1
|
Zhuang X, Xiao F, Chen F, Ni S. HDAC9-mediated deacetylation of CALML6 promotes excessive proliferation of glomerular mesangial cells in IgA nephropathy. Clin Exp Nephrol 2025; 29:734-744. [PMID: 39833449 DOI: 10.1007/s10157-024-02620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN. METHODS Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation. The proliferation of glomerular mesangial cells (GMCs) under the influence of HDAC9 was examined using the 5-ethynyl-2'-deoxyuridine (EdU) assay. Proteins interacting with HDAC9 were predicted utilizing the STRING database. Immunoprecipitation and protein immunoblotting employing anti-acetylated lysine antibodies were conducted to determine the acetylation status of calmodulin-like protein 6 (CALML6). RESULTS Analysis of the GSE141295 dataset revealed a significant upregulation of HDAC9 expression in IgAN and the results of RT-qPCR demonstrated a substantial increase in HDAC9 expression in IgAN patients. Receiver operating characteristic (ROC) analysis indicated that the area under the curve (AUC) value for HDAC9 were 0.845 and Spearman correlation analysis showed that HDAC9 expression was positively correlated with blood levels of blood urea nitrogen (BUN) and serum creatinine (Crea). The EdU cell proliferation assay indicated that HDAC9 facilitated the excessive proliferation of GMCs. The STRING database and recovery experiments identified CALML6 as a downstream effector of HDAC9 in controlling abnormal GMC multiplication. Co-immunoprecipitation assays demonstrated that HDAC9 modulates CALML6 expression through acetylation modification. CONCLUSION HDAC9 is markedly upregulated in IgAN, and it mediates the excessive proliferation of GMCs by regulating the deacetylation of CALML6.
Collapse
Affiliation(s)
- Xingxing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China
| | - Fei Xiao
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China.
| | - Shoudong Ni
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China.
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China.
| |
Collapse
|
2
|
Lin Y, Li Y, Ke C, Jin Y, Lao W, Wu Y, Liu Y, Kong X, Qiao J, Zhai A, Bi C. HDAC4: an emerging target in diabetes mellitus and diabetic complications. Eur J Med Res 2025; 30:429. [PMID: 40448151 PMCID: PMC12123801 DOI: 10.1186/s40001-025-02697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 05/15/2025] [Indexed: 06/02/2025] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease with complex pathogenic mechanisms. Histone deacetylase 4 (HDAC4) is a member of an important family of epigenetic modifications. An increasing amount of research indicates that HDAC4 may control DM by modulating the epigenetic and post-translational expression of numerous transcription factors and taking part in different signaling cascades. In this review, HDAC4 was reported to control the differentiation, growth, and function of pancreatic β-cells. Furthermore, HDAC4 regulates glucose metabolism by targeting GLUT4 and FOXO1 and further modulates insulin signaling pathways through cytoplasmic-nuclear shuttling. Moreover, HDAC4 has also been implicated in the regulation of diabetic nephropathy, diabetic cardiomyopathy, diabetes osteoporosis, diabetic wounds, and diabetic encephalopathy. Therefore, HDAC4 is consider to be a viable therapeutic target for the treatment of DM and its complications. HDAC inhibitors and other targeted inhibitions of HDAC4 provide us with new ideas for developing novel intervention strategies. This article reviews the role of HDAC4 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Yiqi Lin
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Caiying Ke
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Ying Jin
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yiling Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Jie Qiao
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
3
|
Ye K, Li J, Huo Z, Xu J, Dai Q, Qiao K, Cao Y, Yan L, Liu W, Hu Y, Xu L, Su R, Zhu Y, Mi Y. Down-regulating HDAC2-LTA4H pathway ameliorates renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167889. [PMID: 40324735 DOI: 10.1016/j.bbadis.2025.167889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND The activation of histone deacetylase 2 (HDAC2) is the main pathogenesis of acute kidney injury (AKI), one of the leading causes of end-stage kidney disease. However, the regulatory role of HDAC2 upregulation on inflammation in AKI is still unclear. RESULTS In this study, we found that treatment with HDAC2 inhibitor BRD6688 could mitigate the degree of mesangial sclerosis, interstitial infiltration and tubular atrophy, reduce the concentration of blood urea nitrogen (BUN) and serum creatinine (Scr), improve the proliferation, anti-apoptotic, anti-oxidative stress and angiogenesis effects of renal cells. Our results mainly indicated that renal HDAC2 activity was increased by casein kinase 2 (CK2) in renal ischemia reperfusion (I/R) models, and HDAC2 genetic ablation in HREpiC cells suppressed the leukotriene B4 (LTB4) production. Renal leukotriene A4 hydrolase (LTA4H) activity was increased in AKI mice in a HDAC2-dependent manner. LTB4 could induce monocytes to differentiate into M1 macrophages, while BRD6688 could suppress this effect and force the M1 macrophages polarize to M2 macrophages. CONCLUSION Inhibition of HDAC2 activities by BRD6688 could suppress the progression of renal I/R injury through the regulation of LTA4H and macrophage polarization.
Collapse
Affiliation(s)
- Kai Ye
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Jixuan Li
- Department of internal medicine, Tianjin Fourth Hospital, Tianjin 300222, China
| | - Zhixiao Huo
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Jian Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Qinghai Dai
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Kunyan Qiao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Yu Cao
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Lihua Yan
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Wei Liu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Yue Hu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China
| | - Liang Xu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China.
| | - Rui Su
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China.
| | - Yu Zhu
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin 300192, China; Tianjin Institute of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China; Tianjin Integrated Traditional Chinese and Western Medicine Institute of Infectious Diseases, Tianjin 300192, China.
| |
Collapse
|
4
|
Jang J, Bentsen M, Bu J, Chen L, Campos AR, Looso M, Li D. HDAC7 promotes cardiomyocyte proliferation by suppressing myocyte enhancer factor 2. J Mol Cell Biol 2025; 16:mjae044. [PMID: 39394661 PMCID: PMC12059635 DOI: 10.1093/jmcb/mjae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
Postnatal mammalian cardiomyocytes (CMs) rapidly lose proliferative capacity and exit the cell cycle to undergo further differentiation and maturation. Cell cycle activation has been a major strategy to stimulate postnatal CM proliferation, albeit achieving modest effects. One impediment is that postnatal CMs may need to undergo dedifferentiation before proliferation, if not simultaneously. Here, we report that overexpression of Hdac7 in neonatal mouse CMs results in significant CM dedifferentiation and proliferation. Mechanistically, we show that histone deacetylase 7 (HDAC7)-mediated CM proliferation is contingent on dedifferentiation, which is accomplished by suppressing myocyte enhance factor 2 (MEF2). Hdac7 overexpression in CM shifts the chromatin state from binding with MEF2, which favors the transcriptional program toward differentiation, to binding with AP-1, which favors the transcriptional program toward proliferation. Furthermore, we found that HDAC7 interacts with minichromosome maintenance complex components to initiate cell cycle progression. Our findings reveal that HDAC7 promotes CM proliferation by its dual action on CM dedifferentiation and proliferation, uncovering a potential new strategy for heart regeneration/repair.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jin Bu
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexandre Rosa Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
5
|
Shi Y, Wu XD, Liu Y, Shen Y, Qu H, Zhao QS, Leng Y, Huang S. Activation of SIK1 by phanginin A regulates skeletal muscle glucose uptake by phosphorylating HADC4/5/7 and enhancing GLUT4 expression and translocation. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:24. [PMID: 40192973 PMCID: PMC11977057 DOI: 10.1007/s13659-025-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025]
Abstract
Salt-inducible kinase 1 (SIK1) participates in various physiological processes, yet its involvement in regulating skeletal muscle glucose uptake remains unclear. Previously, we showed that phanginin A, a natural compound isolated from Caesalpinia sappan Linn, activated SIK1 to suppress gluconeogenesis in hepatocytes. Here, we aimed to elucidate the effects of SIK1 on skeletal muscle glucose uptake by using phanginin A. The C2C12 myotubes were incubated with phanginin A and then glucose uptake, mRNA levels, membrane GLUT4 content, phosphorylation levels of proteins in SIK1/HDACs and Akt/AS160 signaling pathways were determined. Phanginin A significantly promoted glucose uptake, while the pan-SIK inhibitor or knocking down SIK1 expression abolished the promotion. Further exploration showed that phanginin A enhanced GLUT4 mRNA levels by increasing histone deacetylase (HDAC) 4/5 phosphorylation and MEF2a mRNA and protein level, and knocking down SIK1 blocked these effects. Additionally, phanginin A induced HDAC7 phosphorylation, upregulated the junction plakoglobin (JUP) expression and Akt/AS160 phosphorylation. Knocking down JUP or SIK1 both attenuated the phanginin A-induced Akt/AS160 signaling and glucose uptake, suggesting that activation of SIK1 by phanginin A inactivated HDAC7 to increase JUP expression and Akt/AS160 phosphorylation, led to upregulation of GLUT4 translocation and glucose uptake. In vivo study showed that phanginin A increased phosphorylation levels of SIK1, HDAC4/5/7, Akt/AS160, and gene expression of MEF2a, GLUT4 and JUP, accompanied by elevated membrane GLUT4 and glycogen content in gastrocnemius muscle of C57BL/6 J mice, indicating enhanced glucose utilization. These findings reveal a novel mechanism that SIK1 activation by phanginin A stimulates skeletal muscle glucose uptake through phosphorylating HADC4/5/7 and the subsequent enhancement of GLUT4 expression and translocation.
Collapse
Affiliation(s)
- Yu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing-de Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650500, Yunnan, China
| | - Yanli Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Suling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
6
|
Jin Y, Qi X, Yu X, Cheng X, Chen B, Wu M, Zhang J, Yin H, Lu Y, Zhou Y, Pang A, Lin Y, Jiang L, Shi Q, Geng S, Zhou Y, Yao X, Li L, Duan H, Che J, Cao J, He Q, Dong X. Discovery of a potential hematologic malignancies therapy: Selective and potent HDAC7 PROTAC degrader targeting non-enzymatic function. Acta Pharm Sin B 2025; 15:1659-1679. [PMID: 40370550 PMCID: PMC12069251 DOI: 10.1016/j.apsb.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/10/2024] [Accepted: 12/18/2024] [Indexed: 05/16/2025] Open
Abstract
HDAC7, a member of class IIa HDACs, plays a pivotal regulatory role in tumor, immune, fibrosis, and angiogenesis, rendering it a potential therapeutic target. Nevertheless, due to the high similarity in the enzyme active sites of class IIa HDACs, inhibitors encounter challenges in discerning differences among them. Furthermore, the substitution of key residue in the active pocket of class IIa HDACs renders them pseudo-enzymes, leading to a limited impact of enzymatic inhibitors on their function. In this study, proteolysis targeting chimera (PROTAC) technology was employed to develop HDAC7 drugs. We developed an exceedingly selective HDAC7 PROTAC degrader B14 which showcased superior inhibitory effects on cell proliferation compared to TMP269 in various diffuse large B cell lymphoma (DLBCL) and acute myeloid leukemia (AML) cells. Subsequent investigations unveiled that B14 disrupts BCL6 forming a transcriptional inhibition complex by degrading HDAC7, thereby exerting proliferative inhibition in DLBCL. Our study broadened the understanding of the non-enzymatic functions of HDAC7 and underscored the importance of HDAC7 in the treatment of hematologic malignancies, particularly in DLBCL and AML.
