaceous, Chalcidoidea may have undergone a rapid radiation in southern Gondwana with subsequent dispersals to the Northern Hemisphere. This scenario is discussed with regard to knowledge about the host taxa of chalcid wasps, their fossil record and Earth's palaeogeographic history.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Jean-Yves Rasplus
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, China
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Roger Burks
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Gérard Delvare
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Lucian Fusu
- Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania
| | - Alex Gumovsky
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - John T Huber
- Natural Resources Canada, c/o Canadian National Collection of Insects, Ottawa, Ontario, Canada
| | - Petr Janšta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Entomology, State Museum of Natural History, Stuttgart, Germany
| | | | - John S Noyes
- Insects Division, Natural History Museum, London, UK
| | - Simon van Noort
- Research and Exhibitions Department, South African Museum, Iziko Museums of South Africa, Cape Town, South Africa
- Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, South Africa
| | - Austin Baker
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Julie Böhmová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hannes Baur
- Department of Invertebrates, Natural History Museum Bern, Bern, Switzerland
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Bonnie B Blaimer
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Seán G Brady
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Kristýna Bubeníková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marguerite Chartois
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Robert S Copeland
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | | | - Ana Dal Molin
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Chrysalyn Dominguez
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Marco Gebiola
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Emilio Guerrieri
- Insects Division, Natural History Museum, London, UK
- CNR-Institute for Sustainable Plant Protection (CNR-IPSP), National Research Council of Italy, Portici, Italy
| | - Robert L Kresslein
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | - Lars Krogmann
- Department of Entomology, State Museum of Natural History, Stuttgart, Germany
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Emily Lemmon
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Elizabeth A Murray
- Department of Entomology, Washington State University, Pullman, Washington, USA
| | - Sabine Nidelet
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Ryan K Perry
- Department of Plant Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| | - Ralph S Peters
- Zoologisches Forschungsmuseum Alexander Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | | | - Laure Sauné
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Javier Torréns
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Anillaco, Argentina
| | - Serguei Triapitsyn
- Department of Entomology, University of California Riverside, Riverside, California, USA
| | | | - Matthew Yoder
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, Florida, USA
| | - James B Woolley
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - John M Heraty
- Department of Entomology, University of California Riverside, Riverside, California, USA
| |
Collapse
|
2
|
Pollmann M, Kuhn D, König C, Homolka I, Paschke S, Reinisch R, Schmidt A, Schwabe N, Weber J, Gottlieb Y, Steidle JLM. New species based on the biological species concept within the complex of Lariophagus distinguendus (Hymenoptera, Chalcidoidea, Pteromalidae), a parasitoid of household pests. Ecol Evol 2023; 13:e10524. [PMID: 37720058 PMCID: PMC10500055 DOI: 10.1002/ece3.10524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
The pteromalid parasitoid Lariophagus distinguendus (Foerster) belongs to the Hymenoptera, a megadiverse insect order with high cryptic diversity. It attacks stored product pest beetles in human storage facilities. Recently, it has been shown to consist of two separate species. To further study its cryptic diversity, strains were collected to compare their relatedness using barcoding and nuclear genes. Nuclear genes identified two clusters which agree with the known two species, whereas the barcode fragment determined an additional third Clade. Total reproductive isolation (RI) according to the biological species concept (BSC) was investigated in crossing experiments within and between clusters using representative strains. Sexual isolation exists between all studied pairs, increasing from slight to strong with genetic distance. Postzygotic barriers mostly affected hybrid males, pointing to Haldane's rule. Hybrid females were only affected by unidirectional Spiroplasma-induced cytoplasmic incompatibility and behavioural sterility, each in one specific strain combination. RI was virtually absent between strains separated by up to 2.8% COI difference, but strong or complete in three pairs from one Clade each, separated by at least 7.2%. Apparently, each of these clusters represents one separate species according to the BSC, highlighting cryptic diversity in direct vicinity to humans. In addition, these results challenge the recent 'turbo-taxonomy' practice of using 2% COI differences to delimitate species, especially within parasitic Hymenoptera. The gradual increase in number and strength of reproductive barriers between strains with increasing genetic distance also sheds light on the emergence of barriers during the speciation process in L. distinguendus.
