1
|
Dou J, Xiao H, Chen Y, Han W, Zhang S, Wu D, Chen S, Ma Y, Cai Z, Luan Q, Cui L. Diesel exhaust promoted diethylnitrosamine-induced hepatocarcinogenesis in mice. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138219. [PMID: 40220387 DOI: 10.1016/j.jhazmat.2025.138219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Exposure to diesel exhaust (DE) has been linked to an increased risk of various cancers, including liver cancer. However, the underlying mechanisms driving this association remain insufficiently understood. In this study, we employed a diethylnitrosamine (DEN)-induced mouse liver tumor model and conducted a 19-week combined exposure (750 μg/m3) using a DE exposure system. Our results demonstrated that long-term DE exposure activates cancer-related genes and enhances the formation of DEN-induced liver tumors. Compared to the DEN group, mice in the DEN + diesel exhaust exposure (DEE) group exhibited lower body weight, higher tumor formation rates and more severe DNA damage. The tumor-promoting effect of DE may be associated with the upregulation of SEMA4D and the activation of the PI3K/AKT signaling pathway. Additionally, liver cells in the DEE group exhibited nuclear atypia, a characteristic feature of cancerous transformation. In vitro studies have revealed that exposure to diesel exhaust particles (DEP) promotes the proliferation of HepG2 cells and HUH7 cells by upregulating SEMA4D and activating the PI3K/AKT signaling pathway. This effect was attenuated by inhibiting either SEMA4D or PI3K. This study was the first to identify that DE exposure promotes the development of DEN-induced liver tumors in mice, with the mechanism potentially involving the SEMA4D/PI3K/AKT pathway. These findings provide novel insights into the hepatotoxic effects of DE and highlight the need for further investigation into its carcinogenic potential.
Collapse
Affiliation(s)
- Junjie Dou
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Hua Xiao
- Department of Occupational disease, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Wei Han
- Department of General Practice, Qingdao Key Laboratory of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Dong Wu
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Sixin Chen
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yuanyuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Zhengguo Cai
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Qi Luan
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Jain A, Mishra AK, Hurkat P, Shilpi S, Mody N, Jain SK. Navigating liver cancer: Precision targeting for enhanced treatment outcomes. Drug Deliv Transl Res 2025; 15:1935-1961. [PMID: 39847205 DOI: 10.1007/s13346-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Cancer treatments such as surgery and chemotherapy have several limitations, including ineffectiveness against large or persistent tumors, high relapse rates, drug toxicity, and non-specificity of therapy. Researchers are exploring advanced strategies for treating this life-threatening disease to address these challenges. One promising approach is targeted drug delivery using prodrugs or surface modification with receptor-specific moieties for active or passive targeting. While various drug delivery systems have shown potential for reaching hepatic cells, nano-carriers offer significant size, distribution, and targetability advantages. Engineered nanocarriers can be customized to achieve effective and safe targeting of tumors by manipulating physical characteristics such as particle size or attaching receptor-specific ligands. This method is particularly advantageous in treating liver cancer by targeting specific hepatocyte receptors and enzymatic pathways for both passive and active therapeutic strategies. It highlights the epidemiology of liver cancer and provides an in-depth analysis of the various targeting approaches, including prodrugs, liposomes, magneto-liposomes, micelles, glycol-dendrimers, magnetic nanoparticles, chylomicron-based emulsion, and quantum dots surface modification with receptor-specific moieties. The insights from this review can be immensely significant for preclinical and clinical researchers working towards developing effective treatments for liver cancer. By utilizing these novel strategies, we can overcome the limitations of conventional therapies and offer better outcomes for liver cancer patients.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Ashwini Kumar Mishra
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Pooja Hurkat
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | - Satish Shilpi
- School of Pharmaceuticals and Population Health Informatics, FOP, DIT University, Dehradun, Uttarakahnad, India
| | - Nishi Mody
- Dr. Hari Singh Gour Central University, Sagar, 470003, MP, India
| | | |
Collapse
|
3
|
Scholtissek H, Reitsam NG, Dierks A, Kröncke T, Märkl B, Trepel M, Bundschuh RA, Lapa C. Noninvasive Characterization of Hepatic Lesions by Means of Glypican-3-Directed PET/CT. J Nucl Med 2025:jnumed.124.269290. [PMID: 40180562 DOI: 10.2967/jnumed.124.269290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- Helen Scholtissek
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Nic G Reitsam
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Thomas Kröncke
- Diagnostic and Interventional Radiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Pathology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Martin Trepel
- Hematology and Oncology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ralph A Bundschuh
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Department of Nuclear Medicine, University Hopsital Carl Gustav Carus at the TU Dresden, Dresden, Germany; and
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany;
- Bavarian Cancer Research Center, Erlangen, Germany
| |
Collapse
|
4
|
Wu ST, Zhu L, Feng XL, Wang HY, Li F. Strategies for discovering novel hepatocellular carcinoma biomarkers. World J Hepatol 2025; 17:101201. [PMID: 40027561 PMCID: PMC11866143 DOI: 10.4254/wjh.v17.i2.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 02/20/2025] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), remains a significant global health challenge due to its high mortality rate and late-stage diagnosis. The discovery of reliable biomarkers is crucial for improving early detection and patient outcomes. This review provides a comprehensive overview of current and emerging biomarkers for HCC, including alpha-fetoprotein, des-gamma-carboxy prothrombin, glypican-3, Golgi protein 73, osteopontin, and microRNAs. Despite advancements, the diagnostic limitations of existing biomarkers underscore the urgent need for novel markers that can detect HCC in its early stages. The review emphasizes the importance of integrating multi-omics approaches, combining genomics, proteomics, and metabolomics, to develop more robust biomarker panels. Such integrative methods have the potential to capture the complex molecular landscape of HCC, offering insights into disease mechanisms and identifying targets for personalized therapies. The significance of large-scale validation studies, collaboration between research institutions and clinical settings, and consideration of regulatory pathways for clinical implementation is also discussed. In conclusion, while substantial progress has been made in biomarker discovery, continued research and innovation are essential to address the remaining challenges. The successful translation of these discoveries into clinical practice will require rigorous validation, standardization of protocols, and cross-disciplinary collaboration. By advancing the development and application of novel biomarkers, we can improve the early detection and management of HCC, ultimately enhancing patient survival and quality of life.
Collapse
Affiliation(s)
- Shi-Tao Wu
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Li Zhu
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Xiao-Ling Feng
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Hao-Yu Wang
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing 401147, China
| | - Fang Li
- Department of General Surgery, Chongqing General Hospital, Chongqing 401147, China.
| |
Collapse
|
5
|
Piao Y, Zhai N, Zhang X, Zhao W, Li M. Post-translational modifications in hepatocellular carcinoma: unlocking new frontiers in immunotherapy. Front Immunol 2025; 16:1554372. [PMID: 40040703 PMCID: PMC11876159 DOI: 10.3389/fimmu.2025.1554372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), is one of the most common and aggressive malignancies worldwide. Immunotherapy has shown promising results in treating HCC, but its efficacy is often limited by complex mechanisms of immune evasion. Post-translational modifications (PTMs) of proteins play a critical role in regulating the immune responses within the tumor microenvironment (TME). These modifications influence protein function, stability, and interactions, which either promote or inhibit immune cell activity in cancer. In this mini-review, we explore the diverse PTMs that impact immune evasion in liver cancer, including glycosylation, phosphorylation, acetylation, and ubiquitination. We focus on how these PTMs regulate key immune checkpoint molecules such as PD-L1, CTLA-4, and the TCR complex. Furthermore, we discuss the potential of targeting PTMs in combination with existing immunotherapies to enhance the effectiveness of treatment in HCC. Understanding the role of PTMs in immune regulation may lead to the development of novel therapeutic strategies to overcome resistance to immunotherapy in liver cancer.
Collapse
Affiliation(s)
- Yuexian Piao
- Department of Interventional Therapy, First Hospital of Jilin University, Changchun, China
| | - Naicui Zhai
- Core Facility of First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Wenjie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Interventional Therapy, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Sui M, Liu T, Song X, Li J, Ding H, Liu Y, Wang X, Liu H, Xue Y, Qi J, Zhang M, Zhao S, Zhu Q. The molecular receptor NKBB enhances the persistence and anti-hepatocellular carcinoma activity of GPC3 CAR-T cells. Pharmacol Res 2025; 212:107619. [PMID: 39842473 DOI: 10.1016/j.phrs.2025.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Chimeric antigen receptor (CAR) T cells have encouraging results in the treatment of hematological malignancies. However, CAR-T therapy still faces numerous challenges against solid tumors, such as hepatocellular carcinoma (HCC), owing to heterogeneous antigen expression in tumor cells, limited persistence of CAR-T cells, etc. Therefore, to treat HCC more effectively, we connected the molecular receptor NKBB to a second-generation glypican-3 (GPC3) CAR to construct GC3328z-NKBB CAR-T cells, which have double specific targets of GPC3 and NKG2DLs (natural killer group 2, member D ligands), dual co-stimulation of CD28 and 41BB, and a single CD3ζ chain. Our study showed that the molecular receptor NKBB conferred GPC3 CAR-T cells with enhanced migration and infiltration abilities towards HCC, higher central memory T (TCM) cell proportion and proliferation capacity, and reduced exhaustion level. GC3328z-NKBB CAR-T cells exhibited improved cytotoxicity against HCC cells and prolonged persistence. The cathepsin L/interleukin-17 (CTSL/IL-17) axis contributed to the superior anti-HCC activity of GC3328z-NKBB CAR-T cells. Overall, the molecular receptor NKBB significantly increased the persistence of GPC3 CAR-T cells, and GC3328z-NKBB CAR-T cells possessed potent anti-HCC activity in mice, providing a new strategy for the potential improvement of adoptive T cell therapy in the treatment of HCC.
Collapse
Affiliation(s)
- Minghao Sui
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Tiantian Liu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xuanli Song
- Institute for Bacterial Diseases, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Ji Li
- Department of Spleen and stomach Hepatology, Digestive Center, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, China
| | - Han Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yuqian Liu
- Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xinyu Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Huimin Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuchan Xue
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jianni Qi
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Miao Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Songbo Zhao
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Qiang Zhu
- Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| |
Collapse
|
7
|
Batbaatar B, Gurbadam U, Tuvshinsaikhan O, Narmandakh NE, Khatanbaatar G, Radnaabazar M, Erdene-Ochir D, Boldbaatar M, Byambaragchaa M, Amankyeldi Y, Chogsom M, Ganbileg N, Batdelger A, Demchig T, Nyam-Osor L, Bayartugs B, Batmunkh E, Munkhjargal B, Lonjid T, Khasbagana B, Batmunkh M, Jav S, Semchin M. Evaluation of glypican‑3 in patients with hepatocellular carcinoma. Mol Clin Oncol 2025; 22:1. [PMID: 39534882 PMCID: PMC11552472 DOI: 10.3892/mco.2024.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers occurring worldwide, including Mongolia. Although alpha-fetoprotein (AFP) is a widely used marker for HCC, conflicting studies have been published regarding its specificity and sensitivity towards HCC. Glypican-3 (GPC3) is a different promising biomarker for HCC, and there is some evidence to suggest that this protein may be a more specific marker compared with AFP. GPC3 has been shown to fulfill important roles in cell proliferation and division during embryogenesis, and is rarely found in the tissues of healthy adults. The aim of the present study was to investigate the levels of serum GPC3 (sGPC3) and tissue GPC3 in Mongolian patients with HCC. Serum samples from a total of 270 individuals [HCC group, 90 patients; risk group (RG), 90 subjects; and control group, 90 subjects] were evaluated using enzyme-linked immunosorbent assay to identify the sGPC3 levels. In addition, immunohistochemical analysis of the GPC3 was performed on tissue samples from 50 patients with HCC to evaluate the expression of GPC3. sGPC3 level was found to be significantly increased in the HCC group compared with the RG and the control group, with the area under the curve=0.85 (P<0.001). sGPC3 was found to be significantly associated with hepatitis C virus status and cirrhosis (P<0.05). In addition, the tissue expression of GPC3 was associated with the serum AFP (sAFP) level. Finally, positive staining of GPC3 was observed when the sAFP level of the patient was >20 ng/ml. In conclusion, the results from the present study have supported that GPC3 may be a promising marker for HCC, and can be used as a diagnostic marker alongside AFP.
