1
|
Miao M, Chen Y, Wang X, Li S, Hu R. The critical role of ferroptosis in virus-associated hematologic malignancies and its potential value in antiviral-antitumor therapy. Virulence 2025; 16:2497908. [PMID: 40302035 PMCID: PMC12045570 DOI: 10.1080/21505594.2025.2497908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/06/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025] Open
Abstract
Epstein-Barr Virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human T-cell leukemia virus type 1 (HTLV-1) are key infectious agents linked to the development of various hematological malignancies, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, and adult T-cell leukemia/lymphoma. This review highlights the critical knowledge gaps in understanding the role of ferroptosis, a novel form of cell death, in virus-related tumors. We focus on how ferroptosis influences the host cell response to these viral infections, revealing groundbreaking mechanisms by which the three viruses differentially regulate core pathways of ferroptosis, such as iron homeostasis, lipid peroxidation, and antioxidant systems, thereby promoting malignant transformation of host cells. Additionally, we explore the potential of antiviral drugs and ferroptosis modulators in the treatment of virus-associated hematological malignancies.
Collapse
Affiliation(s)
- Miao Miao
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuelei Chen
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xuehan Wang
- Shenyang Shenhua Institute Test Technology, Shenyang, Liaoning, China
| | - Shengyang Li
- Publishing Department, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Rong Hu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Goli M, Sandilya V, Ghandour B, Hajj HE, Kobeissy F, Darwiche N, Mechref Y. Exploring the Anti-Leukemic Effect of the Synthetic Retinoid ST1926 on Malignant T Cells: A Comprehensive Proteomics Approach. Int J Mol Sci 2025; 26:4651. [PMID: 40429796 PMCID: PMC12111145 DOI: 10.3390/ijms26104651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
T-cell malignancies represent a group of complex cancers arising from T cells and include aggressive subtypes such as Adult T-cell Leukemia/Lymphoma (ATL) and T-cell Acute Lymphoblastic Leukemia (T-ALL). Patients with these aggressive subtypes still represent an unmet medical condition. The synthetic adamantyl retinoid ST1926, a potent DNA polymerase-α inhibitor, proved a promising potency in preclinical models of ATL and peripheral T-cell lymphoma. Using advanced liquid chromatography-mass spectrometry (LC-MS/MS) techniques, we explored the effects of ST1926 on global protein expression in ATL (HuT-102) and T-ALL (MOLT-4) cells. We demonstrate that ST1926 triggers differentiation and apoptosis in malignant T-cells while halting tumor progression. Evidence at the proteomics level reveals the impact of ST1926 on crucial DNA replication enzymes and cell cycle regulation, highlighting its potential to reduce leukemogenesis and promote apoptosis. Our findings underscore the potential of ST1926 as an innovative therapeutic approach to address these aggressive T-cell malignancies, providing valuable insights into developing new targeted therapies and improving the outcomes and prognosis of patients with these challenging diseases.
Collapse
Affiliation(s)
- Mona Goli
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| | - Vishal Sandilya
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| | - Botheina Ghandour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon; (B.G.); (F.K.); (N.D.)
| | - Yehia Mechref
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (M.G.); (V.S.)