Collapse
Affiliation(s)
- Yuheng Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuxin Qi
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xirui Cheng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Boya Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Mingfei Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingyu Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yin
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihui Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Ao Pang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yushen Lin
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Li Jiang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Qiuqiu Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuangshuang Geng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong 528400, China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Linjie Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiting Duan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ji Cao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou 310020, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310000, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Kodikara IK, Pflum MKH. Scaffolding Activities of Pseudodeacetylase HDAC7. ACS Chem Biol 2025; 20:248-258. [PMID: 39908122 PMCID: PMC12051139 DOI: 10.1021/acschembio.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Histone deacetylase (HDAC) enzymes remove acetyl groups from acetyllysine-containing proteins, including nucleosomal histones to control gene expression. Beyond fundamental cell biology, HDAC activity is linked to various cancers, with many HDAC inhibitors developed as anticancer therapeutics. Among the 11 metal-dependent HDAC proteins, the four class IIa isoforms (HDAC4, 5, 7, and 9) are "pseudodeacetylases" without measurable enzymatic activity due to mutation of a catalytic tyrosine. Deacetylase-related activities of class IIa HDAC proteins are attributed to scaffolding functions, where recruitment of an active HDAC isoform leads to bound substrate deacetylation. Scaffolding of class IIa proteins beyond simple recruitment of an active HDAC is only starting to emerge. This review explores the various scaffolding roles of HDAC7, including recently reported acetylation-mediated reversible scaffolding, which is a form of acetyllysine-binding reader function. Studying the functional roles of HDAC7 will provide molecular insight into normal and pathological conditions, which could facilitate drug design.
Collapse
Affiliation(s)
- Ishadi K.M. Kodikara
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202
| |
Collapse
|
8
|
Lee H, Kim H, Min J, Lee E, Choi DK, Choi J, Seo Y, Lee S, Im CY, Bae GH, Oh Y, Ko E, Jung S, Kim S, Kwon O. HDAC4/5 Inhibitor, LMK-235 Improves Animal Voluntary Movement in MPTP-Induced Parkinson's Disease Model. Pharmacol Res Perspect 2025; 13:e70057. [PMID: 39806528 PMCID: PMC11729409 DOI: 10.1002/prp2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression. Conversely, animals that overexpress VMAT2 show better protection for dopamine neurons. Based on these findings, this study used histone deacetylase inhibitors (HDACi) to increase VMAT2 expression, reduce dopamine-induced oxidative stress, and evaluate the resulting behavioral improvements in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD animal model. LMK-235 not only increased VMAT2 expression at various concentrations in the SH-SY5Y cell line differentiated into dopaminergic cells but also demonstrated effective cytoprotective properties in several toxicity assays. It significantly raised VMAT2 expression in both the striatum and the ventral tegmental area of an MPTP-induced PD model, supporting its role in reversing behavioral abnormalities linked to PD. In addition to these results, coadministration of LMK-235 with L-DOPA, a standard therapy for PD, restored typical behavioral patterns, highlighting the potential of HDACi in alleviating PD symptoms. The expression of VMAT2 induced by LMK-235, an inhibitor of Class IIa histone deacetylases primarily found in the nervous system, aids in sequestering dopamine into vesicles, potentially enhancing cell survival by inhibiting dopamine oxidation. Additionally, upregulation of VMAT2 has been shown to offer effective protection against MPTP-induced toxicity and significantly improve behavioral abnormalities associated with PD. Coadministration with L-DOPA produced the most notable improvement in behavioral outcomes. Altogether, these findings suggest that the overexpression of VMAT2 may offer a promising strategy for developing treatments for PD by mitigating dopaminergic neuron death resulting from dopamine oxidation.
Collapse
Affiliation(s)
| | - Hyun‐Jin Kim
- Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | | | | | - Dong Kyu Choi
- KNU G‐LAMP Project Group, KNU Institute of Basic Science, School of Life Science and Biotechnology, BK21 FOUR KNU Creative BioResearch Group, College of Natural SciencesKyungpook National UniversityDeaguKorea
| | | | - Yohan Seo
- New Drug Development CenterDaeguKorea
| | - Sion Lee
- New Drug Development CenterDaeguKorea
| | | | | | - Yoojin Oh
- New Drug Development CenterDaeguKorea
| | - Eun‐A Ko
- Department of Physiology, School of MedicineJeju National UniversityJejuKorea
| | - Sung‐Cherl Jung
- Department of Physiology, School of MedicineJeju National UniversityJejuKorea
| | | | | |
Collapse
|
9
|
Poon EK, Liu L, Wu KC, Lim J, Sweet MJ, Lohman RJ, Iyer A, Fairlie DP. A novel inhibitor of class IIa histone deacetylases attenuates collagen-induced arthritis. Br J Pharmacol 2024; 181:4804-4821. [PMID: 39223784 DOI: 10.1111/bph.17306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Most inhibitors of histone deacetylases (HDACs) are not selective and are cytotoxic. Some have anti-inflammatory activity in disease models, but cytotoxicity prevents long-term uses in non-fatal diseases. Inhibitors selective for class IIa HDACs are much less cytotoxic and may have applications in management of chronic inflammatory diseases. EXPERIMENTAL APPROACH LL87 is a novel HDAC inhibitor examined here for HDAC enzyme selectivity. It was also investigated in macrophages for cytotoxicity and for inhibition of lipopolysaccharide (LPS)-stimulated cytokine secretion. In a rat model of collagen-induced arthritis, LL87 was investigated for effects on joint inflammation in Dark Agouti rats. Histological, immunohistochemical, micro-computed tomography and molecular analyses characterise developing arthritis and anti-inflammatory efficacy. KEY RESULTS LL87 was significantly more inhibitory against class IIa than class I or IIb HDAC enzymes. In macrophages, LL87 was not cytotoxic and reduced both LPS-induced secretion of pro-inflammatory cytokines, and IL6-induced class IIa HDAC activity. In rats, LL87 attenuated paw swelling and clinical signs of arthritis, reducing collagen loss and histological damage in ankle joints. LL87 decreased immune cell infiltration, especially pro-inflammatory macrophages and osteoclasts, into synovial joints and significantly reduced expression of pro-inflammatory cytokines and tissue-degrading proteases. CONCLUSION AND IMPLICATIONS A novel inhibitor of class IIa HDACs has been shown to have an anti-inflammatory and anti-arthritic profile distinct from current therapies. It is efficacious in reducing macrophage infiltration and joint inflammation in a chronic model of rat arthritis.
Collapse
Affiliation(s)
- Eunice K Poon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Ligong Liu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Rink-Jan Lohman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Shamsi A, Shahwan M, Zuberi A, Altwaijry N. Identification of Potential Inhibitors of Histone Deacetylase 6 Through Virtual Screening and Molecular Dynamics Simulation Approach: Implications in Neurodegenerative Diseases. Pharmaceuticals (Basel) 2024; 17:1536. [PMID: 39598445 PMCID: PMC11597257 DOI: 10.3390/ph17111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Histone deacetylase 6 (HDAC6) plays a crucial role in neurological, inflammatory, and other diseases; thus, it has emerged as an important target for therapeutic intervention. To date, there are no FDA-approved HDAC6-targeting drugs, and most pipeline candidates suffer from poor target engagement, inadequate brain penetration, and low tolerability. There are a few HDAC6 clinical candidates for the treatment of mostly non-CNS cancers as their pharmacokinetic liabilities exclude them from targeting HDAC6-implicated neurological diseases, urging development to address these challenges. They also demonstrate off-target toxicity due to limited selectivity, leading to adverse effects in patients. Selective inhibitors have thus been the focus of development over the past decade, though no selective and potent HDAC6 inhibitor has yet been approved. METHODS This study involved an integrated virtual screening against HDAC6 using the DrugBank database to identify repurposed drugs capable of inhibiting HDAC6 activity. The primary assessment involved the determination of the ability of molecules to bind with HDAC6. Subsequently, interaction analyses and 500 ns molecular dynamics (MD) simulations followed by essential dynamics were carried out to study the conformational flexibility and stability of HDAC6 in the presence of the screened molecules, i.e., penfluridol and pimozide. RESULTS The virtual screening results pinpointed penfluridol and pimozide as potential repurposed drugs against HDAC6 based on their binding efficiency and appropriate drug profiles. The docking results indicate that penfluridol and pimozide share the same binding site as the reference inhibitor with HDAC6. The MD simulation results showed that stable protein-ligand complexes of penfluridol and pimozide with HDAC6 were formed. Additionally, MMPBSA analysis revealed favorable binding free energies for all HDAC6-ligand complexes, confirming the stability of their interactions. CONCLUSIONS The study implies that both penfluridol and pimozide have strong and favorable binding with HDAC6, which supports the idea of repositioning these drugs for the management of neurodegenerative disorders. However, further in-depth studies are needed to explore their efficacy and safety in biological systems.
Collapse
Affiliation(s)
- Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moyad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh 14511, Saudi Arabia;
| |
Collapse
|
11
|
Kadier K, Niu T, Ding B, Chen B, Qi X, Chen D, Cheng X, Fang Y, Zhou J, Zhao W, Liu Z, Yuan Y, Zhou Z, Dong X, Yang B, He Q, Cao J, Jiang L, Zhu CL. PROTAC-Mediated HDAC7 Protein Degradation Unveils Its Deacetylase-Independent Proinflammatory Function in Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309459. [PMID: 39049738 PMCID: PMC11423193 DOI: 10.1002/advs.202309459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/25/2024] [Indexed: 07/27/2024]
Abstract
Class IIa histone deacetylases (Class IIa HDACs) play critical roles in regulating essential cellular metabolism and inflammatory pathways. However, dissecting the specific roles of each class IIa HDAC isoform is hindered by the pan-inhibitory effect of current inhibitors and a lack of tools to probe their functions beyond epigenetic regulation. In this study, a novel PROTAC-based compound B4 is developed, which selectively targets and degrades HDAC7, resulting in the effective attenuation of a specific set of proinflammatory cytokines in both lipopolysaccharide (LPS)-stimulated macrophages and a mouse model. By employing B4 as a molecular probe, evidence is found for a previously explored role of HDAC7 that surpasses its deacetylase function, suggesting broader implications in inflammatory processes. Mechanistic investigations reveal the critical involvement of HDAC7 in the Toll-like receptor 4 (TLR4) signaling pathway by directly interacting with the TNF receptor-associated factor 6 and TGFβ-activated kinase 1 (TRAF6-TAK1) complex, thereby initiating the activation of the downstream mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) signaling cascade and subsequent gene transcription. This study expands the insight into HDAC7's role within intricate inflammatory networks and highlights its therapeutic potential as a novel target for anti-inflammatory treatments.
