1
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Vujovic F, Simonian M, Hughes WE, Shepherd CE, Hunter N, Farahani RM. Mitochondria facilitate neuronal differentiation by metabolising nuclear-encoded RNA. Cell Commun Signal 2024; 22:450. [PMID: 39327600 PMCID: PMC11425920 DOI: 10.1186/s12964-024-01825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation. We show that within minutes of exposure to differentiation cues and activation of the electron transport chain, the mitochondrial outer membrane transiently fuses with the nuclear membrane of neural progenitors, leading to efflux of nuclear-encoded RNAs (neRNA) into the positively charged mitochondrial intermembrane space. Subsequent degradation of mitochondrial neRNAs by Polynucleotide phosphorylase 1 (PNPase) located in the intermembrane space curbs the transcriptomic memory of progenitor cells. Further, acquisition of neRNA by mitochondria leads to a collapse of proton motive force, suppression of ATP production, and a resultant amplification of autophagic flux that attenuates proteomic memory. Collectively, these events force the progenitor cells towards a "tipping point" characterised by emergence of a competing neuronal differentiation program. It appears that neuronal differentiation is a consequence of reprogrammed coupling of metabolomic and transcriptomic landscapes of progenitor cells, with mitochondria emerging as key "reprogrammers" that operate by acquiring and metabolising neRNAs. However, the documented role of mitochondria as "reprogrammers" of differentiation remains to be validated in other neuronal lineages and in vivo.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mary Simonian
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
| | - William E Hughes
- Children's Medical Research Institute, Sydney, NSW, 2145, Australia
| | | | - Neil Hunter
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia
| | - Ramin M Farahani
- IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Yu F, Li X, Sheng C, Li L. DNA Nanotechnology Targeting Mitochondria: From Subcellular Molecular Imaging to Tailor-Made Therapeutics. Angew Chem Int Ed Engl 2024; 63:e202409351. [PMID: 38872505 DOI: 10.1002/anie.202409351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria, one of the most important organelles, represent a crucial subcellular target for fundamental research and biomedical applications. Despite significant advances in the design of DNA nanotechnologies for a variety of bio-applications, the dearth of strategies that enable mitochondria targeting for subcellular molecular imaging and therapy remains an outstanding challenge in this field. In this Minireview, we summarize the recent progresses on the emerging design and application of DNA nanotechnology for mitochondria-targeted molecular imaging and tumor treatment. We first highlight the engineering of mitochondria-localized DNA nanosensors for in situ detection and imaging of diverse key molecules that are essential to maintain mitochondrial functions, including mitochondrial DNA and microRNA, enzymes, small molecules, and metal ions. Then, we compile the developments of DNA nanotechnologies for mitochondria-targeted anti-tumor therapy, including modularly designed DNA nanodevices for subcellular delivery of therapeutic agents, and programmed DNA assembly for mitochondrial interference. We will place an emphasis on clarification of the chemical principles of how DNA nanobiotechnology can be designed to target mitochondria for various biomedical applications. Finally, the remaining challenges and future directions in this emerging field will be discussed, hoping to inspire further development of advanced DNA toolkits for both academic and clinical research regarding mitochondria.
Collapse
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangfei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Gonzalez CD, Nissanka N, Van Booven D, Griswold AJ, Moraes CT. Absence of both MGME1 and POLG EXO abolishes mtDNA whereas absence of either creates unique mtDNA duplications. J Biol Chem 2024; 300:107128. [PMID: 38432635 PMCID: PMC11002302 DOI: 10.1016/j.jbc.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Both POLG and MGME1 are needed for mitochondrial DNA (mtDNA) maintenance in animal cells. POLG, the primary replicative polymerase of the mitochondria, has an exonuclease activity (3'→5') that corrects for the misincorporation of bases. MGME1 serves as an exonuclease (5'→3'), producing ligatable DNA ends. Although both have a critical role in mtDNA replication and elimination of linear fragments, these mechanisms are still not fully understood. Using digital PCR to evaluate and compare mtDNA integrity, we show that Mgme1 knock out (Mgme1 KK) tissue mtDNA is more fragmented than POLG exonuclease-deficient "Mutator" (Polg MM) or WT tissue. In addition, next generation sequencing of mutant hearts showed abundant duplications in/nearby the D-loop region and unique 100 bp duplications evenly spaced throughout the genome only in Mgme1 KK hearts. However, despite these unique mtDNA features at steady-state, we observed a similar delay in the degradation of mtDNA after an induced double strand DNA break in both Mgme1 KK and Polg MM models. Lastly, we characterized double mutant (Polg MM/Mgme1 KK) cells and show that mtDNA cannot be maintained without at least one of these enzymatic activities. We propose a model for the generation of these genomic abnormalities which suggests a role for MGME1 outside of nascent mtDNA end ligation. Our results highlight the role of MGME1 in and outside of the D-loop region during replication, support the involvement of MGME1 in dsDNA degradation, and demonstrate that POLG EXO and MGME1 can partially compensate for each other in maintaining mtDNA.