Collapse
Affiliation(s)
- Marie Pollmann
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Denise Kuhn
- Department of Entomology 360c, Institute of PhytomedicineUniversity of HohenheimStuttgartGermany
| | - Christian König
- Akademie für Natur‐ und Umweltschutz Baden‐WürttembergStuttgartGermany
| | - Irmela Homolka
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Sina Paschke
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Ronja Reinisch
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Anna Schmidt
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Noa Schwabe
- Plant Evolutionary Biology 190b, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Justus Weber
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | - Yuval Gottlieb
- Robert H. Smith Faculty of Agriculture, Food and Environment, Koret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | - Johannes Luitpold Maria Steidle
- Department of Chemical Ecology 190t, Institute of BiologyUniversity of HohenheimStuttgartGermany
- KomBioTa – Center of Biodiversity and Integrative TaxonomyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
3
|
Schultz DL, Selberherr E, Stouthamer CM, Doremus MR, Kelly SE, Hunter MS, Schmitz-Esser S. Sex-based de novo transcriptome assemblies of the parasitoid wasp Encarsia suzannae, a host of the manipulative heritable symbiont Cardinium hertigii. GIGABYTE 2022; 2022:gigabyte68. [PMID: 36824530 PMCID: PMC9693781 DOI: 10.46471/gigabyte.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Parasitoid wasps in the genus Encarsia are commonly used as biological pest control agents of whiteflies and armored scale insects in greenhouses or the field. They are also hosts of the bacterial endosymbiont Cardinium hertigii, which can cause reproductive manipulation phenotypes, including parthenogenesis, feminization, and cytoplasmic incompatibility (the last is mainly studied in Encarsia suzannae). Despite their biological and economic importance, there are no published Encarsia genomes and only one public transcriptome. Here, we applied a mapping-and-removal approach to eliminate known contaminants from previously-obtained Illumina sequencing data. We generated de novo transcriptome assemblies for both female and male E. suzannae which contain 45,986 and 54,762 final coding sequences, respectively. Benchmarking Single-Copy Orthologs results indicate both assemblies are highly complete. Preliminary analyses revealed the presence of homologs of sex-determination genes characterized in other insects and putative venom proteins. Our male and female transcriptomes will be valuable tools to better understand the biology of Encarsia and their evolutionary relatives, particularly in studies involving insects of only one sex.
Collapse
Affiliation(s)
- Dylan L. Schultz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | - Matthew R. Doremus
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Suzanne E. Kelly
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Martha S. Hunter
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Cui X, Zhang Q, Zhang Q, Zhang Y, Chen H, Liu G, Zhu L. Research Progress of the Gut Microbiome in Hybrid Fish. Microorganisms 2022; 10:891. [PMID: 35630336 PMCID: PMC9146865 DOI: 10.3390/microorganisms10050891] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023] Open
Abstract
Fish, including hybrid species, are essential components of aquaculture, and the gut microbiome plays a vital role in fish growth, behavior, digestion, and immune health. The gut microbiome can be affected by various internal and/or external factors, such as host development, diet, and environment. We reviewed the effects of diet and dietary supplements on intestinal microorganisms in hybrid fish and the difference in the gut microbiome between the hybrid and their hybrids that originate. Then, we summarized the role of the gut microbiome in the speciation and ecological invasion of hybrid fish. Finally, we discussed possible future studies on the gut microbiome in hybrid fish, including the potential interaction with environmental microbiomes, the effects of the gut microbiome on population expansion, and fish conservation and management.
Collapse
Affiliation(s)
- Xinyuan Cui
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qinrong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Qunde Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Yongyong Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| | - Hua Chen
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Guoqi Liu
- Mingke Biotechnology, Hangzhou 310000, China; (H.C.); (G.L.)
| | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; (X.C.); (Q.Z.); (Q.Z.); (Y.Z.)
| |
Collapse
|
5
|
Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS. Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts. Heredity (Edinb) 2022; 128:187-195. [PMID: 35124699 PMCID: PMC8897438 DOI: 10.1038/s41437-022-00507-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is a common form of reproductive sabotage caused by maternally inherited bacterial symbionts of arthropods. CI is a two-step manipulation: first, the symbiont modifies sperm in male hosts which results in the death of fertilized, uninfected embryos. Second, when females are infected with a compatible strain, the symbiont reverses sperm modification in the fertilized egg, allowing offspring of infected females to survive and spread the symbiont to high frequencies in a population. Although CI plays a role in arthropod evolution, the mechanism of CI is unknown for many symbionts. Cardinium hertigii is a common CI-inducing symbiont of arthropods, including parasitoid wasps like Encarsia partenopea. This wasp harbors two Cardinium strains, cEina2 and cEina3, and exhibits strong CI. The strains infect wasps at different densities, with the cEina3 present at a lower density than cEina2, and it was previously not known which strain caused CI. By differentially curing wasps of cEina3, we found that this low-density symbiont is responsible for CI and modifies males during their pupal stage. cEina2 does not modify host reproduction and may spread by 'hitchhiking' with cEina3 CI or by conferring an unknown benefit. The cEina3 strain also shows a unique localization pattern in male reproductive tissues. Instead of infecting sperm like other CI-inducing symbionts, cEina3 cells are found in somatic cells at the testis base and around the seminal vesicle. This may allow the low-density cEina3 to efficiently modify host males and suggests that cEina3 uses a different modification strategy than sperm-infecting CI symbionts.
Collapse
Affiliation(s)
- Matthew R. Doremus
- grid.134563.60000 0001 2168 186XGraduate Interdisciplinary Program in Entomology & Insect Science, The University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| | - Corinne M. Stouthamer
- grid.213876.90000 0004 1936 738XDepartment of Entomology, The University of Georgia, Athens, GA 30602 USA
| | - Suzanne E. Kelly
- grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| | - Stephan Schmitz-Esser
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Martha S. Hunter
- grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
6
|
Miller AK, Westlake CS, Cross KL, Leigh BA, Bordenstein SR. The microbiome impacts host hybridization and speciation. PLoS Biol 2021; 19:e3001417. [PMID: 34699520 PMCID: PMC8547693 DOI: 10.1371/journal.pbio.3001417] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Microbial symbiosis and speciation profoundly shape the composition of life's biodiversity. Despite the enormous contributions of these two fields to the foundations of modern biology, there is a vast and exciting frontier ahead for research, literature, and conferences to address the neglected prospects of merging their study. Here, we survey and synthesize exemplar cases of how endosymbionts and microbial communities affect animal hybridization and vice versa. We conclude that though the number of case studies remain nascent, the wide-ranging types of animals, microbes, and isolation barriers impacted by hybridization will likely prove general and a major new phase of study that includes the microbiome as part of the functional whole contributing to reproductive isolation. Though microorganisms were proposed to impact animal speciation a century ago, the weight of the evidence supporting this view has now reached a tipping point.