Collapse
Affiliation(s)
- Kailibinuer Kadier
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tian Niu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Baoli Ding
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Boya Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xuxin Qi
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Danni Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xirui Cheng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yizheng Fang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiahao Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyi Zhao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
| | - Zeqi Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yi Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhan Zhou
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
| | - Xiaowu Dong
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, 310058, P. R. China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, P. R. China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, 310058, P. R. China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ji Cao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, 310058, P. R. China
| | - Li Jiang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
| | - Cheng-Liang Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310058, P. R. China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou, 310058, P. R. China
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
12
|
Glass DR, Mayer-Blackwell K, Ramchurren N, Parks KR, Duran GE, Wright AK, Bastidas Torres AN, Islas L, Kim YH, Fling SP, Khodadoust MS, Newell EW. Multi-omic profiling reveals the endogenous and neoplastic responses to immunotherapies in cutaneous T cell lymphoma. Cell Rep Med 2024; 5:101527. [PMID: 38670099 PMCID: PMC11148639 DOI: 10.1016/j.xcrm.2024.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Cutaneous T cell lymphomas (CTCLs) are skin cancers with poor survival rates and limited treatments. While immunotherapies have shown some efficacy, the immunological consequences of administering immune-activating agents to CTCL patients have not been systematically characterized. We apply a suite of high-dimensional technologies to investigate the local, cellular, and systemic responses in CTCL patients receiving either mono- or combination anti-PD-1 plus interferon-gamma (IFN-γ) therapy. Neoplastic T cells display no evidence of activation after immunotherapy. IFN-γ induces muted endogenous immunological responses, while anti-PD-1 elicits broader changes, including increased abundance of CLA+CD39+ T cells. We develop an unbiased multi-omic profiling approach enabling discovery of immune modules stratifying patients. We identify an enrichment of activated regulatory CLA+CD39+ T cells in non-responders and activated cytotoxic CLA+CD39+ T cells in leukemic patients. Our results provide insights into the effects of immunotherapy in CTCL patients and a generalizable framework for multi-omic analysis of clinical trials.
Collapse
Affiliation(s)
- David R Glass
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Koshlan Mayer-Blackwell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nirasha Ramchurren
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - K Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George E Duran
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna K Wright
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Laura Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Youn H Kim
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven P Fling
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael S Khodadoust
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Chen X, Li C, Zhao J, Liu Y, Zhao Z, Wang Z, Li Y, Wang Y, Guo L, Li L, Chen C, Bai B, Wang S. mPPTMP195 nanoparticles enhance fracture recovery through HDAC4 nuclear translocation inhibition. J Nanobiotechnology 2024; 22:261. [PMID: 38760744 PMCID: PMC11100250 DOI: 10.1186/s12951-024-02436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/19/2024] Open
Abstract
Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.
Collapse
Affiliation(s)
- Xinping Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chengwei Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jiyu Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yunxiang Liu
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhizhong Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Zhenyu Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Yue Li
- Department of Biochemistry, Shanxi Medical University, Basic Medical College, Taiyuan, 030001, PR China
| | - Yunfei Wang
- Department of Surgery, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, 030032, PR China
| | - Lixia Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lu Li
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| | - Bing Bai
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
14
|
Jang J, Accornero F, Li D. Epigenetic determinants and non-myocardial signaling pathways contributing to heart growth and regeneration. Pharmacol Ther 2024; 257:108638. [PMID: 38548089 PMCID: PMC11931646 DOI: 10.1016/j.pharmthera.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Congenital heart disease is the most common birth defect worldwide. Defective cardiac myogenesis is either a major presentation or associated with many types of congenital heart disease. Non-myocardial tissues, including endocardium and epicardium, function as a supporting hub for myocardial growth and maturation during heart development. Recent research findings suggest an emerging role of epigenetics in nonmyocytes supporting myocardial development. Understanding how growth signaling pathways in non-myocardial tissues are regulated by epigenetic factors will likely identify new disease mechanisms for congenital heart diseases and shed lights for novel therapeutic strategies for heart regeneration.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| | - Federica Accornero
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA.
| |
Collapse
|
15
|
Veerapaneni P, Goo B, Ahmadieh S, Shi H, Kim DS, Ogbi M, Cave S, Chouhaita R, Cyriac N, Fulton DJ, Verin AD, Chen W, Lei Y, Lu XY, Kim HW, Weintraub NL. Transgenic Overexpression of HDAC9 Promotes Adipocyte Hypertrophy, Insulin Resistance and Hepatic Steatosis in Aging Mice. Biomolecules 2024; 14:494. [PMID: 38672510 PMCID: PMC11048560 DOI: 10.3390/biom14040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Histone deacetylase (HDAC) 9 is a negative regulator of adipogenic differentiation, which is required for maintenance of healthy adipose tissues. We reported that HDAC9 expression is upregulated in adipose tissues during obesity, in conjunction with impaired adipogenic differentiation, adipocyte hypertrophy, insulin resistance, and hepatic steatosis, all of which were alleviated by global genetic deletion of Hdac9. Here, we developed a novel transgenic (TG) mouse model to test whether overexpression of Hdac9 is sufficient to induce adipocyte hypertrophy, insulin resistance, and hepatic steatosis in the absence of obesity. HDAC9 TG mice gained less body weight than wild-type (WT) mice when fed a standard laboratory diet for up to 40 weeks, which was attributed to reduced fat mass (primarily inguinal adipose tissue). There was no difference in insulin sensitivity or glucose tolerance in 18-week-old WT and HDAC9 TG mice; however, at 40 weeks of age, HDAC9 TG mice exhibited impaired insulin sensitivity and glucose intolerance. Tissue histology demonstrated adipocyte hypertrophy, along with reduced numbers of mature adipocytes and stromovascular cells, in the HDAC9 TG mouse adipose tissue. Moreover, increased lipids were detected in the livers of aging HDAC9 TG mice, as evaluated by oil red O staining. In conclusion, the experimental aging HDAC9 TG mice developed adipocyte hypertrophy, insulin resistance, and hepatic steatosis, independent of obesity. This novel mouse model may be useful in the investigation of the impact of Hdac9 overexpression associated with metabolic and aging-related diseases.
Collapse
Affiliation(s)
- Praneet Veerapaneni
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
| | - Brandee Goo
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
| | - Samah Ahmadieh
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
| | - Hong Shi
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
- Department of Medicine, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - David S. Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
| | - Mourad Ogbi
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
| | - Stephen Cave
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
| | - Ronnie Chouhaita
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
| | - Nicole Cyriac
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
| | - David J. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
- Department of Medicine, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA;
| | - Yun Lei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (Y.L.); (X.-Y.L.)
| | - Xin-Yun Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (Y.L.); (X.-Y.L.)
| | - Ha Won Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
- Department of Medicine, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA; (P.V.); (B.G.); (S.A.); (H.S.); (D.S.K.); (M.O.); (S.C.); (R.C.); (N.C.); (D.J.F.); (A.D.V.); (H.W.K.)
- Department of Medicine, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd, Augusta, GA 30912, USA
| |
Collapse
|
16
|
Burenkova OV, Grigorenko EL. The role of epigenetic mechanisms in the long-term effects of early-life adversity and mother-infant relationship on physiology and behavior of offspring in laboratory rats and mice. Dev Psychobiol 2024; 66:e22479. [PMID: 38470450 PMCID: PMC10959231 DOI: 10.1002/dev.22479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024]
Abstract
Maternal care during the early postnatal period of altricial mammals is a key factor in the survival and adaptation of offspring to environmental conditions. Natural variations in maternal care and experimental manipulations with maternal-child relationships modeling early-life adversity (ELA) in laboratory rats and mice have a strong long-term influence on the physiology and behavior of offspring in rats and mice. This literature review is devoted to the latest research on the role of epigenetic mechanisms in these effects of ELA and mother-infant relationship, with a focus on the regulation of hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor. An important part of this review is dedicated to pharmacological interventions and epigenetic editing as tools for studying the causal role of epigenetic mechanisms in the development of physiological and behavioral profiles. A special section of the manuscript will discuss the translational potential of the discussed research.
Collapse
Affiliation(s)
- Olga V. Burenkova
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena L. Grigorenko
- Department of Psychology, University of Houston, Houston, Texas, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, Texas, USA
- Center for Cognitive Sciences, Sirius University of Science and Technology, Sochi, Russia
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Research Administration, Moscow State University for Psychology and Education, Moscow, Russia
| |
Collapse
|
17
|
Dai S, Guo L, Dey R, Guo M, Zhang X, Bates D, Cayford J, Jiang L, Wei H, Chen Z, Zhang Y, Chen L, Chen Y. Structural insights into the HDAC4-MEF2A-DNA complex and its implication in long-range transcriptional regulation. Nucleic Acids Res 2024; 52:2711-2723. [PMID: 38281192 PMCID: PMC10954479 DOI: 10.1093/nar/gkae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024] Open
Abstract
Class IIa Histone deacetylases (HDACs), including HDAC4, 5, 7 and 9, play key roles in multiple important developmental and differentiation processes. Recent studies have shown that class IIa HDACs exert their transcriptional repressive function by interacting with tissue-specific transcription factors, such as members of the myocyte enhancer factor 2 (MEF2) family of transcription factors. However, the molecular mechanism is not well understood. In this study, we determined the crystal structure of an HDAC4-MEF2A-DNA complex. This complex adopts a dumbbell-shaped overall architecture, with a 2:4:2 stoichiometry of HDAC4, MEF2A and DNA molecules. In the complex, two HDAC4 molecules form a dimer through the interaction of their glutamine-rich domain (GRD) to form the stem of the 'dumbbell'; while two MEF2A dimers and their cognate DNA molecules are bridged by the HDAC4 dimer. Our structural observations were then validated using biochemical and mutagenesis assays. Further cell-based luciferase reporter gene assays revealed that the dimerization of HDAC4 is crucial in its ability to repress the transcriptional activities of MEF2 proteins. Taken together, our findings not only provide the structural basis for the assembly of the HDAC4-MEF2A-DNA complex but also shed light on the molecular mechanism of HDAC4-mediated long-range gene regulation.