Collapse
Affiliation(s)
- Batchimeg Batbaatar
- Department of Molecular biology and Genetics, School of Bio Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | | | - Odonchimeg Tuvshinsaikhan
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | - Nyam-Erdene Narmandakh
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | | | | | | | | | | | | | | | | | | | | | - Lkham Nyam-Osor
- National Cancer Center of Mongolia, Ulaanbaatar 13370, Mongolia
| | | | | | - Batkhishig Munkhjargal
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | - Tulgaa Lonjid
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| | - Batbayar Khasbagana
- Institute of Biomedical Sciences, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Munkhbat Batmunkh
- School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan
| | - Sarantuya Jav
- Department of Molecular biology and Genetics, School of Bio Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Munkhbayar Semchin
- Institute of Medical Sciences, Mongolian National University of Medical Sciences, The Third Central Hospital, Ulaanbaatar 16081, Mongolia
| |
Collapse
|
8
|
Li W, Zeng M, Ning Y, Lu R, Wei Y, Xu Z, Wei H, Pu J. m 6A-Methylated NUTM2B-AS1 Promotes Hepatocellular Carcinoma Stemness Feature via Epigenetically Activating BMPR1A Transcription. J Hepatocell Carcinoma 2024; 11:2393-2411. [PMID: 39649245 PMCID: PMC11624692 DOI: 10.2147/jhc.s480522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Oncofetal proteins are the optimal diagnostic biomarkers and therapeutic targets for HCC. As the most abundant modification in RNA, N6-methyladenosine (m6A) has been reported to be involved in HCC initiation and progression. However, whether m6A has oncofetal characteristics remains unknown. Methods Gene expression in HCC tissues and cells was detected using qPCR. The level of m6A methylation was determined using methylated RNA immunoprecipitation assay. The biological roles of NUTM2B-AS1 in HCC were detected using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine incorporation, and spheroid formation assays. The mechanisms underlying the roles of NUTM2B-AS1 were explored using RNA immunoprecipitation (RIP), chromatin isolation by RNA purification (ChIRP), chromatin immunoprecipitation (ChIP), and assay for transposase-accessible chromatin (ATAC). Results NUTM2B-AS1 was identified as a novel oncofetal long noncoding RNA that was upregulated in the fetal liver and HCC and silenced in adult liver tissues. METTL3 and METTL16 induce m6A hypermethylation of NUTM2B-AS1. The m6A methylation levels of NUTM2B-AS1 exhibit oncofetal characteristics. m6A methylation upregulates NUTM2B-AS1 expression by increasing NUTM2B-AS1 transcript stability. m6A-methylated NUTM2B-AS1 promotes HCC cell proliferation and stemness via epigenetically activating BMPR1A expression. NUTM2B-AS1 specifically binds to BMPR1A promoter. m6A-methylated NUTM2B-AS1 is recognized by the m6A reader YTHDC2, which further binds to the H3K4 methyltransferase MLL1. m6A-methylated NUTM2B-AS1 recruits YTHDC2 and MLL1 to BMPR1A promoter, leading to increased H3K4me3 and chromatin accessibility at BMPR1A promoter. Functional rescue assays suggest that BMPR1A is a critical mediator of the oncogenic role of m6A-methylated NUTM2B-AS1 in HCC. Conclusion METTL3- and METTL16-mediated m6A methylation of NUTM2B-AS1 is a novel oncofetal molecular event in HCC that promotes HCC stemness via epigenetically activating BMPR1A transcription.
Collapse
Affiliation(s)
- Wenchuan Li
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Min Zeng
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yuanjia Ning
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Rongzhou Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yunyu Wei
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Huamei Wei
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise, People’s Republic of China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| |
Collapse
|
9
|
Joladarashi D, Thej C, Mallaredy V, Magadum A, Cimini M, Gonzalez C, Truongcao M, Nigro JT, Sethi MK, Gibb AA, Benedict C, Koch WJ, Kishore R. GPC3-mediated metabolic rewiring of diabetic mesenchymal stromal cells enhances their cardioprotective functions via PKM2 activation. iScience 2024; 27:111021. [PMID: 39429777 PMCID: PMC11490746 DOI: 10.1016/j.isci.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Mesenchymal stromal cells (MSC) are promising stem cell therapy for treating cardiovascular and other degenerative diseases. Diabetes affects the functional capability of MSC and impedes cell-based therapy. Despite numerous studies, the impact of diabetes on MSC myocardial reparative activity, metabolic fingerprint, and the mechanism of dysfunction remains inadequately perceived. We demonstrated that the transplantation of diabetic-MSC (db/db-MSC) into the ischemic myocardium of mice does not confer cardiac benefit post-MI. Metabolomic studies identified defective energy metabolism in db/db-MSC. Furthermore, we found that glypican-3 (GPC3), a heparan sulfate proteoglycan, is highly upregulated in db/db-MSC and is involved in metabolic alterations in db/db-MSC via pyruvate kinase M2 (PKM2) activation. GPC3-knockdown reprogrammed-db/db-MSC restored their energy metabolic rates, immunomodulation, angiogenesis, and cardiac reparative activities. Together, these data indicate that GPC3-metabolic reprogramming in diabetic MSC may represent a strategy to enhance MSC-based therapeutics for myocardial repair in diabetic patients.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph T. Nigro
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Manveen K. Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew A. Gibb
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Sun RX, Liu YF, Sun YS, Zhou M, Wang Y, Shi BZ, Jiang H, Li ZH. GPC3-targeted CAR-T cells expressing GLUT1 or AGK exhibit enhanced antitumor activity against hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1937-1950. [PMID: 38750075 PMCID: PMC11336244 DOI: 10.1038/s41401-024-01287-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/08/2024] [Indexed: 08/22/2024]
Abstract
Chimeric antigen receptor-expressing T (CAR-T) cells induce robust antitumor responses in patients with hematologic malignancies. However, CAR-T cells exhibit only limited efficacy against solid tumors such as hepatocellular carcinoma (HCC), partially due to their limited expansion and persistence. CD8+ T cells, as key components of the adaptive immune response, play a central role in antitumor immunity. Aerobic glycolysis is the main metabolic feature of activated CD8+ T cells. In the tumor microenvironment, however, the uptake of large amounts of glucose by tumor cells and other immunosuppressive cells can impair the activation of T cells. Only when tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment have a glycolytic advantage might the effector function of T cells be activated. Glucose transporter type 1 (GLUT1) and acylglycerol kinase (AGK) can boost glycolytic metabolism and activate the effector function of CD8+ T cells, respectively. In this study, we generated GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK for the treatment of HCC. GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK specifically and effectively lysed GPC3-positive tumor cells in vitro in an antigen-dependent manner. Furthermore, GLUT1 or AGK overexpression protected CAR-T cells from apoptosis during repeated exposures to tumor cells. Compared with second-generation CAR-T cells, GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK exhibited greater CD8+ T-cell persistence in vivo and better antitumor effects in HCC allograft mouse models. Finally, we revealed that GLUT1 or AGK maintained anti-apoptosis ability in CD8+ T cells via activation of the PI3K/Akt pathway. This finding might identify a therapeutic strategy for advanced HCC.
Collapse
Affiliation(s)
- Rui-Xin Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yi-Fan Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yan-Sha Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
- CARsgen Therapeutics, Shanghai, 200032, China
| | - Bi-Zhi Shi
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
- CARsgen Therapeutics, Shanghai, 200032, China
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
- CARsgen Therapeutics, Shanghai, 200032, China.
| | - Zong-Hai Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
- CARsgen Therapeutics, Shanghai, 200032, China.
| |
Collapse
|
11
|
Chung JY, Lee W, Lee OW, Ylaya K, Nambiar D, Sheehan-Klenk J, Fayn S, Hewitt SM, Choyke PL, Escorcia FE. Glypican-3 deficiency in liver cancer upregulates MAPK/ERK pathway but decreases cell proliferation. Am J Cancer Res 2024; 14:3348-3371. [PMID: 39113871 PMCID: PMC11301284 DOI: 10.62347/ttny4279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Glypican-3 (GPC3) is overexpressed in hepatocellular carcinomas and hepatoblastomas and represents an important therapeutic target but the biologic importance of GPC3 in liver cancer is unclear. To date, there are limited data characterizing the biological implications of GPC3 knockout (KO) in liver cancers that intrinsically express this target. Here, we report on the development and characterization of GPC3-KO liver cancer cell lines and compare to them to parental lines. GPC3-KO variants were established in HepG2 and Hep3B liver cancer cell lines using a lentivirus-mediated CRISPR/Cas9 system. We assessed the effects of GPC3 deficiency on oncogenic properties in vitro and in murine xenograft models. Downstream cellular signaling pathway changes induced by GPC3 deficiency were examined by RNAseq and western blot. To confirm the usefulness of the models for GPC3-targeted drug development, we evaluated the target engagement of a GPC3-selective antibody, GC33, conjugated to the positron-emitting zirconium-89 (89Zr) in subcutaneous murine xenografts of wild type (WT) and KO liver cancer cell lines. Deletion of GPC3 significantly reduced liver cancer cell proliferation, migration, and invasion compared to the parental cell lines. Additionally, the tumor growth of GPC3-KO liver cancer xenografts was significantly slower compared with control xenografts. RNA sequencing analysis also showed GPC3-KO resulted in a reduction in the expression of genes associated with cell cycle regulation, invasion, and migration. Specifically, we observed the downregulation of components in the AKT/NFκB/WNT signaling pathways and of molecules related to cell cycle regulation with GPC3-KO. In contrast, pMAPK/ERK1/2 was upregulated, suggesting an adaptive compensatory response. KO lines demonstrated increased sensitivity to ERK (GDC09994), while AKT (MK2206) inhibition was more effective in WT lines. Using antibody-based positron emission tomography (immunoPET) imaging, we confirmed that 89Zr-GC33 accumulated exclusively in GPC3-expression xenografts but not in GPC3-KO xenografts with high tumor uptake and tumor-to-liver signal ratio. We show that GPC3-KO liver cancer cell lines exhibit decreased tumorigenicity and altered signaling pathways, including upregulated pMAPK/ERK1/2, compared to parental lines. Furthermore, we successfully distinguished between GPC3+ and GPC3- tumors using the GPC3-targeted immunoPET imaging agent, demonstrating the potential utility of these cell lines in facilitating GPC3-selective drug development.
Collapse
Affiliation(s)
- Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Woonghee Lee
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Olivia W Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Kris Ylaya
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Divya Nambiar
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Julia Sheehan-Klenk
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Stanley Fayn
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
- Oxford Institute for Radiation Oncology, Department of Oncology, University of OxfordOxford OX3 7DQ, UK
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| | - Freddy E Escorcia
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA
| |
Collapse
|
12
|
Liu T, Gao Y, Li S, Xu S. Exploration and prognostic analysis of two types of high-risk ovarian cancers: clear cell vs. serous carcinoma: a population-based study. J Ovarian Res 2024; 17:119. [PMID: 38824600 PMCID: PMC11143660 DOI: 10.1186/s13048-024-01435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/09/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Ovarian clear cell carcinoma (OCCC) is a rare pathological histotype in ovarian cancer, while the survival rate of advanced OCCC (Stage III-IV) is substantially lower than that of the advanced serous ovarian cancer (OSC), which is the most common histotype. The goal of this study was to identify high-risk OCCC by comparing OSC and OCCC, with investigating potential risk and prognosis markers. METHODS Patients diagnosed with ovarian cancer from 2009 to 2018 were identified from the Surveillance, Epidemiology, and End Results (SEER) Program. Logistic and Cox regression models were used to identify risk and prognostic factors in high-risk OCCC patients. Cancer-specific survival (CSS) and overall survival (OS) were assessed using Kaplan-Meier curves. Furthermore, Cox analysis was employed to build a nomogram model. The performance evaluation results were displayed using the C-index, calibration plots, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). Immunohistochemically approach was used to identify the expression of the novel target (GPC3). RESULTS In the Cox analysis for advanced OCCC, age (45-65 years), tumor numbers (total number of in situ/malignant tumors for patient), T3-stage, bilateral tumors, and liver metastases could be defined as prognostic variables. Nomogram showed good predictive power and clinical practicality. Compared with OSC, liver metastases had a stronger impact on the prognosis of patients with OCCC. T3-stage, positive distant lymph nodes metastases, and lung metastases were risk factors for developing liver metastases. Chemotherapy was an independent prognostic factor for patient with advanced OCCC, but had no effect on CSS in patients with liver metastases (p = 0.0656), while surgery was significantly related with better CSS in these patients (p < 0.0001) (p = 0.0041). GPC3 expression was detected in all tissue sections, and GPC3 staining was predominantly found in the cytoplasm and membranes. CONCLUSION Advanced OCCC and OCCC with liver metastases are two types of high-risk OCCC. The constructed nomogram exhibited a satisfactory survival prediction for patients with advanced OCCC. GPC3 immunohistochemistry is expected to accumulate preclinical evidence to support the inclusion of GPC3 in OCCC targeted therapy.
