1
|
Ramakanth S, Kennedy T, Yalcinkaya B, Neupane S, Tadic N, Buchler NE, Argüello-Miranda O. Deep learning-driven imaging of cell division and cell growth across an entire eukaryotic life cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591211. [PMID: 38712227 PMCID: PMC11071524 DOI: 10.1101/2024.04.25.591211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The life cycle of biomedical and agriculturally relevant eukaryotic microorganisms involves complex transitions between proliferative and non-proliferative states such as dormancy, mating, meiosis, and cell division. New drugs, pesticides, and vaccines can be created by targeting specific life cycle stages of parasites and pathogens. However, defining the structure of a microbial life cycle often relies on partial observations that are theoretically assembled in an ideal life cycle path. To create a more quantitative approach to studying complete eukaryotic life cycles, we generated a deep learning-driven imaging framework to track microorganisms across sexually reproducing generations. Our approach combines microfluidic culturing, life cycle stage-specific segmentation of microscopy images using convolutional neural networks, and a novel cell tracking algorithm, FIEST, based on enhancing the overlap of single cell masks in consecutive images through deep learning video frame interpolation. As proof of principle, we used this approach to quantitatively image and compare cell growth and cell cycle regulation across the sexual life cycle of Saccharomyces cerevisiae. We developed a fluorescent reporter system based on a fluorescently labeled Whi5 protein, the yeast analog of mammalian Rb, and a new High-Cdk1 activity sensor, LiCHI, designed to report during DNA replication, mitosis, meiotic homologous recombination, meiosis I, and meiosis II. We found that cell growth preceded the exit from non-proliferative states such as mitotic G1, pre-meiotic G1, and the G0 spore state during germination. A decrease in the total cell concentration of Whi5 characterized the exit from non-proliferative states, which is consistent with a Whi5 dilution model. The nuclear accumulation of Whi5 was developmentally regulated, being at its highest during meiotic exit and spore formation. The temporal coordination of cell division and growth was not significantly different across three sexually reproducing generations. Our framework could be used to quantitatively characterize other single-cell eukaryotic life cycles that remain incompletely described. An off-the-shelf user interface Yeastvision provides free access to our image processing and single-cell tracking algorithms.
Collapse
Affiliation(s)
- Shreya Ramakanth
- Department of Plant and Microbial Biology, North Carolina State University
| | - Taylor Kennedy
- Department of Plant and Microbial Biology, North Carolina State University
| | - Berk Yalcinkaya
- Department of Plant and Microbial Biology, North Carolina State University
| | - Sandhya Neupane
- Department of Plant and Microbial Biology, North Carolina State University
| | - Nika Tadic
- Department of Plant and Microbial Biology, North Carolina State University
| | - Nicolas E Buchler
- Department of Molecular Biomedical Sciences, North Carolina State University
| | | |
Collapse
|
2
|
Bessho K. Stable demographic ratios of haploid gametophyte to diploid sporophyte abundance in macroalgal populations. PLoS One 2024; 19:e0295409. [PMID: 38451989 PMCID: PMC10919683 DOI: 10.1371/journal.pone.0295409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/22/2023] [Indexed: 03/09/2024] Open
Abstract
Macroalgal populations often consist of free-living haploid (gametophyte) and diploid (sporophyte) stages. Various ecological studies have been conducted to examine the demographic diversity of haploid-diploid populations with regard to the dominant stage. Here, I relaxed the assumption of classical research that the life history parameters of haploids and diploids are identical and developed a generalized haploid-diploid model that explicitly accounts for population density dependence and asexual reproduction. Analysis of this model yielded an exact solution for the abundance ratio of haploids to diploids in a population in which the ratio is determined by the balance of four demographic forces: sexual reproduction by haploids, sexual reproduction by diploids, asexual reproduction by haploids, and asexual reproduction by diploids. Furthermore, the persistence of a haploid-diploid population and its total biomass are shown to be determined by the basic reproductive number (R0), which is shown to be a function of these four demographic forces. When R0 is greater than one, the haploid-diploid population stably persists, and the ploidy ratio obtained by the analytical solution is realized.