Collapse
Affiliation(s)
- Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Liang Guo
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | - Raja Dey
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiangqian Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Darren Bates
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | - Justin Cayford
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
18
|
Zheng G, Li C, Chen X, Deng Z, Xie T, Huo Z, Wei X, Huang Y, Zeng X, Luo Y, Bai J. HDAC9 inhibition reduces skeletal muscle atrophy and enhances regeneration in mice with cigarette smoke-induced COPD. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167023. [PMID: 38218381 DOI: 10.1016/j.bbadis.2024.167023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Cigarette smoke (CS) is the major risk factor for chronic obstructive pulmonary disease (COPD), and sarcopenia is one of the significant comorbidities of COPD. However, the pathogenesis of CS-related deficient skeletal muscle regeneration has yet to be clarified. The impact of CS on myoblast differentiation was examined, and then we determined which HDAC influenced the myogenic process and muscle atrophy in vitro and in vivo. Finally, we further investigated the potential mechanisms via RNA sequencing. Long-term CS exposure activated skeletal muscle primary satellite cells (SCs) while inhibiting differentiation, and defective myogenesis was also observed in C2C12 cells treated with CS extract (CSE). The level of HDAC9 changed in vitro and in vivo in CS exposure models as well as COPD patients, as detected by bioinformatics analysis. Our data showed that CSE impaired myogenic capacity and myotube formation in C2C12 cells via HDAC9. Moreover, inhibition of HDAC9 in mice exposed to CS prevented skeletal muscle dysfunction and promoted SC differentiation. The results of RNA-Seq analysis and verification indicated that HDAC9 knockout improved muscle differentiation in CS-exposed mice, probably by acting on the AKT/mTOR pathway and inhibiting the P53/P21 pathway. More importantly, the serum of HDAC9 KO mice exposed to CS alleviated the differentiation impairment of C2C12 cells caused by serum intervention in CS-exposed mice, and this effect was inhibited by LY294002 (an AKT/mTOR pathway inhibitor). These results suggest that HDAC9 plays an essential role in the defective regeneration induced by chronic exposure to CS.
Collapse
Affiliation(s)
- Guixian Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chao Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, Hunan 410219, China
| | - Xiaoli Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhaohui Deng
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Zhuzhou, Hunan 412000, China
| | - Ting Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zengyu Huo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xinyan Wei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yanbing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xia Zeng
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, China
| | - Yu Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, China
| | - Jing Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
19
|
Liu C, Zheng D, Pu X, Li S. HDAC7: a promising target in cancer. Front Oncol 2024; 14:1327933. [PMID: 38487728 PMCID: PMC10939994 DOI: 10.3389/fonc.2024.1327933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Histones have a vital function as components of nucleosomes, which serve as the fundamental building blocks of chromatin. Histone deacetylases (HDACs), which target histones, suppress gene transcription by compacting chromatin. This implies that HDACs have a strong connection to the suppression of gene transcription. Histone deacetylase 7 (HDAC7), a member of the histone deacetylase family, may participate in multiple cellular pathophysiological processes and activate relevant signaling pathways to facilitate the progression of different tumors by exerting deacetylation. In recent years, HDAC7 has been increasingly studied in the pathogenesis of tumors. Studies that are pertinent have indicated that it has a significant impact on the growth and metastasis of tumors, the formation of the vascular microenvironment, and the emergence of resistance to drugs. Therefore, HDAC7 could potentially function as a potent predictor for tumor prognosis and a promising target for mitigating drug resistance in tumors. This review primarily concentrates on elucidating the structure and function of HDAC7, its involvement in the development of various tumors, and its interplay with relevant signaling pathways. Meanwhile, we briefly discuss the research direction and prospect of HDAC7.
Collapse
Affiliation(s)
| | | | | | - Sijun Li
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
20
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
21
|
Das T, Khatun S, Jha T, Gayen S. HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors. Mini Rev Med Chem 2024; 24:767-784. [PMID: 37818566 DOI: 10.2174/0113895575267301230919165827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
HDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis. This review discusses the role of HDAC9 in different diseases and structure-activity relationships (SARs) of various hydroxamate and non-hydroxamate-based inhibitors. SAR of compounds containing several scaffolds have been discussed in detail. Moreover, structural requirements regarding the various components of HDAC9 inhibitor (cap group, linker and zinc-binding group) has been highlighted in this review. Though, HDAC9 is a promising target for the treatment of a number of diseases including cancer, a very few research are available. Thus, this review may provide useful information for designing novel HDAC9 inhibitors to fight against different diseases in the future.
Collapse
Affiliation(s)
- Totan Das
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Samima Khatun
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
22
|
Lu W, Zhuang G, Guan Y, Li Y, Liu L, Xiao M. Comprehensive analysis of HDAC7 expression and its prognostic value in diffuse large B cell lymphoma: A review. Medicine (Baltimore) 2023; 102:e34577. [PMID: 37960766 PMCID: PMC10637555 DOI: 10.1097/md.0000000000034577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/13/2023] [Indexed: 11/15/2023] Open
Abstract
HDAC7 loss or dysregulation may lead to B cell-based hematological malignancies. This study aimed to explore the prognostic value of HDAC7 in patients with diffuse large B cell lymphoma (DLBCL). RNA sequencing data and clinical information for HDAC7 in DLBCL were collected from the cancer genome atlas database and analyzed using R software. Paired t and Mann-Whitney U tests were used to detect differences between DLBCL and adjacent normal tissues, and the pROC software package was used to generate receiver operator characteristic curves to detect cutoff values for HDAC7. Data from paraffin-embedded specimens from the 2 groups were used for validation of external immunohistochemical staining. The tumor immunity estimation resource and integrated repository portal for tumor immune system interactions databases were used to analyze the correlation between HDAC7 and DLBCL immune cell infiltration. Survival analysis of HDAC7 in patients with DLBCL was performed using the PrognoScan database. Compared with that in normal tissues, HDAC7 mRNA was overexpressed in DLBCL. The HDAC7 immunohistochemical staining scores of stage III and IV DLBCL patients were significantly lower than those of stage I and II DLBCL patients, which was associated with shorter overall survival and disease-specific survival. In addition, the higher expression of HDAC7 may play a role in the lower level of immune infiltration in DLBCL. Downregulation of HDAC7 expression was correlated with poor prognosis and immune infiltration in DLBCL patients.
Collapse
Affiliation(s)
- Weiguo Lu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Youmin Guan
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongcong Li
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liujun Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingfeng Xiao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Tanelian A, Nankova B, Hu F, Sahawneh JD, Sabban EL. Effect of acetate supplementation on traumatic stress-induced behavioral impairments in male rats. Neurobiol Stress 2023; 27:100572. [PMID: 37781563 PMCID: PMC10539924 DOI: 10.1016/j.ynstr.2023.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Gut microbiota and their metabolites have emerged as key players in the pathogenesis of neuropsychiatric disorders. Recently, we demonstrated that animals susceptible to Single Prolonged Stress (SPS) have an overall pro-inflammatory gut microbiota and significantly lower cecal acetate levels than SPS-resilient rats, which correlated inversely with the anxiety index. Here, we investigated whether the microbial metabolite, acetate, could ameliorate SPS-triggered impairments. Male rats were randomly divided into unstressed controls or groups exposed to SPS. The groups received continued oral supplementation of either 150 mM of sodium acetate or 150 mM of sodium chloride-matched water. Two weeks after SPS, a battery of behavioral tests was performed, and the animals were euthanized the following day. While not affecting the unstressed controls, acetate supplementation reduced the impact of SPS on body weight gain and ameliorated SPS-induced anxiety-like behavior and the impairments in social interaction, but not depressive-like behavior. These changes were accompanied by several beneficial effects of acetate supplementation. Acetate alleviated the stress response by reducing urinary epinephrine levels, induced epigenetic modification by decreasing histone deacetylase (HDAC2) gene expression, inhibited neuroinflammation by reducing the density of Iba1+ cells and the gene expression of IL-1ß in the hippocampus, and increased serum β-hydroxybutyrate levels. The findings reveal a causal relationship between oral acetate treatment and mitigation of several SPS-induced behavioral impairments. Mechanistically, it impacted neuronal and metabolic pathways including changes in stress response, epigenetic modifications, neuroinflammation and showed novel link to ketone body production. The study demonstrates the preventive-therapeutic potential of acetate supplementation to alleviate adverse responses to traumatic stress.
Collapse
Affiliation(s)
- Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Bistra Nankova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
- Division of Newborn Medicine, Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Furong Hu
- Division of Newborn Medicine, Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jordan D. Sahawneh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Esther L. Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
- Department of Psychiatry and Behavioral Science, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
24
|
Kumar P, Brooks HL. Sex-specific epigenetic programming in renal fibrosis and inflammation. Am J Physiol Renal Physiol 2023; 325:F578-F594. [PMID: 37560775 PMCID: PMC11550885 DOI: 10.1152/ajprenal.00091.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
The growing prevalence of hypertension, heart disease, diabetes, and obesity along with an aging population is leading to a higher incidence of renal diseases in society. Chronic kidney disease (CKD) is characterized mainly by persistent inflammation, fibrosis, and gradual loss of renal function leading to renal failure. Sex is a known contributor to the differences in incidence and progression of CKD. Epigenetic programming is an essential regulator of renal physiology and is critically involved in the pathophysiology of renal injury and fibrosis. Epigenetic signaling integrates intrinsic and extrinsic signals onto the genome, and various environmental and hormonal stimuli, including sex hormones, which regulate gene expression and downstream cellular responses. The most extensively studied epigenetic alterations that play a critical role in renal damage include histone modifications and DNA methylation. Notably, these epigenetic alterations are reversible, making them candidates for potential therapeutic targets for the treatment of renal diseases. Here, we will summarize the current knowledge on sex differences in epigenetic modulation of renal fibrosis and inflammation and highlight some possible epigenetic therapeutic strategies for CKD treatment.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Heddwen L Brooks
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
25
|
Hao S, Yao Z, Liu Y. Hsa_circ_0000106 Acts as a Tumor Promoter in Pancreatic Cancer by Targeting the MiR-455-3p/HDAC4. Horm Metab Res 2023; 55:722-732. [PMID: 37553012 DOI: 10.1055/a-2125-7018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Circular RNAs (circRNAs) frequently participate in pancreatic cancer (PC) progression. This study focuses on circ_0000106, a novel circRNA, and its potential function in PC development. Circ_00001106, miR-455-3p, and HDAC4 expression levels in PC were determined using qRT-PCR and immunoblotting. RNA immunoprecipitation and dual-luciferase reporter assays were performed to verify their binding interactions. Loss-of-function assays, including CCK-8, colony formation, and transwell assays, were used to estimate the proliferative and migratory properties of PC cells. A nude mouse model was constructed to assess the influence of circ_0000106 on tumor formation in vivo. A pronounced elevation of circ_0000106 and HDAC4 and a reduction of miR-455-3p in PC were observed. Circ_0000106 was prone to binding to miR-455-3p, and miR-455-3p further targeted HDAC4. Functionally, the proliferative and migratory properties of PC cells were dampened by the loss of circ_0000106 or HDAC4 and could be potentiated by miR-455-3p inhibition. Moreover, the knockdown of circ_0000106 delayed tumor growth in vivo. Additionally, the downregulation of miR-455-3p attenuated the repressive effects of circ_0000106 deficiency on PC cell migration and proliferation. Loss of HDAC4 exerted similar mitigative effects on miR-455-3p downregulation-stimulated PC cells. In conclusion, circ_0000106 promotes tumor migration and growth in PC by targeting the miR-455-3p/HDAC4 axis. These results suggest that the circ_0000106/miR-455-3p/HDAC4 network could be regarded as a latent target for PC treatment.