Collapse
Affiliation(s)
- Christian D Gonzalez
- MSTP and MCDB Programs, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Derek Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
5
|
Xu P, Yang T, Kundnani DL, Sun M, Marsili S, Gombolay A, Jeon Y, Newnam G, Balachander S, Bazzani V, Baccarani U, Park V, Tao S, Lori A, Schinazi R, Kim B, Pursell Z, Tell G, Vascotto C, Storici F. Light-strand bias and enriched zones of embedded ribonucleotides are associated with DNA replication and transcription in the human-mitochondrial genome. Nucleic Acids Res 2024; 52:1207-1225. [PMID: 38117983 PMCID: PMC10853789 DOI: 10.1093/nar/gkad1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023] Open
Abstract
Abundant ribonucleoside-triphosphate (rNTP) incorporation into DNA by DNA polymerases in the form of ribonucleoside monophosphates (rNMPs) is a widespread phenomenon in nature, resulting in DNA-structural change and genome instability. The rNMP distribution, characteristics, hotspots and association with DNA metabolic processes in human mitochondrial DNA (hmtDNA) remain mostly unknown. Here, we utilize the ribose-seq technique to capture embedded rNMPs in hmtDNA of six different cell types. In most cell types, the rNMPs are preferentially embedded on the light strand of hmtDNA with a strong bias towards rCMPs; while in the liver-tissue cells, the rNMPs are predominately found on the heavy strand. We uncover common rNMP hotspots and conserved rNMP-enriched zones across the entire hmtDNA, including in the control region, which links the rNMP presence to the frequent hmtDNA replication-failure events. We show a strong correlation between coding-sequence size and rNMP-embedment frequency per nucleotide on the non-template, light strand in all cell types, supporting the presence of transient RNA-DNA hybrids preceding light-strand replication. Moreover, we detect rNMP-embedment patterns that are only partly conserved across the different cell types and are distinct from those found in yeast mtDNA. The study opens new research directions to understand the biology of hmtDNA and genomic rNMPs.
Collapse
Affiliation(s)
- Penghao Xu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Deepali L Kundnani
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Stefania Marsili
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Youngkyu Jeon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Sathya Balachander
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Veronica Bazzani
- Department of Medicine, University of Udine, Udine 33100, Italy
- IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Umberto Baccarani
- Department of Medicine, University of Udine, Udine 33100, Italy
- General Surgery Clinic and Liver Transplant Center, University-Hospital of Udine, Udine 33100, Italy
| | - Vivian S Park
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, LA 70118, USA
| | - Sijia Tao
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta 30329, GA, USA
- Department of Population Science, American Cancer Society, Kennesaw 30144, GA, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, Laboratory of Biochemical Pharmacology, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta 30322, GA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University of Medicine, New Orleans, LA 70118, USA
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine 33100, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine 33100, Italy
- IMol Polish Academy of Sciences, Warsaw 02-247, Poland
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, GA, USA
| |
Collapse
|
6
|
Bruni F. Human mtDNA-Encoded Long ncRNAs: Knotty Molecules and Complex Functions. Int J Mol Sci 2024; 25:1502. [PMID: 38338781 PMCID: PMC10855489 DOI: 10.3390/ijms25031502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Until a few decades ago, most of our knowledge of RNA transcription products was focused on protein-coding sequences, which were later determined to make up the smallest portion of the mammalian genome. Since 2002, we have learnt a great deal about the intriguing world of non-coding RNAs (ncRNAs), mainly due to the rapid development of bioinformatic tools and next-generation sequencing (NGS) platforms. Moreover, interest in non-human ncRNAs and their functions has increased as a result of these technologies and the accessibility of complete genome sequences of species ranging from Archaea to primates. Despite not producing proteins, ncRNAs constitute a vast family of RNA molecules that serve a number of regulatory roles and are essential for cellular physiology and pathology. This review focuses on a subgroup of human ncRNAs, namely mtDNA-encoded long non-coding RNAs (mt-lncRNAs), which are transcribed from the mitochondrial genome and whose disparate localisations and functions are linked as much to mitochondrial metabolism as to cellular physiology and pathology.