Collapse
Affiliation(s)
- Asia K. Miller
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Camille S. Westlake
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Karissa L. Cross
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Brittany A. Leigh
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Vanderbilt University, Department of Biological Sciences, Nashville, Tennessee, United States of America
- Vanderbilt University, Vanderbilt Microbiome Innovation Center, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, United States of America
- Vanderbilt University Medical Center, Department of Pathology, Microbiology & Immunology, Nashville, Tennessee, United States of America
| |
Collapse
|
7
|
Bruzzese DJ, Schuler H, Wolfe TM, Glover MM, Mastroni JV, Doellman MM, Tait C, Yee WL, Rull J, Aluja M, Hood GR, Goughnour RB, Stauffer C, Nosil P, Feder JL. Testing the potential contribution of Wolbachia to speciation when cytoplasmic incompatibility becomes associated with host-related reproductive isolation. Mol Ecol 2021; 31:2935-2950. [PMID: 34455644 PMCID: PMC9290789 DOI: 10.1111/mec.16157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
Endosymbiont‐induced cytoplasmic incompatibility (CI) may play an important role in arthropod speciation. However, whether CI consistently becomes associated or coupled with other host‐related forms of reproductive isolation (RI) to impede the transfer of endosymbionts between hybridizing populations and further the divergence process remains an open question. Here, we show that varying degrees of pre‐ and postmating RI exist among allopatric populations of two interbreeding cherry‐infesting tephritid fruit flies (Rhagoletis cingulata and R. indifferens) across North America. These flies display allochronic and sexual isolation among populations, as well as unidirectional reductions in egg hatch in hybrid crosses involving southwestern USA males. All populations are infected by a Wolbachia strain, wCin2, whereas a second strain, wCin3, only co‐infects flies from the southwest USA and Mexico. Strain wCin3 is associated with a unique mitochondrial DNA haplotype and unidirectional postmating RI, implicating the strain as the cause of CI. When coupled with nonendosymbiont RI barriers, we estimate the strength of CI associated with wCin3 would not prevent the strain from introgressing from infected southwestern to uninfected populations elsewhere in the USA if populations were to come into secondary contact and hybridize. In contrast, cytoplasmic–nuclear coupling may impede the transfer of wCin3 if Mexican and USA populations were to come into contact. We discuss our results in the context of the general paucity of examples demonstrating stable Wolbachia hybrid zones and whether the spread of Wolbachia among taxa can be constrained in natural hybrid zones long enough for the endosymbiont to participate in speciation.
Collapse
Affiliation(s)
- Daniel J Bruzzese
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Hannes Schuler
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy.,Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy
| | - Thomas M Wolfe
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mary M Glover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Joseph V Mastroni
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meredith M Doellman
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Cheyenne Tait
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Wee L Yee
- United States Department of Agriculture, Temperate Tree Fruit & Vegetable Research Unit, Agricultural Research Service, Wapato, WA, USA
| | - Juan Rull
- Instituto de Ecología A.C., Xalapa, México.,LIEMEN-División Control Biológico de Plagas, PROIMI Biotecnología-CONICET, Tucumán, Argentina
| | | | - Glen Ray Hood
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | | | - Christian Stauffer
- Department of Forest and Soil Sciences, Boku, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrik Nosil
- CEFE, University Montpellier, CNRS, EPHE, IRD, University Paul Valéry Montpellier 3, Montpellier, France.,Department of Biology, Utah State University, UT, USA
| | - Jeffery L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
8
|
Cruz MA, Magalhães S, Sucena É, Zélé F. Wolbachia and host intrinsic reproductive barriers contribute additively to postmating isolation in spider mites. Evolution 2021; 75:2085-2101. [PMID: 34156702 DOI: 10.1111/evo.14286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
Wolbachia are maternally-inherited bacteria that induce cytoplasmic incompatibility in many arthropod species. However, the ubiquity of this isolation mechanism for host speciation processes remains elusive, as only few studies have examined Wolbachia-induced incompatibilities when host populations are not genetically compatible. Here, we used three populations of two genetically differentiated colour forms of the haplodiploid spider mite Tetranychus urticae to dissect the interaction between Wolbachia-induced and host-associated incompatibilities, and their relative contribution to postmating isolation. We found that these two sources of incompatibility act through different mechanisms in an additive fashion. Host-associated incompatibility contributes 1.5 times more than Wolbachia-induced incompatibility in reducing hybrid production, the former through an overproduction of haploid sons at the expense of diploid daughters (ca. 75% decrease) and the latter by increasing the embryonic mortality of daughters (by ca. 49%). Furthermore, regardless of cross direction, we observed near-complete F1 hybrid sterility and complete F2 hybrid breakdown between populations of the two forms, but Wolbachia did not contribute to this outcome. We thus show mechanistic independence and an additive nature of host-intrinsic and Wolbachia-induced sources of isolation. Wolbachia may contribute to reproductive isolation in this system, thereby potentially affecting host differentiation and distribution in the field.