Collapse
Affiliation(s)
- Shunxin Hao
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| | - Zhi Yao
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| | - Yifeng Liu
- Department of General Surgery, Wuhan University of Science and Technology Hospital, Wuhan, China
| |
Collapse
|
26
|
Toro TB, Skripnikova EV, Bornes KE, Zhang K, Watt TJ. Endogenous expression of inactive lysine deacetylases reveals deacetylation-dependent cellular mechanisms. PLoS One 2023; 18:e0291779. [PMID: 37721967 PMCID: PMC10506724 DOI: 10.1371/journal.pone.0291779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Acetylation of lysine residues is an important and common post-translational regulatory mechanism occurring on thousands of non-histone proteins. Lysine deacetylases (KDACs or HDACs) are a family of enzymes responsible for removing acetylation. To identify the biological mechanisms regulated by individual KDACs, we created HT1080 cell lines containing chromosomal point mutations, which endogenously express either KDAC6 or KDAC8 having single inactivated catalytic domain. Engineered HT1080 cells expressing inactive KDA6 or KDAC8 domains remained viable and exhibited enhanced acetylation on known substrate proteins. RNA-seq analysis revealed that many changes in gene expression were observed when KDACs were inactivated, and that these gene sets differed significantly from knockdown and knockout cell lines. Using GO ontology, we identified several critical biological processes associated specifically with catalytic activity and others attributable to non-catalytic interactions. Treatment of wild-type cells with KDAC-specific inhibitors Tubastatin A and PCI-34051 resulted in gene expression changes distinct from those of the engineered cell lines, validating this approach as a tool for evaluating in-cell inhibitor specificity and identifying off-target effects of KDAC inhibitors. Probing the functions of specific KDAC domains using these cell lines is not equivalent to doing so using previously existing methods and provides novel insight into the catalytic functions of individual KDACs by investigating the molecular and cellular changes upon genetic inactivation.
Collapse
Affiliation(s)
- Tasha B. Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Elena V. Skripnikova
- Division of Basic and Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kiara E. Bornes
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kun Zhang
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States of America
- Bioinformatics Core, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Terry J. Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| |
Collapse
|
27
|
Borrmann H, Ismed D, Kliszczak AE, Borrow P, Vasudevan S, Jagannath A, Zhuang X, McKeating JA. Inhibition of salt inducible kinases reduces rhythmic HIV-1 replication and reactivation from latency. J Gen Virol 2023; 104:001877. [PMID: 37529926 PMCID: PMC10721046 DOI: 10.1099/jgv.0.001877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) causes a major burden on global health, and eradication of latent virus infection is one of the biggest challenges in the field. The circadian clock is an endogenous timing system that oscillates with a ~24 h period regulating multiple physiological processes and cellular functions, and we recently reported that the cell intrinsic clock regulates rhythmic HIV-1 replication. Salt inducible kinases (SIK) contribute to circadian regulatory networks, however, there is limited evidence for SIKs regulating HIV-1 infection. Here, we show that pharmacological inhibition of SIKs perturbed the cellular clock and reduced rhythmic HIV-1 replication in circadian synchronised cells. Further, SIK inhibitors or genetic silencing of Sik expression inhibited viral replication in primary cells and in a latency model, respectively. Overall, this study demonstrates a role for salt inducible kinases in regulating HIV-1 replication and latency reactivation, which can provide innovative routes to better understand and target latent HIV-1 infection.
Collapse
Affiliation(s)
- Helene Borrmann
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dini Ismed
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Anna E. Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Guo L, Guo H, Zhang Y, Chen Z, Sun J, Wu G, Wang Y, Zhang Y, Wei X, Li P. Upregulated ribosome pathway plays a key role in HDAC4, improving the survival rate and biofunction of chondrocytes. Bone Joint Res 2023; 12:433-446. [PMID: 37414410 PMCID: PMC10325875 DOI: 10.1302/2046-3758.127.bjr-2022-0279.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Aims To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis. Methods Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in vivo. Results HDAC4 markedly improved the survival rate and biofunction of chondrocytes. RNA-seq analysis of the EP and HDAC4 groups showed that HDAC4 induced 2,668 significant gene expression changes in chondrocytes (1,483 genes upregulated and 1,185 genes downregulated, p < 0.05), and ribosomes exhibited especially large increases. The results were confirmed by RNA-seq of the EP versus mutated HDAC4 groups and the validations in vitro and in vivo. Conclusion The enhanced ribosome pathway plays a key role in the mechanism by which HDAC4 improves the survival rate and biofunction of chondrocytes.
Collapse
Affiliation(s)
- Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hua Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuanyu Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi Chen
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Sun
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Gaige Wu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yunfei Wang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yang Zhang
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
29
|
Manou M, Kanakoglou DS, Loupis T, Vrachnos DM, Theocharis S, Papavassiliou AG, Piperi C. Role of Histone Deacetylases in the Pathogenesis of Salivary Gland Tumors and Therapeutic Targeting Options. Int J Mol Sci 2023; 24:10038. [PMID: 37373187 PMCID: PMC10298439 DOI: 10.3390/ijms241210038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Salivary gland tumors (SGTs) comprise a rare and heterogenous category of benign/malignant neoplasms with progressively increasing knowledge of the molecular mechanisms underpinning their pathogenesis, poor prognosis, and therapeutic treatment efficacy. Emerging data are pointing toward an interplay of genetic and epigenetic factors contributing to their heterogeneity and diverse clinical phenotypes. Post-translational histone modifications such as histone acetylation/deacetylation have been shown to actively participate in the pathobiology of SGTs, further suggesting that histone deacetylating factors (HDACs), selective or pan-HDAC inhibitors (HDACis), might present effective treatment options for these neoplasms. Herein, we describe the molecular and epigenetic mechanisms underlying the pathology of the different types of SGTs, focusing on histone acetylation/deacetylation effects on gene expression as well as the progress of HDACis in SGT therapy and the current status of relevant clinical trials.
Collapse
Affiliation(s)
- Maria Manou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.)
| | - Dimitrios S. Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.)
| | - Theodoros Loupis
- Haematology Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (T.L.); (D.M.V.)
| | - Dimitrios M. Vrachnos
- Haematology Research Laboratory, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (T.L.); (D.M.V.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.K.)
| |
Collapse
|
30
|
Wang Y, Abrol R, Mak JYW, Das Gupta K, Ramnath D, Karunakaran D, Fairlie DP, Sweet MJ. Histone deacetylase 7: a signalling hub controlling development, inflammation, metabolism and disease. FEBS J 2023; 290:2805-2832. [PMID: 35303381 PMCID: PMC10952174 DOI: 10.1111/febs.16437] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) catalyse removal of acetyl groups from lysine residues on both histone and non-histone proteins to control numerous cellular processes. Of the 11 zinc-dependent classical HDACs, HDAC4, 5, 7 and 9 are class IIa HDAC enzymes that regulate cellular and developmental processes through both enzymatic and non-enzymatic mechanisms. Over the last two decades, HDAC7 has been associated with key roles in numerous physiological and pathological processes. Molecular, cellular, in vivo and disease association studies have revealed that HDAC7 acts through multiple mechanisms to control biological processes in immune cells, osteoclasts, muscle, the endothelium and epithelium. This HDAC protein regulates gene expression, cell proliferation, cell differentiation and cell survival and consequently controls development, angiogenesis, immune functions, inflammation and metabolism. This review focuses on the cell biology of HDAC7, including the regulation of its cellular localisation and molecular mechanisms of action, as well as its associative and causal links with cancer and inflammatory, metabolic and fibrotic diseases. We also review the development status of small molecule inhibitors targeting HDAC7 and their potential for intervention in different disease contexts.
Collapse
Affiliation(s)
- Yizhuo Wang
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Rishika Abrol
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
| | - David P. Fairlie
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience (IMB)The University of QueenslandSt. LuciaAustralia
- IMB Centre for Inflammation and Disease ResearchThe University of QueenslandSt. LuciaAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt. LuciaAustralia
| |
Collapse
|
31
|
Zhou Y, Sun S, Ling T, Chen Y, Zhou R, You Q. The role of fibroblast growth factor 18 in cancers: functions and signaling pathways. Front Oncol 2023; 13:1124520. [PMID: 37228502 PMCID: PMC10203589 DOI: 10.3389/fonc.2023.1124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Fibroblast growth factor 18(FGF18) is a member of the fibroblast growth factor family (FGFs). FGF18 is a class of bioactive substances that can conduct biological signals, regulate cell growth, participate in tissue repair and other functions, and can promote the occurrence and development of different types of malignant tumors through various mechanisms. In this review, we focus on recent studies of FGF18 in the diagnosis, treatment, and prognosis of tumors in digestive, reproductive, urinary, respiratory, motor, and pediatric systems. These findings suggest that FGF18 may play an increasingly important role in the clinical evaluation of these malignancies. Overall, FGF18 can function as an important oncogene at different gene and protein levels, and can be used as a potential new therapeutic target and prognostic biomarker for these tumors.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Sizheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzhen Chen
- Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rongzhong Zhou
- Department of Ophthalmology, Zaoyang First People’s Hosipital, Zaoyang, China
| | - Qiang You
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Barbero G, de Sousa Serro MG, Perez Lujan C, Vitullo AD, González CR, González B. Transcriptome profiling of histone writers/erasers enzymes across spermatogenesis, mature sperm and pre-cleavage embryo: Implications in paternal epigenome transitions and inheritance mechanisms. Front Cell Dev Biol 2023; 11:1086573. [PMID: 36776561 PMCID: PMC9911891 DOI: 10.3389/fcell.2023.1086573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/28/2023] Open
Abstract
Accumulating evidence points out that sperm carry epigenetic instructions to embryo in the form of retained histones marks and RNA cargo that can transmit metabolic and behavioral traits to offspring. However, the mechanisms behind epigenetic inheritance of paternal environment are still poorly understood. Here, we curated male germ cells RNA-seq data and analyzed the expression profile of all known histone lysine writers and erasers enzymes across spermatogenesis, unraveling the developmental windows at which they are upregulated, and the specific activity related to canonical and non-canonical histone marks deposition and removal. We also characterized the epigenetic enzymes signature in the mature sperm RNA cargo, showing most of them positive translation at pre-cleavage zygote, suggesting that paternally-derived enzymes mRNA cooperate with maternal factors to embryo chromatin assembly. Our study shows several histone modifying enzymes not described yet in spermatogenesis and even more, important mechanistic aspects behind transgenerational epigenetics. Epigenetic enzymes not only can respond to environmental stressors, but could function as vectors of epigenetic information and participate in chromatin organization during maternal-to-zygote transition.