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
7
|
Czarny P, Ziółkowska S, Kołodziej Ł, Watała C, Wigner-Jeziorska P, Bliźniewska-Kowalska K, Wachowska K, Gałecka M, Synowiec E, Gałecki P, Bijak M, Szemraj J, Śliwiński T. Single-Nucleotide Polymorphisms in Genes Maintaining the Stability of Mitochondrial DNA Affect the Occurrence, Onset, Severity and Treatment of Major Depressive Disorder. Int J Mol Sci 2023; 24:14752. [PMID: 37834200 PMCID: PMC10573273 DOI: 10.3390/ijms241914752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
One of the key features of major depressive disorder (MDD, depression) is increased oxidative stress manifested by elevated levels of mtROS, a hallmark of mitochondrial dysfunction, which can arise from mitochondrial DNA (mtDNA) damage. Thus, the current study explores possibility that the single-nucleotide polymorphisms (SNPs) of genes encoding the three enzymes that are thought to be implicated in the replication, repair or degradation of mtDNA, i.e., POLG, ENDOG and EXOG, have an impact on the occurrence, onset, severity and treatment of MDD. Five SNPs were selected: EXOG c.-188T > G (rs9838614), EXOG c.*627G > A (rs1065800), POLG c.-1370T > A (rs1054875), ENDOG c.-394T > C (rs2977998) and ENDOG c.-220C > T (rs2997922), while genotyping was performed on 538 DNA samples (277 cases and 261 controls) using TaqMan probes. All SNPs of EXOG and ENDOG modulated the risk of depression, but the strongest effect was observed for rs1065800, while rs9838614 and rs2977998 indicate that they might influence the severity of symptoms, and, to a lesser extent, treatment effectiveness. Although the SNP located in POLG did not affect occurrence of the disease, the result suggests that it may influence the onset and treatment outcome. These findings further support the hypothesis that mtDNA damage and impairment in its metabolism play a crucial role not only in the development, but also in the treatment of depression.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Sylwia Ziółkowska
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Łukasz Kołodziej
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| | - Cezary Watała
- Department of Haemostatic Disorders, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Paulina Wigner-Jeziorska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | | | - Katarzyna Wachowska
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland; (K.B.-K.); (K.W.); (P.G.)
| | - Małgorzata Gałecka
- Department of Psychotherapy, Medical University of Lodz, 91-229 Lodz, Poland;
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| | - Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Lodz, 91-229 Lodz, Poland; (K.B.-K.); (K.W.); (P.G.)
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (S.Z.); (J.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 92-215 Lodz, Poland; (Ł.K.)
| |
Collapse
|
8
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
9
|
Deus CM, Teixeira J, Raimundo N, Tucci P, Borges F, Saso L, Oliveira PJ. Modulation of cellular redox environment as a novel therapeutic strategy for Parkinson's disease. Eur J Clin Invest 2022; 52:e13820. [PMID: 35638352 DOI: 10.1111/eci.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative movement disorder. PD affects 2% of the population above 65 years old; however, with the growing number of senior citizens, PD prevalence is predicted to increase in the following years. Pathologically, PD is characterized by dopaminergic cell neurodegeneration in the substantia nigra, resulting in decreased dopamine levels in the nigrostriatal pathway, triggering motor symptoms. Although the pathological mechanisms leading to PD are still unclear, large evidence indicates that oxidative stress plays an important role, not only because it increases with age which is the most significant risk factor for PD development, but also as a result of alterations in several processes, particularly mitochondria dysfunction. The modulation of oxidative stress, especially using dietary mitochondriotropic antioxidants, represents a promising approach to prevent or treat PD. Although most mitochondria-targeted antioxidants with beneficial effects in PD-associated models have failed to show any therapeutic benefit in clinical trials, several questions remain to be clarified. Hereby, we review the role played by oxidative stress in PD pathogenesis, emphasizing mitochondria as reactive oxygen species (ROS) producers and as targets for oxidative stress-related dysfunctional mechanisms. In addition, we also describe the importance of using dietary-based mitochondria-targeted antioxidants as a valuable strategy to counteract the deleterious effects of ROS in pre-clinical and/or clinical trials of PD, pointing out their significance to slow, and possibly halt, the progression of PD.