Collapse
Affiliation(s)
- Tingwei Liu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yueqing Gao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuangdi Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
He T, Zou J, Sun K, Yang J. Global research status and frontiers on autophagy in hepatocellular carcinoma: a comprehensive bibliometric and visualized analysis. Int J Surg 2024; 110:2788-2802. [PMID: 38376850 PMCID: PMC11093451 DOI: 10.1097/js9.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND An extensive body of research has explored the role of autophagy in hepatocellular carcinoma (HCC), revealing its critical involvement in the disease's pathogenesis, progression, and therapeutic targeting. However, there is a discernible deficit in quantitative, analytical studies concerning autophagy in the context of HCC. Accordingly, this investigation endeavored to meticulously assess the evolution of autophagy research, employing bibliometric citation analysis to offer a comprehensive evaluation of the findings in this field. METHODS The authors conducted a literature search on 2 August 2023, to extract relevant publications spanning from 2013 to 2022, indexed in the Science Citation Index-Expanded (SCIE) of the Web of Science Core Collection (WOSCC). Subsequently, the authors performed a bibliometric assessment of the compiled documents using visualization tools such as CiteSpace and VOSviewer. RESULTS The search yielded 734 publications penned by 4699 authors, encompassing contributions from 41 countries and 909 institutions, disseminated across 272 journals, and comprising 26 295 co-cited references from 2667 journals. Notably, China led in publication volume with 264 articles (amounting to 35.9%) and exhibited the most robust collaboration with the United States. The mechanisms underlying autophagy's influence on the emergence and advancement of HCC, as well as the implicated proteins and genes, have garnered significant attention. In recent years, investigations of targeting autophagy and the resistance to sorafenib have surfaced as pivotal themes and emerging frontiers in this domain. CONCLUSIONS This study rigorously collated and distilled the prevailing research narratives and novel insights on autophagy in HCC. The resultant synthesis provides a substantive foundation for medical professionals and researchers, as well as pivotal implications for future investigative endeavors in this arena.
Collapse
Affiliation(s)
- Tao He
- Department of Hepatobiliary Surgery
| | - Jieyu Zou
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Ke Sun
- Department of Hepatobiliary Surgery
| | | |
Collapse
|
14
|
Dash CP, Sonowal D, Dhaka P, Yadav R, Chettri D, Satapathy BP, Sheoran P, Uttam V, Jain M, Jain A. Antitumor activity of genetically engineered NK-cells in non-hematological solid tumor: a comprehensive review. Front Immunol 2024; 15:1390498. [PMID: 38694508 PMCID: PMC11061440 DOI: 10.3389/fimmu.2024.1390498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Recent advancements in genetic engineering have made it possible to modify Natural Killer (NK) cells to enhance their ability to fight against various cancers, including solid tumors. This comprehensive overview discusses the current status of genetically engineered chimeric antigen receptor NK-cell therapies and their potential for treating solid tumors. We explore the inherent characteristics of NK cells and their role in immune regulation and tumor surveillance. Moreover, we examine the strategies used to genetically engineer NK cells in terms of efficacy, safety profile, and potential clinical applications. Our investigation suggests CAR-NK cells can effectively target and regress non-hematological malignancies, demonstrating enhanced antitumor efficacy. This implies excellent promise for treating tumors using genetically modified NK cells. Notably, NK cells exhibit low graft versus host disease (GvHD) potential and rarely induce significant toxicities, making them an ideal platform for CAR engineering. The adoptive transfer of allogeneic NK cells into patients further emphasizes the versatility of NK cells for various applications. We also address challenges and limitations associated with the clinical translation of genetically engineered NK-cell therapies, such as off-target effects, immune escape mechanisms, and manufacturing scalability. We provide strategies to overcome these obstacles through combination therapies and delivery optimization. Overall, we believe this review contributes to advancing NK-cell-based immunotherapy as a promising approach for cancer treatment by elucidating the underlying mechanisms, evaluating preclinical and clinical evidence, and addressing remaining challenges.
Collapse
Affiliation(s)
- Chinmayee Priyadarsini Dash
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Dhruba Sonowal
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Prachi Dhaka
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rohit Yadav
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Dewan Chettri
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibhu Prasad Satapathy
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Sheoran
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Aklank Jain
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
15
|
Wang J, Wang F, Wang N, Zhang MY, Wang HY, Huang GL. Diagnostic and Prognostic Value of Protein Post-translational Modifications in Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:1192-1200. [PMID: 37577238 PMCID: PMC10412711 DOI: 10.14218/jcth.2022.00006s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with high incidence and cancer mortality worldwide. Post-translational modifications (PTMs) of proteins have a great impact on protein function. Almost all proteins can undergo PTMs, including phosphorylation, acetylation, methylation, glycosylation, ubiquitination, and so on. Many studies have shown that PTMs are related to the occurrence and development of cancers. The findings provide novel therapeutic targets for cancers, such as glypican-3 and mucin-1. Other clinical implications are also found in the studies of PTMs. Diagnostic or prognostic value, and response to therapy have been identified. In HCC, it has been shown that glycosylated alpha-fetoprotein (AFP) has a higher detection rate for early liver cancer than conventional AFP. In this review, we mainly focused on the diagnostic and prognostic value of PTM, in order to provide new insights into the clinical implication of PTM in HCC.
Collapse
Affiliation(s)
- Jing Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Fangfang Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ning Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Guo-Liang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- China-America Cancer Research Institute, Key Laboratory for Epigenetics of Dongguan City, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
16
|
Manea I, Iacob R, Iacob S, Cerban R, Dima S, Oniscu G, Popescu I, Gheorghe L. Liquid biopsy for early detection of hepatocellular carcinoma. Front Med (Lausanne) 2023; 10:1218705. [PMID: 37809326 PMCID: PMC10556479 DOI: 10.3389/fmed.2023.1218705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent and lethal cancer globally. Over 90% of HCC cases arise in the context of liver cirrhosis, and the severity of the underlying liver disease or advanced tumor stage at diagnosis significantly limits treatment options. Early diagnosis is crucial, and all guidelines stress the importance of screening protocols for HCC early detection as a public health objective. As serum biomarkers are not optimal for early diagnosis, liquid biopsy has emerged as a promising tool for diagnosis, prognostication, and patients' stratification for personalized therapy in various solid tumors, including HCC. While circulating tumor cells (CTCs) are better suited for personalized therapy and prognosis, cell-free DNA (cfDNA) and extracellular vesicle-based technologies show potential for early diagnosis, HCC screening, and surveillance protocols. Evaluating the added value of liquid biopsy genetic and epigenetic biomarkers for HCC screening is a key goal in translational research. Somatic mutations commonly found in HCC can be investigated in cfDNA and plasma exosomes as genetic biomarkers. Unique methylation patterns in cfDNA or cfDNA fragmentome features have been suggested as innovative tools for early HCC detection. Likewise, extracellular vesicle cargo biomarkers such as miRNAs and long non-coding RNAs may serve as potential biomarkers for early HCC detection. This review will explore recent findings on the utility of liquid biopsy for early HCC diagnosis. Combining liquid biopsy methods with traditional serological biomarkers could improve the overall diagnostic accuracy for early HCC detection.
Collapse
Affiliation(s)
- Ioana Manea
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Speranta Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Cerban
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Gabriel Oniscu
- Transplant Division, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Irinel Popescu
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Liliana Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
17
|
Ramadan A, Ghanem HM, Mohamed AA, Elshobaky M, El Agawy W, Gawad EAHA, Eldeeb HH, Ezz Al Arab MR, Kamal MM. GPC3 gene expression and allelic discrimination of FZD7 gene in Egyptian patients with hepatocellular carcinoma. Rep Pract Oncol Radiother 2023; 28:485-495. [PMID: 37795234 PMCID: PMC10547423 DOI: 10.5603/rpor.a2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/19/2023] [Indexed: 10/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide, and especially in Egypt. Early diagnosis of HCC greatly improves the survival and prognosis of patients. Low sensitivity and specificity of alpha-fetoprotein (AFP) has led to the demand for novel biomarkers of HCC. The aim of the present study was to evaluate the validity of frizzled-7 (FZD7) and glypican-3 (GPC3) gene expression as potential biomarkers for HCC early diagnosis, and to investigate the association between FZD7 rs2280509 polymorphism and HCC risk. Materials and methods Quantification of FZD7 and GPC3 gene expression by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay, and genotyping FZD 7 (rs2280509 SNP) gene polymorphism using RT-PCR. Results The current results revealed that FZD7 gene expression had a greater area under the curve (AUC) for identifying HCC than GPC3 gene expression and AFP levels. The combination of the three markers as a panel showed a better diagnostic performance with a greater AUC than any of the single markers alone (p < 0.05). The FZD7 rs2280509 polymorphism (CT) was found to be significantly associated with an increased risk of HCC. The CT genotype and T allele were significantly more prevalent in the HCC group compared to either the cirrhosis (p = 0.03) or control groups (p = 0.0009 and 0.002; respectively). Conclusion FZD7 and GPC3 gene expressions have a complementary role in early HCC detection, with a greater diagnostic sensitivity and accuracy than AFP. In addition, FZD7 rs2280509 polymorphism is significantly associated with an increased risk of HCC in the Egyptian population.
Collapse
Affiliation(s)
- Amany Ramadan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hala M Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amal A Mohamed
- Department of Biochemistry and Molecular Biology, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Mohamed Elshobaky
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Waleed El Agawy
- Department of Infectious Diseases, Faculty of Medicine, Port Said University, Cairo, Egypt
| | - Eman Al Hussain A Gawad
- Department of Chemical Pathology, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Hala H Eldeeb
- Clinical and Chemical Pathology Department, El Sahel Teaching Hospital, Cairo, Egypt
| | | | - Maha M Kamal
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Patra T, Cunningham DM, Meyer K, Toth K, Ray RB, Heczey A, Ray R. Targeting Lin28 axis enhances glypican-3-CAR T cell efficacy against hepatic tumor initiating cell population. Mol Ther 2023; 31:715-728. [PMID: 36609146 PMCID: PMC10014222 DOI: 10.1016/j.ymthe.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/01/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
Overexpression of Lin28 is detected in various cancers with involvement in the self-renewal process and cancer stem cell generation. In the present study, we evaluated how the Lin28 axis plays an immune-protective role for tumor-initiating cancer cells in hepatocellular carcinoma (HCC). Our result using HCC patient samples showed a positive correlation between indoleamine 2,3-dioxygenase-1 (IDO1), a kynurenine-producing enzyme with effects on tumor immune escape, and Lin28B. Using in silico prediction, we identified a Sox2/Oct4 transcriptional motif acting as an enhancer for IDO1. Knockdown of Lin28B reduced Sox2/Oct4 and downregulated IDO1 in tumor-initiating hepatic cancer cells. We further observed that inhibition of Lin28 by a small-molecule inhibitor (C1632) suppressed IDO1 expression. Suppression of IDO1 resulted in a decline in kynurenine production from tumor-initiating cells. Inhibition of the Lin28 axis also impaired PD-L1 expression in HCC cells. Consequently, modulating Lin28B enhanced in vitro cytotoxicity of glypican-3 (GPC3)-chimeric antigen receptor (CAR) T and NK cells. Next, we observed that GPC3-CAR T cell treatment together with C1632 in a HCC xenograft mouse model led to enhanced anti-tumor activity. In conclusion, our results suggest that inhibition of Lin28B reduces IDO1 and PD-L1 expression and enhances immunotherapeutic potential of GPC3-CART cells against HCC.
