1
|
Lyu J, Wang S, Chen J, Yang X, Gao G, Zhou T. The comparison of pathogenic role and mechanism of Kallistatin and PEDF in tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189273. [PMID: 39880292 DOI: 10.1016/j.bbcan.2025.189273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Tumors are diseases caused by abnormal cell division and growth, which can be life-threatening if not treated properly. Serpin inhibitors play a crucial role in regulating pathophysiological process and are promising drug targets. Kallistatin (SERPINA4) and Pigment Epithelium-Derived Factor (PEDF, SERPINF1) are two serpins that lack protease inhibitory activity but are abundant in blood. They exhibit anti-angiogenic effects and are involved in tumorigenesis. The pathogenic role and mechanism of Kallistatin and pigment epithelium-derived factor (PEDF) have been extensively studied for their potential use in cancer therapy. Kallistatin and PEDF play significant roles in controlling tumor growth and progression. While they share some common mechanisms of action, such as promoting apoptosis and inhibiting angiogenesis, they also have distinct differences in effectiveness and range of anti-tumor activities. This review compares and contrasts the expression patterns, structural features, expression regulation, disease roles, signaling pathways, and potential clinical value of Kallistatin and PEDF, aiming to provide a comprehensive understanding of their biomedical and clinical potential.
Collapse
Affiliation(s)
- Jiayi Lyu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Simin Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jingnan Chen
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; China Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
2
|
Jin M, Wu H, Jin W, Zeng B, Liu Y, Wang N, Wang S, Chen L, Gao Z, Huang W. Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1892-1910. [PMID: 39699197 DOI: 10.1021/acsami.4c15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site. In this study, T10 peptide-modified liposomes were employed to construct an in situ transferrin (Tf) PC-mediated liposome carrying a hypoxia-sensitive chemotherapy drug (tirapazamine, TPZ) and a photosensitizer (indocyanine green, IR820). The water-soluble drug TPZ was encapsulated in mesoporous silica nanoparticles (MSNs) and coated with IR820 (IR)-loaded liposome. Lipid-coated MSNs can inhibit aggregation in the body and significantly reduce the rapid release of water-soluble drugs, resulting in improved system stability and sustained release. Upon entering the in vivo circulation, T10 bound specifically to Tf in plasma to form an in situ Tf liposome-PC complex with enhanced targeting efficacy compared to traditional ligand-modified active-targeting strategies. However, large-sized PC particles faced challenges in penetrating deep into tumor tissues. IR could kill tumors through photodynamic therapy (PDT) and elicit complementary antitumor effects with the hypoxia-sensitive drug TPZ. This study demonstrates the novel design of in situ PC-mediated multifunctional liposomes for hypoxia-activated chemotherapy combined with PDT, a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Wenyu Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Dermatology, Yanbian University Hospital, Yanji 133000, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Shahbazi B, Mafakher L, Arab SS, Teimoori-Toolabi L. Kallistatin as an inhibitory protein against colorectal cancer cells through binding to LRP6. J Biomol Struct Dyn 2024; 42:918-934. [PMID: 37114408 DOI: 10.1080/07391102.2023.2196704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
Kallistatin (KL) is a member of the serine proteinase inhibitor (serpin) family regulating oxidative stress, vascular relaxation, inflammation, angiogenesis, cell proliferation, and invasion. The heparin-binding site of Kallistatin has an important role in the interaction with LRP6 leading to the blockade of the Wnt signaling pathway. In this study, we aimed to explore the structural basis of the Kallistatin-LRP6E1E4 complex using in silico approaches and evaluating the anti-proliferative, apoptotic, and cell cycle arrest activities of Kallistatin in colon cancer lines. The molecular docking showed Kallistatin could bind to the LRP6E3E4 much stronger than LRP6E1E2. The Kallistatin-LRP6E1E2 and Kallistatin-LRP6E3E4 complexes were stable during Molecular Dynamics (MD) simulation. The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) showed that the Kallistatin-LRP6E3E4 has a higher binding affinity compared to Kallistatin-LRP6E1E2. Kallistatin induced higher cytotoxicity and apoptosis in HCT116 compared to the SW480 cell line. This protein-induced cell-cycle arrest in both cell lines at the G1 phase. The B-catenin, cyclin D1, and c-Myc expression levels were decreased in response to treatment with Kallistatin in both cell lines while the LRP6 expression level was decreased in the HCT116 cell line. Kallistatin has a greater effect on the HCT116 cell line compared to the SW480 cell line. Kallistatin can be used as a cytotoxic and apoptotic-inducing agent in colorectal cancer cell lines.
Collapse
Affiliation(s)
- Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Giannas E, Kontovounisios C. The Antineoplastic Effect of Heparin on Colorectal Cancer: A Review of the Literature. J Clin Med 2023; 12:7173. [PMID: 38002785 PMCID: PMC10671867 DOI: 10.3390/jcm12227173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Heparin and derivatives are commonly used for thrombophylaxis in surgical colorectal cancer (CRC) patients. Recent studies have suggested that, besides its protective effect on the incidence of venous thromboembolism, heparin has an anti-cancer effect. The aim of this review was to explore the literature and report the antineoplastic effect of heparin and derivatives on CRC. MEDLINE and EMBASE databases were searched for relevant articles. Nineteen studies were included (n = 19). Fifteen were lab studies conducted in vivo or in vitro on CRC cell lines and/or mice (n = 15). Four were in vivo clinical studies (n = 4). CRC tumor growth was reduced by 78% in one study, (p < 0.01), while tumorigenesis was suppressed in heparin-treated mice in seven studies. A high dose of low molecular weight heparin for extended duration significantly reduced post-operative VEGF, suggesting that such a regime may inhibit tumor angiogenesis and distant metastasis. A randomized trial demonstrated the antineoplastic effect of nadroparin as the 6 month survival in palliative patients increased. Another study has reported that disease-free survival of CRC patients was not affected by a similar tinzaparin regime. The anti-cancer properties of heparin and derivatives are promising, especially in lab studies. Further clinical trials are needed to investigate the anti-cancer benefit of heparin on CRC.