Collapse
Affiliation(s)
- Gastón Barbero
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano G. de Sousa Serro
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Camila Perez Lujan
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alfredo D. Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Candela R. González
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Betina González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires–Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina,*Correspondence: Betina González,
| |
Collapse
|
33
|
Zhang Y, Ding P, Wang Y, Shao C, Guo K, Yang H, Feng Y, Ning J, Pan M, Wang P, Yan X, Ma Z, Han J. HDAC7/c-Myc signaling pathway promotes the proliferation and metastasis of choroidal melanoma cells. Cell Death Dis 2023; 14:38. [PMID: 36653340 PMCID: PMC9849404 DOI: 10.1038/s41419-022-05522-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Choroidal melanoma (CM) is the most common type of diagnosed uveal melanoma (UM), which is prone to metastasis and exhibits a poor prognosis. The molecular mechanisms underlying CM progression need further elucidation to research effective therapeutic strategies. Histone deacetylase 7 (HDAC7) is very important in regulating cancer progression, but the significance and effect of HDAC7 on CM progression are unclear. In the present study, we found that HDAC7 is overexpressed in CM tissues versus normal tissues. We built HDAC7 overexpressing CM cell lines to study the functions of HDAC7 in CM progression and verified that upregulation of HDAC7 promoted the proliferation and metastasis of CM cells, while pharmacological inhibition of HDAC7 suppressed both the proliferation and metastasis of CM cells. Furthermore, we found that the aforementioned cancer-promoting effect of HDAC7 was mediated by c-Myc. Targeted inhibition of c-Myc inhibited CM progression by interfering with the HDAC7/c-Myc signaling pathway. Our study highlighted the function of targeting the HDAC7/c-Myc signaling pathway to intervene in the pathological process of CM, which provides potential therapeutic strategies for CM treatment.
Collapse
Affiliation(s)
- Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
- Xi'an Medical University, Xi'an, 710086, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
- Xi'an Medical University, Xi'an, 710086, China
| | - Yingtong Feng
- Department of Cardiothoracic Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University/The 71th Group Army Hospital of PLA, 236 Tongshan Road, Xuzhou, 221004, China
| | - Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
- Xi'an Medical University, Xi'an, 710086, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Ping Wang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, Beijing, 100853, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
34
|
Kabir F, Atkinson R, Cook AL, Phipps AJ, King AE. The role of altered protein acetylation in neurodegenerative disease. Front Aging Neurosci 2023; 14:1025473. [PMID: 36688174 PMCID: PMC9845957 DOI: 10.3389/fnagi.2022.1025473] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Acetylation is a key post-translational modification (PTM) involved in the regulation of both histone and non-histone proteins. It controls cellular processes such as DNA transcription, RNA modifications, proteostasis, aging, autophagy, regulation of cytoskeletal structures, and metabolism. Acetylation is essential to maintain neuronal plasticity and therefore essential for memory and learning. Homeostasis of acetylation is maintained through the activities of histone acetyltransferases (HAT) and histone deacetylase (HDAC) enzymes, with alterations to these tightly regulated processes reported in several neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Both hyperacetylation and hypoacetylation can impair neuronal physiological homeostasis and increase the accumulation of pathophysiological proteins such as tau, α-synuclein, and Huntingtin protein implicated in AD, PD, and HD, respectively. Additionally, dysregulation of acetylation is linked to impaired axonal transport, a key pathological mechanism in ALS. This review article will discuss the physiological roles of protein acetylation and examine the current literature that describes altered protein acetylation in neurodegenerative disorders.
Collapse
|
35
|
Dsilva P, Pai P, Shetty MG, Babitha KS. The role of histone deacetylases in embryonic development. Mol Reprod Dev 2023; 90:14-26. [PMID: 36534913 DOI: 10.1002/mrd.23659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/16/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The basic units of chromatin are nucleosomes, that are made up of DNA wrapped around histone cores. Histone lysine residue is a common location for posttranslational modifications, with acetylation being the second most prevalent. Histone acetyltransferases (HATs/KATs) and histone deacetylases (HDACs/KDACs) regulate histone acetylation, which is important in gene expression control. HDACs/KDACs regulate gene expressions through the repression of the transcription machinery. HDAC/KDAC isoforms play a major role during various stages of embryo development and neurogenesis. In specific, class I and II HDACs/KDACs are involved in cardiac muscle differentiation and development. An insight into different pathways and genes associated with embryonic development, the effect of HDAC/KDAC activity during the embryonic stem cell differentiation, preimplantation, embryo development, gastrulation, and the role of different HDAC/KDAC inhibitors during the process of embryogenesis is summarized in the present review article.
Collapse
Affiliation(s)
- Priyanka Dsilva
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kampa S Babitha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
36
|
Zheng Z, Yan G, Li X, Fei Y, Sun L, Yu H, Niu Y, Gao W, Zhong Q, Yan X. Lysine crotonylation regulates leucine-deprivation-induced autophagy by a 14-3-3ε-PPM1B axis. Cell Rep 2022; 41:111850. [PMID: 36543144 DOI: 10.1016/j.celrep.2022.111850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/18/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Lysine crotonylation as a protein post-translational modification regulates diverse cellular processes and functions. However, the role of crotonylation in nutrient signaling pathways remains unclear. Here, we find a positive correlation between global crotonylation levels and leucine-deprivation-induced autophagy. Crotonylome profiling identifies many crotonylated proteins regulated by leucine deprivation. Bioinformatics analysis dominates 14-3-3 proteins in leucine-mediated crotonylome. Expression of 14-3-3ε crotonylation-deficient mutant significantly inhibits leucine-deprivation-induced autophagy. Molecular dynamics analysis shows that crotonylation increases molecular instability and disrupts the 14-3-3ε amphipathic pocket through which 14-3-3ε interacts with binding partners. Leucine-deprivation-induced 14-3-3ε crotonylation leads to the release of protein phosphatase 1B (PPM1B) from 14-3-3ε interaction. Active PPM1B dephosphorylates ULK1 and subsequently initiates autophagy. We further find that 14-3-3ε crotonylation is regulated by HDAC7. Taken together, our findings demonstrate that the 14-3-3ε-PPM1B axis regulated by crotonylation may play a vital role in leucine-deprivation-induced autophagy.
Collapse
Affiliation(s)
- Zilong Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Guokai Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Xiuzhi Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Yuke Fei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Lingling Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Haonan Yu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Yaorong Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Weihua Gao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China; Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China.
| |
Collapse
|
37
|
Perrine SA, Alsharif WF, Harutyunyan A, Kamal S, Viola NT, Gelovani JG. Low- and high-cocaine intake affects the spatial and temporal dynamics of class IIa HDAC expression-activity in the nucleus accumbens and hippocampus of male rats as measured by [18F]TFAHA PET/CT neuroimaging. ADDICTION NEUROSCIENCE 2022; 4:100046. [PMID: 36540409 PMCID: PMC9762729 DOI: 10.1016/j.addicn.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Repeated cocaine alters neuronal function in the nucleus accumbens (NAc), a brain region involved in cocaine taking, and in hippocampus (HC), known for contextual and associative learning. [18F]TFAHA is a histone deacetylase (HDAC) class IIa-specific radiotracer for positron emission tomography (PET)-imaging developed by our group to study epigenetic mechanisms. Here, [18F]TFAHA was used to conduct PET-imaging coupled with computed tomography (CT) of rat brains at baseline and after repeated cocaine intravenous self-administration (cocaine-IVSA) in low-intake versus high-intake cocaine groups. A 3 h-access FR1-schedule of cocaine-IVSA (0.5 mg/kg/infusion) for 12 continuous days was used with male Sprague Dawley rats following jugular vein catheterization. PET/CT neuroimaging with [18F]TFAHA was acquired in a dynamic mode over 40 min post-radiotracer administration at baseline and on day 12 of cocaine-IVSA using a longitudinal, repeated design. This study shows that high-cocaine intake significantly decreases class IIa HDAC expression-activity in NAc, while low-cocaine intake significantly decreases expression-activity in HC in male rats. These findings suggest the individual rats with low-cocaine intake had epigenetic changes in HC, where drug-associative changes occur. Alternatively, individuals with high-cocaine intake had robust epigenetic changes in NAc, where rewared-related behaviors originate. These findings are the first longitudinal data obtained in vivo to implicate class IIa HDACs in the persistent behavioral effects of cocaine. Furthermore, our results are consistent with published research implicating class IIa HDACs in cocaine-induced brain changes and studies suggesting a relationship between an individual's drug-taking behavior and regional pattern of epigenetic changes in the brain.
Collapse
Affiliation(s)
- Shane A. Perrine
- Psychiatry and Behavioral Neurosciences, Wayne State University, 6135 Woodward Avenue, Suite 3119, Detroit, MI, USA
- Research Services, John D. Dingell VAMC, Detroit, MI, USA
| | | | - Arman Harutyunyan
- Psychiatry and Behavioral Neurosciences, Wayne State University, 6135 Woodward Avenue, Suite 3119, Detroit, MI, USA
| | - Swatabdi Kamal
- Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Nerissa T. Viola
- Oncology, Wayne State University, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Juri G. Gelovani
- Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
38
|
Chen S, Wang M, Jian R, Li H, Liu G, Zhou C, Xiong Y, Wang W. Circ_HIPK3 Inhibits H 2O 2-Induced Lens Epithelial Cell Injury in Age-Related Cataract Depending on the Regulation of miR-495-3p/HDAC4 Pathway. Biochem Genet 2022; 61:565-577. [PMID: 36002666 DOI: 10.1007/s10528-022-10266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Age-related cataract (ARC) is one of the most common chronic diseases. Circular RNA (circ)_HIPK3 is reported to be involved in the advancement of ARC, but its molecular mechanism has not been clarified. Our study provides a new perspective on the clinical treatment of ARC. Our data showed that the expression levels of circ_HIPK3 and histone deacetylase 4 (HDAC4) were downregulated, while microRNA (miR)-495-3p level was increased in ARC tissues and H2O2-induced SRA01/04 cells. Functional experiments showed that circ_HIPK3 and HDAC4 overexpression could inhibit H2O2-induced lens epithelial cell apoptosis and fibrosis. In terms of mechanism, we found that circ_HIPK3 could sponge miR-495-3p, miR-495-3p could target HDAC4. Besides, we confirmed that circ_HIPK3 sponged miR-495-3p to positively regulate HDAC4. Additionally, miR-495-3p overexpression or HDAC4 knockdown reversed the inhibition effect of circ_HIPK3 on H2O2-induced lens epithelial cell injury. In conclusion, our data showed that circ_HIPK3 suppressed H2O2-induced lens epithelial cell injury by regulating miR-495-3p/HDAC4 axis.