Collapse
Affiliation(s)
- Miguel A Cruz
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Élio Sucena
- Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, 3° Piso Campo Grande, Lisboa, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal.,ISEM, University of Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
9
|
Zheng XL. Unveiling mosquito cryptic species and their reproductive isolation. INSECT MOLECULAR BIOLOGY 2020; 29:499-510. [PMID: 32741005 PMCID: PMC7754467 DOI: 10.1111/imb.12666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/04/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Mosquitoes are major vectors of many infectious pathogens or parasites. Understanding cryptic species and the speciation of disease vectors has important implications for vector management, evolution and host-pathogen and/or host-parasite interactions. Currently, mosquito cryptic species have been reported in many studies, most of which focus on the reproductive isolation of cryptic species and mainly on Anopheles gambiae sensu lato complex. Emerging species within the primary malaria vector Anopheles gambiae show different ecological preferences and significant prezygotic reproductive isolation, while Aedes mariae and Aedes zammitii show postmating reproductive isolation. However, data reporting the reproductive isolation in Culex and Aedes albopictus mosquito cryptic species is absent. The lack of systematic studies leaves many questions open, such as whether cryptic species are more common in particular habitats, latitudes or taxonomic groups; what mosquito cryptic species evolutionary processes bring about reproductive isolation in the absence of morphological differentiation? How does Wolbachia infection affect in mosquitoes' reproductive isolation? In this review, we provide a summary of recent advances in the discovery and identification of sibling or cryptic species within mosquito genera.
Collapse
Affiliation(s)
- XL. Zheng
- Department of Pathogen Biology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
10
|
Influence of reproductive biology on establishment capacity in introduced Hymenoptera species. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02375-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Duan R, Xu H, Gao S, Gao Z, Wang N. Effects of Different Hosts on Bacterial Communities of Parasitic Wasp Nasonia vitripennis. Front Microbiol 2020; 11:1435. [PMID: 32774328 PMCID: PMC7381354 DOI: 10.3389/fmicb.2020.01435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitism is a special interspecific relationship in insects. Unlike most other ectoparasites, Nasonia vitripennis spend most of its life cycle (egg, larvae, pupae, and early adult stage) inside the pupae of flies, which is covered with hard puparium. Microbes play important roles in host development and help insect hosts to adapt to various environments. How the microbes of parasitic wasp respond to different fly hosts living in such close relationships motivated this investigation. In this study, we used N. vitripennis and three different fly pupa hosts (Lucilia sericata, Sarcophaga marshalli, and Musca domestica) to address this question, as well as to illustrate the potential transfer of bacteria through the trophic food chains. We found that N. vitripennis from different fly pupa hosts showed distinct microbiota, which means that the different fly hosts could affect the bacterial communities of their parasitic wasps. Some bacteria showed potential horizontal transfer through the trophic food chains, from the food through the fly to the parasitic wasp. We also found that the heritable endosymbiont Wolbachia could transferred from the fly host to the parasite and correlated with the bacterial communities of the corresponding parasitic wasps. Our findings provide new insight to the microbial interactions between parasite and host.
Collapse
Affiliation(s)
- Ruxin Duan
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Heng Xu
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Shanshan Gao
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zheng Gao
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Ningxin Wang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Department of Entomology, College of Plant Protection, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
12
|
Rosenwald LC, Sitvarin MI, White JA. Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc Biol Sci 2020; 287:20201107. [PMID: 32635864 DOI: 10.1098/rspb.2020.1107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Many arthropod hosts are infected with bacterial endosymbionts that manipulate host reproduction, but few bacterial taxa have been shown to cause such manipulations. Here, we show that a bacterial strain in the genus Rickettsiella causes cytoplasmic incompatibility (CI) between infected and uninfected hosts. We first surveyed the bacterial community of the agricultural spider Mermessus fradeorum (Linyphiidae) using high throughput sequencing and found that individual spiders can be infected with up to five different strains of maternally inherited symbiont from the genera Wolbachia, Rickettsia, and Rickettsiella. The Rickettsiella strain was pervasive, found in all 23 tested spider matrilines. We used antibiotic curing to generate uninfected matrilines that we reciprocally crossed with individuals infected only with Rickettsiella. We found that only 13% of eggs hatched when uninfected females were mated with Rickettsiella-infected males; in contrast, at least 83% of eggs hatched in the other cross types. This is the first documentation of Rickettsiella, or any Gammaproteobacteria, causing CI. We speculate that induction of CI may be much more widespread among maternally inherited bacteria than previously appreciated. Further, our results reinforce the importance of thoroughly characterizing and assessing the inherited microbiome before attributing observed host phenotypes to well-characterized symbionts such as Wolbachia.