Collapse
Affiliation(s)
- Tapas Patra
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA.
| | - David M Cunningham
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keith Meyer
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Karoly Toth
- Department of Molecular Microbiology & Immunology and Saint Louis University, St. Louis, MO 63104, USA
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | - Andras Heczey
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Division of Pediatric Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104, USA; Department of Molecular Microbiology & Immunology and Saint Louis University, St. Louis, MO 63104, USA.
| |
Collapse
|
19
|
Ramadan A, Abdelaziz AO, Sabry D, Fathi SAET, Nabeel MM, Shousha HI, Elbaz TM, Lithy RM, Ryed HR. Study on molecular expression of long non-coding RNA Glypican3 in hepatocellular cancer patients. EGYPTIAN LIVER JOURNAL 2022; 12:58. [DOI: 10.1186/s43066-022-00221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 09/29/2022] [Indexed: 04/19/2025] Open
Abstract
Abstract
Background
Hepatocellular carcinoma (HCC) is one of the main cancers in the world with a high mortality rate. The molecular mechanisms of HCC are poorly understood. Long non-coding RNAs (lncRNAs) have a role in HCC pathogenesis. Glypican3 (GPC3) is a cell surface oncofetal proteoglycan that is expressed in HCC, and its overexpression predicts a poorer prognosis. We aimed to assess the levels of alfa fetoprotein (AFP), lncRNA AF085935 gene expression, and GPC3 protein in HCC patients.
Patients and methods
The patients were classified into three groups: HCC group, cirrhotic group, and healthy control group. For all groups, we performed clinical examinations, laboratory investigations, and imaging. The levels of AFP, GPC3 protein, and LncRNA gene expression were estimated. A statistical analysis was done.
Results
Levels of GPC3 and LncRNA gene expression were significantly higher in the HCC group versus other groups. LncRNA gene and GPC3 levels are excellent for the detection of HCC with a sensitivity of 96% and 87%, respectively. Specificity was 81% and 64%, respectively. Linear regression analysis showed that LncRNA gene expression and GPC3 protein are significant predictors for HCC (p = 0 and p = 0.001, respectively). Log rank analysis based on GPC3 and LncRNA gene expression levels in HCC patients showed that high expression of GPC3 and LncRNA is associated with shorter overall survival than those with low expressions (p value < 0.001).
Conclusion
In our study, LncRNA gene expression and GPC3 levels are good diagnostic and prognostic biomarkers for HCC patients.
Collapse
|
20
|
Wu W, Wu W, Ye Y, Li T, Wang B. mRNA and lncRNA expression profiles of liver tissues in children with biliary atresia. Exp Ther Med 2022; 24:634. [PMID: 36160912 PMCID: PMC9468840 DOI: 10.3892/etm.2022.11571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Progressive liver fibrosis is the most common phenotype in biliary atresia (BA). A number of pathways contribute to the fibrosis process so comprehensive understanding the mechanisms of liver fibrosis in BA will pave the way to improve patient's outcome after operation. In this study, the differentially expressed profiles of mRNAs and long non-coding RNAs from BA and choledochal cyst (CC) liver tissues were investigated and analyzed, which may provide potential clues to clarify hepatofibrosis mechanism in BA. A total of two BA and two CC liver tissue specimens were collected, the expression level of mRNAs and lncRNAs was detected by RNA sequencing. Differentially expressed mRNAs (DEmRNAs) were functionally annotated and protein-protein interaction networks (PPI) was established to predict the biological roles and interactive relationships. Differentially expressed lncRNAs (DElncRNAs) nearby targeted DEmRNA network and DElncRNA-DEmRNA co-expression network were constructed to further explore the roles of DElncRNAs in BA pathogenesis. The expression profiles of significant DEmRNAs were validated in Gene Expression Omnibus database. A total of 2,086 DEmRNAs and 184 DElncRNAs between BA and CC liver tissues were obtained. DEmRNAs were enriched in 521 Gene Ontology terms and 71 Kyoto Encyclopedia of Genes and Genomes terms which were mainly biological processes and metabolic pathways related to immune response and inflammatory response. A total of five hub proteins (TYRO protein tyrosine kinase binding protein, C-X-C motif chemokine ligand 8, pleckstrin, Toll-like receptor 8 and C-C motif chemokine receptor 5) were found in the PPI networks. A total of 31 DElncRNA-nearby-targeted DEmRNA pairs and 2,337 DElncRNA-DEmRNA co-expression pairs were obtained. The expression of DEmRNAs obtained from RNA sequencing were verified in GSE46960 dataset, generally. The present study identified key genes and lncRNAs participated in BA associated liver fibrosis, which may present a new avenue for understanding the patho-mechanism for hepatic fibrosis in BA.
Collapse
Affiliation(s)
- Wenyan Wu
- Medical Laboratory, Shenzhen Luohu People's Hospital, Shenzhen, Guangdong 518001, P.R. China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Weifang Wu
- Medical College, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
| | - Yongqin Ye
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
- Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, P.R. China
| | - Tao Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523000, P.R. China
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong 518026, P.R. China
- Correspondence to: Professor Bin Wang, Department of General Surgery, Shenzhen Children's Hospital, 7019 Yitian Road, Futian, Shenzhen, Guangdong 518026, P.R. China
| |
Collapse
|
21
|
Chen Y, Qin Y, Wu Y, Wei H, Wei Y, Zhang Z, Duan T, Jiang H, Song B. Preoperative prediction of glypican-3 positive expression in solitary hepatocellular carcinoma on gadoxetate-disodium enhanced magnetic resonance imaging. Front Immunol 2022; 13:973153. [PMID: 36091074 PMCID: PMC9453305 DOI: 10.3389/fimmu.2022.973153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose As a coreceptor in Wnt and HGF signaling, glypican-3 (GPC-3) promotes the progression of tumor and is associated with a poor prognosis in hepatocellular carcinoma (HCC). GPC-3 has evolved as a target molecule in various immunotherapies, including chimeric antigen receptor T cell. However, its evaluation still relies on invasive histopathologic examination. Therefore, we aimed to develop an easy-to-use and noninvasive risk score integrating preoperative gadoxetic acid–enhanced magnetic resonance imaging (EOB-MRI) and clinical indicators to predict positive GPC-3 expression in HCC. Methods and materials Consecutive patients with surgically-confirmed solitary HCC who underwent preoperative EOB-MRI between January 2016 and November 2021 were retrospectively included. EOB-MRI features were independently evaluated by two masked abdominal radiologists and the expression of GPC-3 was determined by two liver pathologists. On the training dataset, a predictive scoring system for GPC-3 was developed against pathology via logistical regression analysis. Model performances were characterized by computing areas under the receiver operating characteristic curve (AUCs). Results A total of 278 patients (training set, n=156; internal validation set, n=39; external validation set, n=83) with solitary HCC (208 [75%] with positive GPC-3 expression) were included. Serum alpha-fetoprotein >10 ng/ml (AFP, odds ratio [OR]=2.3, four points) and five EOB-MR imaging features, including tumor size >3.0cm (OR=0.5, -3 points), nonperipheral “washout” (OR=3.0, five points), infiltrative appearance (OR=9.3, 10 points), marked diffusion restriction (OR=3.3, five points), and iron sparing in solid mass (OR=0.2, -7 points) were significantly associated with positive GPC-3 expression. The optimal threshold of scoring system for predicting GPC-3 positive expression was 5.5 points, with AUC 0.726 and 0.681 on the internal and external validation sets, respectively. Conclusion Based on serum AFP and five EOB-MRI features, we developed an easy-to-use and noninvasive risk score which could accurately predict positive GPC-3 HCC, which may help identify potential responders for GPC-3-targeted immunotherapy.
Collapse
Affiliation(s)
- Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanan Wu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Duan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hanyu Jiang, ; Bin Song,
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People’s Hospital, Sanya, China
- *Correspondence: Hanyu Jiang, ; Bin Song,
| |
Collapse
|
22
|
Winkler S, Winkler I, Figaschewski M, Tiede T, Nordheim A, Kohlbacher O. De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet. BMC Bioinformatics 2022; 23:139. [PMID: 35439941 PMCID: PMC9020058 DOI: 10.1186/s12859-022-04670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. Results We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. Conclusion The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.
Collapse
Affiliation(s)
- Sebastian Winkler
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany. .,International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.
| | - Ivana Winkler
- International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.,Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirjam Figaschewski
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Thorsten Tiede
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,Leibniz Institute on Aging (FLI), Jena, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tuebingen, Tübingen, Germany
| |
Collapse
|
23
|
Ma XH, Chen K, Wang S, Liu SY, Li DF, Mi YT, Wu ZY, Qu CF, Zhao XM. Bi-specific T1 positive-contrast-enhanced magnetic resonance imaging molecular probe for hepatocellular carcinoma in an orthotopic mouse model. World J Gastrointest Oncol 2022; 14:858-871. [PMID: 35582105 PMCID: PMC9048532 DOI: 10.4251/wjgo.v14.i4.858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/31/2021] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. HCC-targeted magnetic resonance imaging (MRI) is an effective noninvasive diagnostic method that involves targeting clinically-related HCC biomarkers, such as alpha-fetoprotein (AFP) or glypican-3 (GPC3), with iron oxide nanoparticles. However, in vivo studies of HCC-targeted MRI utilize single-target iron oxide nanoprobes as negative (T2) contrast agents, which might weaken their future clinical applications due to tumor heterogeneity and negative MRI contrast. Ultra-small superparamagnetic iron oxide (USPIO) nanoparticles (approximately 5 nm) are potential optimal positive (T1) contrast agents. We previously verified the efficiency of AFP/GPC3-double-antibody-labeled iron oxide MR molecular probe in vitro. AIM To validate the effectiveness of a bi-specific probe in vivo for enhancing T1-weighted positive contrast to diagnose the early-stage HCC. METHODS The single- and double-antibody-conjugated 5-nm USPIO probes, including anti-AFP-USPIO (UA), anti-GPC3-USPIO (UG), and anti-AFP-USPIO-anti-GPC3 (UAG), were synthesized. T1- and T2-weighted MRI were performed on day 10 after establishment of the orthotopic HCC mouse model. Following intravenous injection of U, UA, UG, and UAG probes, T1- and T2-weighted images were obtained at 12, 12, and 32 h post-injection. At the end of scanning, mice were euthanized, and a histologic analysis was performed on tumor samples. RESULTS T1- and T2-weighted MRI showed that absolute tumor-to-background ratios in UAG-treated HCC mice peaked at 24 h post-injection, with the T1- and T2-weighted signals increasing by 46.7% and decreasing by 11.1%, respectively, relative to pre-injection levels. Additionally, T1-weighted contrast in the UAG-treated group at 24 h post-injection was enhanced 1.52-, 2.64-, and 4.38-fold compared to those observed for single-targeted anti-GPC3-USPIO, anti-AFP-USPIO, and non-targeted USPIO probes, respectively. Comparison of U-, UA-, UG-, and UAG-treated tumor sections revealed that UAG-treated mice exhibited increased stained regions compared to those observed in UG- or UA-treated mice. CONCLUSION The bi-specific T1-positive contrast-enhanced MRI probe (UAG) for HCC demonstrated increased specificity and sensitivity to diagnose early-stage HCC irrespective of tumor size and/or heterogeneity.
Collapse
Affiliation(s)
- Xiao-Hong Ma
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kun Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Shuang Wang
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Si-Yun Liu
- GE Healthcare (China), Beijing 100176, China
| | - Deng-Feng Li
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong-Tao Mi
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Yuan Wu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Chun-Feng Qu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Xin-Ming Zhao
- Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
24
|
Váncza L, Karászi K, Péterfia B, Turiák L, Dezső K, Sebestyén A, Reszegi A, Petővári G, Kiss A, Schaff Z, Baghy K, Kovalszky I. SPOCK1 Promotes the Development of Hepatocellular Carcinoma. Front Oncol 2022; 12:819883. [PMID: 35186754 PMCID: PMC8853618 DOI: 10.3389/fonc.2022.819883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix proteoglycan SPOCK1 is increasingly recognized as a contributor to the development and progression of cancers. Here, we study how SPOCK1, which is present in non-tumorous hepatocytes at low concentrations, promotes the development and progression of malignant hepatocellular tumors. Although SPOCK1 is an extracellular matrix proteoglycan, its concentration increases in the cytoplasm of hepatocytes starting with very low expression in the normal cells and then appearing in much higher quantities in cells of cirrhotic human liver and hepatocellular carcinoma. This observation is similar to that observed after diethylnitrosamine induction of mouse hepatocarcinogenesis. Furthermore, syndecan-1, the major proteoglycan of the liver, and SPOCK1 are in inverse correlation in the course of these events. In hepatoma cell lines, the cytoplasmic SPOCK1 colocalized with mitochondrial markers, such as MitoTracker and TOMM20, a characteristic protein of the outer membrane of the mitochondrion and could be detected in the cell nucleus. SPOCK1 downregulation of hepatoma cell lines by siRNA inhibited cell proliferation, upregulated p21 and p27, and interfered with pAkt and CDK4 expression. A tyrosine kinase array revealed that inhibition of SPOCK1 in the liver cancer cells altered MAPK signaling and downregulated several members of the Sarc family, all related to the aggressivity of the hepatoma cell lines. These studies support the idea that SPOCK1 enhancement in the liver is an active contributor to human and rodent hepatocarcinogenesis and cancer progression. However, its mitochondrial localization raises the possibility that it has a currently unidentified physiological function in normal hepatocytes.