| |
Collapse
|
3
|
Mohanty S, Suklabaidya S, Mnatsakanyan N, Jacobson S, Harhaj EW. HTLV-1 Tax induces PINK1-Parkin-dependent mitophagy to mitigate activation of the cGAS-STING pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643451. [PMID: 40161814 PMCID: PMC11952555 DOI: 10.1101/2025.03.15.643451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATLL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax regulatory protein plays a critical role in HTLV-1 persistence and pathogenesis; however, the underlying mechanisms are poorly understood. Here we show that Tax dynamically regulates mitochondrial reactive oxygen species (ROS) and membrane potential to trigger mitochondrial dysfunction. Tax is recruited to damaged mitochondria through its interaction with the IKK regulatory subunit NEMO and directly engages the ubiquitin-dependent PINK1-Parkin pathway to induce mitophagy. Tax also recruits autophagy receptors NDP52 and p62/SQSTM1 to damaged mitochondria to induce mitophagy. Furthermore, Tax requires Parkin to limit the extent of cGAS-STING activation and suppress type I interferon (IFN). HTLV-1-transformed T cell lines and PBMCs from HAM/TSP patients exhibit hallmarks of chronic mitophagy which may contribute to immune evasion and pathogenesis. Collectively, our findings suggest that Tax manipulation of the PINK1-Parkin mitophagy pathway represents a new HTLV-1 immune evasion strategy.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Cell and Biological Systems, Penn State College School of Medicine, Hershey, PA 17033, USA
| | - Sujit Suklabaidya
- Department of Cell and Biological Systems, Penn State College School of Medicine, Hershey, PA 17033, USA
| | - Nelli Mnatsakanyan
- Department of Cell and Biological Systems, Penn State College School of Medicine, Hershey, PA 17033, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward W. Harhaj
- Department of Cell and Biological Systems, Penn State College School of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Rodriguez BN, Huang H, Chia JJ, Hoffmann A. The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. WIREs Mech Dis 2024; 16:e1646. [PMID: 38634218 PMCID: PMC11486840 DOI: 10.1002/wsbm.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Benancio N. Rodriguez
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, CA
| | - Helen Huang
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Institute for Quantitative and Computational Biosciences, Los Angeles, CA
| | - Jennifer J. Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics; Molecular Biology Institute; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
5
|
Mardi S, Letafati A, Hosseini A, Faraji R, Hosseini P, Mozhgani SH. Analysis of the Main Checkpoints of the JNK-MAPK Pathway in HTLV-1-Associated Leukemia/Lymphoma via Boolean Network Simulation. Biochem Genet 2024:10.1007/s10528-024-10916-0. [PMID: 39320417 DOI: 10.1007/s10528-024-10916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
The c-Jun N-terminal kinase (JNK) pathway is a signal transduction pathway that plays a critical role in cell growth and survival. Its dysregulation is related to various cancers, including adult T-cell leukemia/lymphoma (ATLL), an aggressive peripheral T-cell malignancy caused by human T-cell lymphotropic virus type 1 (HTLV-1) infection. There is currently no vaccine or definitive treatment for ATLL. This research aimed to identify the JNK-MAPK pathway checkpoints to identify possible therapeutic targets using Boolean network analysis. First, the genes involved in the JNK pathway and their interactions were identified and mapped. Next, a Boolean network analysis was performed using the R programming language, which suggested protein kinase B (AKT) and MAP kinase phosphatase (MKP) for further evaluation. Finally, to confirm the effect of these two genes, a clinical study was conducted among ATLL patients and healthy individuals. The quantitative real time polymerase chain reaction (qRT‒PCR) results revealed a statistically significant decrease in the expression of AKT and MKP in ATLL patients compared to normal controls. This highlights the potential role of these two genes as potential therapeutic targets in ATLL.
Collapse
Affiliation(s)
- Shayan Mardi
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hosseini
- Department of Computer Engineering, Faculty of Engineering, Raja University, Qazvin, Iran
| | - Reza Faraji
- Department of Animal Sciences, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Noncommunicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
6
|
Shirasawa M, Nakajima R, Zhou Y, Zhao L, Fikriyanti M, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Activation of the CDK7 Gene, Coding for the Catalytic Subunit of the Cyclin-Dependent Kinase (CDK)-Activating Kinase (CAK) and General Transcription Factor II H, by the Trans-Activator Protein Tax of Human T-Cell Leukemia Virus Type-1. Genes (Basel) 2024; 15:1080. [PMID: 39202439 PMCID: PMC11353830 DOI: 10.3390/genes15081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL). The trans-activator protein Tax of HTLV-1 plays crucial roles in leukemogenesis by promoting proliferation of virus-infected cells through activation of growth-promoting genes. However, critical target genes are yet to be elucidated. We show here that Tax activates the gene coding for cyclin-dependent kinase 7 (CDK7), the essential component of both CDK-activating kinase (CAK) and general transcription factor TFIIH. CAK and TFIIH play essential roles in cell cycle progression and transcription by activating CDKs and facilitating transcriptional initiation, respectively. Tax induced CDK7 gene expression not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs) along with increased protein expression. Tax stimulated phosphorylation of CDK2 and RNA polymerase II at sites reported to be mediated by CDK7. Tax activated the CDK7 promoter through the NF-κB pathway, which mainly mediates cell growth promotion by Tax. Knockdown of CDK7 expression reduced Tax-mediated induction of target gene expression and cell cycle progression. These results suggest that the CDK7 gene is a crucial target of Tax-mediated trans-activation to promote cell proliferation by activating CDKs and transcription.