Collapse
Affiliation(s)
- Laura C Rosenwald
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center N, Lexington, KY, USA
| | - Michael I Sitvarin
- Department of Biology, Clayton State University, 2000 Clayton State Blvd., Morrow, GA, USA
| | - Jennifer A White
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center N, Lexington, KY, USA
| |
Collapse
|
13
|
Tobler M, Barts N, Greenway R. Mitochondria and the Origin of Species: Bridging Genetic and Ecological Perspectives on Speciation Processes. Integr Comp Biol 2020; 59:900-911. [PMID: 31004483 DOI: 10.1093/icb/icz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria have been known to be involved in speciation through the generation of Dobzhansky-Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky-Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolation compare when multiple mechanisms of reproductive isolation coincide. We hope this perspective and the proposed research plans help to inform future studies of mitochondrial adaptation in a manner that links genotypic changes to phenotypic adaptations, fitness, and reproductive isolation in natural systems, helping to clarify the importance of mitochondria in the formation and maintenance of biological diversity.
Collapse
Affiliation(s)
- M Tobler
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - N Barts
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - R Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
14
|
Bockoven AA, Bondy EC, Flores MJ, Kelly SE, Ravenscraft AM, Hunter MS. What Goes Up Might Come Down: the Spectacular Spread of an Endosymbiont Is Followed by Its Decline a Decade Later. MICROBIAL ECOLOGY 2020; 79:482-494. [PMID: 31407021 DOI: 10.1007/s00248-019-01417-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Facultative, intracellular bacterial symbionts of arthropods may dramatically affect host biology and reproduction. The length of these symbiont-host associations may be thousands to millions of years, and while symbiont loss is predicted, there have been very few observations of a decline of symbiont infection rates. In a population of the sweet potato whitefly species (Bemisia tabaci MEAM1) in Arizona, USA, we documented the frequency decline of a strain of Rickettsia in the Rickettsia bellii clade from near-fixation in 2011 to 36% of whiteflies infected in 2017. In previous studies, Rickettsia had been shown to increase from 1 to 97% from 2000 to 2006 and remained at high frequency for at least five years. At that time, Rickettsia infection was associated with both fitness benefits and female bias. In the current study, we established matrilines of whiteflies from the field (2016, Rickettsia infection frequency = 58%) and studied (a) Rickettsia vertical transmission, (b) fitness and sex ratios associated with Rickettsia infection, (c) symbiont titer, and (d) bacterial communities within whiteflies. The vertical transmission rate was high, approximately 98%. Rickettsia infection in the matrilines was not associated with fitness benefits or sex ratio bias and appeared to be slightly costly, as more Rickettsia-infected individuals produced non-hatching eggs. Overall, the titer of Rickettsia in the matrilines was lower in 2016 than in the whiteflies collected in 2011, but the titer distribution appeared bimodal, with high- and low-titer lines, and constancy of the average titer within lines over three generations. We found neither association between Rickettsia titer and fitness benefits or sex ratio bias nor evidence that Rickettsia was replaced by another secondary symbiont. The change in the interaction between symbiont and host in 2016 whiteflies may explain the drop in symbiont frequency we observed.
Collapse
Affiliation(s)
- Alison A Bockoven
- Center for Insect Science, The University of Arizona, P.O. Box 210106, Tucson, AZ, 85721, USA
| | - Elizabeth C Bondy
- Graduate Interdisciplinary Program in Entomology and Insect Science, The University of Arizona, P.O. Box 210036, Tucson, AZ, 85721, USA
| | - Matthew J Flores
- Department of Biological Sciences, Virginia Tech University, Derring Hall Room 2125, 926 West Campus Drive, Mail Code 0406, Blacksburg, VA, 24061, USA
| | - Suzanne E Kelly
- Department of Entomology, The University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA
| | - Alison M Ravenscraft
- Center for Insect Science, The University of Arizona, P.O. Box 210106, Tucson, AZ, 85721, USA
- Department of Biology, University of Texas at Arlington, 501 S Nedderman Dr, Arlington, TX, 76019, USA
| | - Martha S Hunter
- Department of Entomology, The University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA.
| |
Collapse
|
15
|
Abstract
Microorganisms that reside within or transmit through arthropod reproductive tissues have profound impacts on host reproduction, health and evolution. In this Review, we discuss select principles of the biology of microorganisms in arthropod reproductive tissues, including bacteria, viruses, protists and fungi. We review models of specific symbionts, routes of transmission, and the physiological and evolutionary outcomes for both hosts and microorganisms. We also identify areas in need of continuing research, to answer the fundamental questions that remain in fields within and beyond arthropod-microorganism associations. New opportunities for research in this area will drive a broader understanding of major concepts as well as the biodiversity, mechanisms and translational applications of microorganisms that interact with host reproductive tissues.
