1
|
Ritchie MG, Pannell JR. Speciation: Sexual selection also plays a role in plants. Curr Biol 2025; 35:R393-R395. [PMID: 40393405 DOI: 10.1016/j.cub.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The role of sexual selection in the origin of species has been recognised due to striking differences in courtship traits and behaviours between many animal species. New work highlights similarities in sexual competition and speciation between plants and animals.
Collapse
Affiliation(s)
- Michael G Ritchie
- Centre for Biological Diversity, University of St. Andrews, St. Andrews, UK.
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Jarrett BJM, Downing PA, Svensson EI. Meta-analysis reveals that phenotypic plasticity and divergent selection promote reproductive isolation during incipient speciation. Nat Ecol Evol 2025; 9:833-844. [PMID: 40350540 PMCID: PMC12066359 DOI: 10.1038/s41559-025-02687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025]
Abstract
The evolution of reproductive isolation is a key evolutionary process, but the factors that shape its development in the early stages of speciation require clarification. Here, using a meta-analysis of 34 experimental speciation studies on arthropods, yeast and vertebrates, we show that populations subject to divergent selection evolved stronger reproductive isolation compared with populations that evolved in similar environments, consistent with ecological speciation theory. However, and contrary to predictions, reproductive isolation did not increase with the number of generations. Phenotypic plasticity could partly explain these results as divergent environments induce a plastic increase in reproductive isolation greater than the effect of divergent selection, but only for pre-mating isolating barriers. Our results highlight that adaptive evolution in response to different environments in conjunction with plasticity can initiate a rapid increase in reproductive isolation in the early stage of speciation.
Collapse
Affiliation(s)
- Benjamin J M Jarrett
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK.
- Department of Biology, Lund University, Lund, Sweden.
| | - Philip A Downing
- Department of Biology, Lund University, Lund, Sweden
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | | |
Collapse
|
3
|
Christie K, Cacho NI, Macdonald J, Martinez DJ, Strauss SY. Undescribed species diversity in Brewer's jewelflower illuminates potential mechanisms of diversification associated with serpentine endemism. AMERICAN JOURNAL OF BOTANY 2025; 112:e70037. [PMID: 40378097 DOI: 10.1002/ajb2.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 05/18/2025]
Abstract
PREMISE Documenting species-level diversity is a fundamental goal of biology, yet undescribed species remain hidden even in well-studied groups. Inaccurate delimitation of species boundaries can limit our understanding of ecological and evolutionary processes and patterns of biodiversity and may further impede conservation and management efforts. METHODS In an integrative approach, we combined techniques from speciation biology, molecular phylogenetics, and geometric morphometrics to assess diversity in the Californian serpentine endemic Streptanthus breweri (Brewer's jewelflower). We assessed reproductive isolation resulting from flowering time differences, mating system differences, and interfertility among four distinct geographic clusters of S. breweri that span the geographic range of the species. We generated a gene tree based on the ribosomal DNA ITS, a diagnostic species-level marker for this clade of jewelflowers, and quantified leaf morphology in plants grown in a greenhouse common garden. RESULTS Four geographic clusters of S. breweri in northern California represent not a single species, but instead a species complex of at least three putative species. Independent data associated with Biological, Phylogenetic, and Morphological species concepts support these conclusions. CONCLUSIONS This work illustrates that latent biodiversity may be concealed even in well-studied groups and underscores the contribution of edaphic endemism generally, and serpentine endemism specifically, to California's rich plant biodiversity. The existence of unrecognized species diversity within the S. breweri species complex highlights multiple factors including (1) the spatial context of geologic discontinuities, (2) a selfing mating system, and (3) differential selection pressures across discontinuous specialized habitats as potential drivers of evolutionary divergence on serpentine.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - N Ivalú Cacho
- Instituto de Biología, Universidad Nacional Autónoma de México, CDMX, México
| | - Jacob Macdonald
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Deniss J Martinez
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
| | - Sharon Y Strauss
- Department of Evolution and Ecology, University of California Davis, One Shields Avenue, Davis, CA, USA
| |
Collapse
|
4
|
Peng JC, He Z, Zhang ZQ. Standing genetic variation and introgression shape the cryptic radiation of Aquilegia in the mountains of Southwest China. Commun Biol 2025; 8:684. [PMID: 40307563 PMCID: PMC12043930 DOI: 10.1038/s42003-025-08120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Cryptic diversity in evolutionary radiation offers an excellent system for investigating the intricacies of evolutionary progress. Understanding the evolution of cryptic diversity is imperative for unraveling the hidden complexities of biodiversity. However, empirical evidence elucidating the mechanisms behind cryptic radiation remains limited, particularly in plants. Here, we focus on a monophyletic group of Aquilegia species mainly distributed in the mountains of Southwest China, one of the world's biodiversity hotspots. Using whole-genome resequencing of 158 individuals from 23 natural populations, we identify three to four paraphyletic lineages within each morphological species. Our findings reveal that 39 out of 43 detected instances of introgression occurred post-lineage formation. Identifying shared genomic regions indicates that the divergence of fixed singletons in lineages from morphological species A. kansuensis and A. rockii predates lineage formation, supporting a scenario where incomplete lineage sorting of standing variation contributes to morphological parallelism. Furthermore, strong positive correlations among genomic differentiation, divergence, and introgression suggest that standing variations and introgression from non-sister lineages contribute to the rapid genetic divergence. Our study illuminates the important roles of standing variations and introgression in plant cryptic radiation, advancing our understanding of the complex mechanisms behind the evolution of biodiversity in recent radiation events.