Collapse
Affiliation(s)
- Lóránd Váncza
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Karászi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Péterfia
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Katalin Dezső
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Petővári
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Kiss
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Schaff
- 2 Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Kornélia Baghy
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- *Correspondence: Ilona Kovalszky, ;
| |
Collapse
|
25
|
Bakrania A, Zheng G, Bhat M. Nanomedicine in Hepatocellular Carcinoma: A New Frontier in Targeted Cancer Treatment. Pharmaceutics 2021; 14:41. [PMID: 35056937 PMCID: PMC8779722 DOI: 10.3390/pharmaceutics14010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death and is associated with a dismal median survival of 2-9 months. The fundamental limitations and ineffectiveness of current HCC treatments have led to the development of a vast range of nanotechnologies with the goal of improving the safety and efficacy of treatment for HCC. Although remarkable success has been achieved in nanomedicine research, there are unique considerations such as molecular heterogeneity and concomitant liver dysfunction that complicate the translation of nanotheranostics in HCC. This review highlights the progress, challenges, and targeting opportunities in HCC nanomedicine based on the growing literature in recent years.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, ON M5G 2C4, Canada;
- Ajmera Transplant Program, University Health Network, Toronto, ON M5G 2N2, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
26
|
Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100460. [PMID: 34494387 PMCID: PMC8564451 DOI: 10.1002/advs.202100460] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Benefiting from the blooming interaction of nanotechnology and biotechnology, biosynthetic cellular membrane vesicles (Bio-MVs) have shown superior characteristics for therapeutic transportation because of their hydrophilic cavity and hydrophobic bilayer structure, as well as their inherent biocompatibility and negligible immunogenicity. These excellent cell-like features with specific functional protein expression on the surface can invoke their remarkable ability for Bio-MVs based recombinant protein therapy to facilitate the advanced synergy in poly-therapy. To date, various tactics have been developed for Bio-MVs surface modification with functional proteins through hydrophobic insertion or multivalent electrostatic interactions. While the Bio-MVs grow through genetically engineering strategies can maintain binding specificity, sort orders, and lead to strict information about artificial proteins in a facile and sustainable way. In this progress report, the most current technology of Bio-MVs is discussed, with an emphasis on their multi-functionalities as "tailorable shells" for delivering bio-functional moieties and therapeutic entities. The most notable success and challenges via genetically engineered tactics to achieve the new generation of Bio-MVs are highlighted. Besides, future perspectives of Bio-MVs in novel bio-nanotherapy are provided.
Collapse
Affiliation(s)
- En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
27
|
Antitumor and Antioxidant Activity of S-Methyl Methionine Sulfonium Chloride against Liver Cancer Induced in Wistar Albino Rats by Diethyl Nitrosamine and Carbon Tertrachloride. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189726. [PMID: 34574650 PMCID: PMC8466341 DOI: 10.3390/ijerph18189726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022]
Abstract
Liver disease, especially liver cancer, has become a threat facing the world. Now, antioxidant products are garnering great attention for the treatment and prevention of many diseases. S-Methyl methionine sulfonium chloride (MMSC) is a methionine derivative and is present in many vegetables and has anti-inflammatory effects and antioxidants. This is the first study aiming to investigate the antitumor activity of the MMSC. This study was carried out on 60 male Wistar albino rats (4–6 weeks old age) and divided into four groups, with the first group as normal control, second group as hepatocarcinoma induced by diethyl nitrosamine and carbon tetrachloride (DEN/CCL4) group, third group as normal rats treated with MMSC, and fourth group as hepatocellular carcinoma (HCC) induced rats treated with MMSC. Our findings revealed that MMSC administration after HCC induction significantly improved (p < 0.05) the liver function biomarkers, including AST, GGT, albumin, globulin, and albumin/globulin ratio (A/G), in comparison with those in the HCC group. Moreover, the histopathological changes of the liver tissue in the HCC group were improved by MMSC treatment. Likewise, the expression levels of tumor necrosis factor-alpha (TNF-α), induced nitric oxide synthase (iNOS), transforming growth factor (TGF-1β), and glypican 3 (GP3) were downregulated by MMSC treatment after HCC induction in comparison with those in the HCC-induced group. In conclusion, MMSC showed antitumor activity against HCC induction by DEN/CCl4 through decreasing lipid peroxide formation, the expression level of an inflammatory cytokines such as (TNF-α), immunoregulatory cytokines such as (TGF-1β), induced nitric oxide synthase, and glypican 3.
Collapse
|
28
|
Chikhale M, Toi PC, Siddaraju N, Ananthakrishnan R. The strength of cytomorphology and efficacy of immuno-cytochemistry in distinguishing hepatocellular carcinoma from its mimics on fine-needle aspiration cytology. Diagn Cytopathol 2021; 49:864-875. [PMID: 33929782 DOI: 10.1002/dc.24759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cytomorphologic distinction of hepatocellular carcinoma (HCC) from its mimics on fine-needle aspiration cytology (FNAC) is often problematic. The present study evaluates the strength of cytomorphology and the utility of an immuno-panel of arginase-1, glypican-3, HepPar-1, thyroid transcription factor (TTF-1) and CK-19 in resolving this diagnostic issue. METHODS FNAC features of 71 nodular hepatic lesions were studied with an immunocyto/ histochemical (ICC/IHC) panel of arginase-1, glypican-3, HepPar-1, TTF-1 taking 10% positivity as "cut-off." Cytomorpholologic diagnoses were compared with diagnoses made on combined cytomorphologic and ICC/IHC approach. RESULTS Of 71 cases, 32, 10 and 29 had histopathologic, cell block and clinico-radiologic correlation respectively with 55 metastatic adenocarcinomas (MAC), 13 HCCs and one case each of hepatic adenoma (HA), cirrhotic nodule (CN) and intrahepatic cholangiocarcinoma (CC). Cytoplasmic positivity of HepPar-1 and glypican-3 were noted in 11/13 and 8/13 HCCs respectively; while only 3/13 and 1/13 HCCs revealed cytoplasmic positivity for arginase-1 and TTF-1 respectively. Benign hepatic lesions were negative for glypican-3 and TTF-1, but expressed both arginase-1and HepPar-1. Twenty-one of 55 MACs and the lone case of CC were positive for CK-19; however, all MACs and CC cases were negative for HepPar-1, arginase-1, glypican-3 and TTF-1. The immune-panel had sensitivity, specificity and diagnostic accuracy of 100%, 88.9% and 90.6%, respectively, for differentiating HCC from its morphologic mimics. CONCLUSION Though a meticulous cytologic evaluation in conjunction with clinicoradiologic profile helps in distinguishing HCC from its benign and malignant mimics; an immunopanel of arginase-1, glypican-3, HepPar-1, TTF-1 and CK-19 drastically improves the diagnostic accuracy.
Collapse
Affiliation(s)
| | - Pampa Ch Toi
- Department of Pathology, JIPMER, Puducherry, India
| | | | | |
Collapse
|
29
|
Barsoum I, Elgohary MN, Bassiony MAA. Lipocalin-2: A novel diagnostic marker for hepatocellular carcinoma. Cancer Biomark 2021; 28:523-528. [PMID: 32568173 DOI: 10.3233/cbm-190084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide. Viral hepatitis, alcoholism and non-alcoholic steatohepatitis are the most common risk factors. Despite the advances in HCC screening and treatment options, HCC still has a high mortality rate and a high rate of recurrence after treatment. Lipocalin-2 (LCN-2) is a glycoprotein transporter that is highly expressed in HCC tissues. OBJECTIVE To evaluate serum LCN-2 as a diagnostic marker for HCC. METHODS The study was carried out in Zagazig university hospitals. It included 210 HCC patients (subdivided in three subgroups), 72 liver cirrhosis patients without HCC and 18 normal control persons (the total is 300 subjects). All the study subjects were evaluated by history taking, physical examination, routine laboratory investigations, alpha-fetoprotein (AFP) and LCN-2 in addition radiology. RESULTS In comparison between HCC and control, there was a statistically significant difference in hemoglobin percent (HB%), platelet count, serum ALT, AST, ALP, bilirubin, albumin and creatinine. In comparison to AFP, LCN-2 > 225 ng/ml had a higher diagnostic performance in HCC patients and was more accurate in differentiation between cirrhosis and HCC patients. CONCLUSION LCN-2 is a good candidate for HCC diagnosis and screening.
Collapse
|
30
|
Sun L, Gao F, Gao Z, Ao L, Li N, Ma S, Jia M, Li N, Lu P, Sun B, Ho M, Jia S, Ding T, Gao W. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in Hepatocellular Carcinoma. J Immunother Cancer 2021; 9:e001875. [PMID: 33833049 PMCID: PMC8039282 DOI: 10.1136/jitc-2020-001875] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a cell surface glycoprotein that is pathologically highly expressed in hepatocellular carcinoma (HCC), is an attractive target for immunotherapies, including chimeric antigen receptor (CAR) T cells. The serum GPC3 is frequently elevated in HCC patients due to the shedding effect of cell surface GPC3. The shed GPC3 (sGPC3) is reported to block the function of cell-surface GPC3 as a negative regulator. Therefore, it would be worth investigating the potential influence of antigen shedding in anti-GPC3 CAR-T therapy for HCC. METHODS In this study, we constructed two types of CAR-T cells targeting distinct epitopes of GPC3 to examine how sGPC3 influences the activation and cytotoxicity of CAR-T cells in vitro and in vivo by introducing sGPC3 positive patient serum or recombinant sGPC3 proteins into HCC cells or by using sGPC3-overexpressing HCC cell lines. RESULTS Both humanized YP7 CAR-T cells and 32A9 CAR-T cells showed GPC3-specific antitumor functions in vitro and in vivo. The existence of sGPC3 significantly inhibited the release of cytokines and the cytotoxicity of anti-GPC3 CAR-T cells in vitro. In animal models, mice carrying Hep3B xenograft tumors expressing sGPC3 exhibited a worse response to the treatment with CAR-T cells under both a low and high tumor burden. sGPC3 bound to CAR-T cells but failed to induce the effective activation of CAR-T cells. Therefore, sGPC3 acted as dominant negative regulators when competed with cell surface GPC3 to bind anti-GPC3 CAR-T cells, leading to an inhibitory effect on CAR-T cells in HCC. CONCLUSIONS We provide a proof-of-concept study demonstrating that GPC3 shedding might cause worse response to CAR-T cell treatment by competing with cell surface GPC3 for CAR-T cell binding, which revealed a new mechanism of tumor immune escape in HCC, providing a novel biomarker for patient enrolment in future clinical trials and/or treatments with GPC3-targeted CAR-T cells.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Female
- Glypicans/antagonists & inhibitors
- Glypicans/blood
- Glypicans/immunology
- Immunotherapy, Adoptive
- Liver Neoplasms/blood
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Lymphocyte Activation
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, Nude
- Proof of Concept Study
- Protein Binding
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Burden
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Luan Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fang Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhanhui Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nephrology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Ao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sujuan Ma
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Jia
- School of Chemistry and Molecular Biosciences, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
- Department of Biotherapy, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peihua Lu
- Department of Medical Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shaochang Jia
- Department of Biotherapy, Nanjing Jinling Hospital, Nanjing, Jiangsu, China
| | - Tong Ding
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, National Health Commission Key Laboratory of Antibody Techniques, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
31
|
Gerlza T, Trojacher C, Kitic N, Adage T, Kungl AJ. Development of Molecules Antagonizing Heparan Sulfate Proteoglycans. Semin Thromb Hemost 2021; 47:316-332. [PMID: 33794555 DOI: 10.1055/s-0041-1725067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) occur in almost every tissue of the human body and consist of a protein core, with covalently attached glycosaminoglycan polysaccharide chains. These glycosaminoglycans are characterized by their polyanionic nature, due to sulfate and carboxyl groups, which are distributed along the chain. These chains can be modified by different enzymes at varying positions, which leads to huge diversity of possible structures with the complexity further increased by varying chain lengths. According to their location, HSPGs are divided into different families, the membrane bound, the secreted extracellular matrix, and the secretory vesicle family. As members of the extracellular matrix, they take part in cell-cell communication processes on many levels and with different degrees of involvement. Of particular therapeutic interest is their role in cancer and inflammation as well as in infectious diseases. In this review, we give an overview of the current status of medical approaches to antagonize HSPG function in pathology.