Collapse
Affiliation(s)
- Cláudia M Deus
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Roma, Italy
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Deus CM, Tavares H, Beatriz M, Mota S, Lopes C. Mitochondrial Damage-Associated Molecular Patterns Content in Extracellular Vesicles Promotes Early Inflammation in Neurodegenerative Disorders. Cells 2022; 11:2364. [PMID: 35954208 PMCID: PMC9367540 DOI: 10.3390/cells11152364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a common hallmark in different neurodegenerative conditions that share neuronal dysfunction and a progressive loss of a selectively vulnerable brain cell population. Alongside ageing and genetics, inflammation, oxidative stress and mitochondrial dysfunction are considered key risk factors. Microglia are considered immune sentinels of the central nervous system capable of initiating an innate and adaptive immune response. Nevertheless, the pathological mechanisms underlying the initiation and spread of inflammation in the brain are still poorly described. Recently, a new mechanism of intercellular signalling mediated by small extracellular vesicles (EVs) has been identified. EVs are nanosized particles (30-150 nm) with a bilipid membrane that carries cell-specific bioactive cargos that participate in physiological or pathological processes. Damage-associated molecular patterns (DAMPs) are cellular components recognised by the immune receptors of microglia, inducing or aggravating neuroinflammation in neurodegenerative disorders. Diverse evidence links mitochondrial dysfunction and inflammation mediated by mitochondrial-DAMPs (mtDAMPs) such as mitochondrial DNA, mitochondrial transcription factor A (TFAM) and cardiolipin, among others. Mitochondrial-derived vesicles (MDVs) are a subtype of EVs produced after mild damage to mitochondria and, upon fusion with multivesicular bodies are released as EVs to the extracellular space. MDVs are particularly enriched in mtDAMPs which can induce an immune response and the release of pro-inflammatory cytokines. Importantly, growing evidence supports the association between mitochondrial dysfunction, EV release and inflammation. Here, we describe the role of extracellular vesicles-associated mtDAMPS in physiological conditions and as neuroinflammation activators contributing to neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Sandra Mota
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (C.M.D.); (H.T.); (M.B.)
| | - Carla Lopes
- CNC—Center for Neuroscience and Cell Biology, CIBB—Center for Innovative Biomedicine and Biotechnology, III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; (C.M.D.); (H.T.); (M.B.)
| |
Collapse
|
11
|
Urakawa N, Nakamura S, Kishimoto M, Moriyama Y, Kawano S, Higashiyama T, Sasaki N. Semi-in vitro detection of Mg 2+-dependent DNase that specifically digest mitochondrial nucleoids in the zygote of Physarum polycephalum. Sci Rep 2022; 12:2995. [PMID: 35194142 PMCID: PMC8864008 DOI: 10.1038/s41598-022-06920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
The maternal/uniparental inheritance of mitochondria is controlled by the selective elimination of paternal/uniparental mitochondria and digestion of their mitochondrial DNA (mtDNA). In isogamy, the selective digestion of mtDNA in uniparental mitochondria is initiated after mating and is completed prior to the elimination of mitochondria, but the molecular mechanism of the digestion of uniparental mtDNA remains unknown. In this study, we developed a semi-in vitro assay for DNase, wherein the digestion of mitochondrial nucleoids (mt-nucleoids) was microscopically observed using isolated mitochondria from Physarum polycephalum and the DNase involved in uniparental inheritance was characterized. When myxamoebae of AI35 and DP246 are crossed, mtDNA and mt-nucleoid from only the DP246 parent are digested. The digestion of mt-nucleoids was observed in zygotes 3 h after plating for mating. During the digestion of mt-nucleoids, mitochondrial membrane integrity was maintained. In the semi-in vitro assay, the digestion of mt-nucleoids was only observed in the presence of Mg2+ at pH 7.5-9.0. Moreover, such Mg2+-dependent DNase activity was specifically detected in mitochondria isolated from zygotes 3 h after plating for mating. Therefore, Mg2+-dependent DNase is potentially involved in uniparental inheritance. Our findings provide insights into the DNase involved in uniparental inheritance and its regulatory mechanism.
Collapse
Affiliation(s)
- Naoki Urakawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Satoru Nakamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Mariko Kishimoto
- Center for the Development of New Model Organisms, National Institute for Basic Biology (NIBB), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Yohsuke Moriyama
- Science and Technology Group, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Shigeyuki Kawano
- Functional Biotechnology PJ, Future Center Initiative, The University of Tokyo, 178-4-4 Wakasiba, Kashiwa, Chiba, 277-0871, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Narie Sasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan. .,Institute for Human Life Innovation, Ochanomizu University, 2‑1‑1 Otsuka, Bunkyo‑ku, Tokyo, 112‑8610, Japan.