Collapse
|
3
|
Sandell L, König SG, Otto SP. Schrödinger's yeast: the challenge of using transformation to compare fitness among Saccharomyces cerevisiae that differ in ploidy or zygosity. PeerJ 2023; 11:e16547. [PMID: 38077443 PMCID: PMC10704993 DOI: 10.7717/peerj.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
How the number of genome copies modifies the effect of random mutations remains poorly known. In yeast, researchers have investigated these effects for knock-out or other large-effect mutations, but have not accounted for differences at the mating-type locus. We set out to compare fitness differences among strains that differ in ploidy and/or zygosity using a panel of spontaneously arising mutations acquired in haploid yeast from a previous study. To ensure no genetic differences, even at the mating-type locus, we embarked on a series of transformations, which first sterilized and then temporarily introduced plasmid-borne mating types. Despite these attempts to equalize the haplotypes, fitness variation introduced during transformation swamped the differences among the original mutation-accumulation lines. While colony size looked normal, we observed a bi-modality in the maximum growth rate of our transformed yeast and determined that many of the slow growing lines were respiratory deficient ("petite"). Not previously reported, we found that yeast that were TID1/RDH54 knockouts were less likely to become petite. Even for lines with the same petite status, however, we found no correlation in fitness between the two replicate transformations performed. These results pose a challenge for any study using transformation to measure the fitness effect of genetic differences among strains. By attempting to hold haplotypes constant, we introduced more mutations that overwhelmed our ability to measure fitness differences between the genetic states. In this study, we transformed over one hundred different lines of yeast, using two independent transformations, and found that this common laboratory procedure can cause large changes to the microbe studied. Our study provides a cautionary tale of the need to use multiple transformants in fitness assays.
Collapse
Affiliation(s)
- Linnea Sandell
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| | - Stephan G. König
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
- Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah P. Otto
- Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, Canada
| |
Collapse
|
4
|
Li LL, Xiao Y, Wang X, He ZH, Lv YW, Hu XS. The Ka /Ks and πa /πs Ratios under Different Models of Gametophytic and Sporophytic Selection. Genome Biol Evol 2023; 15:evad151. [PMID: 37561000 PMCID: PMC10443736 DOI: 10.1093/gbe/evad151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Alternation of generations in plant life cycle provides a biological basis for natural selection occurring in either the gametophyte or the sporophyte phase or in both. Divergent biphasic selection could yield distinct evolutionary rates for phase-specific or pleiotropic genes. Here, we analyze models that deal with antagonistic and synergistic selection between alternative generations in terms of the ratio of nonsynonymous to synonymous divergence (Ka/Ks). Effects of biphasic selection are opposite under antagonistic selection but cumulative under synergistic selection for pleiotropic genes. Under the additive and comparable strengths of biphasic allelic selection, the absolute Ka/Ks for the gametophyte gene is equal to in outcrossing but smaller than, in a mixed mating system, that for the sporophyte gene under antagonistic selection. The same pattern is predicted for Ka/Ks under synergistic selection. Selfing reduces efficacy of gametophytic selection. Other processes, including pollen and seed flow and genetic drift, reduce selection efficacy. The polymorphism (πa) at a nonsynonymous site is affected by the joint effects of selfing with gametophytic or sporophytic selection. Likewise, the ratio of nonsynonymous to synonymous polymorphism (πa/πs) is also affected by the same joint effects. Gene flow and genetic drift have opposite effects on πa or πa/πs in interacting with gametophytic and sporophytic selection. We discuss implications of this theory for detecting natural selection in terms of Ka/Ks and for interpreting the evolutionary divergence among gametophyte-specific, sporophyte-specific, and pleiotropic genes.
Collapse
Affiliation(s)
- Ling-Ling Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yu Xiao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xi Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Han He
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Lv
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Sheng Hu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Jay P, Tezenas E, Véber A, Giraud T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol 2022; 20:e3001698. [PMID: 35853091 PMCID: PMC9295944 DOI: 10.1371/journal.pbio.3001698] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 12/19/2022] Open
Abstract
Many organisms have sex chromosomes with large nonrecombining regions that have expanded stepwise, generating "evolutionary strata" of differentiation. The reasons for this remain poorly understood, but the principal hypotheses proposed to date are based on antagonistic selection due to differences between sexes. However, it has proved difficult to obtain empirical evidence of a role for sexually antagonistic selection in extending recombination suppression, and antagonistic selection has been shown to be unlikely to account for the evolutionary strata observed on fungal mating-type chromosomes. We show here, by mathematical modeling and stochastic simulation, that recombination suppression on sex chromosomes and around supergenes can expand under a wide range of parameter values simply because it shelters recessive deleterious mutations, which are ubiquitous in genomes. Permanently heterozygous alleles, such as the male-determining allele in XY systems, protect linked chromosomal inversions against the expression of their recessive mutation load, leading to the successive accumulation of inversions around these alleles without antagonistic selection. Similar results were obtained with models assuming recombination-suppressing mechanisms other than chromosomal inversions and for supergenes other than sex chromosomes, including those without XY-like asymmetry, such as fungal mating-type chromosomes. However, inversions capturing a permanently heterozygous allele were found to be less likely to spread when the mutation load segregating in populations was lower (e.g., under large effective population sizes or low mutation rates). This may explain why sex chromosomes remain homomorphic in some organisms but are highly divergent in others. Here, we model a simple and testable hypothesis explaining the stepwise extensions of recombination suppression on sex chromosomes, mating-type chromosomes, and supergenes in general.