Collapse
Affiliation(s)
- Tanja Gerlza
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Christina Trojacher
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Nikola Kitic
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | | | - Andreas J Kungl
- Karl-Franzens University Graz, Institute of Pharmaceutical Sciences, Graz, Austria.,Antagonis Biotherapeutics GmbH, Graz, Austria
| |
Collapse
|
32
|
Lü P, Qiu S, Pan Y, Yu F, Chen K. Preclinical Chimeric Antibody Chimeric Antigen Receptor T Cell Progress in Digestive System Cancers. Cancer Biother Radiopharm 2021; 36:307-315. [PMID: 33481647 DOI: 10.1089/cbr.2020.4089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Digestive system cancers, including hepatocellular carcinoma, colorectal and gastric tumors, are characterized by high rates of incidence and mortality. Digestive cancers are difficult to diagnose during the early stages, and the side effects of chemotherapy are often severe and may outweigh the therapeutic benefits. Chimeric antibody chimeric antigen receptor T cell (CAR-T) therapy, a novel immunotherapy, has achieved excellent results for the treatment of hematological tumors. However, CAR-T treatment of solid tumors has struggled due to a lack of target specificity, a difficult tumor microenvironment, and T cell homing. Despite the challenges, CAR-T treatment of digestive cancers is progressing. Combining CAR-T with other targets and/or modifying the CAR may represent the most promising approaches for future treatment of digestive cancers.
Collapse
Affiliation(s)
- Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Songlin Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Pan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng Yu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Hussein NH, Amin NS, El Tayebi HM. GPI-AP: Unraveling a New Class of Malignancy Mediators and Potential Immunotherapy Targets. Front Oncol 2020; 10:537311. [PMID: 33344222 PMCID: PMC7746843 DOI: 10.3389/fonc.2020.537311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
With millions of cases diagnosed annually and high economic burden to cover expensive costs, cancer is one of the most difficult diseases to treat due to late diagnosis and severe adverse effects from conventional therapy. This creates an urgent need to find new targets for early diagnosis and therapy. Progress in research revealed the key steps of carcinogenesis. They are called cancer hallmarks. Zooming in, cancer hallmarks are characterized by ligands binding to their cognate receptor and so triggering signaling cascade within cell to make response for stimulus. Accordingly, understanding membrane topology is vital. In this review, we shall discuss one type of transmembrane proteins: Glycosylphosphatidylinositol-Anchored Proteins (GPI-APs), with specific emphasis on those involved in tumor cells by evading immune surveillance and future applications for diagnosis and immune targeted therapy.
Collapse
|
34
|
Ruan H, Zhou Y, Shen J, Zhai Y, Xu Y, Pi L, Huang R, Chen K, Li X, Ma W, Wu Z, Deng X, Wang X, Zhang C, Guan M. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single-cell transcriptome analysis. Clin Transl Med 2020; 10:e246. [PMID: 33377642 PMCID: PMC7737787 DOI: 10.1002/ctm2.246] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Brain metastases explain the majority of mortality associated with lung cancer, which is the leading cause of cancer death. Cytology analysis of the cerebrospinal fluid (CSF) remains the diagnostic gold standard, however, the circulating tumor cells (CTCs) in CSF (CSF-CTCs) are not well defined at the molecular and transcriptome levels. METHODS We established an effective CSF-CTCs collection procedure and isolated individual CSF cells from five lung adenocarcinoma leptomeningeal metastases (LUAD-LM) patients and three controls. Three thousand seven hundred ninety-two single-cell transcriptomes were sequenced, and single-cell RNA sequencing (scRNA-seq) gene expression analysis was used to perform a comprehensive characterization of CSF cells. RESULTS Through clustering and expression analysis, we defined CSF-CTCs at the transcriptome level based on epithelial markers, proliferation markers, and genes with lung origin. The metastatic-CTC signature genes are enriched for metabolic pathway and cell adhesion molecule categories, which are crucial for the survival and metastases of tumor cells. We discovered substantial heterogeneity in patient CSF-CTCs. We quantified the degree of heterogeneity and found significantly greater among-patient heterogeneity compared to among-cell heterogeneity within a patient. This observation could be explained by spatial heterogeneity of metastatic sites, cell-cycle gene, and cancer-testis antigen (CTA) expression profiles as well as the proportion of CTCs displaying mesenchymal and cancer stem cell properties. In addition, our CSF-CTCs transcriptome profiling allowed us to determine the biomarkers during the progression of an LM patient with cancer of unknown primary site (CUP). CONCLUSIONS Our results will provide candidate genes for an RNA-based digital detection of CSF-CTCs from LUAD-LM and CUP-LM cases, and shed light on the therapy and mechanism of LUAD-LM.
Collapse
Affiliation(s)
- Haoyu Ruan
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Yihang Zhou
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Department of PathobiologyAuburn UniversityAuburnAlabama
| | - Jie Shen
- 10K Genomics Technology Co., Ltd.ShanghaiChina
| | - Yue Zhai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ying Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Linyu Pi
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ruofan Huang
- Department of OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Kun Chen
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Xiangyu Li
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Weizhe Ma
- Central LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Zhiyuan Wu
- Department of Clinical LaboratoryHuashan Hospital NorthFudan UniversityShanghaiChina
| | - Xuan Deng
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| | - Xu Wang
- Department of PathobiologyAuburn UniversityAuburnAlabama
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabama
- Alabama Agricultural Experiment StationAuburn UniversityAuburnAlabama
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative MedicineShanghai East HospitalShanghai Key Laboratory of Signaling and Disease ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Ming Guan
- Department of Clinical LaboratoryHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
35
|
Silva L, Egea J, Villanueva L, Ruiz M, Llopiz D, Repáraz D, Aparicio B, Lasarte-Cia A, Lasarte JJ, Ruiz de Galarreta M, Lujambio A, Sangro B, Sarobe P. Cold-Inducible RNA Binding Protein as a Vaccination Platform to Enhance Immunotherapeutic Responses Against Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12113397. [PMID: 33207844 PMCID: PMC7696968 DOI: 10.3390/cancers12113397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Therapies based on immune checkpoint inhibitors (ICPI) have yielded promising albeit limited results in patients with hepatocellular carcinoma (HCC). Vaccines have been proposed as combination partners to enhance response rates to ICPI. Thus, we analyzed the combined effect of a vaccine based on the TLR4 ligand cold-inducible RNA binding protein (CIRP) plus ICPI. Mice were immunized with vaccines containing ovalbumin linked to CIRP (OVA-CIRP), with or without ICPI, and antigen-specific responses and therapeutic efficacy were tested in subcutaneous and orthotopic mouse models of liver cancer. OVA-CIRP elicited polyepitopic T-cell responses, which were further enhanced when combined with ICPI (anti-PD-1 and anti-CTLA-4). Combination of OVA-CIRP with ICPI enhanced ICPI-induced therapeutic responses when tested in subcutaneous and intrahepatic B16-OVA tumors, as well as in the orthotopic PM299L HCC model. This effect was associated with higher OVA-specific T-cell responses in the periphery, although many tumor-infiltrating lymphocytes still displayed an exhausted phenotype. Finally, a new vaccine containing human glypican-3 linked to CIRP (GPC3-CIRP) induced clear responses in humanized HLA-A2.01 transgenic mice, which increased upon combination with ICPI. Therefore, CIRP-based vaccines may generate anti-tumor immunity to enhance ICPI efficacy in HCC, although blockade of additional checkpoint molecules and immunosuppressive targets should be also considered.
Collapse
Affiliation(s)
- Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas CIBEREHD, 31008 Pamplona, Spain
| | - Josune Egea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas CIBEREHD, 31008 Pamplona, Spain
| | - Lorea Villanueva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas CIBEREHD, 31008 Pamplona, Spain
| | - Diana Llopiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas CIBEREHD, 31008 Pamplona, Spain
| | - David Repáraz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas CIBEREHD, 31008 Pamplona, Spain
| | - Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas CIBEREHD, 31008 Pamplona, Spain
| | - Aritz Lasarte-Cia
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
| | - Juan José Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
| | - Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.R.d.G.); (A.L.)
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.R.d.G.); (A.L.)
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas CIBEREHD, 31008 Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; (L.S.); (J.E.); (L.V.); (M.R.); (D.L.); (D.R.); (B.A.); (A.L.-C.); (J.J.L.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas CIBEREHD, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-194700 (ext. 813009)
| |
Collapse
|
36
|
Patel K, Lamm R, Altshuler P, Dang H, Shah AP. Hepatocellular Carcinoma-The Influence of Immunoanatomy and the Role of Immunotherapy. Int J Mol Sci 2020; 21:ijms21186757. [PMID: 32942580 PMCID: PMC7555667 DOI: 10.3390/ijms21186757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related morbidity and mortality worldwide. Most patients are diagnosed with advanced disease, limiting their options for treatment. While current treatments are adequate for lower staged disease, available systemic treatments are limited, with marginal benefit at best. Chimeric antigen receptor (CAR) T cell therapy, effective in treating liquid tumors such as B-cell lymphoma, presents a potentially promising treatment option for advanced HCC. However, new challenges specific to solid tumors, such as tumor immunoanatomy or the immune cell presence and position anatomically and the tumor microenvironment, need to be defined and overcome. Immunotherapy currently in use must be re-engineered and re-envisioned to treat HCC with the hopes of ushering in an answer to advanced stage solid tumor disease processes. Future therapy options must address the uniqueness of the tumors under the umbrella of HCC. This review strives to summarize HCC, its staging system, current therapy and immunotherapy medications currently being utilized or studied in the treatment of HCC with the hopes of highlighting what is being done and suggesting what needs to be done in the future to champion this therapy as an effective option.
Collapse
Affiliation(s)
- Keyur Patel
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
| | - Ryan Lamm
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
| | - Peter Altshuler
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
- Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
- Correspondence: (H.D.); (A.P.S.)
| | - Ashesh P. Shah
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
- Correspondence: (H.D.); (A.P.S.)
| |
Collapse
|
37
|
Geng Z, Zhang Y, Wang S, Li H, Zhang C, Yin S, Xie C, Dai Y. Radiomics Analysis of Susceptibility Weighted Imaging for Hepatocellular Carcinoma: Exploring the Correlation between Histopathology and Radiomics Features. Magn Reson Med Sci 2020; 20:253-263. [PMID: 32788505 PMCID: PMC8424030 DOI: 10.2463/mrms.mp.2020-0060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: No previous researches have extracted radiomics features from susceptibility weighted imaging (SWI) for biomedical applications. This research aimed to explore the correlation between histopathology of hepatocellular carcinoma (HCC) and radiomics features extracted from SWI. Methods: A total of 53 patients were ultimately enrolled into this retrospective study with MR examinations undertaken at a 3T scanner. About 107 radiomics features were extracted from SWI images of each patient. Then, the Spearman correlation test was performed to evaluate the correlation between the SWI-derived radiomics features and histopathologic indexes including histopathologic grade, microvascular invasion (MVI) as well as the expression status of cytokeratin 7 (CK-7), cytokeratin 19 (CK-19) and Glypican-3 (GPC-3). With SWI-derived radiomics features utilized as independent variables, four logistic regression-based diagnostic models were established for diagnosing patients with positive CK-7, CK-19, GPC-3 and high histopathologic grade, respectively. Then, receiver operating characteristic analysis was performed to evaluate the diagnostic performance. Results: A total of 11, 32, 18 and one SWI-derived radiomics features were significantly correlated with histopathologic grade, the expression of CK-7, the expression of CK-19 and the expression of GPC-3 (P < 0.05), respectively. None of the SWI-derived radiomics features was correlated with MVI status. The areas under the curve were 0.905, 0.837, 0.800 and 0.760 for diagnosing patients with positive CK-19, positive CK-7, high histopathologic grade and positive GPC-3. Conclusion: Extracting the radiomics features from SWI images was feasible to evaluate multiple histopathologic indexes of HCC.