Collapse
Affiliation(s)
- Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama 963-8611, Fukushima, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (M.S.); (R.N.); (Y.Z.); (M.F.)
| |
Collapse
|
7
|
Bellon M, Yeh CH, Bai XT, Nicot C. The HTLV-I oncoprotein Tax inactivates the tumor suppressor FBXW7. J Virol 2024; 98:e0040524. [PMID: 38874362 PMCID: PMC11264933 DOI: 10.1128/jvi.00405-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions. Here, we report that the viral oncoprotein Tax represses FBXW7 activity, resulting in the stabilization of activated Notch intracellular domain, c-MYC, Cyclin E, and myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1). Mechanistically, we demonstrate that Tax directly binds to FBXW7 in the nucleus, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 substrates. In support of the nuclear role of Tax, a non-degradable form of the nuclear factor kappa B subunit 2 (NFκB2/p100) was found to delocalize Tax to the cytoplasm, thereby preventing Tax interactions with FBXW7 and Tax-mediated inhibition of FBXW7. Finally, we characterize a Tax mutant that is unable to interact with FBXW7, unable to block FBXW7 tumor suppressor functions, and unable to effectively transform fibroblasts. These results demonstrate that HTLV-I Tax can inhibit FBXW7 functions without genetic mutations to promote an oncogenic state. These results suggest that Tax-mediated inhibition of FBXW7 is likely critical during the early stages of the cellular transformation process. IMPORTANCE F-box and WD repeat domain containing 7 (FBXW7), a critical tumor suppressor of human cancers, is frequently mutated or epigenetically suppressed. Loss of FBXW7 functions is associated with stabilization and increased expression of oncogenic factors such as Cyclin E, c-Myc, Mcl-1, mTOR, Jun, and Notch. In this study, we demonstrate that the human retrovirus human T-cell leukemia virus type 1 oncoprotein Tax directly interacts with FBXW7, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 cellular substrates. We further demonstrate that a Tax mutant unable to interact with and inactivate FBXW7 loses its ability to transform primary fibroblasts. Collectively, our results describe a novel mechanism used by a human tumor virus to promote cellular transformation.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chien-hung Yeh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xue Tao Bai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
8
|
Ahmadi Ghezeldasht S, Mosavat A, Rezaee SA. Novel insights into human T-lymphotropic virus type-1 (HTLV-1) pathogenesis-host interactions in the manifestation of HTLV-1-associated myelopathy/tropical spastic paraparesis. Rev Med Virol 2024; 34:e2567. [PMID: 38937135 DOI: 10.1002/rmv.2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Human T-lymphotropic virus type-1 (HTLV-1) was the first discovered human oncogenic retrovirus, the etiological agent of two serious diseases have been identified as adult T-cell leukaemia/lymphoma malignancy and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a debilitating chronic neuro-myelopathy. Despite more than 40 years of molecular, histopathological and immunological studies on HTLV-1-associated diseases, the virulence and pathogenicity of this virus are yet to be clarified. The reason why the majority of HTLV-1-infected individuals (∼95%) remain asymptomatic carriers is still unclear. The deterioration of the immune system towards oncogenicity and autoimmunity makes HTLV-1 a natural probe for the study of malignancy and neuro-inflammatory diseases. Additionally, its slow worldwide spreading has prompted public health authorities and researchers, as urged by the WHO, to focus on eradicating HTLV-1. In contrast, neither an effective therapy nor a protective vaccine has been introduced. This comprehensive review focused on the most relevant studies of the neuro-inflammatory propensity of HTLV-1-induced HAM/TSP. Such an emphasis on the virus-host interactions in the HAM/TSP pathogenesis will be critically discussed epigenetically. The findings may shed light on future research venues in designing and developing proper HTLV-1 therapeutics.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Mohanty S, Suklabaidya S, Lavorgna A, Ueno T, Fujisawa JI, Ngouth N, Jacobson S, Harhaj EW. The tyrosine kinase KDR is essential for the survival of HTLV-1-infected T cells by stabilizing the Tax oncoprotein. Nat Commun 2024; 15:5380. [PMID: 38918393 PMCID: PMC11199648 DOI: 10.1038/s41467-024-49737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia/lymphoma (ATLL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax oncoprotein regulates viral gene expression and persistently activates NF-κB to maintain the viability of HTLV-1-infected T cells. Here, we utilize a kinome-wide shRNA screen to identify the tyrosine kinase KDR as an essential survival factor of HTLV-1-transformed cells. Inhibition of KDR specifically induces apoptosis of Tax expressing HTLV-1-transformed cell lines and CD4 + T cells from HAM/TSP patients. Furthermore, inhibition of KDR triggers the autophagic degradation of Tax resulting in impaired NF-κB activation and diminished viral transmission in co-culture assays. Tax induces the expression of KDR, forms a complex with KDR, and is phosphorylated by KDR. These findings suggest that Tax stability is dependent on KDR activity which could be exploited as a strategy to target Tax in HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA
| | - Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Millipore-Sigma, Rockville, MD, USA
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Nyater Ngouth
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA.