Collapse
Affiliation(s)
- Sihui Chen
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Minghong Wang
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Rui Jian
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Hui Li
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Guoli Liu
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Cuiyun Zhou
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Yan Xiong
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China
| | - Wenqian Wang
- Department of Ophthalmology, Jingmen No.1 People's Hospital, No. 168, Xiangshan Avenue, Duodao District, Jingmen, 448000, China.
| |
Collapse
|
39
|
Jaguva Vasudevan AA, Hoffmann MJ, Poschmann G, Petzsch P, Wiek C, Stühler K, Köhrer K, Schulz WA, Niegisch G. Proteomic and transcriptomic profiles of human urothelial cancer cells with histone deacetylase 5 overexpression. Sci Data 2022; 9:240. [PMID: 35624179 PMCID: PMC9142574 DOI: 10.1038/s41597-022-01319-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
Urothelial carcinoma (UC) of the urinary bladder is a prevalent cancer worldwide. Because histone deacetylases (HDACs) are important factors in cancer, targeting these epigenetic regulators is considered an attractive strategy to develop novel anticancer drugs. Whereas HDAC1 and HDAC2 promote UC, HDAC5 is often downregulated and only weakly expressed in UC cell lines, suggesting a tumor-suppressive function. We studied the effect of stable lentiviral-mediated HDAC5 overexpression in four UC cell lines with different phenotypes (RT112, VM-Cub-1, SW1710, and UM-UC-3, each with vector controls). In particular, comprehensive proteomics and RNA-seq transcriptomics analyses were performed on the four cell line pairs, which are described here. For comparison, the immortalized benign urothelial cell line HBLAK was included. These datasets will be a useful resource for researchers studying UC, and especially the influence of HDAC5 on epithelial-mesenchymal transition (EMT). Moreover, these data will inform studies on HDAC5 as a less studied member of the HDAC family in other cell types and diseases, especially fibrosis.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany. .,Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, 27709, USA.
| | - Michèle J Hoffmann
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Patrick Petzsch
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.,Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang A Schulz
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Günter Niegisch
- Department of Urology, University Hospital and Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
40
|
WNT5A promotes the metastasis of esophageal squamous cell carcinoma by activating the HDAC7/SNAIL signaling pathway. Cell Death Dis 2022; 13:480. [PMID: 35595735 PMCID: PMC9122958 DOI: 10.1038/s41419-022-04901-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide, with high incidence and mortality rates and low survival rates. However, the detailed molecular mechanism of ESCC progression remains unclear. Here, we first showed significantly higher WNT5A and SNAIL expression in ESCC samples than in corresponding paracancerous samples. High WNT5A and SNAIL expression levels correlated positively with lymphatic metastasis and poor prognosis for patients with ESCC based on immunohistochemical (IHC) staining of 145 paired ESCC samples. Spearman's correlation analyses confirmed the strong positive correlation between WNT5A and SNAIL expression, and patients with ESCC presenting coexpression of WNT5A and SNAIL had the worst prognosis. Then, we verified that the upregulation of WNT5A promoted ESCC cell metastasis in vivo and in vitro, suggesting that WNT5A might be a promising therapeutic target for the prevention of ESCC. Furthermore, WNT5A overexpression induced the epithelial-mesenchymal transition via histone deacetylase 7 (HDAC7) upregulation, and HDAC7 silencing significantly reversed WNT5A-induced SNAIL upregulation and ESCC cell metastasis. In addition, we used HDAC7 inhibitors (SAHA and TMP269) to further confirm that HDAC7 participates in WNT5A-mediated carcinogenesis. Based on these results, HDAC7 is involved in WNT5A-mediated ESCC progression, and approaches targeting WNT5A and HDAC7 might be potential therapeutic strategies for ESCC.
Collapse
|
41
|
Effects of Epigenetic Modification of PGC-1α by a Chemical Chaperon on Mitochondria Biogenesis and Visual Function in Retinitis Pigmentosa. Cells 2022; 11:cells11091497. [PMID: 35563803 PMCID: PMC9099608 DOI: 10.3390/cells11091497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary blinding disease characterized by gradual photoreceptor death, which lacks a definitive treatment. Here, we demonstrated the effect of 4-phenylbutyric acid (PBA), a chemical chaperon that can suppress endoplasmic reticulum (ER) stress, in P23H mutant rhodopsin knock-in RP models. In the RP models, constant PBA treatment led to the retention of a greater number of photoreceptors, preserving the inner segment (IS), a mitochondrial- and ER-rich part of the photoreceptors. Electroretinography showed that PBA treatment preserved photoreceptor function. At the early point, ER-associated degradation markers, xbp1s, vcp, and derl1, mitochondrial kinetic-related markers, fis1, lc3, and mfn1 and mfn2, as well as key mitochondrial regulators, pgc-1α and tfam, were upregulated in the retina of the models treated with PBA. In vitro analyses showed that PBA upregulated pgc-1α and tfam transcription, leading to an increase in the mitochondrial membrane potential, cytochrome c oxidase activity, and ATP levels. Histone acetylation of the PGC-1α promoter was increased by PBA, indicating that PBA affected the mitochondrial condition through epigenetic changes. Our findings constituted proof of concept for the treatment of ER stress-related RP using PBA and revealed PBA’s neuroprotective effects, paving the way for its future clinical application.
Collapse
|
42
|
Xu L, Xie H, Hu S, Zhao X, Han M, Liu Q, Feng P, Wang W, Li C. HDAC3 inhibition improves urinary-concentrating defect in hypokalaemia by promoting AQP2 transcription. Acta Physiol (Oxf) 2022; 234:e13802. [PMID: 35178888 DOI: 10.1111/apha.13802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
AIM This study investigated whether enhanced histone acetylation, achieved by inhibiting histone deacetylases (HDACs), could prevent decreased aquaporin-2 (AQP2) expression during hypokalaemia. METHODS Male Wistar rats were fed a potassium-free diet with or without 4-phenylbutyric acid (4-PBA) or the selective HDAC3 inhibitor RGFP966 for 4 days. Primary renal inner medullary collecting duct (IMCD) cells and immortalized mouse cortical collecting duct (mpkCCD) cells were cultured in potassium-deprivation medium with or without HDAC inhibitors. RESULTS 4-PBA increased the levels of AQP2 mRNA and protein in the kidney inner medullae in hypokalaemic (HK) rats, which was associated with decreased urine output and increased urinary osmolality. The level of acetylated H3K27 (H3K27ac) protein was decreased in the inner medullae of HK rat kidneys; this decrease was mitigated by 4-PBA. The H3K27ac levels were decreased in IMCD and mpkCCD cells cultured in potassium-deprivation medium. Decreased H3K27ac in the Aqp2 promoter region was associated with reduced Aqp2 mRNA levels. HDAC3 protein expression was upregulated in mpkCCD and IMCD cells in response to potassium deprivation, and the binding of HDAC3 to the Aqp2 promoter was also increased. RGFP966 increased the levels of H3K27ac and AQP2 proteins and enhanced binding between H3K27ac and AQP2 in mpkCCD cells. Furthermore, RGFP966 reversed the hypokalaemia-induced downregulation of AQP2 and H3K27ac and alleviated polyuria in rats. RGFP966 increased interstitial osmolality in the kidney inner medullae of HK rats but did not affect urinary cAMP levels. CONCLUSION HDAC inhibitors prevented the downregulation of AQP2 induced by potassium deprivation, probably by enhancing H3K27 acetylation.
Collapse
Affiliation(s)
- Long Xu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Haixia Xie
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Shan Hu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- The School of Basic Medicine Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaoduo Zhao
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Pathophysiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Mengke Han
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Qiaojuan Liu
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| | - Pinning Feng
- Department of Clinical Laboratory The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Weidong Wang
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Pathophysiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Nephrology The Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Chunling Li
- Institute of Hypertension Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
- Department of Physiology Zhongshan School of Medicine Sun Yat‐sen University Guangzhou China
| |
Collapse
|
43
|
Abstract
In mammalian cells, genomic DNA is packaged with histone proteins and condensed into chromatin. To gain access to the DNA, chromatin remodelling is required that is enhanced through histone post-translational modifications, which subsequently stimulate processes including DNA repair and transcription. Histone acetylation is one of the most well understood modifications and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). These enzymes play critical roles in normal cellular functioning, and the dysregulation of HDAC expression in particular has been linked with the development of a number of different cancer types. Conversely, tumour cell killing following radiotherapy is triggered through DNA damage and HDACs can help co-ordinate the cellular DNA damage response which promotes radioresistance. Consequently, HDAC inhibitors have been investigated as potential radiosensitizers in vitro and in vivo to improve the efficacy or radiotherapy in specific tumour types. In this review, we provide an up-to-date summary of HDACs and their cellular functions, including in DNA damage repair. We also review evidence demonstrating that HDAC inhibitors can effectively enhance tumour radiosensitisation, and which therefore show potential for translation into the clinic for cancer patient benefit.
Collapse
|
44
|
Guo K, Ma Z, Zhang Y, Han L, Shao C, Feng Y, Gao F, Di S, Zhang Z, Zhang J, Tabbò F, Ekman S, Suda K, Cappuzzo F, Han J, Li X, Yan X. HDAC7 promotes NSCLC proliferation and metastasis via stabilization by deubiquitinase USP10 and activation of β-catenin-FGF18 pathway. J Exp Clin Cancer Res 2022; 41:91. [PMID: 35277183 PMCID: PMC8915541 DOI: 10.1186/s13046-022-02266-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Histone deacetylases (HDACs) play crucial roles in cancers, but the role and mechanism of HDAC7 in NSCLC have not been fully understood. Methods A total of 319 patients with non-small cell lung cancer (NSCLC) who underwent surgery were enrolled in this study. Immunohistochemistry and Kaplan–Meier survival analysis were performed to investigate the relationship between HDAC7, fibroblast growth factor 18 (FGF18) expression, and clinicopathologic characteristics. Cell functional experiments were implemented both in vivo and in vitro to investigate the effects on NSCLC cell proliferation and metastasis. Recombinant lentivirus–meditated in vivo gene overexpression or knockdown, real-time polymerase chain reaction (PCR), western blotting, and coimmunoprecipitation assays were applied to clarify the underlying molecular mechanism of HDAC7 in promoting NSCLC progression. Results The elevated expression of HDAC7 or FGF18 was positively correlated with poor prognosis, tumor–node–metastasis (TNM) stage, and tumor differentiation of NSCLC patients. NSCLC patients with co-expressed HDAC7 and FGF18 suffered the worst prognosis. HDAC7 overexpression promoted NSCLC proliferation and metastasis by upregulating FGF18. Conversely, overexpression of FGF18 reversed the attenuated ability in tumor growth and metastasis mediated by downregulating HDAC7. In terms of mechanism, our results suggested that the interaction of HDAC7 with β-catenin caused decreased β-catenin acetylation level at Lys49 and decreased phosphorylation level at Ser45. As a consequence, the HDAC7-mediated posttranslational modification of β-catenin facilitated nuclear transfer and activated FGF18 expression via binding to TCF4. Furthermore, deubiquitinase USP10 interacted with and stabilized HDAC7. The suppression of USP10 significantly accelerated the degradation of HDAC7 and weakened NSCLC growth and migration. Conclusions Our findings reveal that HDAC7 promotes NSCLC progression through being stabilized by USP10 and activating the β-catenin-FGF18 pathway. Targeting this novel pathway may be a promising strategy for further developments in NSCLC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02266-9.