Collapse
Affiliation(s)
- Emmanuel Giannas
- Department of Surgery and Cancer, Imperial College London, London SW7 2BX, UK;
- Department of General Surgery, Chelsea and Westminster Hospital, London SW10 9NH, UK
| | - Christos Kontovounisios
- Department of Surgery and Cancer, Imperial College London, London SW7 2BX, UK;
- Department of General Surgery, Chelsea and Westminster Hospital, London SW10 9NH, UK
- Department of Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| |
Collapse
|
5
|
Hou X, Zhang Z, Ma Y, Jin R, Yi B, Yang D, Ma L. Mechanism of hydroxysafflor yellow A on acute liver injury based on transcriptomics. Front Pharmacol 2022; 13:966759. [PMID: 36120318 PMCID: PMC9478418 DOI: 10.3389/fphar.2022.966759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate how Hydroxysafflor yellow A (HSYA) effects acute liver injury (ALI) and what transcriptional regulatory mechanisms it may employ.Methods: Rats were randomly divided into five groups (n = 10): Control, Model, HSYA-L, HSYA-M, and HSYA-H. In the control and model groups, rats were intraperitoneally injected with equivalent normal saline, while in the HSYA groups, they were also injected with different amounts of HSYA (10, 20, and 40 mg/kg/day) once daily for eight consecutive days. One hour following the last injection, the control group was injected into the abdominal cavity with 0.1 ml/100 g of peanut oil, and the other four groups got the same amount of a peanut oil solution containing 50% CCl4. Liver indexes were detected in rats after dissection, and hematoxylin and eosin (HE) dyeing was utilized to determine HSYA’s impact on the liver of model rats. In addition, with RNA-Sequencing (RNA-Seq) technology and quantitative real-time PCR (qRT-PCR), differentially expressed genes (DEGs) were discovered and validated. Furthermore, we detected the contents of anti-superoxide anion (anti-O2−) and hydrogen peroxide (H2O2), and verified three inflammatory genes (Icam1, Bcl2a1, and Ptgs2) in the NF-kB pathway by qRT-PCR.Results: Relative to the control and HSYA groups, in the model group, we found 1111 DEGs that were up-/down-regulated, six of these genes were verified by qRT-PCR, including Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, and Creld2, indicated that these genes were obviously involved in the regulation of HSYA in ALI model. Membrane rafts, membrane microdomains, inflammatory response, regulation of cytokine production, monooxygenase activity, and iron ion binding were significantly enriched in GO analysis. KEGG analysis revealed that DEGs were primarily enriched for PPAR, retinol metabolism, NF-kB signaling pathways, etc. Last but not least, compared with the control group, the anti-O2− content was substantially decreased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were considerably elevated in the model group. Compared with the model group, the anti-O2− content was substantially increased, the H2O2 content and inflammatory genes (Icam1, Bcl2a1, and Ptgs2) levels were substantially decreased in the HSYA group (p < 0.05).Conclusion: HSYA could improve liver function, inhibit oxidative stress and inflammation, and improve the degree of liver tissue damage. The RNA-Seq results further verified that HSYA has the typical characteristics of numerous targets and multiple pathway. Protecting the liver from damage by regulating the expression of Tymp, Fabp7, Serpina3c, Gpnmb, Il1r1, Creld2, and the PPAR, retinol metabolism, NF-kappa B signaling pathways.
Collapse
|
6
|
Yamaguchi M, Tatara Y, Nugraha ED, Sato Y, Miura T, Hosoda M, Syaifudin M, Tokonami S, Kashiwakura I. Serum Proteomic and Oxidative Modification Profiling in Mice Exposed to Total Body X-Irradiation. Antioxidants (Basel) 2022; 11:antiox11091710. [PMID: 36139779 PMCID: PMC9495380 DOI: 10.3390/antiox11091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
The details of the dose-dependent response of serum proteins exposed to ionizing radiation, especially the oxidative modification response in amino acid sequences of albumin, the most abundant protein, are unknown. Thus, a proteomic analysis of the serum components from mice exposed to total body X-irradiation (TBI) ranging from 0.5 Gy to 3.0 Gy was conducted using LC-MS/MS. The analysis of oxidative modification sequences of albumin (mOMSA) in TBI mouse serum revealed significant moderate or strong correlations between the X-irradiation exposure dose and modification of 11 mOMSAs (especially the 97th, 267th and 499th lysine residues, 159th methionine residue and 287th tyrosine residues). In the case of X-irradiation of serum alone, significant correlations were also found in the 14 mOMSAs. In addition, a dose-dependent variation in six proteins (Angiotensinogen, Odorant-binding protein 1a, Serine protease inhibitor A3K, Serum paraoxonase/arylesterase 1, Prothrombin and Epidermal growth factor receptor) was detected in the serum of mice exposed to TBI. These findings suggest the possibility that the protein variation and serum albumin oxidative modification responses found in exposed individuals are important indicators for considering the effects of radiation on living organisms, along with DNA damage, and suggests their possible application as biomarkers of radiation dose estimation.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Yota Tatara
- Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Eka Djatnika Nugraha
- The Research Center for Safety, Metrology, and Nuclear Quality Technology (PRTKMMN), Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), JI. Lebak Bulus Raya No. 49, Jakarta Selatan 12440, DKI Jakarta, Indonesia
| | - Yoshiaki Sato
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Tomisato Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Masahiro Hosoda
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Mukh Syaifudin
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Kw. Puspiptek, Setu, Tangerang Selatan 15312, Banten, Indonesia
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Ikuo Kashiwakura
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
- Correspondence:
| |
Collapse
|
7
|
Wang Y, Guo W, Xie S, Liu Y, Xu D, Chen G, Xu Y. Multi-omics analysis of brain tissue metabolome and proteome reveals the protective effect of gross saponins of Tribulus terrestris L. fruit against ischemic stroke in rat. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114280. [PMID: 34082014 DOI: 10.1016/j.jep.2021.114280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/21/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gross Saponins of Tribulus terrestris L. Fruit (GSTTF) has been reported to have a protective effect against ischemic stroke, but the related mechanism is complex and still not fully investigated. AIM OF THE STUDY The combination of metabolomics and proteomics approach was applied to reveal the mechanisms of GSTTF in treating ischemic stroke. MATERIALS AND METHODS The metabolite and protein changes in brain tissue were analyzed by the LC-MS-based untargeted metabolomics method and tandem mass tags (TMT)-based quantitative proteomics technology. The multivariate statistical analysis and protein-protein interaction (PPI) analysis were conducted to screen out the biomarkers, and their related pathway was further investigated by the joint pathway analysis. RESULTS A total of 110 metabolites and 359 differential proteins, which were mainly associated with complement and coagulation cascades, sphingolipid metabolism, glycerophospholipid metabolism, glutathione metabolism, and platelet activation, etc. were screened out from the rat brain tissue. The PPI network exhibited that the protein F2, Fga, Fgb, Fgg, Plg, and C3, which are greatly involved in the complement and coagulation cascades, have a relatively high connectivity degree, indicating their importance in the process of middle cerebral artery occlusion (MCAO). The GSTTF exerted a protective effect against MCAO via modulating multiple proteins on this pathway. Moreover, F2 played a key role during the protective process and worth to be further investigated due to it has been reported as one of the therapeutic targets of ischemic stroke. CONCLUSION The present study could improve the understanding of the potential therapeutic mechanism of GSTTF against ischemic stroke.