Collapse
Affiliation(s)
- Paul Jay
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - Emilie Tezenas
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
- Univ. Lille, CNRS, UMR 8198 –Evo-Eco-Paleo, F-59000 Lille, France
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Bessho K, Otto SP. Fixation and effective size in a haploid-diploid population with asexual reproduction. Theor Popul Biol 2022; 143:30-45. [PMID: 34843675 DOI: 10.1016/j.tpb.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
The majority of population genetic theory assumes fully haploid or diploid organisms with obligate sexuality, despite complex life cycles with alternating generations being commonly observed. To reveal how natural selection and genetic drift shape the evolution of haploid-diploid populations, we analyze a stochastic genetic model for populations that consist of a mixture of haploid and diploid individuals, allowing for asexual reproduction and niche separation between haploid and diploid stages. Applying a diffusion approximation, we derive the fixation probability and describe its dependence on the reproductive values of haploid and diploid stages, which depend strongly on the extent of asexual reproduction in each phase and on the ecological differences between them.
Collapse
Affiliation(s)
- Kazuhiro Bessho
- Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| | - Sarah P Otto
- Department of Zoology, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
7
|
Heesch S, Serrano-Serrano M, Barrera-Redondo J, Luthringer R, Peters AF, Destombe C, Cock JM, Valero M, Roze D, Salamin N, Coelho SM. Evolution of life cycles and reproductive traits: Insights from the brown algae. J Evol Biol 2021; 34:992-1009. [PMID: 34096650 DOI: 10.1111/jeb.13880] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life-history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi-gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy.
Collapse
Affiliation(s)
- Svenja Heesch
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
- Applied Ecology & Phycology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | | | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rémy Luthringer
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
| | | | - Christophe Destombe
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - J Mark Cock
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
| | - Myriam Valero
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - Denis Roze
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Susana M Coelho
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
8
|
Vieira VM, Engelen AH, Huanel OR, Guillemin M. Differential Frond Growth in the Isomorphic Haploid-diploid Red Seaweed Agarophyton chilense by Long-term In Situ Monitoring. JOURNAL OF PHYCOLOGY 2021; 57:592-605. [PMID: 33249614 PMCID: PMC8247958 DOI: 10.1111/jpy.13110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Conditional differentiation between haploids and diploids has been proposed to drive the evolutionary stability of isomorphic biphasic life cycles. The cost of producing and maintaining genetic information has been posed as a possible driver of this conditional differentiation. Under this hypothesis, haploids benefit over diploids in resource-limited environments by halving the costs of producing and maintaining DNA. Spared resources can be allocated to enhance survival, growth or fertility. Here we test in the field whether indeed haploids have higher growth rates than diploids. Individuals of the red seaweed Agarophyton chilense, were mapped and followed during 2 years with 4-month census intervals across different stands within the Valdivia River estuary, Chile. As hypothesized, haploids grew larger and faster than diploids, but this was sex-dependent. Haploid (gametophyte) females grew twice as large and 15% faster than diploids (tetrasporophytes), whereas haploid males only grew as large and as fast as the maximum obtained by diploids in summer. However, haploid males maintained their maximum sizes and growth rates constant year-round, while diploids were smaller and had lower growth rates during the winter. In conclusion, our results confirm the conditional differentiation in size and growth between haploids and diploids but also identified important differences between males and females. Besides understanding life cycle evolution, the dynamics of A. chilense frond growth reported informs algal farmers regarding production optimization and should help in determining best planting and harvesting strategies.