Collapse
Affiliation(s)
- Zhijun Geng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Radiology, Sun Yat-sen University Cancer Center
| | - Yunfei Zhang
- Central Research Institute, United Imaging Healthcare
| | - Shutong Wang
- Department of Hepatic Surgery, First Affiliated Hospital of Sun Yat-sen University
| | - Hui Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Radiology, Sun Yat-sen University Cancer Center
| | - Cheng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Radiology, Sun Yat-sen University Cancer Center
| | - Shaohan Yin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Radiology, Sun Yat-sen University Cancer Center
| | - Chuanmiao Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center.,Department of Radiology, Sun Yat-sen University Cancer Center
| | - Yongming Dai
- Central Research Institute, United Imaging Healthcare
| |
Collapse
|
38
|
32A9, a novel human antibody for designing an immunotoxin and CAR-T cells against glypican-3 in hepatocellular carcinoma. J Transl Med 2020; 18:295. [PMID: 32746924 PMCID: PMC7398316 DOI: 10.1186/s12967-020-02462-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background Treatment of hepatocellular carcinoma (HCC) using antibody-based targeted therapies, such as antibody conjugates and chimeric antigen receptor T (CAR-T) cell therapy, shows potent antitumor efficacy. Glypican-3 (GPC3) is an emerging HCC therapeutic target; therefore, antibodies against GPC3 would be useful tools for developing immunotherapies for HCC. Methods We isolated a novel human monoclonal antibody, 32A9, by phage display technology. We determined specificity, affinity, epitope and anti-tumor activity of 32A9, and developed 32A9-based immunotherapy technologies for evaluating the potency of HCC treatment in vitro or in vivo. Results 32A9 recognized human GPC3 with potent affinity and specificity. The epitope of 32A9 was located in the region of the GPC3 protein core close to the modification sites of the HS chain and outside of the Wnt-binding site of GPC3. The 32A9 antibody significantly inhibited HCC xenograft tumor growth in vivo. We then pursued two 32A9-based immunotherapeutic strategies by constructing an immunotoxin and CAR-T cells. The 32A9 immunotoxin exhibited specific cytotoxicity to GPC3-positive cancer cells, while 32A9 CAR-T cells efficiently eliminated GPC3-positive HCC cells in vitro and caused HCC xenograft tumor regressions in vivo. Conclusions Our study provides a rationale for 32A9 as a promising GPC3-specific antibody candidate for HCC immunotherapy.
Collapse
|
39
|
Receptor tyrosine kinases and heparan sulfate proteoglycans: Interplay providing anticancer targeting strategies and new therapeutic opportunities. Biochem Pharmacol 2020; 178:114084. [DOI: 10.1016/j.bcp.2020.114084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
|
40
|
Lu Y, Fang Z, Li M, Chen Q, Zeng T, Lu L, Chen Q, Zhang H, Zhou Q, Sun Y, Xue X, Hu Y, Chen L, Su S. Dynamic edge-based biomarker non-invasively predicts hepatocellular carcinoma with hepatitis B virus infection for individual patients based on blood testing. J Mol Cell Biol 2020; 11:665-677. [PMID: 30925583 PMCID: PMC6788726 DOI: 10.1093/jmcb/mjz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/27/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths in Asia and Africa. Developing effective and non-invasive biomarkers of HCC for individual patients remains an urgent task for early diagnosis and convenient monitoring. Analyzing the transcriptomic profiles of peripheral blood mononuclear cells from both healthy donors and patients with chronic HBV infection in different states (i.e. HBV carrier, chronic hepatitis B, cirrhosis, and HCC), we identified a set of 19 candidate genes according to our algorithm of dynamic network biomarkers. These genes can both characterize different stages during HCC progression and identify cirrhosis as the critical transition stage before carcinogenesis. The interaction effects (i.e. co-expressions) of candidate genes were used to build an accurate prediction model: the so-called edge-based biomarker. Considering the convenience and robustness of biomarkers in clinical applications, we performed functional analysis, validated candidate genes in other independent samples of our collected cohort, and finally selected COL5A1, HLA-DQB1, MMP2, and CDK4 to build edge panel as prediction models. We demonstrated that the edge panel had great performance in both diagnosis and prognosis in terms of precision and specificity for HCC, especially for patients with alpha-fetoprotein-negative HCC. Our study not only provides a novel edge-based biomarker for non-invasive and effective diagnosis of HBV-associated HCC to each individual patient but also introduces a new way to integrate the interaction terms of individual molecules for clinical diagnosis and prognosis from the network and dynamics perspectives.
Collapse
Affiliation(s)
- Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoyuan Fang
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiyi Li
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Minhang Branch, Zhongshan Hospital/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Qian Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Lu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qilong Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Sun
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Xuefeng Xue
- Qidong Liver Cancer Institute, Qidong People's Hospital, Qidong, China
| | - Yiyang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, China.,Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Shibing Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Papiewska-Pająk I, Krzyżanowski D, Katela M, Rivet R, Michlewska S, Przygodzka P, Kowalska MA, Brézillon S. Glypican-1 Level Is Elevated in Extracellular Vesicles Released from MC38 Colon Adenocarcinoma Cells Overexpressing Snail. Cells 2020; 9:cells9071585. [PMID: 32629890 PMCID: PMC7408449 DOI: 10.3390/cells9071585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Snail triggers epithelial-to-mesenchymal transition (EMT), endowing cancer cells with invasive properties during tumor progression. Extracellular vesicles (EVs) released from cancer cells at various stages of cancer progression are known to influence the tumor pre-metastatic niche and metastatic potential. The aim of this study was to analyze the effect of Snail on murine colon adenocarcinoma cells (MC38 line) and on the characteristics of their EVs. Stable clones of Snail-overexpressing MC38 cells were investigated in vitro versus Mock cells. Increased expression of matrix metalloproteinase MMP-14 and augmented activity of MMP-9 and -14 were observed in Snail-MC38 cells. There was no change in the transcriptomic profile of proteoglycans in Snail-MC38 cells; however, the protein level of Glypican-1 (GPC1) was enhanced in EVs released from those cells. Our finding that GPC1 protein level was enhanced in EVs released from MC38 cells that overexpressed Snail and were in an early EMT stage might explain the specificity of the GPC1 biomarker in colon cancer diagnosis. Further, our data suggest that Snail, by changing the level of GPC1 on EVs released by colon cancer cells, may affect the generation of a distant premetastatic niche and metastatic organotropism in colon adenocarcinoma.
Collapse
Affiliation(s)
- Izabela Papiewska-Pająk
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.K.); (P.P.); (M.A.K.)
- Correspondence: (I.P.-P.); ; (S.B.); Tel.: +48-42-27-23-633 (I.P.-P.); +33-326-91-37-34 (S.B.)
| | - Damian Krzyżanowski
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.K.); (P.P.); (M.A.K.)
| | - Maria Katela
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51100 Reims, France; (M.K.); (R.R.)
| | - Romain Rivet
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51100 Reims, France; (M.K.); (R.R.)
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.K.); (P.P.); (M.A.K.)
| | - M. Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.K.); (P.P.); (M.A.K.)
- Department of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stéphane Brézillon
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne Ardenne, 51100 Reims, France; (M.K.); (R.R.)
- Correspondence: (I.P.-P.); ; (S.B.); Tel.: +48-42-27-23-633 (I.P.-P.); +33-326-91-37-34 (S.B.)
| |
Collapse
|
42
|
Huang Y, Zeng J, Liu T, Xu Q, Song X, Zeng J. DNAM1 and 2B4 Costimulatory Domains Enhance the Cytotoxicity of Anti-GPC3 Chimeric Antigen Receptor-Modified Natural Killer Cells Against Hepatocellular Cancer Cells in vitro. Cancer Manag Res 2020; 12:3247-3255. [PMID: 32440221 PMCID: PMC7217313 DOI: 10.2147/cmar.s253565] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Hepatocellular cancer (HCC) is the sixth most prevalent cancer and the third leading cause of cancer-related death worldwide. Cellular immunotherapy against glypican 3 (GPC3) has recently been used in the treatment of HCC, following the success of chimeric antigen receptor (CAR)-T therapy in treatment of B cell malignancy. However, CAR-T cells are not “off-the-shelf” and always cause cytokine release syndrome, which can be eliminated by using natural killer (NK) cells as effector cells. Since a costimulatory signal is necessary for the activation, persistence, or cytotoxicity of CAR-T cells, we speculated that the costimulatory signal is also required for CAR-NK cells in HCC treatment. Methods Five anti-GPC3 CAR plasmids containing different costimulatory domains were constructed. They included Z (only the CD3ζ domain, no costimulatory domain), CD28.Z (T-cell costimulatory domain CD28), DNAM1/2B4.Z (NK-cell-associated costimulatory domain DNAM1 or 2B4), and DNAM1.2B4.Z (both NK-cell-associated costimulatory domains). Respective CAR-NK-92 cells were generated. The MTT viability assay was performed to evaluate the effect of the different costimulatory domains on CAR-NK-cell proliferation. The effect on persistence was analyzed using an apoptosis assay and flow cytometry. Special cytotoxicity against normal hepatocellular cells and GPC3+ malignant cells was investigated in vitro. The concentration of cytokines (TNF-α and IFN-γ) released by CAR-NK-92 cells was also measured by ELISA. Results NK-cell-associated costimulatory signal was necessary for CAR-NK-92 cells. CAR-NK-92 cells with DNAM1 and/or 2B4 expanded more quickly and persisted with a lower apoptotic ratio, compared to the presence of CD28 or no costimulatory signal. All CAR-NK-92 cells showed special cellular cytotoxicity in vitro. CAR-NK-92 cells with NK-cell-associated costimulatory domains exhibited higher cytotoxic ability compared with those without any costimulatory domain or with T-cell costimulatory domain. CAR-NK-92 cells with both DNAM1 and 2B4 displayed the highest cytotoxicity. The cytokine release assay results were consistent with those of the cytotoxicity assay. Conclusion We provided the first evidence supporting a strategy using DNAM1 and 2B4 costimulatory domains to generate anti-GPC3 CAR-NK-92 cells, which exhibits enhanced cytotoxicity against hepatocellular cancer cells in vitro.
Collapse
Affiliation(s)
- Yao Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jianxing Zeng
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Teng Liu
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Qingyi Xu
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xianglin Song
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Jinhua Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.,Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
43
|
Zhang T, Liu Y, Ren X, Wang Z, Wang H. Glypican 2 regulates cell proliferation and metastasis in thyroid cancer cells. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Wiedemeyer K, Köbel M, Koelkebeck H, Xiao Z, Vashisht K. High glypican-3 expression characterizes a distinct subset of ovarian clear cell carcinomas in Canadian patients: an opportunity for targeted therapy. Hum Pathol 2020; 98:56-63. [PMID: 32017945 DOI: 10.1016/j.humpath.2020.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
Abstract
The expression frequency and distribution of glypican-3 (GPC3) was retrospectively assessed by immunohistochemistry in 316 accurately phenotyped ovarian clear cell carcinoma (OCCC) specimens from Canadian patients. The study aimed to evaluate the prevalence of this biomarker in OCCC in a mixed-ethnicity Canadian population and to evaluate associations of GPC3 expression with clinicopathological parameters. Tissue microarrays with napsin A or HNF1β positive and WT1-negative OCCC specimens were evaluated using a GPC3 antibody clone 1G12. Membranous, cytoplasmic, and Golgi pattern GPC3 expression was noted in 184 of 316 (58.2%) cases; 63 of 316 (20%) cases showed high GPC3 expression (>50% of tumor cells were positive). GPC3 expression was not associated with age, stage, and residual disease after primary surgery. High GPC3 expression did not correlate with a specific morphological pattern or the presence of endometriosis. Furthermore, GPC3 expression was not significantly associated with survival in the entire cohort. Statistically significant association of high GPC3 expression was noted with higher body mass index, napsin A positivity, estrogen receptor (ER) negativity, and ARID1A retention. In a stratified analysis by ARID1A status, high GPC3 expression was significantly associated with unfavorable outcomes in cases with loss of ARID1A (n=10; log rank p=0.0048). Women diagnosed with OCCC and high GPC3 expression were also more likely to receive adjuvant chemotherapy. Considering the tumor-specific membranous expression of GPC3 in 58% of cases and high interobserver reproducibility, GPC3 immunohistochemistry is a robust predictive test for inclusion in clinical trials for GPC3-targeted therapies for OCCC.