| |
Collapse
|
12
|
Shaukat AN, Kaliatsi EG, Stamatopoulou V, Stathopoulos C. Mitochondrial tRNA-Derived Fragments and Their Contribution to Gene Expression Regulation. Front Physiol 2021; 12:729452. [PMID: 34539450 PMCID: PMC8446549 DOI: 10.3389/fphys.2021.729452] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 01/14/2023] Open
Abstract
Mutations in human mitochondrial tRNAs (mt-tRNAs) are responsible for several and sometimes severe clinical phenotypes, classified among mitochondrial diseases. In addition, post-transcriptional modifications of mt-tRNAs in correlation with several stress signals can affect their stability similarly to what has been described for their nuclear-encoded counterparts. Many of the perturbations related to either point mutations or aberrant modifications of mt-tRNAs can lead to specific cleavage and the production of mitochondrial tRNA-derived fragments (mt-tRFs). Although mt-tRFs have been detected in several studies, the exact biogenesis steps and biological role remain, to a great extent, unexplored. Several mt-tRFs are produced because of the excessive oxidative stress which predominantly affects mitochondrial DNA integrity. In addition, mt-tRFs have been detected in various diseases with possible detrimental consequences, but also their production may represent a response mechanism to external stimuli, including infections from pathogens. Finally, specific point mutations on mt-tRNAs have been reported to impact the pool of the produced mt-tRFs and there is growing evidence suggesting that mt-tRFs can be exported and act in the cytoplasm. In this review, we summarize current knowledge on mitochondrial tRNA-deriving fragments and their possible contribution to gene expression regulation.
Collapse
Affiliation(s)
| | - Eleni G Kaliatsi
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
13
|
Piantadosi CA. Mitochondrial DNA, oxidants, and innate immunity. Free Radic Biol Med 2020; 152:455-461. [PMID: 31958498 DOI: 10.1016/j.freeradbiomed.2020.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial oxidant damage, including damage to mitochondrial DNA (mtDNA) is a feature of both severe microbial infections and inflammation arising from sterile (non-infectious) sources such as tissue trauma. Damaged mitochondria release intact or oxidized fragments of mtDNA into the cytoplasm, which represent oxidant injury, and the fragments promote a spontaneous innate immune response, exemplifying a modern frontier of immunological research. MtDNA and mitochondrial-derived oxidants are central factors in activating at least three innate immune pathways involving the TLR9 (Toll-like receptor 9), the NLRP3 (NACHT, LRR and PYD domains-containing protein-3) inflammasome, and the cGAS (cyclic AMP-GMP synthase) pathway. The events that allow mtDNA to escape from damaged mitochondria and from damaged cells are incompletely known, but the presence of cytoplasmic mtDNA and cell-free mtDNA as immune regulators are important for understanding the cell's capacity for protecting mitochondrial quality control (MQC) and cell viability during inflammatory states.
Collapse
|
14
|
Wu CC, Lin JL, Yang-Yen HF, Yuan HS. A unique exonuclease ExoG cleaves between RNA and DNA in mitochondrial DNA replication. Nucleic Acids Res 2019; 47:5405-5419. [PMID: 30949702 PMCID: PMC6547421 DOI: 10.1093/nar/gkz241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
Replication of sufficient mitochondrial DNA (mtDNA) is essential for maintaining mitochondrial functions in mammalian cells. During mtDNA replication, RNA primers must be removed before the nascent circular DNA strands rejoin. This process involves mitochondrial RNase H1, which removes most of the RNA primers but leaves two ribonucleotides attached to the 5′ end of nascent DNA. A subsequent 5′-exonuclease is required to remove the residual ribonucleotides, however, it remains unknown if any mitochondrial 5′-exonuclease could remove two RNA nucleotides from a hybrid duplex DNA. Here, we report that human mitochondrial Exonuclease G (ExoG) may participate in this particular process by efficiently cleaving at RNA–DNA junctions to remove the 5′-end RNA dinucleotide in an RNA/DNA hybrid duplex. Crystal structures of human ExoG bound respectively with DNA, RNA/DNA hybrid and RNA–DNA chimeric duplexes uncover the underlying structural mechanism of how ExoG specifically recognizes and cleaves at RNA–DNA junctions of a hybrid duplex with an A-form conformation. This study hence establishes the molecular basis of ExoG functioning as a unique 5′-exonuclease to mediate the flap-independent RNA primer removal process during mtDNA replication to maintain mitochondrial genome integrity.