Collapse
Affiliation(s)
- Vasco M.N.C.S. Vieira
- MARETECInstituto Superior TécnicoUniversidade Técnica de LisboaAv. Rovisco Pais1049‐001LisboaPortugal
| | - Aschwin H. Engelen
- CCMARCenter of Marine ScienceUniversity of AlgarveCampus Gambelas8005‐139FaroPortugal
| | - Oscar R. Huanel
- Departamento de EcologíaFacultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
- CNRSUMI 3614Evolutionary Biology and Ecology of AlgaeSorbonne UniversitésUPMC University Paris VIStation Biologique de RoscoffCS 90074Place G. Tessier296888RoscoffFrance
| | - Marie‐Laure Guillemin
- CNRSUMI 3614Evolutionary Biology and Ecology of AlgaeSorbonne UniversitésUPMC University Paris VIStation Biologique de RoscoffCS 90074Place G. Tessier296888RoscoffFrance
- Instituto de Ciencias Ambientales y EvolutivasFacultad de CienciasUniversidad Austral de ChileCasilla 567ValdiviaChile
| |
Collapse
|
9
|
Stoeckel S, Arnaud-Haond S, Krueger-Hadfield SA. The Combined Effect of Haplodiplonty and Partial Clonality on Genotypic and Genetic Diversity in a Finite Mutating Population. J Hered 2021; 112:78-91. [PMID: 33710350 DOI: 10.1093/jhered/esaa062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 12/17/2020] [Indexed: 02/03/2023] Open
Abstract
Partial clonality is known to affect the genetic composition and evolutionary trajectory of diplontic (single, free-living diploid stage) populations. However, many partially clonal eukaryotes exhibit life cycles in which somatic development occurs in both haploid and diploid individuals (haplodiplontic life cycles). Here, we studied how haplodiplontic life cycles and partial clonality structurally constrain, as immutable parameters, the reshuffling of genetic diversity and its dynamics in populations over generations. We assessed the distribution of common population genetic indices at different proportions of haploids, rates of clonality, mutation rates, and sampling efforts. Our results showed that haplodiplontic life cycles alone in finite populations affect effective population sizes and the ranges of distributions of population genetic indices. With nonoverlapping generations, haplodiplonty allowed the evolution of 2 temporal genetic pools that may diverge in sympatry due to genetic drift under full sexuality and clonality. Partial clonality in these life cycles acted as a homogenizing force between those 2 pools. Moreover, the combined effects of proportion of haploids, rate of clonality, and the relative strength of mutation versus genetic drift impacts the distributions of population genetics indices, rendering it difficult to transpose and use knowledge accumulated from diplontic or haplontic species. Finally, we conclude by providing recommendations for sampling and analyzing the population genetics of partially clonal haplodiplontic taxa.
Collapse
Affiliation(s)
- Solenn Stoeckel
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, F-35650 Le Rheu, France
| | | | | |
Collapse
|
10
|
Krueger-Hadfield SA, Flanagan BA, Godfroy O, Hill-Spanik KM, Nice CC, Murren CJ, Strand AE, Sotka EE. Using RAD-seq to develop sex-linked markers in a haplodiplontic alga. JOURNAL OF PHYCOLOGY 2021; 57:279-294. [PMID: 33098662 DOI: 10.1111/jpy.13088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double-digest restriction site-associated DNA sequencing (ddRAD-seq) to identify sex-linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD-seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non-native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female-linked and 19 putatively male-linked sequences. Four female- and eight male-linked markers amplified in all three life cycle stages. Using one female- and one male-linked marker that were sex-specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non-native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD-seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex-linked markers in other haplodiplontic macroalgae for which genomes are lacking.