| |
Collapse
|
10
|
Hayati RF, Nakajima R, Zhou Y, Shirasawa M, Zhao L, Fikriyanti M, Iwanaga R, Bradford AP, Kurayoshi K, Araki K, Ohtani K. Trans-Activation of the Coactivator-Associated Arginine Methyltransferase 1 ( Carm1) Gene by the Oncogene Product Tax of Human T-Cell Leukemia Virus Type 1. Genes (Basel) 2024; 15:698. [PMID: 38927636 PMCID: PMC11202806 DOI: 10.3390/genes15060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma. The oncogene product Tax of HTLV-I is thought to play crucial roles in leukemogenesis by promoting proliferation of the virus-infected cells through activation of growth-promoting genes. These genes code for growth factors and their receptors, cytokines, cell adhesion molecules, growth signal transducers, transcription factors and cell cycle regulators. We show here that Tax activates the gene coding for coactivator-associated arginine methyltransferase 1 (CARM1), which epigenetically enhances gene expression through methylation of histones. Tax activated the Carm1 gene and increased protein expression, not only in human T-cell lines but also in normal peripheral blood lymphocytes (PHA-PBLs). Tax increased R17-methylated histone H3 on the target gene IL-2Rα, concomitant with increased expression of CARM1. Short hairpin RNA (shRNA)-mediated knockdown of CARM1 decreased Tax-mediated induction of IL-2Rα and Cyclin D2 gene expression, reduced E2F activation and inhibited cell cycle progression. Tax acted via response elements in intron 1 of the Carm1 gene, through the NF-κB pathway. These results suggest that Tax-mediated activation of the Carm1 gene contributes to leukemogenic target-gene expression and cell cycle progression, identifying the first epigenetic target gene for Tax-mediated trans-activation in cell growth promotion.
Collapse
Affiliation(s)
- Rahma F. Hayati
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama 963-8611, Fukushima, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.F.H.); (R.N.); (Y.Z.); (M.S.); (L.Z.); (M.F.)
| |
Collapse
|
11
|
Yan Q, Liu Z, Chen Y, Zhang X, Zheng W, Liu X, Huang H, Liu Q, Jiang Y, Zhan S, Huang X. ITGAM-macrophage modulation as a potential strategy for treating neutrophilic Asthma: insights from bioinformatics analysis and in vivo experiments. Apoptosis 2024; 29:393-411. [PMID: 37950848 DOI: 10.1007/s10495-023-01914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Identification of molecular biomarkers associated with neutrophilic asthma (NA) phenotype may inform the discovery of novel pathobiological mechanisms and the development of diagnostic markers. Three mRNA transcriptome datasets extracted from induced sputum of asthma patients with various inflammatory types were used to screen for macrophage-related molecular mechanisms and targets in NA. Furthermore, the predicted targets were also validated on an independent dataset (N = 3) and animal model (N = 5). A significant increase in total cells, neutrophils and macrophages was observed in bronchoalveolar lavage (BAL) fluid of NA mice induced by ovalbumin/freund's adjuvant, complete (OVA/CFA). And we also found elevated levels of neutrophil and macrophage infiltration in NA subtype in external datasets. NA mice had increased secretion of IgE, IL-1β, TNF-α and IL-6 in serum and BAL fluid. MPO, an enzyme present in neutrophils, was also highly expressed in NA mice. Then, weighted gene co-expression network analysis (WGCNA) identified 684 targets with the strongest correlation with NA, and we obtained 609 macrophage-related specific differentially expressed genes (DEGs) in NA by integrating macrophage-related genes. The top 10 genes with high degree values were obtained and their mRNA levels and diagnostic performance were then determined by RT-qPCR and receiver operator characteristic (ROC) analysis. Statistically significant correlations were found between macrophages and all key targets, with the strongest correlation between ITGAM and macrophages in NA. Double-Immunofluorescence staining further confirmed the co-localization of ITGAM and F4/80 in NA. ITGAM was identified as a critical target to distinguish NA from healthy/non-NA individuals, which may provide a novel avenue to further uncover the mechanisms and therapy of NA.