Collapse
Affiliation(s)
- Kai Guo
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China.,Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an , 710038, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, 8 Dongdajie Road, Beijing, 100071, China
| | - Yujiao Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, 710003, China
| | - Lu Han
- Department of Ultrasound, Xi'an Central Hospital, Xi'an Jiaotong University, 161 Xiwu Road, Xi'an, 710003, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an , 710038, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an , 710038, China
| | - Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Shouyin Di
- Department of Thoracic Surgery, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Road, 100048, Beijing, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an , 710038, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an , 710038, China
| | - Fabrizio Tabbò
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, TO, Italy
| | - Simon Ekman
- Thoracic Oncology Center, Department of Oncology-Pathology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, 589-8511, Japan
| | - Federico Cappuzzo
- Istituto Nazionale Tumori IRCCS "Regina Elena", via Elio Chianesi 53, 00144, Roma, Italy
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an , 710038, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an , 710038, China.
| |
Collapse
|
45
|
Gomez-Sanchez JA, Patel N, Martirena F, Fazal SV, Mutschler C, Cabedo H. Emerging Role of HDACs in Regeneration and Ageing in the Peripheral Nervous System: Repair Schwann Cells as Pivotal Targets. Int J Mol Sci 2022; 23:ijms23062996. [PMID: 35328416 PMCID: PMC8951080 DOI: 10.3390/ijms23062996] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The peripheral nervous system (PNS) has a remarkable regenerative capacity in comparison to the central nervous system (CNS), a phenomenon that is impaired during ageing. The ability of PNS axons to regenerate after injury is due to Schwann cells (SC) being reprogrammed into a repair phenotype called Repair Schwann cells. These repair SCs are crucial for supporting axonal growth after injury, myelin degradation in a process known as myelinophagy, neurotropic factor secretion, and axonal growth guidance through the formation of Büngner bands. After regeneration, repair SCs can remyelinate newly regenerated axons and support nonmyelinated axons. Increasing evidence points to an epigenetic component in the regulation of repair SC gene expression changes, which is necessary for SC reprogramming and regeneration. One of these epigenetic regulations is histone acetylation by histone acetyl transferases (HATs) or histone deacetylation by histone deacetylases (HDACs). In this review, we have focused particularly on three HDAC classes (I, II, and IV) that are Zn2+-dependent deacetylases. These HDACs are important in repair SC biology and remyelination after PNS injury. Another key aspect explored in this review is HDAC genetic compensation in SCs and novel HDAC inhibitors that are being studied to improve nerve regeneration.
Collapse
Affiliation(s)
- Jose A. Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-919-594
| | - Nikiben Patel
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernanda Martirena
- Department of Hematology, General University Hospital of Elda, 03600 Elda, Spain;
| | - Shaline V. Fazal
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (S.V.F.); (C.M.)
- Wellcome—MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (S.V.F.); (C.M.)
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
46
|
Gao XQ, Liu CY, Zhang YH, Wang YH, Zhou LY, Li XM, Wang K, Chen XZ, Wang T, Ju J, Wang F, Wang SC, Wang Y, Chen ZY, Wang K. The circRNA CNEACR regulates necroptosis of cardiomyocytes through Foxa2 suppression. Cell Death Differ 2022; 29:527-539. [PMID: 34588633 PMCID: PMC8901615 DOI: 10.1038/s41418-021-00872-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
Circular RNAs (circRNAs) are differentially expressed in various cardiovascular disease including myocardial ischemia-reperfusion (I/R) injury. However, their functional impact on cardiomyocyte cell death, in particular, in necrotic forms of death remains elusive. In this study, we found that the level of mmu_circ_000338, a cardiac- necroptosis-associated circRNA (CNEACR), was reduced in hypoxia-reoxygenation (H/R) exposed cardiomyocytes and I/R-injured mice hearts. The enforced expression of CNEACR attenuated the necrotic form of cardiomyocyte death caused by H/R and suppressed of myocardial necrosis in I/R injured mouse heart, which was accompanied by a marked reduction of myocardial infarction size and improved cardiac function. Mechanistically, CNEACR directly binds to histone deacetylase (HDAC7) in the cytoplasm and interferes its nuclear entry. This leads to attenuation of HDAC7-dependent suppression of forkhead box protein A2 (Foxa2) transcription, which can repress receptor-interacting protein kinase 3 (Ripk3) gene by binding to its promoter region. In addition, CNEACR-mediated upregulation of FOXA2 inhibited RIPK3-dependent necrotic/necroptotic death of cardiomyocytes. Our study reveals that circRNAs such as CNEACR can regulate the cardiomyocyte necroptosis associated activity of HDACs, promotes cell survival and improves cardiac function in I/R-injured heart. Hence, the CNEACR/HDAC7/Foxa2/ RIPK3 axis could be an efficient target for alleviating myocardial damage caused by necroptotic death in ischemia heart diseases.
Collapse
Affiliation(s)
- Xiang-Qian Gao
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China ,grid.452240.50000 0004 8342 6962Department of Pathology, Binzhou Medical University Hospital, 256603 Binzhou, China
| | - Cui-Yun Liu
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Yu-Hui Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 100037 Beijing, China
| | - Yun-Hong Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 100037 Beijing, China
| | - Lu-Yu Zhou
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Xin-Min Li
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Kai Wang
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Xin-Zhe Chen
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Tao Wang
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Jie Ju
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Fei Wang
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Shao-Cong Wang
- grid.412521.10000 0004 1769 1119Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021 Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021, Qingdao, China.
| | - Zhao-Yang Chen
- Cardiology department, Heart center of Fujian Province, Union Hospital, Fujian Medical University, 29 Xin-Quan Road, 350001, Fuzhou, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 266021, Qingdao, China.
| |
Collapse
|
47
|
Velasco-Aviles S, Patel N, Casillas-Bajo A, Frutos-Rincón L, Velasco E, Gallar J, Arthur-Farraj P, Gomez-Sanchez JA, Cabedo H. A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair. eLife 2022; 11:e72917. [PMID: 35076395 PMCID: PMC8853665 DOI: 10.7554/elife.72917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5, and 7 but not Hdac9. Here, we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4, 5, and 7 are simultaneously removed, the myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.
Collapse
Affiliation(s)
- Sergio Velasco-Aviles
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Nikiben Patel
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Angeles Casillas-Bajo
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| | - Laura Frutos-Rincón
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
| | - Enrique Velasco
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
| | - Juana Gallar
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
- The European University of Brain and Technology-NeurotechEUAlicanteSpain
- RICORS en enfermedades inflamatoriasSant Joan d'AlacantSpain
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | | | - Hugo Cabedo
- Instituto de Neurociencias de Alicante UMH-CSICAlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
| |
Collapse
|
48
|
Chakravarti R, Lenka SK, Gautam A, Singh R, Ravichandiran V, Roy S, Ghosh D. A Review on CRISPR-Mediated Epigenome Editing: A Future Directive for Therapeutic Management of Cancer. Curr Drug Targets 2022; 23:836-853. [DOI: 10.2174/1389450123666220117105531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Recent studies have shed light on the role of epigenetic marks in certain diseases like cancer, type II diabetes mellitus (T2DM), obesity, and cardiovascular dysfunction, to name a few. Epigenetic marks like DNA methylation and histone acetylation are randomly altered in the disease state. It has been seen that methylation of DNA and histones can result in down-regulation of gene expression, whereas histone acetylation, ubiquitination, and phosphorylation are linked to enhanced expression of genes. How can we precisely target such epigenetic aberrations to prevent the advent of diseases? The answer lies in the amalgamation of the efficient genome editing technique, CRISPR, with certain effector molecules that can alter the status of epigenetic marks as well as employ certain transcriptional activators or repressors. In this review, we have discussed the rationale of epigenetic editing as a therapeutic strategy and how CRISPR-Cas9 technology coupled with epigenetic effector tags can efficiently edit epigenetic targets. In the later part, we have discussed how certain epigenetic effectors are tagged with dCas9 to elicit epigenetic changes in cancer. Increased interest in exploring the epigenetic background of cancer and non-communicable diseases like type II diabetes mellitus and obesity accompanied with technological breakthroughs has made it possible to perform large-scale epigenome studies.
Collapse
Affiliation(s)
- Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Swadhin Kumar Lenka
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076, Tübingen, Germany
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Syamal Roy
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
49
|
Granata A, Kasioulis I, Serrano F, Cooper JD, Traylor M, Sinha S, Markus HS. The Histone Deacetylase 9 Stroke-Risk Variant Promotes Apoptosis and Inflammation in a Human iPSC-Derived Smooth Muscle Cells Model. Front Cardiovasc Med 2022; 9:849664. [PMID: 35433850 PMCID: PMC9005977 DOI: 10.3389/fcvm.2022.849664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
A common variant in the Histone Deacetylase 9 (HDAC9) gene is the strongest genetic risk for large-vessel stroke, and HDAC9 offers a novel target for therapeutic modulation. However, the mechanisms linking the HDAC9 variant with increased stroke risk is still unclear due to the lack of relevant models to study the underlying molecular mechanisms. We generated vascular smooth muscle cells using human induced pluripotent stem cells with the HDAC9 stroke risk variant to assess HDAC9-mediated phenotypic changes in a relevant cells model and test the efficacy of HDAC inhibitors for potential therapeutic strategies. Our human induced pluripotent stem cells derived vascular smooth muscle cells show enhanced HDAC9 expression and allow us to assess HDAC9-mediated effects on promoting smooth muscle cell dysfunction, including proliferation, migration, apoptosis and response to inflammation. These phenotypes could be reverted by treatment with HDAC inhibitors, including sodium valproate and small molecules inhibitors. By demonstrating the relevance of the model and the efficacy of HDAC inhibitors, our model provides a robust phenotypic screening platform, which could be applied to other stroke-associated genetic variants.
Collapse
Affiliation(s)
- Alessandra Granata
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ioannis Kasioulis
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Felipe Serrano
- Anne McLaren Laboratory, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - James D Cooper
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sanjay Sinha
- Department of Medicine, Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|