Collapse
Affiliation(s)
- Jun-Chu Peng
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi-Qiang Zhang
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Di Santo LN, Mead A, Wright JW, Hamilton JA. Genetic Basis of Reproductive Isolation in Torrey Pine ( Pinus torreyana Parry): Insights From Hybridization and Adaptation. Evol Appl 2025; 18:e70094. [PMID: 40171543 PMCID: PMC11955842 DOI: 10.1111/eva.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/01/2025] [Accepted: 03/12/2025] [Indexed: 04/03/2025] Open
Abstract
Tree species are often locally adapted to their environments, but the extent to which environmental adaptation contributes to incipient speciation is unclear. One of the rarest pines in the world, Torrey pine (Pinus torreyana Parry), persists naturally across one island and one mainland population in southern California. The two populations are morphologically and genetically differentiated but experience some connectivity, making it an ideal system for assessing the evolution of reproductive isolation. Previous work has found evidence of heterosis in F1 mainland-island hybrids, suggesting genetic rescue could be beneficial in the absence of reproductive barriers. Using ddRADseq and GWAS for a common garden experiment of island, mainland, and F1 individuals, we identified candidate loci for environmentally driven reproductive isolation, their function, and their relationship to fitness proxies. By simulating neutral evolution and admixture between the two populations, we identified loci that exhibited reduced heterozygosity in the F1s, evidence of selection against admixture. SNPs with reduced F1 heterozygosity were enriched for growth and pollination functions, suggesting genetic variants that could be involved in the evolution of reproductive barriers between populations. One locus with reduced F1 heterozygosity exhibited strong associations with growth and reproductive fitness proxies in the common garden, with the mainland allele conferring increased fitness. If this locus experiences divergent selection in the two natural populations, it could promote their reproductive isolation. Finally, although hybridization largely reduced allele fixation in the F1s initially, indicating heterosis is likely due to the masking of deleterious alleles, the emergence of reproductive isolation between populations may diminish the longer-term benefits of genetic rescue in F2 or advanced-generation hybrids. As Torrey pine is a candidate for interpopulation genetic rescue, caution is warranted where longer-term gene flow between diverged populations may result in reduced fitness if barriers have evolved.
Collapse
Affiliation(s)
- Lionel N. Di Santo
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
- Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | - Alayna Mead
- Department of Ecosystem Science and ManagementPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Jessica W. Wright
- Pacific Southwest Research StationUSDA‐Forest ServicePlacervilleCaliforniaUSA
| | - Jill A. Hamilton
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityState CollegePennsylvaniaUSA
| |
Collapse
|
6
|
Schmidt SA, Schmiedel U, Carstens F, Rau AL, Rudolph-Bartsch B. Diversity on a small scale: phylogeography of the locally endemic dwarf succulent genus Oophytum (Aizoaceae) in the Knersvlakte of South Africa. ANNALS OF BOTANY 2025; 135:735-756. [PMID: 39656776 PMCID: PMC11904907 DOI: 10.1093/aob/mcae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND AND AIMS Oophytum (Aizoaceae) is a locally endemic genus of the extremely fast-evolving subfamily Ruschioideae and consists of only two formally accepted species (Oophytum nanum and Oophytum oviforme). Both species are leaf-succulent dwarf shrubs and habitat specialists on quartz fields in the Knersvlakte, a renowned biodiversity hotspot in the arid winter-rainfall Succulent Karoo Biome of South Africa. Quartz fields present specialised patchy habitats with an island-like distribution in the landscape. Oophytum oviforme grows in the south-western part, whereas O. nanum covers most of the remaining Knersvlakte. These species co-occur in a small area, but within different quartz islands. We investigated the effects of the patchy distribution, environmental conditions and potential effects of palaeoclimatic changes on the genetics of Oophytum. METHODS Phylogenetic and population genetic analyses of 35 populations of the genus, covering its entire distribution area, were conducted using four chloroplast DNA markers and an amplified fragment length polymorphism dataset. These were combined with environmental data via a principal component analysis and comparative heatmap analyses. KEY RESULTS The genetic pattern of the Oophytum metapopulation is a tripartite division, with northern, central and western groups. This geographical pattern does not correspond to the two-species concept of Oophytum. Only the western O. oviforme populations form a monophyletic lineage, whereas the central populations of O. oviforme are genetic hybrids of O. nanum populations. The highly restricted gene flow often resulted in private gene pools with very low genetic diversity, in contrast to the hybrid gene pools of the central and edge populations. CONCLUSIONS Oophytum is an exceptional example of an extremely fast-evolving genus that illustrates the high speciation rate of the Ruschioideae and their success as one of the leading plant groups of the drought-prone Succulent Karoo Biome. The survival strategy of these dwarf quartz-field endemics is an interplay of adaptation to diverse island habitats, highly restricted gene flow, occasional long-distance dispersal, migration, founder effects and hybridisation events within a small and restricted area caused by glacial and interglacial changing climate conditions from the Pleistocene to the Present. These findings have important implications for future conservation management strategies.