Collapse
Affiliation(s)
- Qian Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Zixing Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujing Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Haikou hospital of Chinese traditional medicine, Haikou, China
| | - Xinxin Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China.
| | - Shaofeng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiufang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
- Guangzhou University of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, Guangzhou, China.
- Guangdong Provincial Clinical Research Academy of Chinese Medicine, Guangzhou, China.
- Lingnan Medical Research Center of Guangzhou, University of Chinese Medicine, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
12
|
Gholamzad A, Khakpour N, Gholamzad M, Roudaki Sarvandani MR, Khosroshahi EM, Asadi S, Rashidi M, Hashemi M. Stem cell therapy for HTLV-1 induced adult T-cell leukemia/lymphoma (ATLL): A comprehensive review. Pathol Res Pract 2024; 255:155172. [PMID: 38340584 DOI: 10.1016/j.prp.2024.155172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a rare and aggressive form of cancer associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. The emerging field of stem cell therapies for ATLL is discussed, highlighting the potential of hematopoietic stem cell transplantation (HSCT) and genetically modified stem cells. HSCT aims to eradicate malignant T-cells and restore a functional immune system through the infusion of healthy donor stem cells. Genetically modified stem cells show promise in enhancing their ability to target and eliminate ATLL cells. The article presents insights from preclinical studies and limited clinical trials, emphasizing the need for further research to establish the safety, efficacy, and long-term outcomes of stem cell therapies for ATLL and challenges associated with these innovative approaches are also explored. Overall, stem cell therapies hold significant potential in revolutionizing ATLL treatment, and ongoing clinical trials aim to determine their benefits in larger patient populations.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Islamic Azad University of Medical Science, Tehran, Iran.
| | | | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
13
|
Marie P, Bazire M, Ladet J, Ameur LB, Chahar S, Fontrodona N, Sexton T, Auboeuf D, Bourgeois CF, Mortreux F. Gene-to-gene coordinated regulation of transcription and alternative splicing by 3D chromatin remodeling upon NF-κB activation. Nucleic Acids Res 2024; 52:1527-1543. [PMID: 38272542 PMCID: PMC10899780 DOI: 10.1093/nar/gkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The NF-κB protein p65/RelA plays a pivotal role in coordinating gene expression in response to diverse stimuli, including viral infections. At the chromatin level, p65/RelA regulates gene transcription and alternative splicing through promoter enrichment and genomic exon occupancy, respectively. The intricate ways in which p65/RelA simultaneously governs these functions across various genes remain to be fully elucidated. In this study, we employed the HTLV-1 Tax oncoprotein, a potent activator of NF-κB, to investigate its influence on the three-dimensional organization of the genome, a key factor in gene regulation. We discovered that Tax restructures the 3D genomic landscape, bringing together genes based on their regulation and splicing patterns. Notably, we found that the Tax-induced gene-gene contact between the two master genes NFKBIA and RELA is associated with their respective changes in gene expression and alternative splicing. Through dCas9-mediated approaches, we demonstrated that NFKBIA-RELA interaction is required for alternative splicing regulation and is caused by an intragenic enrichment of p65/RelA on RELA. Our findings shed light on new regulatory mechanisms upon HTLV-1 Tax and underscore the integral role of p65/RelA in coordinated regulation of NF-κB-responsive genes at both transcriptional and splicing levels in the context of the 3D genome.