Collapse
Affiliation(s)
- Chyuan-Chuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Jason L J Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hsin-Fang Yang-Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, ROC
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan 10048, ROC
- To whom correspondence should be addressed. Tel: +886 2 27884151;
| |
Collapse
|
15
|
Kondadi AK, Anand R, Reichert AS. Functional Interplay between Cristae Biogenesis, Mitochondrial Dynamics and Mitochondrial DNA Integrity. Int J Mol Sci 2019; 20:ijms20174311. [PMID: 31484398 PMCID: PMC6747513 DOI: 10.3390/ijms20174311] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are vital cellular organelles involved in a plethora of cellular processes such as energy conversion, calcium homeostasis, heme biogenesis, regulation of apoptosis and ROS reactive oxygen species (ROS) production. Although they are frequently depicted as static bean-shaped structures, our view has markedly changed over the past few decades as many studies have revealed a remarkable dynamicity of mitochondrial shapes and sizes both at the cellular and intra-mitochondrial levels. Aberrant changes in mitochondrial dynamics and cristae structure are associated with ageing and numerous human diseases (e.g., cancer, diabetes, various neurodegenerative diseases, types of neuro- and myopathies). Another unique feature of mitochondria is that they harbor their own genome, the mitochondrial DNA (mtDNA). MtDNA exists in several hundreds to thousands of copies per cell and is arranged and packaged in the mitochondrial matrix in structures termed mt-nucleoids. Many human diseases are mechanistically linked to mitochondrial dysfunction and alteration of the number and/or the integrity of mtDNA. In particular, several recent studies identified remarkable and partly unexpected links between mitochondrial structure, fusion and fission dynamics, and mtDNA. In this review, we will provide an overview about these recent insights and aim to clarify how mitochondrial dynamics, cristae ultrastructure and mtDNA structure influence each other and determine mitochondrial functions.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
16
|
Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, Simard ML, Wredenberg A, Freyer C, Stewart JB, Larsson NG. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. SCIENCE ADVANCES 2019; 5:eaav9824. [PMID: 30949583 PMCID: PMC6447380 DOI: 10.1126/sciadv.aav9824] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Heteroplasmic mtDNA mutations typically act in a recessive way and cause mitochondrial disease only if present above a certain threshold level. We have experimentally investigated to what extent the absolute levels of wild-type (WT) mtDNA influence disease manifestations by manipulating TFAM levels in mice with a heteroplasmic mtDNA mutation in the tRNAAla gene. Increase of total mtDNA levels ameliorated pathology in multiple tissues, although the levels of heteroplasmy remained the same. A reduction in mtDNA levels worsened the phenotype in postmitotic tissues, such as heart, whereas there was an unexpected beneficial effect in rapidly proliferating tissues, such as colon, because of enhanced clonal expansion and selective elimination of mutated mtDNA. The absolute levels of WT mtDNA are thus an important determinant of the pathological manifestations, suggesting that pharmacological or gene therapy approaches to selectively increase mtDNA copy number provide a potential treatment strategy for human mtDNA mutation disease.
Collapse
Affiliation(s)
- R. Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - C. Koolmeister
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - M. Upadhyay
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - A. Pajak
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - P. Clemente
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - R. Wibom
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - M. L. Simard
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - A. Wredenberg
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - C. Freyer
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - J. B. Stewart
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - N. G. Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
- Corresponding author.
| |
Collapse
|
17
|
Nissanka N, Minczuk M, Moraes CT. Mechanisms of Mitochondrial DNA Deletion Formation. Trends Genet 2019; 35:235-244. [PMID: 30691869 DOI: 10.1016/j.tig.2019.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) encodes a subset of genes which are essential for oxidative phosphorylation. Deletions in the mtDNA can ablate a number of these genes and result in mitochondrial dysfunction, which is associated with bona fide mitochondrial disorders. Although mtDNA deletions are thought to occur as a result of replication errors or following double-strand breaks, the exact mechanism(s) behind deletion formation have yet to be determined. In this review we discuss the current knowledge about the fate of mtDNA following double-strand breaks, including the molecular players which mediate the degradation of linear mtDNA fragments and possible mechanisms of recircularization. We propose that mtDNA deletions formed from replication errors versus following double-strand breaks can be mediated by separate pathways.
Collapse
Affiliation(s)
- Nadee Nissanka
- Department of Neurology, University of Miami, Miller School of Medicine, FL 33136, USA
| | - Michal Minczuk
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Carlos T Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, FL 33136, USA.
| |
Collapse
|
18
|
Zhao L. Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes 2019; 45:311-341. [PMID: 31627882 DOI: 10.1016/bs.enz.2019.08.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria play a central role in bioenergetics, and fulfill a plethora of functions in cell signaling, programmed cell death, and biosynthesis of key protein cofactors. Mitochondria harbor their own genomic DNA, which encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. Mitochondrial DNA (mtDNA) is essential for cellular and organismal functions, and defects in mitochondrial genome maintenance have been implicated in common human diseases and mitochondrial disorders. mtDNA repair and degradation are known pathways to cope with mtDNA damage; however, molecular factors involved in this process have remained unclear. Such knowledge is fundamental to the understanding of mitochondrial genomic maintenance and pathology, because mtDNA degradation may contribute to the etiology of mtDNA depletion syndromes and to the activation of the innate immune response by fragmented mtDNA. This article reviews the current literature regarding the importance of mitochondrial DNA degradation in mtDNA maintenance and stress response, and the recent progress in uncovering molecular factors involved in mtDNA degradation. These factors include key components of the mtDNA replication machinery, such as DNA polymerase γ, helicase Twinkle, and exonuclease MGME1, as well as a major DNA-packaging protein, mitochondrial transcription factor A (TFAM).