Collapse
Affiliation(s)
- Sabrina A Schmidt
- Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Ute Schmiedel
- Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Frederic Carstens
- Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Anna-Lena Rau
- Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
- Centre of Methods, Leuphana University Lüneburg, Lüneburg, Germany
| | | |
Collapse
|
7
|
Newman E, Johnson SD. Pollinator-mediated isolation promotes coexistence of closely related food-deceptive orchids. J Evol Biol 2025; 38:190-201. [PMID: 39584304 DOI: 10.1093/jeb/voae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Identifying the factors that contribute to reproductive isolation among closely related species is key for understanding the diversification of lineages. In this study, we investigate the strength of premating and postmating reproductive isolation barriers between Disa ferruginea and Disa gladioliflora, a pair of closely related species, often found co-flowering in sympatry. Both species are non-rewarding and rely on mimicry of different rewarding model flowers for the attraction of pollinators. We constructed abiotic niche models for different forms of each taxon to measure ecogeographic isolation. Using experimental arrays in sympatry, we recorded pollinator transitions to measure ethological isolation. We performed hand pollinations to measure postpollination isolation. We found strong, but not complete, premating isolation associated with abiotic niches and absolute pollinator-mediated isolation based on pollinator preferences in sympatry. Pollinator preferences among the orchids could be explained largely by flower colour (orange in D. ferruginea and pink in D. gladioliflora) which matches that of the pollinator food plants. Post-mating barriers were weak as the species were found to be inter-fertile. Coexistence in the orchid species pair is due mainly to pollinator-mediated reproductive isolation arising from flower colour differences resulting from mimicry of different rewarding plants. These results highlight the importance of signalling traits for the pollinator-mediated isolation of closely related species with specialized pollination systems.
Collapse
Affiliation(s)
- Ethan Newman
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Steven D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
8
|
Martin NH, Zalmat AS, Ellis BS, McGarvey S, Simmons-Frazier K, Mancusi K, Sotola VA. Does Asymmetric Reproductive Isolation Predict the Direction of Introgression in Plants? Genes (Basel) 2025; 16:124. [PMID: 40004453 PMCID: PMC11855407 DOI: 10.3390/genes16020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
The evolution of reproductive isolation (RI) results in the reduction of interspecific hybridization and the maintenance of species boundaries. Asymmetries in RI, where one species more frequently serves as the maternal or paternal parent in initial F1 hybrid formation, are commonly observed in plants. Asymmetric introgression, the predominantly unidirectional transfer of genetic material through hybridization and backcrossing, has also been frequently documented in hybridizing plant taxa as well. This study investigates whether asymmetries in total RI measured between species can predict the direction of introgression in naturally hybridizing plant taxa. A meta-analysis was conducted on 19 plant species pairs with published data on both asymmetric total RI, and asymmetric introgression. Species pairs that met these criteria were identified through a comprehensive literature review. A two-tailed binomial test was performed to evaluate whether asymmetric RI was associated with asymmetries in introgression. No significant relationship was found between asymmetries in total RI and the direction of introgression (p = 0.3593). Asymmetric RI largely does not predict the direction of introgression. Rather, introgression patterns may be better understood by examining F1 and later-generation hybrids in natural settings, focusing on their fitness, mating behaviors, and the ecological and demographic factors that shape hybrid zones.
Collapse
Affiliation(s)
- Noland H. Martin
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | | | - Bailey S. Ellis
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Sophia McGarvey
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | | | - Katelin Mancusi
- Biology Department, SUNY Oneonta, Oneonta, NY 13820, USA (V.A.S.)
| | - V. Alex Sotola
- Biology Department, SUNY Oneonta, Oneonta, NY 13820, USA (V.A.S.)
| |
Collapse
|
9
|
Gross K. Digest: Scarce pollen resources and asymmetric reproductive isolation. Evolution 2024; 79:153-154. [PMID: 39487736 DOI: 10.1093/evolut/qpae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/31/2024] [Indexed: 11/04/2024]
Abstract
What mechanisms cause asymmetries in reproductive success in crosses between closely related species that differ in floral style length? Feller et al. (2024) found that in 5 Phlox species, short-styled species produced smaller pollen grains than long-styled species. The smaller pollen of short-styled species lacked the resources to grow pollen tubes long enough to reach the ovules of long-styled species. This asymmetric pollen-style-length incompatibility may considerably affect patterns of gene flow among species.
Collapse
Affiliation(s)
- Karin Gross
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
10
|
Feller AF, Burgin G, Lewis N, Prabhu R, Hopkins R. Mismatch between pollen and pistil size causes asymmetric mechanical reproductive isolation across Phlox species. Evolution 2024; 78:1936-1948. [PMID: 39276149 PMCID: PMC12051131 DOI: 10.1093/evolut/qpae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Characterizing the mechanisms of reproductive isolation between lineages is key to determining how new species are formed and maintained. In flowering plants, interactions between the reproductive organs of the flower-the pollen and the pistil-serve as the last barrier to reproduction before fertilization. As such, these pollen-pistil interactions are both complex and important for determining a suitable mate. Here, we test whether differences in style length (a part of the pistil) generate a postmating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that the heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier, we assess pollen tube growth in vivo and in vitro. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within- and between-species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such reproductive isolating mechanisms, combined with additional pollen-pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators.