Collapse
Affiliation(s)
- Paul Marie
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Matéo Bazire
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Julien Ladet
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Lamya Ben Ameur
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Sanjay Chahar
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Nicolas Fontrodona
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Cyril F Bourgeois
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Franck Mortreux
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| |
Collapse
|
14
|
Bellon M, Nicot C. HTLV-1 Tax Tug-of-War: Cellular Senescence and Death or Cellular Transformation. Pathogens 2024; 13:87. [PMID: 38276160 PMCID: PMC10820833 DOI: 10.3390/pathogens13010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with a lymphoproliferative disease known as adult T cell leukemia/lymphoma (ATLL). HTLV-1 infection efficiently transforms human T cells in vivo and in vitro. The virus does not transduce a proto-oncogene, nor does it integrate into tumor-promoting genomic sites. Instead, HTLV-1 uses a random mutagenesis model, resulting in cellular transformation. Expression of the viral protein Tax is critical for the immortalization of infected cells by targeting specific cellular signaling pathways. However, Tax is highly immunogenic and represents the main target for the elimination of virally infected cells by host cytotoxic T cells (CTLs). In addition, Tax expression in naïve cells induces pro-apoptotic signals and has been associated with the induction of non-replicative cellular senescence. This review will explore these conundrums and discuss the mechanisms used by the Tax viral oncoprotein to influence life-and-death cellular decisions and affect HTLV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA;
| |
Collapse
|
15
|
Ebrahimi K, Bagheri R, Gholamhosseinian H, Keramati MR, Rafatpanah H, Iranshahi M, Rassouli FB. Umbelliprenin improved anti-proliferative effects of ionizing radiation on adult T-cell leukemia/lymphoma cells via interaction with CDK6; an in vitro and in silico study. Int J Immunopathol Pharmacol 2024; 38:3946320241287873. [PMID: 39313767 PMCID: PMC11437583 DOI: 10.1177/03946320241287873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy with poor survival rates. The efficacy of radiotherapy in ATL needs enhancement with radiosensitizing agents. This study investigated whether umbelliprenin (UMB) could improve the therapeutic effects of ionizing radiation (IR) in ATL cells. UMB, a naturally occurring prenylated coumarin, exhibits anticancer properties and has shown synergistic effects when combined with chemotherapeutic drugs. Despite this promising profile, there is a notable lack of research on its potential combinatorial effects with IR, particularly for ATL treatment. UMB was extracted from Ferula persica using thin layer chromatography. MT-2 cells were treated with UMB alone and in combination with various doses of IR, and cell proliferation was assessed via alamarBlue assay. Flow cytometry with annexin V and PI staining was conducted, and candidate gene expression was analyzed by qPCR. In silico analysis involved identifying pathogenic targets of ATL, constructing protein-protein interaction (PPI) networks, and evaluating CDK6 expression in MT-2 cells. Molecular docking was used to determine the interaction between UMB and CDK6. The alamarBlue assay and flow cytometry showed that pretreating ATL cells with UMB significantly (p < .0001) enhanced anti-proliferative effects of IR. The combination index indicated a synergistic effect between UMB and IR. qPCR revealed significant (p < .0001) downregulation of CD44, CDK6, c-MYC, and cFLIPL, and overexpression of cFLIPS. Computational analysis identified CDK6 as a hub gene in the PPI network, and CDK6 overexpression was confirmed in MT-2 cells. Molecular docking revealed a favorable binding interaction between UMB and the ATP-binding site of CDK6, with a JAMDA score of -2.131, surpassing the control selonsertib. The current study provides evidence that UMB enhances the anti-proliferative effects of IR on ATL cells, and highlights the significance of targeting CDK6 in combinatorial approaches.
Collapse
Affiliation(s)
- Keyhan Ebrahimi
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Bagheri
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Gholamhosseinian
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Cancer Molecular Pathology Research Center, Department of Hematology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
16
|
Oura M, Harada T, Oda A, Teramachi J, Nakayama A, Sumitani R, Inoue Y, Maeda Y, Sogabe K, Maruhashi T, Takahashi M, Fujii S, Nakamura S, Miki H, Nakamura M, Hara T, Yamagami H, Kurahashi K, Endo I, Hasegawa H, Fujiwara H, Abe M. Therapeutic efficacy of the resorcylic acid lactone LL-Z1640-2 for adult T-cell leukaemia/lymphoma. EJHAEM 2023; 4:667-678. [PMID: 37601887 PMCID: PMC10435715 DOI: 10.1002/jha2.758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Adult T-cell leukaemia/lymphoma (ATL) remains incurable. The NF-κB and interferon regulatory factor 4 (IRF4) signalling pathways are among the critical survival pathways for the progression of ATL. TGF-β-activated kinase 1 (TAK1), an IκB kinase-activating kinase, triggers the activation of NF-κB. The resorcylic acid lactone LL-Z1640-2 is a potent irreversible inhibitor of TAK1/extracellular signal-regulated kinase 2 (ERK2). We herein examined the therapeutic efficacy of LL-Z1640-2 against ATL. LL-Z1640-2 effectively suppressed the in vivo growth of ATL cells. It induced in vitro apoptosis and inhibited the nuclear translocation of p65/RelA in ATL cells. The knockdown of IRF4 strongly induced ATL cell death while downregulating MYC. LL-Z1640-2 as well as the NF-κB inhibitor BAY11-7082 decreased the expression of IRF4 and MYC at the protein and mRNA levels, indicating the suppression of the NF-κB-IRF4-MYC axis. The treatment with LL-Z1640-2 also mitigated the phosphorylation of p38 MAPK along with the expression of CC chemokine receptor 4. Furthermore, the inhibition of STAT3/5 potentiated the cytotoxic activity of LL-Z1640-2 against IL-2-responsive ATL cells in the presence of IL-2. Therefore, LL-Z1640-2 appears to be an effective treatment for ATL. Further studies are needed to develop more potent compounds that retain the active motifs of LL-Z1640-2.