Collapse
Affiliation(s)
- Stacy A Krueger-Hadfield
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35294, USA
| | - Ben A Flanagan
- Department of Biological Sciences, University of Southern California, Los Angeles, California, 90089, USA
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Kristina M Hill-Spanik
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| | - Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, Texas, 78666, USA
| | - Courtney J Murren
- Department of Biology, College of Charleston, 66 George Street, Charleston, South Carolina, 29424, USA
| | - Allan E Strand
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| | - Erik E Sotka
- Department of Biology and Grice Marine Lab, College of Charleston, 205 Fort Johnson Road, Charleston, South Carolina, 29412, USA
| |
Collapse
|
11
|
Krueger-Hadfield SA, Ryan WH. Influence of nutrients on ploidy-specific performance in an invasive, haplodiplontic red macroalga. JOURNAL OF PHYCOLOGY 2020; 56:1114-1120. [PMID: 32348550 DOI: 10.1111/jpy.13011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Worldwide, macroalgae have invaded near-shore marine ecosystems. However, their haplodiplontic life cycles have complicated efforts to predict patterns of growth and spread, particularly since most theoretical predictions are derived from diplontic taxa (i.e., animals). To complete one revolution of the life cycle, two separate ploidy stages, often including separate haploid sexes, must pass through development and reproduction. In the case of the invasive, red macroalga Agarophyton vermiculophyllum, during the invasion of soft-sediment estuaries throughout the Northern Hemisphere, diploid tetrasporophytes came to dominate all free-floating populations and haploid gametophytes were consistently lost. The ecological hypothesis of nutrient limitation might contribute to an explanation of this pattern of tetrasporophytic dominance in free-floating populations. Under this hypothesis, gametophytes should outperform tetrasporophytes under nutrient limited conditions, but tetrasporophytes should be better able to exploit optimal or even abundant nutrient conditions, such as in eutrophic estuaries. We sampled tetrasporophytes, male gametophytes, and female gametophytes from two sites each located on either side of the Delmarva Peninsula that separates the Chesapeake Bay from the Atlantic Ocean. We subjected apices excised from multiple thalli from each life cycle stage to a nutrient-enriched and a nutrient-poor seawater treatment and assessed growth and survival. While nutrient addition increased growth rates, there was no significant difference among ploidies or sexes. Gametophytes did, however, suffer higher mortality than tetrasporophytes. We discuss how nutrient-dependent differences in growth and survival may contribute to observed patterns of tetrasporophytic dominance in soft-sediment A. vermiculophyllum populations.
Collapse
Affiliation(s)
- Stacy A Krueger-Hadfield
- Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35924, USA
| | - Will H Ryan
- Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, Alabama, 35924, USA
| |
Collapse
|
12
|
Clergeot PH, Rode NO, Glémin S, Brandström Durling M, Ihrmark K, Olson Å. Estimating the Fitness Effect of Deleterious Mutations During the Two Phases of the Life Cycle: A New Method Applied to the Root-Rot Fungus Heterobasidion parviporum. Genetics 2019; 211:963-976. [PMID: 30598467 PMCID: PMC6404244 DOI: 10.1534/genetics.118.301855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/22/2018] [Indexed: 11/18/2022] Open
Abstract
Many eukaryote species, including taxa such as fungi or algae, have a lifecycle with substantial haploid and diploid phases. A recent theoretical model predicts that such haploid-diploid lifecycles are stable over long evolutionary time scales when segregating deleterious mutations have stronger effects in homozygous diploids than in haploids and when they are partially recessive in heterozygous diploids. The model predicts that effective dominance-a measure that accounts for these two effects-should be close to 0.5 in these species. It also predicts that diploids should have higher fitness than haploids on average. However, an appropriate statistical framework to conjointly investigate these predictions is currently lacking. In this study, we derive a new quantitative genetic model to test these predictions using fitness data of two haploid parents and their diploid offspring, and genome-wide genetic distance between haploid parents. We apply this model to the root-rot basidiomycete fungus Heterobasidion parviporum-a species where the heterokaryotic (equivalent to the diploid) phase is longer than the homokaryotic (haploid) phase. We measured two fitness-related traits (mycelium growth rate and the ability to degrade wood) in both homokaryons and heterokaryons, and we used whole-genome sequencing to estimate nuclear genetic distance between parents. Possibly due to a lack of power, we did not find that deleterious mutations were recessive or more deleterious when expressed during the heterokaryotic phase. Using this model to compare effective dominance among haploid-diploid species where the relative importance of the two phases varies should help better understand the evolution of haploid-diploid life cycles.