Collapse
Affiliation(s)
- Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Shengxu Xie
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Dandan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China
| | - Geng Chen
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, 130021, China.
| |
Collapse
|
8
|
Nguyen HT, Kacimi SEO, Nguyen TL, Suman KH, Lemus-Martin R, Saleem H, Do DN. MiR-21 in the Cancers of the Digestive System and Its Potential Role as a Diagnostic, Predictive, and Therapeutic Biomarker. BIOLOGY 2021; 10:biology10050417. [PMID: 34066762 PMCID: PMC8151274 DOI: 10.3390/biology10050417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs. They can regulate the expression of their target genes, and thus, their dysregulation significantly contributes to the development of cancer. Growing evidence suggests that miRNAs could be used as cancer biomarkers. As an oncogenic miRNA, the roles of miR-21 as a diagnostic and prognostic biomarker, and its therapeutic applications have been extensively studied. In this review, the roles of miR-21 are first demonstrated via its different molecular networks. Then, a comprehensive review on the potential targets and the current applications as a diagnostic and prognostic cancer biomarker and the therapeutic roles of miR-21 in six different cancers in the digestive system is provided. Lastly, a brief discussion on the challenges for the use of miR-21 as a therapeutic tool for these cancers is added.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- Faculty of Medicine, Duy Tan University, Danang 550000, Vietnam
| | | | - Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Kamrul Hassan Suman
- Department of Fisheries Biology & Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | | | - Humaira Saleem
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada
- Correspondence: ; Tel.: +1-819-571-5310
| |
Collapse
|
9
|
Chlastáková A, Kotál J, Beránková Z, Kaščáková B, Martins LA, Langhansová H, Prudnikova T, Ederová M, Kutá Smatanová I, Kotsyfakis M, Chmelař J. Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro. Front Immunol 2021; 12:626200. [PMID: 33732248 PMCID: PMC7957079 DOI: 10.3389/fimmu.2021.626200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tick saliva is a rich source of pharmacologically and immunologically active molecules. These salivary components are indispensable for successful blood feeding on vertebrate hosts and are believed to facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-3, a protein expressed in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Belonging to the serpin superfamily of protease inhibitors, Iripin-3 strongly inhibited the proteolytic activity of serine proteases kallikrein and matriptase. In an in vitro setup, Iripin-3 was capable of modulating the adaptive immune response as evidenced by reduced survival of mouse splenocytes, impaired proliferation of CD4+ T lymphocytes, suppression of the T helper type 1 immune response, and induction of regulatory T cell differentiation. Apart from altering acquired immunity, Iripin-3 also inhibited the extrinsic blood coagulation pathway and reduced the production of pro-inflammatory cytokine interleukin-6 by lipopolysaccharide-stimulated bone marrow-derived macrophages. In addition to its functional characterization, we present the crystal structure of cleaved Iripin-3 at 1.95 Å resolution. Iripin-3 proved to be a pluripotent salivary serpin with immunomodulatory and anti-hemostatic properties that could facilitate tick feeding via the suppression of host anti-tick defenses. Physiological relevance of Iripin-3 activities observed in vitro needs to be supported by appropriate in vivo experiments.
Collapse
Affiliation(s)
- Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Zuzana Beránková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Barbora Kaščáková
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Larissa Almeida Martins
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Tatyana Prudnikova
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Monika Ederová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Ivana Kutá Smatanová
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
10
|
Yiu WH, Li Y, Lok SWY, Chan KW, Chan LYY, Leung JCK, Lai KN, Tsu JHL, Chao J, Huang XR, Lan HY, Tang SCW. Protective role of kallistatin in renal fibrosis via modulation of Wnt/β-catenin signaling. Clin Sci (Lond) 2021; 135:429-446. [PMID: 33458750 DOI: 10.1042/cs20201161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/31/2022]
Abstract
Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD. It was also positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with serum creatinine level. Unilateral ureteral obstruction (UUO) in animals also led to down-regulation of kallistatin protein in the kidney, and depletion of endogenous kallistatin by antibody injection resulted in aggravated renal fibrosis, which was accompanied by enhanced Wnt/β-catenin activation. Conversely, overexpression of kallistatin attenuated renal inflammation, interstitial fibroblast activation and tubular injury in UUO mice. The protective effect of kallistatin was due to the suppression of TGF-β and β-catenin signaling pathways and subsequent inhibition of epithelial-to-mesenchymal transition (EMT) in cultured tubular cells. In addition, kallistatin could inhibit TGF-β-mediated fibroblast activation via modulation of Wnt4/β-catenin signaling pathway. Therefore, endogenous kallistatin protects against renal fibrosis by modulating Wnt/β-catenin-mediated EMT and fibroblast activation. Down-regulation of kallistatin in the progression of renal fibrosis underlies its potential as a valuable clinical biomarker and therapeutic target in CKD.