Collapse
|
16
|
Chin TA, Cáceres CE, Cristescu ME. The evolution of reproductive isolation in Daphnia. BMC Evol Biol 2019; 19:216. [PMID: 31775606 PMCID: PMC6880586 DOI: 10.1186/s12862-019-1542-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The process by which populations evolve to become new species involves the emergence of various reproductive isolating barriers (RIB). Despite major advancements in understanding this complex process, very little is known about the order in which RIBs evolve or their relative contribution to the total restriction of gene flow during various stages of speciation. This is mainly due to the difficulties of studying reproductive isolation during the early stages of species formation. This study examines ecological and non-ecological RIB within and between Daphnia pulex and Daphnia pulicaria, two recently diverged species that inhabit distinct habitats and exhibit an unusual level of intraspecific genetic subdivision. RESULTS We find that while ecological prezygotic barriers are close to completion, none of the non-ecological barriers can restrict gene flow between D. pulex and D. pulicaria completely when acting alone. Surprisingly, we also identified high levels of postzygotic reproductive isolation in 'conspecific' interpopulation crosses of D. pulex. CONCLUSIONS While the ecological prezygotic barriers are prevalent during the mature stages of speciation, non-ecological barriers likely dominated the early stages of speciation. This finding indicates the importance of studying the very early stages of speciation and suggests the contribution of postzygotic isolation in initiating the process of speciation.
Collapse
Affiliation(s)
- Tiffany A Chin
- Department of Biology, McGill University, 1205 ave Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada.
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 ave Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| |
Collapse
|
17
|
König K, Zundel P, Krimmer E, König C, Pollmann M, Gottlieb Y, Steidle JLM. Reproductive isolation due to prezygotic isolation and postzygotic cytoplasmic incompatibility in parasitoid wasps. Ecol Evol 2019; 9:10694-10706. [PMID: 31632650 PMCID: PMC6787869 DOI: 10.1002/ece3.5588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/01/2023] Open
Abstract
The reproductive barriers that prevent gene flow between closely related species are a major topic in evolutionary research. Insect clades with parasitoid lifestyle are among the most species-rich insects and new species are constantly described, indicating that speciation occurs frequently in this group. However, there are only very few studies on speciation in parasitoids. We studied reproductive barriers in two lineages of Lariophagus distinguendus (Chalcidoidea: Hymenoptera), a parasitoid wasp of pest beetle larvae that occur in human environments. One of the two lineages occurs in households preferably attacking larvae of the drugstore beetle Stegobium paniceum ("DB-lineage"), the other in grain stores with larvae of the granary weevil Sitophilus granarius as main host ("GW-lineage"). Between two populations of the DB-lineage, we identified slight sexual isolation as intraspecific barrier. Between populations from both lineages, we found almost complete sexual isolation caused by female mate choice, and postzygotic isolation, which is partially caused by cytoplasmic incompatibility induced by so far undescribed endosymbionts which are not Wolbachia or Cardinium. Because separation between the two lineages is almost complete, they should be considered as separate species according to the biological species concept. This demonstrates that cryptic species within parasitoid Hymenoptera also occur in Central Europe in close contact to humans.
Collapse
Affiliation(s)
- Kerstin König
- Fg TierökologieUniversitat HohenheimStuttgartGermany
| | | | - Elena Krimmer
- Department of Animal Ecology and Tropical BiologyJulius‐Maximilians‐Universitat Wurzburg Fakultat fur BiologieUniversity of WürzburgWurzburgGermany
| | | | | | - Yuval Gottlieb
- Robert H. Smith Faculty of Agriculture, Food and EnvironmentKoret School of Veterinary MedicineHebrew University of JerusalemRehovotIsrael
| | | |
Collapse
|
18
|
Schneider DI, Ehrman L, Engl T, Kaltenpoth M, Hua-Van A, Le Rouzic A, Miller WJ. Symbiont-Driven Male Mating Success in the Neotropical Drosophila paulistorum Superspecies. Behav Genet 2019; 49:83-98. [PMID: 30456532 PMCID: PMC6327003 DOI: 10.1007/s10519-018-9937-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023]
Abstract
Microbial symbionts are ubiquitous associates of living organisms but their role in mediating reproductive isolation (RI) remains controversial. We addressed this knowledge gap by employing the Drosophila paulistorum-Wolbachia model system. Semispecies in the D. paulistorum species complex exhibit strong RI between each other and knockdown of obligate mutualistic Wolbachia bacteria in female D. paulistorum flies triggers loss of assortative mating behavior against males carrying incompatible Wolbachia strains. Here we set out to determine whether de novo RI can be introduced by Wolbachia-knockdown in D. paulistorum males. We show that Wolbachia-knockdown D. paulistorum males (i) are rejected as mates by wild type females, (ii) express altered sexual pheromone profiles, and (iii) are devoid of the endosymbiont in pheromone producing cells. Our findings suggest that changes in Wolbachia titer and tissue tropism can induce de novo premating isolation by directly or indirectly modulating sexual behavior of their native D. paulistorum hosts.