Collapse
Affiliation(s)
- Masahiro Oura
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Takeshi Harada
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Asuka Oda
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Jumpei Teramachi
- Department of Oral Function and AnatomyGraduate School of Medicine Dentistryand Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Atsushi Nakayama
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
| | - Ryohei Sumitani
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yusuke Inoue
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yusaku Maeda
- Department of HematologyTokushima University HospitalTokushimaJapan
| | - Kimiko Sogabe
- Department of HematologyTokushima University HospitalTokushimaJapan
| | - Tomoko Maruhashi
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Mamiko Takahashi
- Department of HematologyTokushima University HospitalTokushimaJapan
| | - Shiro Fujii
- Department of HematologyTokushima University HospitalTokushimaJapan
| | - Shingen Nakamura
- Department of Community Medicine and Medical ScienceTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell TherapyTokushima University HospitalTokushimaJapan
| | - Masafumi Nakamura
- Department of Internal MedicineTokushima Prefecture Naruto HospitalTokushimaJapan
| | - Tomoyo Hara
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Hiroki Yamagami
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Kiyoe Kurahashi
- Department of Community Medicine for RespirologyHematology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Itsuro Endo
- Department of Bioregulatory SciencesTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Hiroo Hasegawa
- Department of Laboratory MedicineNagasaki University HospitalNagasakiJapan
| | - Hiroshi Fujiwara
- Department of Personalized Cancer ImmunotherapyMie University Graduate School of MedicineMieJapan
| | - Masahiro Abe
- Department of HematologyEndocrinology and MetabolismTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| |
Collapse
|
17
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
18
|
Shimizu Y. Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population. Life (Basel) 2023; 13:1588. [PMID: 37511963 PMCID: PMC10381883 DOI: 10.3390/life13071588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Structural atherosclerosis, as evaluated by carotid intima-media thickness (CIMT), is reported to be positively associated with hypertension. However, angiogenesis, which plays an important role in the progression of structural atherosclerosis, prevents hypertension by reducing peripheral vascular resistance. These associations evoke a contradiction: characteristics associated with the progression of structural atherosclerosis, which is related to hypertension, might prevent hypertension. To clarify novel mechanisms underlying the association between structural atherosclerosis and hypertension, multifaceted analyses are necessary. We performed several epidemiological studies based on this concept. This study summarizes those epidemiological studies and adds some discussion. Studies focusing on circulating CD34-positive cells, single-nucleotide polymorphisms (SNPs) of vascular endothelial growth factor (VEGF), SNPs in BRACA1-associated protein (BRAP), platelets, human T-cell leukemia virus type 1 (HTLV-1), and SNPs in aldehyde dehydrogenase 2 (ALDH2) have shown that active endothelial repair, which leads to the progression of structural atherosclerosis, helps prevent hypertension. These associations indicate that the progression of structural atherosclerosis could act as a marker of angiogenesis, which reduces peripheral vascular resistance. In general, a positive association between structural atherosclerosis and hypertension has been reported. However, the progression of structural atherosclerosis could act as a marker of activity that prevents hypertension via reductions in peripheral vascular resistance.