Collapse
Affiliation(s)
- Wai Han Yiu
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Ye Li
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Sarah W Y Lok
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kam Wa Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Loretta Y Y Chan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Joseph C K Leung
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - James H L Tsu
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Sydney C W Tang
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
11
|
Wu H, Li R, Zhang Z, Jiang H, Ma H, Yuan C, Sun C, Li Y, Kong B. Kallistatin inhibits tumour progression and platinum resistance in high-grade serous ovarian cancer. J Ovarian Res 2019; 12:125. [PMID: 31884974 PMCID: PMC6935502 DOI: 10.1186/s13048-019-0601-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/10/2019] [Indexed: 11/10/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecologic malignancy. Although there are various subtypes of ovarian cancer, high-grade serous ovarian cancer (HGSOC) accounts for 70% of ovarian cancer deaths. Chemoresistance is the primary reason for the unfavourable prognosis of HGSOC. Kallistatin (KAL), also known as SERPINA4, is part of the serpin family. Kallistatin has been discovered to exert multiple effects on angiogenesis, inflammation and tumour progression. However, the roles and clinical significance of kallistatin in HGSOC remain unclear. Here, we showed that kallistatin was significantly downregulated in HGSOC compared to normal fallopian tube (FT) tissues. Low expression of kallistatin was associated with unfavourable prognosis and platinum resistance in HGSOC. Overexpression of kallistatin significantly inhibited proliferation and metastasis, and enhanced platinum sensitivity and apoptosis in ovarian cancer cells. Collectively, these findings demonstrate that kallistatin serves as a prognostic predictor and provide a potential therapeutic target for HGSOC.
Collapse
Affiliation(s)
- Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Huiyang Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China. .,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Jing Y, Yang D, Fu Y, Wang W, Yang G, Yuan F, Chen H, Ding J, Chen S, Tian H. Neuroprotective Effects of Serpina3k in Traumatic Brain Injury. Front Neurol 2019; 10:1215. [PMID: 31803133 PMCID: PMC6873821 DOI: 10.3389/fneur.2019.01215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability and mortality worldwide, in part resulting from secondary apoptosis of neurons in peri-contusion areas. Serpina3k, a serine protease inhibitor, has been shown to inhibit apoptosis in injury models. In this study, we investigated the anti-apoptotic function of serpina3k in vivo using a mouse model of TBI, as well as the underlying neuroprotective mechanism in vitro using the SH-SY5Y human neuroblastoma cell line. TBI was induced in adult male C57BL/6 mice using controlled cortical impact. Serpina3k protein was intravenously administered at a concentration of 0.5 mg/kg twice daily for up to 14 days. SH-SY5Y cells were subjected to biaxial stretch injury and then treated with different concentrations of serpina3k. We found that endogenous serpina3k protein levels were elevated in peri-contusion areas of the mouse brain following TBI. Serpina3k-treated mice had fewer apoptotic neurons, lower levels of oxidative stress, and showed greater recovery of neurological deficits relative to vehicle-treated mice. Meanwhile, in the SH-SY5Y cell injury model, serpina3k at an optimal concentration (150 nM) inhibited the generation of intracellular reactive oxygen species, abrogated changes of the mitochondrial membrane potential, and reduced the phospho-extracellular regulated protein kinases (p-ERK)/ERK, phospho-P38 (p-P38)/P38, B cell lymphoma (Bcl)-2-associated X protein/Bcl-2, and cleaved caspase-3/caspase-3 ratios, thereby reducing the apoptosis rate. These results demonstrate that serpina3k exerts a neuroprotective function following TBI and thus has therapeutic potential.
Collapse
Affiliation(s)
- Yao Jing
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dianxu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yimu Fu
- Department of Emergency, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoyuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Yuan
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hao Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hengli Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Du X, Hong L, Sun L, Sang H, Qian A, Li W, Zhuang H, Liang H, Song D, Li C, Wang W, Li X. miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J Transl Med 2019; 17:270. [PMID: 31416448 PMCID: PMC6694687 DOI: 10.1186/s12967-019-2015-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/04/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Deep venous thrombosis (DVT) of lower extremities is a common thrombotic disease, occurring either in isolation or as a complication of other diseases or procedures. MiR-21 is one of important microRNAs which play critical role in various cellular function. This study aim to determine the effect of miR-21 on endothelial progenitor cells (EPCs) and its role in predicting prognosis of DVT. METHODS EPCs was isolated from DVT models and control subjects. miR-21 expression was confirmed by RT-PCR. Potential target mRNA was predicted by bioinformatics analysis. EPCs biological functions were examined by CCK-8 and tube formation assay. Besides, miR-21 expression was determined in DVT patients to investigate the correlation between miR-21 expression and prognosis of DVT. Cox proportional hazard regression analyses were also performed to reveal the risk factors associated with prognosis. RESULTS Here, we found miR-21 was downregulated in EPCs of DVT model rats. Increased miR-21 expression promoted proliferation and angiogenesis of EPCs. Moreover, we demonstrated that FASLG was a target of miR-21 and revealed that FASLG knockdown inhibited function of EPCs. Upregulation of miR-21 led to thrombus resolution in a rat model of venous thrombosis. In addition, lower expression level of miR-21 in DVT patients was associated with an increase of recurrent DVT and post thrombotic syndrome (PTS). Furthermore, Cox proportional hazard regression analyses demonstrated miR-21 expression level as an independent predictor of recurrence of DVT. CONCLUSIONS Our data revealed a role of miR-21 in regulating biological function of EPCs and could be a predictor for recurrent DVT or PTS.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Lei Hong