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States.
| |
Collapse
|
19
|
Peeva V, Blei D, Trombly G, Corsi S, Szukszto MJ, Rebelo-Guiomar P, Gammage PA, Kudin AP, Becker C, Altmüller J, Minczuk M, Zsurka G, Kunz WS. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun 2018; 9:1727. [PMID: 29712893 PMCID: PMC5928156 DOI: 10.1038/s41467-018-04131-w] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/04/2018] [Indexed: 02/02/2023] Open
Abstract
Emerging gene therapy approaches that aim to eliminate pathogenic mutations of mitochondrial DNA (mtDNA) rely on efficient degradation of linearized mtDNA, but the enzymatic machinery performing this task is presently unknown. Here, we show that, in cellular models of restriction endonuclease-induced mtDNA double-strand breaks, linear mtDNA is eliminated within hours by exonucleolytic activities. Inactivation of the mitochondrial 5'-3'exonuclease MGME1, elimination of the 3'-5'exonuclease activity of the mitochondrial DNA polymerase POLG by introducing the p.D274A mutation, or knockdown of the mitochondrial DNA helicase TWNK leads to severe impediment of mtDNA degradation. We do not observe similar effects when inactivating other known mitochondrial nucleases (EXOG, APEX2, ENDOG, FEN1, DNA2, MRE11, or RBBP8). Our data suggest that rapid degradation of linearized mtDNA is performed by the same machinery that is responsible for mtDNA replication, thus proposing novel roles for the participating enzymes POLG, TWNK, and MGME1.
Collapse
Affiliation(s)
- Viktoriya Peeva
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Daniel Blei
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Genevieve Trombly
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Sarah Corsi
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany ,0000 0001 0462 7212grid.1006.7Present Address: Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Maciej J. Szukszto
- 0000000121885934grid.5335.0MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY UK
| | - Pedro Rebelo-Guiomar
- 0000000121885934grid.5335.0MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY UK ,0000 0001 1503 7226grid.5808.5Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, 4200-135 Portugal
| | - Payam A. Gammage
- 0000000121885934grid.5335.0MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY UK
| | - Alexei P. Kudin
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - Christian Becker
- 0000 0000 8580 3777grid.6190.eCologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115b, Cologne, D-50931 Germany
| | - Janine Altmüller
- 0000 0000 8580 3777grid.6190.eCologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115b, Cologne, D-50931 Germany ,0000 0000 8580 3777grid.6190.eInstitute of Human Genetics, University of Cologne, Kerpener Str. 34, Cologne, D-50931 Germany
| | - Michal Minczuk
- 0000000121885934grid.5335.0MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY UK
| | - Gábor Zsurka
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Epileptology and Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, Bonn, D-53105 Germany
| | - Wolfram S. Kunz
- 0000 0001 2240 3300grid.10388.32Institute of Experimental Epileptology and Cognition Research, University of Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany ,0000 0001 2240 3300grid.10388.32Department of Epileptology and Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, Bonn, D-53105 Germany
| |
Collapse
|
20
|
Callegari S, Dennerlein S. Sensing the Stress: A Role for the UPR mt and UPR am in the Quality Control of Mitochondria. Front Cell Dev Biol 2018; 6:31. [PMID: 29644217 PMCID: PMC5882792 DOI: 10.3389/fcell.2018.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
Mitochondria exist as compartmentalized units, surrounded by a selectively permeable double membrane. Within is contained the mitochondrial genome and protein synthesis machinery, required for the synthesis of OXPHOS components and ultimately, ATP production. Despite their physical barrier, mitochondria are tightly integrated into the cellular environment. A constant flow of information must be maintained to and from the mitochondria and the nucleus, to ensure mitochondria are amenable to cell metabolic requirements and also to feedback on their functional state. This review highlights the pathways by which mitochondrial stress is signaled to the nucleus, with a particular focus on the mitochondrial unfolded protein response (UPRmt) and the unfolded protein response activated by the mistargeting of proteins (UPRam). Although these pathways were originally discovered to alleviate proteotoxic stress from the accumulation of mitochondrial-targeted proteins that are misfolded or unimported, we review recent findings indicating that the UPRmt can also sense defects in mitochondrial translation. We further discuss the regulation of OXPHOS assembly and speculate on a possible role for mitochondrial stress pathways in sensing OXPHOS biogenesis.