Collapse
Affiliation(s)
- Daniela I Schneider
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Lee Ehrman
- Natural Sciences, State University of New York, Purchase College, Purchase, NY, USA
| | - Tobias Engl
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg-Universität, Mainz, Germany
| | - Aurélie Hua-Van
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
19
|
Perry KD, Baker GJ, Powis KJ, Kent JK, Ward CM, Baxter SW. Cryptic Plutella species show deep divergence despite the capacity to hybridize. BMC Evol Biol 2018; 18:77. [PMID: 29843598 PMCID: PMC5975261 DOI: 10.1186/s12862-018-1183-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/17/2018] [Indexed: 12/30/2022] Open
Abstract
Background Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world’s most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays. Results The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1.5% of P. xylostella. Conclusions Despite sympatric distributions and the capacity to hybridize, strong genomic and phenotypic divergence exists between these Plutella species that is consistent with contrasting colonization histories and reproductive isolation after secondary contact. Although P. australiana is a potential pest of brassicaceous crops, it is of secondary importance to P. xylostella. Electronic supplementary material The online version of this article (10.1186/s12862-018-1183-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kym D Perry
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, 5005, Australia. .,South Australian Research and Development Institute, Adelaide, 5001, Australia.
| | - Gregory J Baker
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Kevin J Powis
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Joanne K Kent
- South Australian Research and Development Institute, Adelaide, 5001, Australia
| | - Christopher M Ward
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Simon W Baxter
- School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
20
|
Gebiola M, Giorgini M, Kelly SE, Doremus MR, Ferree PM, Hunter MS. Cytological analysis of cytoplasmic incompatibility induced by Cardinium suggests convergent evolution with its distant cousin Wolbachia. Proc Biol Sci 2018; 284:rspb.2017.1433. [PMID: 28878066 DOI: 10.1098/rspb.2017.1433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
Cytoplasmic incompatibility (CI) is a conditional sterility in numerous arthropods that is caused by inherited, intracellular bacteria such as Wolbachia Matings between males carrying CI-inducing Wolbachia and uninfected females, or between males and females infected with different Wolbachia strains, result in progeny that die during very early embryogenesis. Multiple studies in diploid (Drosophila) and haplodiploid (Nasonia) insects have shown that CI-Wolbachia cause a failure of the paternally derived chromatin from resolving into distinct chromosomes. This leads to the formation of chromatin bridges and other mitotic defects as early as the first mitotic division, and to early mitotic arrest. It is currently unknown if CI-inducing symbionts other than Wolbachia affect similar cellular processes. Here, we investigated CI caused by an unrelated bacterium, Cardinium, which naturally infects a parasitic wasp, Encarsia suzannae CI crosses in this host-symbiont system resulted in early mitotic defects including asynchrony of paternal and maternal chromosome sets as they enter mitosis, chromatin bridges and improper chromosome segregation that spanned across multiple mitotic divisions, triggering embryonic death through accumulated aneuploidy. We highlight small differences with CI-Wolbachia, which could be due to the underlying CI mechanism or host-specific effects. Our results suggest a convergence of CI-related cellular phenotypes between these two unrelated symbionts.
Collapse
Affiliation(s)
- Marco Gebiola
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA .,CNR-Istituto per la Protezione Sostenibile delle Piante, Portici, Italy
| | - Massimo Giorgini
- CNR-Istituto per la Protezione Sostenibile delle Piante, Portici, Italy
| | - Suzanne E Kelly
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Matthew R Doremus
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA.,Graduate Interdisciplinary Program in Entomology and Insect Science, The University of Arizona, Tucson, AZ 85721, USA
| | - Patrick M Ferree
- W. M. Keck Science Department, The Claremont Colleges, Claremont, CA 91711, USA
| | - Martha S Hunter
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
21
|
Transcriptome Sequencing Reveals Novel Candidate Genes for Cardinium hertigii-Caused Cytoplasmic Incompatibility and Host-Cell Interaction. mSystems 2017; 2:mSystems00141-17. [PMID: 29181449 PMCID: PMC5698495 DOI: 10.1128/msystems.00141-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
The majority of insects carry maternally inherited intracellular bacteria that are important in their hosts’ biology, ecology, and evolution. Some of these bacterial symbionts cause a reproductive failure known as cytoplasmic incompatibility (CI). In CI, the mating of symbiont-infected males and uninfected females produces few or no daughters. The CI symbiont then spreads and can have a significant impact on the insect host population. Cardinium, a bacterial endosymbiont of the parasitoid wasp Encarsia in the Bacteroidetes, is the only bacterial lineage known to cause CI outside the Alphaproteobacteria, where Wolbachia and another recently discovered CI symbiont reside. Here, we sought insight into the gene expression of a CI-inducing Cardinium strain in its natural host, Encarsia suzannae. Our study provides the first insights into the Cardinium transcriptome and provides support for the hypothesis that Wolbachia and Cardinium target similar host pathways with distinct and largely unrelated sets of genes. Cytoplasmic incompatibility (CI) is an intriguing, widespread, symbiont-induced reproductive failure that decreases offspring production of arthropods through crossing incompatibility of infected males with uninfected females or with females infected with a distinct symbiont genotype. For years, the molecular mechanism of CI remained unknown. Recent genomic, proteomic, biochemical, and cell biological studies have contributed to understanding of CI in the alphaproteobacterium Wolbachia and implicate genes associated with the WO prophage. Besides a recently discovered additional lineage of alphaproteobacterial symbionts only moderately related to Wolbachia, Cardinium (Bacteroidetes) is the only other symbiont known to cause CI, and genomic evidence suggests that it has very little homology with Wolbachia and evolved this phenotype independently. Here, we present the first transcriptomic study of the CI Cardinium strain cEper1, in its natural host, Encarsia suzannae, to detect important CI candidates and genes involved in the insect-Cardinium symbiosis. Highly expressed transcripts included genes involved in manipulating ubiquitination, apoptosis, and host DNA. Female-biased genes encoding ribosomal proteins suggest an increase in general translational activity of Cardinium in female wasps. The results confirm previous genomic analyses that indicated that Wolbachia and Cardinium utilize different genes to induce CI, and transcriptome patterns further highlight expression of some common pathways that these bacteria use to interact with the host and potentially cause this enigmatic and fundamental manipulation of host reproduction. IMPORTANCE The majority of insects carry maternally inherited intracellular bacteria that are important in their hosts’ biology, ecology, and evolution. Some of these bacterial symbionts cause a reproductive failure known as cytoplasmic incompatibility (CI). In CI, the mating of symbiont-infected males and uninfected females produces few or no daughters. The CI symbiont then spreads and can have a significant impact on the insect host population. Cardinium, a bacterial endosymbiont of the parasitoid wasp Encarsia in the Bacteroidetes, is the only bacterial lineage known to cause CI outside the Alphaproteobacteria, where Wolbachia and another recently discovered CI symbiont reside. Here, we sought insight into the gene expression of a CI-inducing Cardinium strain in its natural host, Encarsia suzannae. Our study provides the first insights into the Cardinium transcriptome and provides support for the hypothesis that Wolbachia and Cardinium target similar host pathways with distinct and largely unrelated sets of genes.