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lili Sun
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.,Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Hongfei Sang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Aiming Qian
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wendong Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Hao Zhuang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Huoqi Liang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Dandan Song
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
14
|
Proteomic characterization of early lung response to breast cancer metastasis in mice. Exp Mol Pathol 2019; 107:129-140. [PMID: 30763573 DOI: 10.1016/j.yexmp.2019.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The tumor-promoting rearrangement of the lungs facilitates the process of cancer cell survival in a foreign microenvironment and enables their protection against immune defense. The study aimed to define the fingerprint of the early rearrangement of the lungs via the proteomic profiling of the lung tissue in the experimental model of tumor metastasis in a murine 4T1 mammary adenocarcinoma. MATERIALS AND METHODS The studies were performed on 7-8-week-old BALB/c female mice. Viable 4T1 cancer cells were orthotopically inoculated into the right mammary fat pad. The experiment was performed in the early phase of the tumor metastasis one and two weeks after cancer cell inoculation. The comparative analysis of protein profiles was carried out with the aid of the two-dimensional difference in gel electrophoresis (2D-DIGE). Proteins, of which expression differed significantly, were identified using nano-liquid chromatography coupled to a high-resolution mass spectrometry (nanoLC/hybrid ion trap- Orbitrap XL Discovery). RESULTS Palpable primary tumors were noted in the 2nd week after cancer cell inoculation. The investigated period preceded the formation of numerous macrometastases in the lungs, however the metastasis-promoting changes were visible very early. Primary tumor-induced inflammation developed in the lungs as early as after the 1st week and progressed during the 2nd week, accompanied by increased concentration of 2-OH-E+, an oxidative stress marker, and imbalance in nitric oxide metabolites, pointing to endothelium dysfunction. The early proteomic changes in the lungs in the 1st week after 4T1 cell inoculation resulted in the reorganization of lung tissue structure [actin, cytoplasmic 1 (Actb), tubulin beta chain (Tubb5), lamin-B1 (Lmnb1), serine protease inhibitor A3K (Serpina3k)] and activation of defense mechanisms [selenium-binding protein 1 (Selenbp1), endoplasmin (Hsp90b1), stress 70 protein, mitochondrial (Hspa9), heat shock protein HSP 90-beta (Hsp90ab1)], but also modifications in metabolic pathways [glucose-6-phosphate 1-dehydrogenase X (G6pdx), ATP synthase subunit beta, mitochondrial (Atp5b), L-lactate dehydrogenase B chain (Ldhb)]. Further development of the solid tumor after the 2nd week following cancer cell inoculation, secretion of prolific tumor-derived factors as well as the presence of the increasing number of circulating cancer cells and extravasation processes further impose reorganization of the lung tissue [Actb, vimentin (Vim), clathrin light chain A (Clta)], altering additional metabolic pathways [annexin A5 (Anxa5), Rho GDP-dissociation inhibitor 2 (Arhgdib), complement 1 Q subcomponent-binding protein, mitochondrial (C1qbp), 14-3-3 protein zeta/delta (Ywhaz), peroxiredoxin-6 (Prdx6), chitinase-like protein 4 (Chi3l4), reticulocalbin-1 (Rcn1), EF-hand domain-containing protein D2 (Efhd2), calumenin (Calu)]. Interestingly, many of differentially expressed proteins were involved in calcium homeostasis (Rcn1, Efhd2, Calu, Actb, Vim, Lmnb1, Clta, Tubb5, Serpina3k, Hsp90b1, Hsp90ab1, Hspa9. G6pdx, Atp5b, Anxa5, Arhgdib, Ywhaz). CONCLUSION The analysis enabled revealing the importance of calcium signaling during the early phase of metastasis development, early cytoskeleton and extracellular matrix reorganization, activation of defense mechanisms and metabolic adaptations. It seems that the tissue response is an interplay between pro- and anti-metastatic mechanisms accompanied by inflammation, oxidative stress and dysfunction of the barrier endothelial cells.
Collapse
|
15
|
Chao J, Li P, Chao L. Kallistatin: double-edged role in angiogenesis, apoptosis and oxidative stress. Biol Chem 2017; 398:1309-1317. [DOI: 10.1515/hsz-2017-0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.
Collapse
|
16
|
Role of Kallistatin Treatment in Aging and Cancer by Modulating miR-34a and miR-21 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5025610. [PMID: 28744338 PMCID: PMC5506461 DOI: 10.1155/2017/5025610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Kallistatin is an endogenous protein that regulates differential signaling pathways and a wide spectrum of biological activities via its two structural elements: an active site and a heparin-binding domain. Kallistatin via its heparin-binding site inhibits vascular inflammation and oxidative stress by antagonizing TNF-α-induced NADPH oxidase activity, NF-κB activation, and inflammatory gene expression in endothelial cells. Moreover, kallistatin via its active site inhibits microRNA-34a (miR-34a) synthesis and stimulates eNOS and SIRT1 expression in endothelial progenitor cells, whereas its heparin-binding site is crucial for blocking TNF-α-induced miR-21 expression and oxidative stress, thus reducing cellular senescence. By downregulating miR-34a and miR-21 expression, kallistatin treatment attenuates oxidative damage and aortic senescence in streptozotocin-induced diabetic mice and extends Caenorhabditis elegans lifespan under stress conditions. Likewise, kallistatin through the heparin-binding site inhibits TGF-β-induced miR-21 synthesis and oxidative stress in endothelial cells, resulting in inhibition of endothelial-mesenchymal transition, a process contributing to fibrosis and cancer. Furthermore, kallistatin's active site is essential for stimulating miR-34a and p53 expression and inhibiting the miR-21-Akt-Bcl-2 signaling pathway, thus inducing apoptosis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in protection against senescence, aging, and cancer development by modulating miR-34a and miR-21 levels and inhibiting oxidative stress.