Collapse
Affiliation(s)
- Anna F. Feller
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
- Present address: Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Grace Burgin
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Nia Lewis
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Rohan Prabhu
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
- Northeastern University, Boston, MA 02115, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Dinato NB, Vigna BBZ, de Matta F, Fávero AP. Increasing pollination possibilities in Paspalum species: in vitro and in vivo viability of cryopreserved pollen to address flowering asynchrony. 3 Biotech 2024; 14:308. [PMID: 39583209 PMCID: PMC11582290 DOI: 10.1007/s13205-024-04138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Paspalum is a vital forage and turf grass in tropical and subtropical regions, yet its breeding programs face challenges due to the lack of natural flowering synchronization between some parent species. Pollen cryopreservation offers a potential solution to this issue. This study aimed to adapt a cryopreservation protocol for the pollen of P. atratum, P. malacophyllum, and P. regnellii, and to evaluate the viability of cryopreserved pollen grains (CPG) for hybridization purposes. Two dehydrating agents (LiCl and silica gel) were tested for different durations (30, 60, and 120 min) alongside a non-dehydration treatment. The effectiveness of cryopreservation was assessed over multiple time points (1, 10, 30, 90, 180, 270, and 365 days) with freshly harvested grains as controls. Pollen viability was determined using 0.25% 2,3,5-triphenyltetrazolium chloride staining. Viability of CPG ranged from 40.67 to 80.67% across treatments. Optimal dehydration involved LiCl for 30 min and silica gel for 120 min, achieving an average viability of 66% after 12 months, comparable to fresh pollen. In vivo germination tests confirmed successful pollen tube germination with the combinations P. urvillei × P. malacophyllum; P. urvillei × P. regnellii and hybrid (P. plicatulum 4PT × P. guenoarum cv. Azulão) × P. atratum, although pollen tubes did not reach the micropyle in some crosses. This study established effective pollen cryopreservation protocols for P. atratum and P. malacophyllum, facilitating in vivo germination and enhancing the potential for hybridization in Paspalum breeding programs, thereby addressing flowering asynchrony and broadening crossing opportunities within the genus.
Collapse
Affiliation(s)
- Naiana Barbosa Dinato
- Center for Biological and Health Sciences, Federal University of São Carlos, Washington Luís, Km 235, São Carlos, SP 13565-905 Brazil
| | - Bianca Baccili Zanotto Vigna
- Embrapa Southeastern Livestock, Brazilian Agricultural Research Corporation, Rodovia Washington Luís, Km 234, CP 339, São Carlos, SP 13560-970 Brazil
| | - Frederico de Matta
- Embrapa Southeastern Livestock, Brazilian Agricultural Research Corporation, Rodovia Washington Luís, Km 234, CP 339, São Carlos, SP 13560-970 Brazil
| | - Alessandra Pereira Fávero
- Embrapa Southeastern Livestock, Brazilian Agricultural Research Corporation, Rodovia Washington Luís, Km 234, CP 339, São Carlos, SP 13560-970 Brazil
| |
Collapse
|
12
|
Marie-Orleach L, Glémin S, Brandrud MK, Brysting AK, Gizaw A, Gustafsson ALS, Rieseberg LH, Brochmann C, Birkeland S. How Does Selfing Affect the Pace and Process of Speciation? Cold Spring Harb Perspect Biol 2024; 16:a041426. [PMID: 38503508 PMCID: PMC11529850 DOI: 10.1101/cshperspect.a041426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci. Phylogenetic evidence is scarce and contradictory, including studies suggesting that selfing either promotes or hampers speciation rate. Further studies are therefore required, which in addition to measures of reproductive barrier strength and selfing rate should routinely include estimates of demographic history and genetic divergence as a proxy for divergence time.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS-Université de Tours, Tours 37200, France
| | - Sylvain Glémin
- CNRS, Université de Rennes, ECOBIO-UMR 6553, Campus de Beaulieu, Rennes 35042, France
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Evolutionsbiologiskt Centrum EBC, Uppsala, Sweden
| | | | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Abel Gizaw
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| | | | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | | - Siri Birkeland
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
13
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
14
|
Pezzi PH, Wheeler LC, Freitas LB, Smith SD. Incomplete lineage sorting and hybridization underlie tree discordance in Petunia and related genera (Petunieae, Solanaceae). Mol Phylogenet Evol 2024; 198:108136. [PMID: 38909873 DOI: 10.1016/j.ympev.2024.108136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Despite the overarching history of species divergence, phylogenetic studies often reveal distinct topologies across regions of the genome. The sources of these gene tree discordances are variable, but incomplete lineage sorting (ILS) and hybridization are among those with the most biological importance. Petunia serves as a classic system for studying hybridization in the wild. While field studies suggest that hybridization is frequent, the extent of reticulation within Petunia and its closely related genera has never been examined from a phylogenetic perspective. In this study, we used transcriptomic data from 11 Petunia, 16 Calibrachoa, and 10 Fabiana species to illuminate the relationships between these species and investigate whether hybridization played a significant role in the diversification of the clade. We inferred that gene tree discordance within genera is linked to hybridization events along with high levels of ILS due to their rapid diversification. Moreover, network analyses estimated deeper hybridization events between Petunia and Calibrachoa, genera that have different chromosome numbers. Although these genera cannot hybridize at the present time, ancestral hybridization could have played a role in their parallel radiations, as they share the same habitat and life history.