Collapse
Affiliation(s)
- Pierre-Henri Clergeot
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Nicolas O Rode
- Centre de Biologie pour la Gestion des Populations (CBGP), Institut National de la Recherche Agronomique (INRA), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Institut de Recherche pour le Développement (IRD), Montpellier SupAgro, Univ Montpellier, 34988 France
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36 Sweden
- CNRS, Univ Rennes, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35000 Rennes, France
| | - Mikael Brandström Durling
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Katarina Ihrmark
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Åke Olson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| |
Collapse
|
13
|
Lipinska AP, Serrano-Serrano ML, Cormier A, Peters AF, Kogame K, Cock JM, Coelho SM. Rapid turnover of life-cycle-related genes in the brown algae. Genome Biol 2019; 20:35. [PMID: 30764885 PMCID: PMC6374913 DOI: 10.1186/s13059-019-1630-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations. RESULTS We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression. CONCLUSION Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
Collapse
Affiliation(s)
- Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Alexandre Cormier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | | | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Sciences, Hokkaido University, Sapporo, 060-0810, Japan
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
14
|
Hu XS, Zhang XX, Zhou W, Hu Y, Wang X, Chen XY. Mating system shifts a species' range. Evolution 2018; 73:158-174. [PMID: 30592527 DOI: 10.1111/evo.13663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/05/2018] [Indexed: 01/20/2023]
Abstract
Understanding the ecological and evolutionary mechanisms that shape a species' range is an important goal in evolutionary biology. Evidence indicates that mating system is an effective predictor of the global range of native species or naturalized alien plants, but the mechanisms underlying this predictability are not elaborated. Here, we develop a theoretical model to account for the ranges of plants under different mating systems based on migration-selection processes (an idea proposed by Haldane). The model includes alternation of gametophyte and sporophyte generations in one life cycle and the dispersal of haploid pollen and diploid seeds as vectors for gene flow. We show that the interaction between selfing rates and gametophytic selection determines the role of mating system in shaping a species' range. Selfing restricts the species' range under gametophytic selection in nonrandom mating systems, but expands the species' range under the absence of gametophytic selection in any mating system. Gametophytic selection slightly restricts the species' range in random mating. Both logarithmic and logistic models of population demography yield similar conclusions in the case of fixed or evolving genetic variance. The theory also helps to explain a broader relationship between mating system and range size following biological invasion or plant naturalization.
Collapse
Affiliation(s)
- Xin-Sheng Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xin-Xin Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Wei Zhou
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Ying Hu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xi Wang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| | - Xiao-Yang Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, 510642, China.,College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, 510642, China
| |
Collapse
|
15
|
Figueroa RI, Estrada M, Garcés E. Life histories of microalgal species causing harmful blooms: Haploids, diploids and the relevance of benthic stages. HARMFUL ALGAE 2018; 73:44-57. [PMID: 29602506 DOI: 10.1016/j.hal.2018.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
In coastal and offshore waters, Harmful Algal Blooms (HABs) currently threaten the well-being of coastal countries. These events, which can be localized or involve wide-ranging areas, pose risks to human health, marine ecosystems, and economic resources, such as tourism, fisheries, and aquaculture. Dynamics of HABs vary from one site to another, depending on the hydrographic and ecological conditions. The challenge in investigating HABs is that they are caused by organisms from multiple algal classes, each with its own unique features, including different life histories. The complete algal life cycle has been determined in <1% of the described species, although elucidation of the life cycles of bloom-forming species is essential in developing preventative measures. The knowledge obtained thus far has confirmed the complexity of the algal life cycle, which is composed of discrete life stages whose morphology, ecological niche (plankton/benthos), function, and lifespan vary. The factors that trigger transitions between the different stages in nature are mostly unknown, but it is clear that an understanding of this process provides the key to effectively forecasting bloom recurrence, maintenance, and decline. Planktonic stages constitute an ephemeral phase of the life cycle of most species whereas resistant, benthic stages enable a species to withstand adverse conditions for prolonged periods, thus providing dormant reservoirs for eventual blooms and facilitating organismal dispersal. Here we review current knowledge of the life cycle strategies of major groups of HAB producers in marine and brackish waters. Rather than providing a comprehensive discussion, the objective was to highlight several of the research milestones that have changed our understanding of the plasticity and frequency of the different life cycle stages as well as the transitions between them. We also discuss the relevance of benthic and planktonic forms and their implications for HAB dynamics.
Collapse
Affiliation(s)
- Rosa Isabel Figueroa
- Instituto Español de Oceanografía (IEO), C.O. Vigo, 36280 Vigo, Spain; Aquatic Ecology Division, Department of Biology, Lund University, S-22362 Lund, Sweden.
| | - Marta Estrada
- Departament de Biología Marina i Oceanografía, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Esther Garcés
- Departament de Biología Marina i Oceanografía, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| |
Collapse
|