Collapse
|
17
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
WNT/β-Catenin signaling pathway regulates non-tumorigenesis of human embryonic stem cells co-cultured with human umbilical cord mesenchymal stem cells. Sci Rep 2017; 7:41913. [PMID: 28157212 PMCID: PMC5291217 DOI: 10.1038/srep41913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
Human pluripotent stem cells harbor hope in regenerative medicine, but have limited application in treating clinical diseases due to teratoma formation. Our previous study has indicated that human umbilical cord mesenchymal stem cells (HUCMSC) can be adopted as non-teratogenenic feeders for human embryonic stem cells (hESC). This work describes the mechanism of non-tumorigenesis of that feeder system. In contrast with the mouse embryonic fibroblast (MEF) feeder, HUCMSC down-regulates the WNT/β-catenin/c-myc signaling in hESC. Thus, adding β-catenin antagonist (FH535 or DKK1) down-regulates β-catenin and c-myc expressions, and suppresses tumorigenesis (3/14 vs. 4/4, p = 0.01) in hESC fed with MEF, while adding the β-catenin enhancer (LiCl or 6-bromoindirubin-3′-oxime) up-regulates the expressions, and has a trend (p = 0.056) to promote tumorigenesis (2/7 vs. 0/21) in hESC fed with HUCMSC. Furthermore, FH535 supplement does not alter the pluripotency of hESC when fed with MEF, as indicated by the differentiation capabilities of the three germ layers. Taken together, this investigation concludes that WNT/β-catenin/c-myc pathway causes the tumorigenesis of hESC on MEF feeder, and β-catenin antagonist may be adopted as a tumor suppressor.
Collapse
|
19
|
Zhao GX, Xu LH, Pan H, Lin QR, Huang MY, Cai JY, Ouyang DY, He XH. The BH3-mimetic gossypol and noncytotoxic doses of valproic acid induce apoptosis by suppressing cyclin-A2/Akt/FOXO3a signaling. Oncotarget 2016; 6:38952-66. [PMID: 26517515 PMCID: PMC4770749 DOI: 10.18632/oncotarget.5731] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
Previously we reported that valproic acid (VPA) acts in synergy with GOS to enhance cell death in human DU145 cells. However, the underlying mechanism remains elusive. In this study, we observed that such synergistic cytotoxicity of GOS and VPA could be extended to human A375, HeLa, and PC-3 cancer cells. GOS and VPA co-treatment induced robust apoptosis as evidenced by caspase-8/-9/-3 activation, PARP cleavage, and nuclear fragmentation. GOS and VPA also markedly decreased cyclin A2 protein expression. Owing to the reduction of cyclin A2, Akt signaling was suppressed, leading to dephosphorylation of FOXO3a. Consequently, FOXO3a was activated and the expression of its target genes, including pro-apoptotic FasL and Bim, was upregulated. Supporting this, FOXO3a knockdown attenuated FasL and Bim upregulation and apoptosis induction in GOS+VPA-treated cells. Furthermore, blocking proteasome activity by MG132 prevented the downregulation of cyclin A2, dephosphorylation of Akt and FOXO3a, and induction of apoptosis in cells co-treated with GOS and VPA. In mouse model, GOS and VPA combination significantly inhibited the growth of A375 melanoma xenografts. Our findings indicate that GOS and VPA co-treatment induces apoptosis in human cancer cells by suppressing the cyclin-A2/Akt/FOXO3a pathway.
Collapse
Affiliation(s)
- Gao-Xiang Zhao
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Pan
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiu-Ru Lin
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mei-Yun Huang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ji-Ye Cai
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Affiliation(s)
- Julie Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.).
| | - Grant Bledsoe
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| | - Lee Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| |
Collapse
|
21
|
Li L, Hong HH, Chen SP, Ma CQ, Liu HY, Yao YC. Activation of AMPK/MnSOD signaling mediates anti-apoptotic effect of hepatitis B virus in hepatoma cells. World J Gastroenterol 2016; 22:4345-4353. [PMID: 27158203 PMCID: PMC4853692 DOI: 10.3748/wjg.v22.i17.4345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-apoptotic capability of the hepatitis B virus (HBV) in the HepG2 hepatoma cell line and the underlying mechanisms.
METHODS: Cell viability and apoptosis were measured by MTT assay and flow cytometry, respectively. Targeted knockdown of manganese superoxide dismutase (MnSOD), AMP-activated protein kinase (AMPK) and hepatitis B virus X protein (HBx) genes as well as AMPK agonist AICAR and antagonist compound C were employed to determine the correlations of expression of these genes.
RESULTS: HBV markedly protected the hepatoma cells from growth suppression and cell death in the condition of serum deprivation. A decrease of superoxide anion production accompanied with an increase of MnSOD expression and activity was found in HepG2.215 cells. Moreover, AMPK activation contributed to the up-regulation of MnSOD. HBx protein was identified to induce the expression of AMPK and MnSOD.
CONCLUSION: Our results suggest that HBV suppresses mitochondrial superoxide level and exerts an anti-apoptotic effect by activating AMPK/MnSOD signaling pathway, which may provide a novel pharmacological strategy to prevent HCC.
Collapse
|
22
|
Niu H, Hu Z, Liu H, Hu G, Yang B, Wu S, Li F. Long non-coding RNA AK027294 involves in the process of proliferation, migration, and apoptosis of colorectal cancer cells. Tumour Biol 2016; 37:10097-105. [PMID: 26820130 PMCID: PMC4999473 DOI: 10.1007/s13277-015-4350-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/30/2015] [Indexed: 01/16/2023] Open
Abstract
This study is aimed to investigate the differentially expressed long non-coding RNAs (lncRNAs) in colorectal cancer and its potential biological function. Colorectal adenoma is the precancerous lesions of colorectal cancer, so in this study, we used colorectal adenoma as negative control. The global lncRNA expression profile in colorectal cancer and adenoma was evaluated by bioinformatics. The biological functions and potential mechanism of AK027294 were investigated in HCT116, HCT8, and SW480 colorectal cancer cells. A total of 135 lncRNAs were found to be differentially expressed in colorectal cancer and adenoma tissues. Among them, 71 lncRNAs were up-regulated and 64 lncRNAs were down-regulated. Especially, AK027294 was found to be highly expressed in colorectal cancer tissues compared with colorectal adenoma tissues (fold change is 184.5). Our results indicated that AK027294 down-regulation significantly inhibited colorectal cancer cells proliferation and migration, but promoted cell apoptosis (P < 0.05). The potential mechanism of AK027294 might be associated with the regulation of caspase-3, caspase-8, Bcl-2, MMP12, MMP9, and TWIST. The lncRNA expression profile in colorectal cancer suggests lncRNAs may play important roles in the occurrence and progression of colorectal cancer. AK027294 is highly expressed in colorectal cancer and closely correlates with colorectal cells proliferation, migration, and apoptosis.