Collapse
|
22
|
Worsham MLD, Julius EP, Nice CC, Diaz PH, Huffman DG. Geographic isolation facilitates the evolution of reproductive isolation and morphological divergence. Ecol Evol 2017; 7:10278-10288. [PMID: 29238554 PMCID: PMC5723600 DOI: 10.1002/ece3.3474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/17/2017] [Accepted: 08/31/2017] [Indexed: 11/07/2022] Open
Abstract
Geographic isolation is known to contribute to divergent evolution, resulting in unique phenotypes. Oftentimes morphologically distinct populations are found to be interfertile while reproductive isolation is found to exist within nominal morphological species revealing the existence of cryptic species. These disparities can be difficult to predict or explain especially when they do not reflect an inferred history of common ancestry which suggests that environmental factors affect the nature of ecological divergence. A series of laboratory experiments and observational studies were used to address what role biogeographic factors may play in the ecological divergence of Hyalella amphipods. It was found that geographic isolation plays a key role in the evolution of reproductive isolation and divergent morphology and that divergence cannot be explained by molecular genetic variation.
Collapse
Affiliation(s)
- McLean L. D. Worsham
- Department of BiologyTexas State UniversitySan MarcosTXUSA
- Department of ZoologyUniversity of HawaiiHonoluluHIUSA
| | - Eric P. Julius
- Department of BiologyTexas State UniversitySan MarcosTXUSA
| | - Chris C. Nice
- Department of BiologyTexas State UniversitySan MarcosTXUSA
| | - Peter H. Diaz
- U.S. Fish and Wildlife ServiceTexas Fish and Wildlife Conservation OfficeSan MarcosTXUSA
| | | |
Collapse
|
23
|
Reproductive interference and fecundity affect competitive interactions of sibling species with low mating barriers: experimental and theoretical evidence. Heredity (Edinb) 2017; 119:438-446. [PMID: 28902188 DOI: 10.1038/hdy.2017.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
When allopatric species with incomplete prezygotic isolation come into secondary contact, the outcome of their interaction is not easily predicted. The parasitoid wasp Encarsia suzannae (iES), infected by Cardinium inducing cytoplasmic incompatibility (CI), and its sibling species E. gennaroi (EG), not infected by bacterial endosymbionts, may have diverged because of the complementary action of CI and asymmetric hybrid incompatibilities. Whereas postzygotic isolation is now complete because of sterility of F1 hybrid progeny, prezygotic isolation is still incipient. We set up laboratory population cage experiments to evaluate the outcome of the interaction between ES and EG in two pairwise combinations: iES vs EG and cured ES (cES, where Cardinium was removed with antibiotics) vs EG. We also built a theoretical model aimed at exploring the role of life-history differences and asymmetric mating on competitive outcomes. In three of four cages in each treatment, ES dominated the interaction. We found evidence for reproductive interference, driven by asymmetric mating preferences, that gave a competitive edge to ES, the species that better discriminated against heterospecifics. However, we did not find the fecundity cost previously shown to be associated with Cardinium infection in iES. The model largely supported the experimental results. The finding of only a slight competitive edge of ES over EG in population cages suggests that in a more heterogeneous environment the species could coexist. This is supported by evidence that the two species coexist in sympatry, where preliminary data suggest reproductive character displacement may have reinforced postzygotic isolation.
Collapse
|
24
|
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 2017; 26:2212-2236. [PMID: 27997046 PMCID: PMC6534505 DOI: 10.1111/mec.13959] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
25
|
Nguyen DT, Morrow JL, Spooner-Hart RN, Riegler M. Independent cytoplasmic incompatibility induced byCardiniumandWolbachiamaintains endosymbiont coinfections in haplodiploid thrips populations. Evolution 2017; 71:995-1008. [DOI: 10.1111/evo.13197] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Duong T. Nguyen
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Jennifer L. Morrow
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Robert N. Spooner-Hart
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
- School of Science and Health; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| |
Collapse
|