Collapse
Affiliation(s)
- Pedro H Pezzi
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas C Wheeler
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| | - Loreta B Freitas
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA
| |
Collapse
|
15
|
Feller AF, Burgin G, Lewis N, Prabhu R, Hopkins R. Mismatch between pollen and pistil size causes asymmetric mechanical reproductive isolation across Phlox species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593106. [PMID: 38766021 PMCID: PMC11100701 DOI: 10.1101/2024.05.08.593106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In flowering plants, pollen-pistil interactions can serve as an important barrier to reproduction between species. As the last barrier to reproduction before fertilization, interactions between these reproductive organs are both complex and important for determining a suitable mate. Here, we test whether differences in style length generate a post-mating prezygotic mechanical barrier between five species of perennial Phlox wildflowers with geographically overlapping distributions. We perform controlled pairwise reciprocal crosses between three species with long styles and two species with short styles to assess crossing success (seed set). We find that heterospecific seed set is broadly reduced compared to conspecific cross success and reveal a striking asymmetry in heterospecific crosses between species with different style lengths. To determine the mechanism underlying this asymmetric reproductive isolating barrier we assess pollen tube growth in vitro and in vivo. We demonstrate that pollen tubes of short-styled species do not grow long enough to reach the ovaries of long-styled species. We find that short-styled species also have smaller pollen and that both within and between species pollen diameter is highly correlated with pollen tube length. Our results support the hypothesis that the small pollen of short-styled species lacks resources to grow pollen tubes long enough to access the ovaries of the long-styled species, resulting in an asymmetrical, mechanical barrier to reproduction. Such mechanisms, combined with additional pollen-pistil incompatibilities, may be particularly important for closely related species in geographic proximity that share pollinators.
Collapse
Affiliation(s)
- Anna F. Feller
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Grace Burgin
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Nia Lewis
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| | - Rohan Prabhu
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
- Northeastern University, Boston, MA 02115, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology & Arnold Arboretum, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Sianta SA, Moeller DA, Brandvain Y. The extent of introgression between incipient Clarkia species is determined by temporal environmental variation and mating system. Proc Natl Acad Sci U S A 2024; 121:e2316008121. [PMID: 38466849 PMCID: PMC10963018 DOI: 10.1073/pnas.2316008121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Introgression is pervasive across the tree of life but varies across taxa, geography, and genomic regions. However, the factors modulating this variation and how they may be affected by global change are not well understood. Here, we used 200 genomes and a 15-y site-specific environmental dataset to investigate the effects of environmental variation and mating system divergence on the magnitude of introgression between a recently diverged outcrosser-selfer pair of annual plants in the genus Clarkia. These sister taxa diverged very recently and subsequently came into secondary sympatry where they form replicated contact zones. Consistent with observations of other outcrosser-selfer pairs, we found that introgression was asymmetric between taxa, with substantially more introgression from the selfer to the outcrosser. This asymmetry was caused by a bias in the direction of initial F1 hybrid formation and subsequent backcrossing. We also found extensive variation in the outcrosser's admixture proportion among contact zones, which was predicted nearly entirely by interannual variance in spring precipitation. Greater fluctuations in spring precipitation resulted in higher admixture proportions, likely mediated by the effects of spring precipitation on the expression of traits that determine premating reproductive isolation. Climate-driven hybridization dynamics may be particularly affected by global change, potentially reshaping species boundaries and adaptation to novel environments.
Collapse
Affiliation(s)
- Shelley A. Sianta
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - David A. Moeller
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
17
|
Merrill RM, Arenas-Castro H, Feller AF, Harenčár J, Rossi M, Streisfeld MA, Kay KM. Genetics and the Evolution of Prezygotic Isolation. Cold Spring Harb Perspect Biol 2024; 16:a041439. [PMID: 37848246 PMCID: PMC10835618 DOI: 10.1101/cshperspect.a041439] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The significance of prezygotic isolation for speciation has been recognized at least since the Modern Synthesis. However, fundamental questions remain. For example, how are genetic associations between traits that contribute to prezygotic isolation maintained? What is the source of genetic variation underlying the evolution of these traits? And how do prezygotic barriers affect patterns of gene flow? We address these questions by reviewing genetic features shared across plants and animals that influence prezygotic isolation. Emerging technologies increasingly enable the identification and functional characterization of the genes involved, allowing us to test established theoretical expectations. Embedding these genes in their developmental context will allow further predictions about what constrains the evolution of prezygotic isolation. Ongoing improvements in statistical and computational tools will reveal how pre- and postzygotic isolation may differ in how they influence gene flow across the genome. Finally, we highlight opportunities for progress by combining theory with appropriate data.