Collapse
Affiliation(s)
- Hui Niu
- Academy of Military Medical Sciences, Beijing, 100850, China
| | - Zhaoyang Hu
- Tumor Research Institute, Hangzhou Cancer Hospital, Hangzhou, 310002, China
| | - Hui Liu
- Department of Oncology, Hainan Branch of PLA General Hospital, Sanya, 572013, China.
| | - Guoliang Hu
- Third Healthcare Division, Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, China
| | - Bo Yang
- Department of Oncology, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Shixiu Wu
- Tumor Research Institute, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| | - Fang Li
- Department of Oncology, General Hospital of Chinese PLA, Beijing, 100853, China
| |
Collapse
|
23
|
Li P, Guo Y, Bledsoe G, Yang Z, Chao L, Chao J. Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and microRNA synthesis. Exp Cell Res 2016; 340:305-14. [PMID: 26790955 DOI: 10.1016/j.yexcr.2016.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 01/07/2023]
Abstract
Kallistatin is an endogenous protein that regulates differential signaling pathways and biological functions. Our previous studies showed that kallistatin gene therapy inhibited angiogenesis, tumor growth and metastasis in mice, and kallistatin protein suppressed Wnt-mediated growth, migration and invasion by blocking Wnt/β-catenin signaling pathway in breast cancer cells. In this study, we show that kallistatin reduced cell viability, and increased apoptotic cell death and caspase-3 activity in MDA-MB-231 breast cancer cells. Kallistatin also induced cancer cell autophagy, as evidenced by increased LC3B levels and elevated Atg5 and Beclin-1 expression; however, co-administration of Wnt or PPARγ antagonist GW9662 abolished these effects. Moreover, kallistatin via its heparin-binding site antagonized Wnt3a-induced cancer cell proliferation and increased PPARγ expression. Kallistatin inhibited oncogenic miR-21 synthesis associated with reduced Akt phosphorylation and Bcl-2 synthesis, but increased BAX expression. Kallistatin via PKC-ERK activation reduced miR-203 levels, leading to increased expression of suppressor of cytokine signaling 3 (SOCS3), a tumor suppressor. Conversely, kallistatin stimulated expression of the tumorigenic suppressors miR-34a and p53. Kallistatin's active site is essential for suppressing miR-21 and miR-203, and stimulating miR-34a and SOCS3 expression. This is the first study to demonstrate that kallistatin's heparin-binding site is essential for inhibiting Wnt-mediated effects, and its active site plays a key role in regulating miR-21, miR-203, miR-34a and SOCS3 synthesis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in inducing apoptosis and autophagy in breast cancer cells, thus inhibiting tumor progression by regulation of Wnt/PPARγ signaling, as well as miR-21, miR-203 and miR-34a synthesis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Youming Guo
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Grant Bledsoe
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Zhirong Yang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
24
|
PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL. Apoptosis 2015; 21:60-8. [DOI: 10.1007/s10495-015-1186-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Activation of peroxisome proliferator-activated receptor gamma is crucial for antitumoral effects of 6-iodolactone. Mol Cancer 2015; 14:168. [PMID: 26376791 PMCID: PMC4573306 DOI: 10.1186/s12943-015-0436-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/24/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Molecular iodine (I2) exhibits antiproliferative and apoptotic effects on in vivo and in vitro cancer models. These effects are thought to be mediated by an iodinated arachidonic acid derivative, 6-iodolactone (6IL), and one of the proposed mechanisms is that 6IL activates Peroxisome Proliferator-Activated Receptors type gamma (PPARG). These receptors have been implicated in the inhibition of carcinogenic processes, in addition to their classical role in maintaining lipid and glucose homeostasis. The aim of this study was to determine whether PPARG participates in the 6IL antiproliferative and apoptotic effects on the mammary cancer cell line MCF-7. METHODS The 6IL/PPARG complex was inhibited by the PPARG antagonist GW9662, in both an endogenous and overexpressed (adenoviral vector infection) context, and stable PPARG-knockdown MCF-7 cells (RNA interference, confirmed with hydrolysis probes and Western blot), were used to corroborate the PPARG participation. 6IL effects on proliferation (measured by Trypan Blue exclusion) and apoptosis (phosphatidylserine identification by flow cytometer) were evaluated in conditions of chemical inhibition (GW9662) and silencing (RNA interference). A wound-healing assay was conducted on wild-type and stable PPARG-knockdown MCF-7 cells to evaluate the antimigrational effect of 6IL. Caspase-8 activity was evaluated to determine if the extrinsic pathway is involved in the effects of 6IL and I2 treatment. RESULTS Antiproliferative and pro-apoptotic 6IL effects require the activation of PPARG. In addition, wound-healing assays show that 6IL is able to inhibit MCF-7 cell migration and that PPARG plays a role in this phenomenon. Finally, the data exclude the participation of the extrinsic apoptotic pathway in 6IL- and I2-induced apoptosis. CONCLUSIONS These results support the previously proposed mechanism, in which the I2 effects are mediated by 6IL, and they provide further support for the use of I2 as coadjuvant in breast cancer treatment.