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Trasviña-Arenas CH, Baruch-Torres N, Cordoba-Andrade FJ, Ayala-García VM, García-Medel PL, Díaz-Quezada C, Peralta-Castro A, Ordaz-Ortiz JJ, Brieba LG. Identification of a unique insertion in plant organellar DNA polymerases responsible for 5'-dRP lyase and strand-displacement activities: Implications for Base Excision Repair. DNA Repair (Amst) 2018. [PMID: 29522990 DOI: 10.1016/j.dnarep.2018.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Plant mitochondrial and chloroplast genomes encode essential proteins for oxidative phosphorylation and photosynthesis. For proper cellular function, plant organelles must ensure genome integrity. Although plant organelles repair damaged DNA using the multi-enzyme Base Excision Repair (BER) pathway, the details of this pathway in plant organelles are largely unknown. The initial enzymatic steps in BER produce a 5'-deoxyribose phosphate (5'-dRP) moiety that must be removed to allow DNA ligation and in plant organelles, the enzymes responsible for the removal of a 5'-dRP group are unknown. In metazoans, DNA polymerases (DNAPs) remove the 5'-dRP moiety using their intrinsic lyase and/or strand-displacement activities during short or long-patch BER sub-pathways, respectively. The plant model Arabidopsis thaliana encodes two family-A DNAPs paralogs, AtPolIA and AtPolIB, which are the sole DNAPs in plant organelles identified to date. Herein we demonstrate that both AtPolIs present 5'-dRP lyase activities. AtPolIB performs efficient strand-displacement on a BER-associated 1-nt gap DNA substrate, whereas AtPolIA exhibits only moderate strand-displacement activity. Both lyase and strand-displacement activities are dependent on an amino acid insertion that is exclusively present in plant organellar DNAPs. Within this insertion, we identified that residue AtPollB-Lys593 acts as nucleophile for lyase activity. Our results demonstrate that AtPolIs are functionally equipped to play a role in short-patch BER and suggest a major role of AtPolIB in a predicted long-patch BER sub-pathway. We propose that the acquisition of insertion 1 in the polymerization domain of AtPolIs was a key component in their evolution as BER associated and replicative DNAPs.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Francisco J Cordoba-Andrade
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Víctor M Ayala-García
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Paola L García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - José Juan Ordaz-Ortiz
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
22
|
Reinhard L, Sridhara S, Hällberg BM. The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res 2017; 45:12469-12480. [PMID: 29040705 PMCID: PMC5716156 DOI: 10.1093/nar/gkx902] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial polycistronic transcripts are extensively processed to give rise to functional mRNAs, rRNAs and tRNAs; starting with the release of tRNA elements through 5′-processing by RNase P (MRPP1/2/3-complex) and 3′-processing by RNase Z (ELAC2). Here, we show using in vitro experiments that MRPP1/2 is not only a component of the mitochondrial RNase P but that it retains the tRNA product from the 5′-processing step and significantly enhances the efficiency of ELAC2-catalyzed 3′-processing for 17 of the 22 tRNAs encoded in the human mitochondrial genome. Furthermore, MRPP1/2 retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA-adding enzyme. Thus, in addition to being an essential component of the RNase P reaction, MRPP1/2 serves as a processing platform for several down-stream tRNA maturation steps in human mitochondria. These findings are of fundamental importance for our molecular understanding of disease-related mutations in MRPP1/2, ELAC2 and mitochondrial tRNA genes.
Collapse
Affiliation(s)
- Linda Reinhard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - Sagar Sridhara
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| |
Collapse
|
23
|
Moretton A, Morel F, Macao B, Lachaume P, Ishak L, Lefebvre M, Garreau-Balandier I, Vernet P, Falkenberg M, Farge G. Selective mitochondrial DNA degradation following double-strand breaks. PLoS One 2017; 12:e0176795. [PMID: 28453550 PMCID: PMC5409072 DOI: 10.1371/journal.pone.0176795] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucleases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs.
Collapse
Affiliation(s)
- Amandine Moretton
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Frédéric Morel
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Bertil Macao
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30, Gothenburg, Sweden
| | - Philippe Lachaume
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Layal Ishak
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Mathilde Lefebvre
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Isabelle Garreau-Balandier
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Patrick Vernet
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
| | - Maria Falkenberg
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30, Gothenburg, Sweden
| | - Géraldine Farge
- Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, BP 10448, F-63000 Clermont-Ferrand, France
- * E-mail:
| |
Collapse
|