Collapse
Affiliation(s)
- Richard M Merrill
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Anna F Feller
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA
| | - Julia Harenčár
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| | - Matteo Rossi
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Matthew A Streisfeld
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289, USA
| | - Kathleen M Kay
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California 95060, USA
| |
Collapse
|
18
|
Ferguson S, Jones A, Murray K, Andrew RL, Schwessinger B, Bothwell H, Borevitz J. Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus. Gigascience 2024; 13:giae029. [PMID: 38869149 PMCID: PMC11170218 DOI: 10.1093/gigascience/giae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076 Germany
| | - Rose L Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Helen Bothwell
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens 30602 GA, United States
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| |
Collapse
|
19
|
Munguía‐Rosas MA, Parra‐Tabla V, Rodríguez‐Domínguez JM. Partial and asymmetrical reproductive isolation between two sympatric tropical shrub species: Cnidoscolus aconitifolius and C. souzae (Euphorbiaceae). Ecol Evol 2023; 13:e10801. [PMID: 38089899 PMCID: PMC10714054 DOI: 10.1002/ece3.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Reproductive isolation is conferred by several barriers that occur at different stages of reproduction. Comprehensive reviews on the topic have identified that barriers occurring prior to zygote formation are often stronger than those that occur afterward. However, the overrepresentation of temperate perennial herbs in the current literature precludes any generalization of this pattern to plants that present other life forms and patterns of distribution. Here, we assessed reproductive isolation barriers and their absolute contribution to reproductive isolation and asymmetry in Cnidoscolus aconitifolius and C. souzae, two closely related tropical shrub species that co-occur on the Yucatan peninsula. The reproductive barriers assessed were phenological mismatch, pollinator differentiation, pollen-pistil incompatibility (three pre-zygotic barriers), fruit set failure, and seed unviability (post-zygotic barriers). Reproductive isolation between the study species was found to be complete in the direction C. aconitifolius to C. souzae, but only partial in the opposite direction. One post-zygotic barrier was the strongest example. Most barriers, particularly the pre-zygotic examples, were asymmetrical and predicted the direction of heterospecific pollen flow and hybrid formation from C. souzae to C. aconitifolius. Both parental species, as well as the hybrids, were diploid and had a chromosome number 2n = 36. More studies with tropical woody perennials are required to fully determine whether this group of plants consistently shows stronger post-zygotic barriers.
Collapse
Affiliation(s)
- Miguel A. Munguía‐Rosas
- Laboratorio de Ecología Terrestre, Departamento de Ecología HumanaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)MéridaMexico
| | - Víctor Parra‐Tabla
- Departamento de Ecología TropicalUniversidad Autónoma de YucatánMéridaMexico
| | - José M. Rodríguez‐Domínguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Unidad de Biotecnología VegetalGuadalajaraMexico
| |
Collapse
|
20
|
Zeng L, Shu W, He H, Li T, Yang X, Li L. Post-pollination barriers contribute to coexistence of partially pollinator-sharing Arisaema species (Araceae). Ecol Evol 2023; 13:e10696. [PMID: 37928192 PMCID: PMC10620566 DOI: 10.1002/ece3.10696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
Reproductive isolation plays an important role in maintaining the species integrity of sympatric close relatives. For sympatric Arisaema species, interspecific gene flow is expected to be effectively prevented by pre-pollination barriers, particularly strong pollinator isolation mediated by fungus gnats. However, due to the lack of quantitative studies combining multiple pre- and post-pollination barriers, it is not known whether pre-pollination isolation is complete, and whether post-pollination barriers also contribute to reproductive isolation among some Arisaema species. In this study, we quantified the individual strengths and absolute contributions of four pre- and post-pollination barriers (phenological isolation, pollinator isolation, hybrid fruit formation, and hybrid seed formation) among three sympatric Arisaema species (A. bockii, A. lobatum, and A. erubescens). Although phenological isolation and pollinator isolation reduced the frequencies of interspecific pollen transfer among these species, the partial overlap of flowering times and pollinator assemblages resulted in incomplete pre-pollination isolation. Post-pollination barriers also contributed to reproductive isolation at the hybrid fruit and seed formation stages. We propose that, although pre-pollination barriers are expected to contribute more to total isolation than post-pollination barriers in Arisaema, pre-pollination barriers may not completely prevent interspecific pollen transfer among some Arisaema species. Post-pollination barriers, which are generally ignored, may also have contributed significantly to reproductive isolation in Arisaema.
Collapse
Affiliation(s)
- Luo Zeng
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Wei‐Jie Shu
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Hua He
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Tao Li
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Xiao‐Chen Yang
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| | - Li Li
- College of Biology and Environmental Sciences, Jishou UniversityJishouHunanChina
| |
Collapse
|
21
|
Farnitano MC, Sweigart AL. Strong postmating reproductive isolation in Mimulus section Eunanus. J Evol Biol 2023; 36:1393-1410. [PMID: 37691442 PMCID: PMC10592011 DOI: 10.1111/jeb.14219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.
Collapse
|
22
|
Wang L, Filatov DA. Mechanisms of prezygotic post-pollination reproductive barriers in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1230278. [PMID: 37476168 PMCID: PMC10354421 DOI: 10.3389/fpls.2023.1230278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Hybridisation between individuals of different species can lead to maladapted or inviable progeny due to genetic incompatibilities between diverging species. On the other hand, mating with close relatives, or self-fertilisation may lead to inbreeding depression. Thus, both too much or too little divergence may lead to problems and the organisms have to carefully choose mating partners to avoid both of these pitfalls. In plants this choice occurs at many stages during reproduction, but pollen-pistil interactions play a particularly important role in avoiding inbreeding and hybridisation with other species. Interestingly, the mechanisms involved in avoidance of selfing and interspecific hybridisation may work via shared molecular pathways, as self-incompatible species tend to be more 'choosy' with heterospecific pollen compared to self-compatible ones. This review discusses various prezygotic post-pollination barriers to interspecific hybridisation, with a focus on the mechanisms of pollen-pistil interactions and their role in the maintenance of species integrity.