Collapse
|
26
|
Lin WC, Chen CW, Huang YW, Chao L, Chao J, Lin YS, Lin CF. Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis. Sci Rep 2015. [PMID: 26198099 PMCID: PMC4510498 DOI: 10.1038/srep12463] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kallistatin, an endogenous plasma protein, exhibits pleiotropic properties in inhibiting inflammation, oxidative stress and apoptosis, as evidenced in various animal models and cultured cells. Here, we demonstrate that kallistatin levels were positively correlated with the concentration of total protein in bronchoalveolar lavage fluids (BALF) from patients with sepsis-related acute respiratory distress syndrome (ARDS), indicating a compensatory mechanism. Lower ratio of kallistatin to total protein in BALF showed a significant trend toward elevated neutrophil counts (P = 0.002) in BALF and increased mortality (P = 0.046). In lipopolysaccharide (LPS)-treated mice, expression of human kallistatin in lung by gene transfer with human kallistatin-encoding plasmid ameliorated acute lung injury (ALI) and reduced cytokine/chemokine levels in BALF. These mice exhibited attenuated lung epithelial apoptosis and decreased Fas/FasL expression compared to the control mice. Mouse survival was improved by kallistatin gene transfer or recombinant human kallistatin treatment after LPS challenge. In LPS-stimulated A549 human lung epithelial cells, kallistatin attenuated apoptosis, down-regulated Fas/FasL signaling, suppressed intracellular reactive oxygen species (ROS) and inhibited ROS-mediated NF-κB activation and inflammation. Furthermore, LPS-induced apoptosis was blocked by antioxidant N-acetylcysteine or NF-κB inhibitor via down-regulating Fas expression. These findings suggest the therapeutic potential of kallistatin for sepsis-related ALI/ARDS.
Collapse
Affiliation(s)
- Wei-Chieh Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Wen Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Huang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yee-Shin Lin
- 1] Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan [2] Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chiou-Feng Lin
- 1] Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan [2] Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Zhao P, Pan Z, Luo Y, Zhang L, Li X, Zhang G, Zhang Y, Cui R, Sun M, Zhang X. Alantolactone Induces Apoptosis and Cell Cycle Arrest on Lung Squamous Cancer SK-MES-1 Cells. J Biochem Mol Toxicol 2015; 29:199-206. [PMID: 25597476 DOI: 10.1002/jbt.21685] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Peng Zhao
- Department of Anesthesiology; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Zhenxiang Pan
- Department of Anesthesiology; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Yungang Luo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Leilei Zhang
- Department of Anesthesiology; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Xin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Guangxin Zhang
- Department of Thoracic Surgery; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Yifan Zhang
- Department of Thoracic Surgery; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Mei Sun
- Department of Pathology; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| | - Xingyi Zhang
- Department of Thoracic Surgery; The Second Hospital of Jilin University; Changchun Jilin 130041 China
| |
Collapse
|
28
|
Shang C, Guo Y, Hong Y, Liu YH, Xue YX. MiR-21 up-regulation mediates glioblastoma cancer stem cells apoptosis and proliferation by targeting FASLG. Mol Biol Rep 2014; 42:721-7. [PMID: 25394756 DOI: 10.1007/s11033-014-3820-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/08/2014] [Indexed: 11/30/2022]
Abstract
To investigate whether miR-21 can affect the apoptosis and proliferation of glioblastoma cancer stem cells (GSCs) from down-regulating FASLG. The expression of miRNA-21 was detected by quantitative real-time PCR in normal brain tissue and glioblastoma samples, and the changes of miRNA-21 expression between GSCs and non-GSCs were also detected. The apoptosis and proliferation ability of miR-21 in GSCs were analyzed by MTT and flow cytometry assay after anti-miR-21 transfection. For the regulation mechanism analysis of miR-21, TargetScan, PicTar and microRNA were selected to predict some potential target genes of miR-21. The predicted gene was identified to be the direct and specific target gene of miR-21 by luciferase activities assay and western blot. RNA interference technology was used to confirm the apoptosis and proliferation effects of miR-21 were directly induced by FASLG. The expression of miR-21 increased significantly in glioblastoma contrast to normal brain tissue, and miR-21 up-regulated in GSCs remarkably. The proliferation of GSCs cell could be inhibited with high-expression of miR-21 and this effect could be restored by miR-21 knocked down. Mechanism analysis revealed that FASLG was a specific and direct target gene of miR-21. The advanced effects of anti-miR-21 on GSCs apoptosis and proliferation were mediated by expression of silenced FASLG. In summary, aberrantly expressed miR-21 regulates GSCs apoptosis and proliferation partly through directly down-regulating FASLG protein expression in GSCs and this might offer a new potential therapeutic stratagem for glioblastoma.
Collapse
Affiliation(s)
- Chao Shang
- Department of Neurobiology, China Medical University, No. 92 Beier Road, Heping District, Shenyang, 110001, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Wu P, Shi KJ, An JJ, Ci YL, Li F, Hui KY, Yang Y, Xu CM. The LEF1/CYLD axis and cIAPs regulate RIP1 deubiquitination and trigger apoptosis in selenite-treated colorectal cancer cells. Cell Death Dis 2014; 5:e1085. [PMID: 24577083 PMCID: PMC3944232 DOI: 10.1038/cddis.2014.13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 01/11/2023]
Abstract
Inhibitor-of-apoptosis protein (IAP) inhibitors have been reported to synergistically reduce cell viability in combination with a variety of chemotherapeutic drugs via targeted cellular IAP (cIAP) depletion. Here, we found that cIAP silencing sensitised colorectal cancer (CRC) cells to selenite-induced apoptosis. Upon selenite treatment, the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed, leading to the formation of the death-inducing complex and subsequent caspase-8 activation. Although the ubiquitinases cIAP1 and cIAP2 were significantly downregulated after a 24-h selenite treatment, cylindromatosis (CYLD) deubiquitinase protein levels were marginally upregulated. Chromatin immunoprecipitation assays revealed that lymphoid enhancer factor-1 (LEF1) dissociated from the CYLD promoter upon selenite treatment, thus abolishing suppression of CYLD gene expression. We corroborated these findings in a CRC xenograft animal model using immunohistochemistry. Collectively, our findings demonstrate that selenite caused CYLD upregulation via LEF1 and cIAP downregulation, both of which contribute to the degradation of ubiquitin chains on RIP1 and subsequent caspase-8 activation and apoptosis. Importantly, our results identify a LEF1-binding site in the CYLD promoter as a potential target for combinational therapy as an alternative to cIAPs.
Collapse
Affiliation(s)
- P Wu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - K J Shi
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - J J An
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y L Ci
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - F Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - K Y Hui
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Y Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - C M Xu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medicine Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|