Collapse
Affiliation(s)
- Katharina Wiedemeyer
- Department of Pathology and Laboratory Medicine, University of Calgary, And Alberta Public Laboratories, Calgary, Alberta, Canada.
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, And Alberta Public Laboratories, Calgary, Alberta, Canada
| | - Holly Koelkebeck
- AstraZeneca, One MedImmune Way, Gaithersburg, Maryland, 20878, USA
| | - Zhan Xiao
- AstraZeneca, One MedImmune Way, Gaithersburg, Maryland, 20878, USA
| | - Kapil Vashisht
- AstraZeneca, One MedImmune Way, Gaithersburg, Maryland, 20878, USA
| |
Collapse
|
45
|
Caraballo Galva LD, Cai L, Shao Y, He Y. Engineering T cells for immunotherapy of primary human hepatocellular carcinoma. J Genet Genomics 2020; 47:1-15. [PMID: 32089500 DOI: 10.1016/j.jgg.2020.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Liver cancers, majority of which are primary hepatocellular carcinoma (HCC), continue to be on the rise in the world. Furthermore, due to the lack of effective treatments, liver cancer ranks the 4th most common cause of male cancer deaths. Novel therapies are urgently needed. Over the last few years, immunotherapies, especially the checkpoint blockades and adoptive cell therapies of engineered T cells, have demonstrated a great potential for treating malignant tumors including HCC. In this review, we summarize the current ongoing research of antigen-specific immunotherapies including cancer vaccines and adoptive cell therapies for HCC. We briefly discuss the HCC cancer vaccine and then focus on the antigen-specific T cells genetically engineered with the T cell receptor genes (TCRTs) and the chimeric antigen receptor genes (CARTs). We first review the current options of TCRTs and CARTs immunotherapies for HCC, and then analyze the factors and parameters that may help to improve the design of TCRTs and CARTs to enhance their antitumor efficacy and safety. Our goals are to render readers a panoramic view of the current stand of HCC immunotherapies and provide some strategies to design better TCRTs and CARTs to achieve more effective and durable antitumor effects.
Collapse
Affiliation(s)
- Leidy D Caraballo Galva
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Lun Cai
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yanxia Shao
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
46
|
Zhao S, Wu C, Gao Z, Li X, Guo Z, Wang Z. Notch signaling governs the expression of glypican Dally to define the stem cell niche. Biol Open 2020; 9:bio.047696. [PMID: 31826854 PMCID: PMC6994927 DOI: 10.1242/bio.047696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular glypicans play pivotal roles in organogenesis, stem cell maintenance and cancer development. However, the growth phenotypes associated with different levels of glypican are not consistent in development or tumorigenesis. This requires clarification on how the spatial patterns of glypican relate to the distribution of signaling molecules in different cellular contexts, and how glypican expression is regulated. We have previously reported that Dally, one of the glypican members in Drosophila, is required in the niche for the maintenance of germline stem cells (GSCs) via short-range BMP signaling in ovary. However, the regulatory mechanism of glypican pattern in the ovarian stem cell niche remains elusive. Our current data demonstrate that the Notch pathway is genetically upstream of Dally and its function to maintain GSCs relies on Dally expression. Combining yeast and fruit fly genetics, we illustrate that Dally is under the transcriptional control of Notch signaling via the transcription factor Su(H). Further, we assayed human glypicans and disease-associated variants in Drosophila ovary, which can serve as an effective system to evaluate the structure–function relationship of human homologs. Summary: Spatial regulation of a cell surface glycoprotein defines the territory of germline stem cells.
Collapse
Affiliation(s)
- Songhua Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China.,The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chan Wu
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Guo
- The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaohui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100049, China .,The University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
48
|
Chen K, Wu Z, Zhao H, Wang Y, Ge Y, Wang D, Li Z, An C, Liu Y, Wang F, Bi X, Wang H, Cai J, Ma C, Qu C. XCL1/ Glypican-3 Fusion Gene Immunization Generates Potent Antitumor Cellular Immunity and Enhances Anti-PD-1 Efficacy. Cancer Immunol Res 2020; 8:81-93. [PMID: 31666238 DOI: 10.1158/2326-6066.cir-19-0210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/14/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023]
Abstract
Cancer vaccines can amplify existing antitumor responses or prime naïve T cells to elicit effector T-cell functions in patients through immunization. Antigen-specific CD8+ T cells are crucial for the rejection of established tumors. We constructed XCL1-GPC3 fusion molecules as a liver cancer vaccine by linking the XCL1 chemokine to glypican-3 (GPC3), which is overexpressed in hepatocellular carcinoma (HCC). Cells expressing XCL1-GPC3 chemoattracted murine XCR1+CD8α+ dendritic cells (DC) and human XCR1+CD141+ DCs in vitro and promoted their IL12 production. After subcutaneous mXcl1-GPC3 plasmid injection, mXCL1-GPC3 was mainly detected in CD8α+ DCs of mouse draining lymph nodes. XCL1-GPC3-targeted DCs enhanced antigen-specific CD8+ T-cell proliferation and induced the de novo generation of GPC3-specific CD8+ T cells, which abolished GPC3-expressing tumor cells in mouse and human systems. We immunized a murine autochthonous liver cancer model, with a hepatitis B background, with the mXcl1-GPC3 plasmid starting at 6 weeks, when malignant hepatocyte clusters formed, or at 14 weeks, when liver tumor nodules developed, after diethylnitrosamine administration. mXcl1-GPC3-immunized mice displayed significantly inhibited tumor formation and growth compared with GPC3-immunized mice. After mXcl1-GPC3 immunization, mouse livers showed elevated production of IFNγ, granzyme B, IL18, CCL5, CXCL19, and Xcl1 and increased infiltration of GPC3-specific CD8+ T cells, activated natural killer (NK) cells, and NKT cells. The antitumor effects of these immune cells were further enhanced by the administration of anti-PD-1. Anti-HCC effects induced by hXCL1-GPC3 were confirmed in an HCC-PDX model from 3 patients. Thus, XCL1-GPC3 might be a promising cancer vaccine to compensate for the deficiency of the checkpoint blockades in HCC immunotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Artificial Gene Fusion/methods
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/pharmacology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Chemokines, C/immunology
- Chemokines, C/metabolism
- Dendritic Cells/immunology
- Drug Synergism
- Glypicans/immunology
- Glypicans/metabolism
- Humans
- Killer Cells, Natural/immunology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/therapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kun Chen
- State Key Lab of Molecular Oncology & Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology & Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmei Wang
- State Key Lab of Molecular Oncology & Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutong Ge
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medicine, Jinan, China
| | - Dongmei Wang
- State Key Lab of Molecular Oncology & Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengjiang Li
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuying Liu
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Wang
- State Key Lab of Molecular Oncology & Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education and Department of Immunology, Shandong University School of Basic Medicine, Jinan, China
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology & Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Igarashi T, Harimoto N, Matsumura N, Sugiyama M, Araki K, Yokobori T, Kosone T, Takagi H, Aishima S, Yokoo H, Shirabe K. Fairly rare small-diameter hepatocellular carcinoma with right adrenal gland metastasis having an inferior vena cava tumor thrombus: a case report. Surg Case Rep 2019; 5:170. [PMID: 31696344 PMCID: PMC6834821 DOI: 10.1186/s40792-019-0705-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/11/2019] [Indexed: 11/23/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) may lead to extrahepatic metastasis (EHM). Most patients with EHM had either intrahepatic stage III or IVA tumor at the site of metastases. Herein, we present the case of a fairly rare 1.5-cm small-diameter HCC with right adrenal gland tumor having an inferior vena cava (IVC) tumor thrombus. Case presentation A 75-year-old man had a 1.5-cm hepatocellular carcinoma (HCC) in segment 8 of the liver and a 3.0-cm right adrenal gland tumor with inferior vena cava (IVC) tumor thrombus. He underwent partial hepatectomy, right adrenalectomy, and IVC tumor thrombectomy. Tumor resection was successful, but the tumor progressed rapidly, and the patient died 8 months after the operation. Immunohistochemical staining revealed that both HCC cells and adrenal tumor cells were positive for HCC markers Glypican-3 and alpha-fetoprotein. In terms of adrenal carcinoma markers vimentin and Melan-A, vimentin was negative in the HCC and adrenal tumor, and Melan-A was negative in the HCC. In adrenal tumor, slight positivity of Melan-A was observed, but the intensity of staining was clearly weak compared with that in normal adrenal glands. CD133, one of the stem cell markers, was positive in both HCC and adrenal tumor cells. Next-generation amplicon sequencing analyses were performed using DNA derived from the HCC, adrenal tumor, and normal liver tissue. After exome data analyses for representative HCC-related genes as TERT, CTNNB1, TP53, and ARID2, TP53 mutation (exon3: c.G351 T: p.R117S) was found in both HCC cells and adrenal tumor cells. Conversely, no significant mutations in other genes were observed. These pathological findings and sequencing results showed that the adrenal tumor might be an adrenal metastasis of HCC in spite of small primary tumor size. Conclusions This case suggests that the right adrenal tumor was a metastasis of HCC. Immunohistochemical staining and gene mutation analyses using NGS are very useful in differentiating the tumor origin.
Collapse
Affiliation(s)
- Takamichi Igarashi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Norifumi Harimoto
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | - Nozomi Matsumura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Masaya Sugiyama
- Genome Medical Science Project, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, 272-8516, Japan
| | - Kenichiro Araki
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Takehiko Yokobori
- Department of Innovative Cancer Immunotherapy, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.,Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, 371-8511, Japan
| | - Takashi Kosone
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, Fujioka, Gunma, 375-0024, Japan
| | - Hitoshi Takagi
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, Fujioka, Gunma, 375-0024, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Saga University Graduate School of Medicine, Saga, Saga, 849-8501, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
50
|
Tian R, Zhu L, Qin Z, Wang G, Wang J, Zhang H. Glypican-3 (GPC3) targeted Fe 3O 4 core/Au shell nanocomplex for fluorescence/MRI/photoacoustic imaging-guided tumor photothermal therapy. Biomater Sci 2019; 7:5258-5269. [PMID: 31603456 DOI: 10.1039/c9bm01248f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low binding affinity and lack of therapy functions limit tumor targeting peptide applications in the biomedical field. Herein, we successfully modified a previous phage display derived Glypican-3 (GPC3) binding peptide (GBP) on the surface of a Fe3O4 Core/Au shell nanocomplex (FANP) to improve GBP binding affinity and enhance FANP tumor photothermal therapy (PTT) efficacy. As a result, GBP-FANP showed improved avidity to GPC-3 (Apparent Kd = 396.3 ± 70.8 nM) compared to that of GPB (Apparent Kd = 735.2 ± 53.6 nM). After intravenous administration, GBP-FANP was found specifically accumulated in GPC-3 positive HepG2 tumors and peaked at 24 h post-injection as observed by magnetic resonance imaging (MRI)/photoacoustic (PA)/fluorescent imaging. Moreover, HepG2 tumors that received GBP-FANP treatment were significantly inhibited with laser irradiation (630 nm, 1 W cm-2, 10 min). In conclusion, our present strategy provides a way of improving peptide ligand avidity with nanotechnology for cancer theranostics applications.
Collapse
Affiliation(s)
- Rui Tian
- Department of Ophthalmology Second Hospital, Jilin University, Changchun, Jilin 130000, China.
| | - Lei Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Zainen Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Guohao Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Jingjing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Hui Zhang
- Department of Ophthalmology Second Hospital, Jilin University, Changchun, Jilin 130000, China.
| |
Collapse
|