Collapse
Affiliation(s)
- Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, United Kingdom
| | - Dmitry A. Filatov
- Department of Biology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
23
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Weng Y, Li H, Yang J, Zhang Z. The past, present, and future of ecogeographic isolation between closely related Aquilegia plants. Ecol Evol 2023; 13:e10098. [PMID: 37250449 PMCID: PMC10212700 DOI: 10.1002/ece3.10098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Quantifying the strength of the ecogeographic barrier is an important aspect of plant speciation research, and serves as a practical step to understanding the evolutionary trajectory of plants under climate change. Here, we quantified the extent of ecogeographic isolation in four closely related Aquilegia species that radiated in the Mountains of SW China and adjacent regions, often lacking intrinsic barriers. We used environmental niche models to predict past, present, and future species potential distributions and compared them to determine the degree of overlap and ecogeographic isolation. Our investigation found significant ecological differentiation in all studied species pairs except A. kansuensis and A. ecalacarata. The current strengths of ecogeographic isolation are above 0.5 in most cases. Compared with current climates, most species had an expanding range in the Last Glacial Maximum, the Mid Holocene, and under four future climate scenarios. Our results suggested that ecogeographic isolation contributes to the diversification and maintenance of Aquilegia species in the Mountains of northern and SW China and would act as an essential reproductive barrier in the future.
Collapse
Affiliation(s)
- Yulin Weng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
- College of Environment and EcologyXiamen UniversityXiamenChina
| | - Huiqiong Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
| | - Jiqin Yang
- Gansu Liancheng National Nature ReserveLanzhouChina
| | - Zhi‐Qiang Zhang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Institute of BiodiversityYunnan UniversityKunmingChina
| |
Collapse
|
25
|
Jiménez-López FJ, Arista M, Talavera M, Cerdeira Morellato LP, Pannell JR, Viruel J, Ortiz Ballesteros PL. Multiple pre- and postzygotic components of reproductive isolation between two co-occurring Lysimachia species. THE NEW PHYTOLOGIST 2023; 238:874-887. [PMID: 36683441 DOI: 10.1111/nph.18767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Genetic divergence between species depends on reproductive isolation (RI) due to traits that reduce interspecific mating (prezygotic isolation) or are due to reduced hybrid fitness (postzygotic isolation). Previous research found that prezygotic barriers tend to be stronger than postzygotic barriers, but most studies are based on the evaluation of F1 hybrid fitness in early life cycle stages. We combined field and experimental data to determine the strength of 17 prezygotic and postzygotic reproductive barriers between two Lysimachia species that often co-occur and share pollinators. We assessed postzygotic barriers up to F2 hybrids and backcrosses. The two species showed near complete RI due to the cumulative effect of multiple barriers, with an uneven and asymmetric contribution to isolation. In allopatry, prezygotic barriers contributed more to reduce gene flow than postzygotic barriers, but their contributions were more similar in sympatry. The strength of postzygotic RI was up to three times lower for F1 progeny than for F2 or backcrossed progenies, and RI was only complete when late F1 stages and either F2 or backcrosses were accounted for. Our results thus suggest that the relative strength of postzygotic RI may be underestimated when its effects on late stages of the life cycle are disregarded.
Collapse
Affiliation(s)
- Francisco Javier Jiménez-López
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080, Seville, Spain
- Phenology Lab, Department of Biodiversity, Biosciences Institute, UNESP - São Paulo State University, São Paulo, Brazil
| | - Montserrat Arista
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080, Seville, Spain
| | - María Talavera
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080, Seville, Spain
| | | | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Juan Viruel
- Royal Botanic Gardens, Kew, TW9 3DS, Richmond, UK
| | - Pedro L Ortiz Ballesteros
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Apdo. 1095, 41080, Seville, Spain
| |
Collapse
|
26
|
MacPherson N, Champion CP, Weir LK, Dalziel AC. Reproductive isolating mechanisms contributing to asymmetric hybridization in Killifishes (Fundulus spp.). J Evol Biol 2023; 36:605-621. [PMID: 36636892 DOI: 10.1111/jeb.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/27/2022] [Accepted: 11/26/2022] [Indexed: 01/14/2023]
Abstract
When species hybridize, one F1 hybrid cross type often predominates. Such asymmetry can arise from differences in a variety of reproductive barriers, but the relative roles and concordance of pre-mating, post-mating prezygotic, and post-zygotic barriers in producing these biases in natural animal populations have not been widely investigated. Here, we study a population of predominantly F1 hybrids between two killifish species (Fundulus heteroclitus and F. diaphanus) in which >95% of F1 hybrids have F. diaphanus mothers and F. heteroclitus fathers (D♀ × H♂). To determine why F. heteroclitus × F. diaphanus F1 hybrids (H♀ × D♂) are so rare, we tested for asymmetry in pre-mating reproductive barriers (female preference and male aggression) at a common salinity (10 ppt) and post-mating, pre-zygotic (fertilization success) and post-zygotic (embryonic development time and hatching success) reproductive barriers at a range of ecologically relevant salinities (0, 5, 10, and 15 ppt). We found that F. heteroclitus females preferred conspecific males, whereas F. diaphanus females did not, matching the observed cross bias in the wild. Naturally rare H♀ × D♂ crosses also had lower fertilization success than all other cross types, and a lower hatching success than the prevalent D♀ × H♂ crosses at the salinity found in the hybrid zone centre (10 ppt). Furthermore, the naturally predominant D♀ × H♂ crosses had a higher hatching success than F. diaphanus crosses at 10 ppt, which may further increase their relative abundance. The present study suggests that a combination of incomplete mating, post-mating pre-zygotic and post-zygotic reproductive isolating mechanisms act in concert to produce hybrid asymmetry in this system.
Collapse
Affiliation(s)
- Nathalie MacPherson
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Chloe P Champion
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Laura K Weir
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Anne C Dalziel
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
Coughlan JM. The role of hybrid seed inviability in angiosperm speciation. AMERICAN JOURNAL OF BOTANY 2023; 110:1-14. [PMID: 36801827 DOI: 10.1002/ajb2.16135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 05/11/2023]
Abstract
Understanding which reproductive barriers contribute to speciation is essential to understanding the diversity of life on earth. Several contemporary examples of strong hybrid seed inviability (HSI) between recently diverged species suggest that HSI may play a fundamental role in plant speciation. Yet, a broader synthesis of HSI is needed to clarify its role in diversification. Here, I review the incidence and evolution of HSI. Hybrid seed inviability is common and evolves rapidly, suggesting that it may play an important role early in speciation. The developmental mechanisms that underlie HSI involve similar developmental trajectories in endosperm, even between evolutionarily deeply diverged incidents of HSI. In hybrid endosperm, HSI is often accompanied by whole-scale gene misexpression, including misexpression of imprinted genes which have a key role in endosperm development. I explore how an evolutionary perspective can clarify the repeated and rapid evolution of HSI. In particular, I evaluate the evidence for conflict between maternal and paternal interests in resource allocation to offspring (i.e., parental conflict). I highlight that parental conflict theory generates explicit predictions regarding the expected hybrid phenotypes and genes responsible for HSI. While much phenotypic evidence supports a role of parental conflict in the evolution of HSI, an understanding of the underlying molecular mechanisms of this barrier is essential to test parental conflict theory. Lastly, I explore what factors may influence the strength of parental conflict in natural plant populations as an explanation for why rates of HSI may differ between plant groups and the consequences of strong HSI in secondary contact.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
28
|
Toll K. An evolutionary framework for understanding habitat partitioning in plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16119. [PMID: 36585942 PMCID: PMC10107657 DOI: 10.1002/ajb2.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Many plant species with overlapping geographic ranges segregate at smaller spatial scales. This spatial segregation-zonation when it follows an abiotic gradient and habitat partitioning when it does not-has been experimentally investigated for over a century often using distantly related taxa, such as different genera of algae or barnacles. In those foundational studies, trade-offs between stress tolerance and competitive ability were found to be the major driving factors of habitat partitioning for both animals and plants. Yet, the evolutionary relationships among segregating species are usually not taken into account. Since close relatives are hypothesized to compete more intensely and are more likely to interact during mating compared to distant relatives, the mechanisms underlying habitat partitioning may differ depending on the relatedness of the species in question. Here, I propose an integration of ecological and evolutionary factors contributing to habitat partitioning in plants, specifically how the relative contributions of factors predictably change with relatedness of taxa. Interspecific reproductive interactions in particular are understudied, yet important drivers of habitat partitioning. In spatially segregated species, interspecific mating can reduce the fitness of rare immigrants, preventing their establishment and maintaining patterns of spatial segregation. In this synthesis, I review the literature on mechanisms of habitat partitioning in plants within an evolutionary framework, identifying knowledge gaps and detailing future directions for this rapidly growing field of study.
Collapse
Affiliation(s)
- Katherine Toll
- Department of Plant BiologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
29
|
Christie K, Fraser LS, Lowry DB. The strength of reproductive isolating barriers in seed plants: Insights from studies quantifying premating and postmating reproductive barriers over the past 15 years. Evolution 2022; 76:2228-2243. [PMID: 35838076 PMCID: PMC9796645 DOI: 10.1111/evo.14565] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Speciation is driven by the evolution of reproductive isolating barriers that reduce, and ultimately prevent, substantial gene flow between lineages. Despite its central role in evolutionary biology, the process can be difficult to study because it proceeds differently among groups and may occur over long timescales. Due to this complexity, we typically rely on generalizations of empirical data to describe and understand the process. Previous reviews of reproductive isolation (RI) in flowering plants have suggested that prezygotic or extrinsic barriers generally have a stronger effect on reducing gene flow compared to postzygotic or intrinsic barriers. Past conclusions have rested on relatively few empirical estimates of RI; however, RI data have become increasingly abundant over the past 15 years. We analyzed data from recent studies quantifying multiple pre- and postmating barriers in plants and compared the strengths of isolating barriers across 89 taxa pairs using standardized RI metrics. Individual prezygotic barriers were on average stronger than individual postzygotic barriers, and the total strength of prezygotic RI was approximately twice that of postzygotic RI. These findings corroborate that ecological divergence and extrinsic factors, as opposed to solely the accumulation of genetic incompatibilities, are important to speciation and the maintenance of species boundaries in plants. Despite an emphasis in the literature on asymmetric postmating and postzygotic RI, we found that prezygotic barriers acted equally asymmetrically. Overall, substantial variability in the strengths of 12 isolating barriers highlights the great diversity of mechanisms that contribute to plant diversification.
Collapse
Affiliation(s)
- Kyle Christie
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824,Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizona86011
| | - Linnea S. Fraser
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824
| | - David B. Lowry
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824
| |
Collapse
|