Collapse
Affiliation(s)
- Yuji Shimizu
- Epidemiology Section, Division of Public Health, Osaka Institute of Public Health, Osaka 537-0025, Japan
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
19
|
Mohanty S, Harhaj EW. Mechanisms of Innate Immune Sensing of HTLV-1 and Viral Immune Evasion. Pathogens 2023; 12:735. [PMID: 37242405 PMCID: PMC10221045 DOI: 10.3390/pathogens12050735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Human T lymphotropic virus-1 (HTLV-1) was the first identified oncoretrovirus, which infects and establishes a persistent infection in approximately 10-20 million people worldwide. Although only ~5% of infected individuals develop pathologies such as adult T-cell leukemia/lymphoma (ATLL) or a neuroinflammatory disorder termed HTLV-1-asssociated myelopathy/tropical spastic paraparesis (HAM/TSP), asymptomatic carriers are more susceptible to opportunistic infections. Furthermore, ATLL patients are severely immunosuppressed and prone to other malignancies and other infections. The HTLV-1 replication cycle provides ligands, mainly nucleic acids (RNA, RNA/DNA intermediates, ssDNA intermediates, and dsDNA), that are sensed by different pattern recognition receptors (PRRs) to trigger immune responses. However, the mechanisms of innate immune detection and immune responses to HTLV-1 infection are not well understood. In this review, we highlight the functional roles of different immune sensors in recognizing HTLV-1 infection in multiple cell types and the antiviral roles of host restriction factors in limiting persistent infection of HTLV-1. We also provide a comprehensive overview of intricate strategies employed by HTLV-1 to subvert the host innate immune response that may contribute to the development of HTLV-1-associated diseases. A more detailed understanding of HTLV-1-host pathogen interactions may inform novel strategies for HTLV-1 antivirals, vaccines, and treatments for ATLL or HAM/TSP.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | | |
Collapse
|
20
|
Bangham CRM. HTLV-1 persistence and the oncogenesis of adult T-cell leukemia/lymphoma. Blood 2023; 141:2299-2306. [PMID: 36800643 PMCID: PMC10646791 DOI: 10.1182/blood.2022019332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), also known as human T-lymphotropic virus type 1, causes the aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) in 5% of infected people and a chronic progressive inflammatory disease of the central nervous system, HTLV-1-associated myelopathy, in ∼0.3% to 4% of them, varying between regions where it is endemic. Reliable treatments are lacking for both conditions, although there have been promising recent advances in the prevention and treatment of ATL. Because ATL typically develops after several decades of infection, it is necessary to understand how the virus persists in the host despite a strong immune response, and how this persistence results in oncogenesis.
Collapse
|
21
|
An update on genetic aberrations in T-cell neoplasms. Pathology 2023; 55:287-301. [PMID: 36801152 DOI: 10.1016/j.pathol.2022.12.350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023]
Abstract
T-cell neoplasms are a highly heterogeneous group of leukaemias and lymphomas that represent 10-15% of all lymphoid neoplasms. Traditionally, our understanding of T-cell leukaemias and lymphomas has lagged behind that of B-cell neoplasms, in part due to their rarity. However, recent advances in our understanding of T-cell differentiation, based on gene expression and mutation profiling and other high throughput methods, have better elucidated the pathogenetic mechanisms of T-cell leukaemias and lymphomas. In this review, we provide an overview of many of the molecular abnormalities that occur in various types of T-cell leukaemia and lymphoma. Much of this knowledge has been used to refine diagnostic criteria that has been included in the fifth edition of the World Health Organization. This knowledge is also being used to improve prognostication and identify novel therapeutic targets, and we expect this progress will continue, eventually resulting in improved outcomes for patients with T-cell leukaemias and lymphomas.
Collapse
|
22
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
23
|
Viral, genetic, and immune factors in the oncogenesis of adult T-cell leukemia/lymphoma. Int J Hematol 2023; 117:504-511. [PMID: 36705848 DOI: 10.1007/s12185-023-03547-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature CD4 + T cells induced by human T-cell leukemia virus type I (HTLV-1). HTLV-1 maintains life-long infection in the human host by clonal proliferation of infected cells and cell-to-cell spread of the virus. Two viral genes, tax and HTLV-1 bZIP factor (HBZ), promote expansion of infected cells through the important roles they play in acceleration of cell proliferation and protection from cell death. Long-term survival of infected clones in vivo causes genetic mutations and aberrant epigenetic changes to accumulate in host genes, resulting in the emergence of an ATL clone. Recent advances in sequencing technology have revealed the broad picture of genetic and transcriptional abnormalities in ATL cells. ATL cells have hyper-proliferative and anti-apoptotic signatures like those observed in other malignancies, but also notably have traits related to immune evasion. ATL cells exhibit a regulatory T-cell-like immuno-phenotype due to both the function of HBZ and mutation of several host genes, such as CCR4 and CIC. These findings suggest that immune evasion is a critical step in the oncogenesis of ATL, and thus novel therapies that activate anti-ATL/HTLV-1 immunity may be effective in the treatment and prevention of ATL.
Collapse
|
24
|
Ahmadi Ghezeldasht S, Blackbourn DJ, Mosavat A, Rezaee SA. Pathogenicity and virulence of human T lymphotropic virus type-1 (HTLV-1) in oncogenesis: adult T-cell leukemia/lymphoma (ATLL). Crit Rev Clin Lab Sci 2023; 60:189-211. [PMID: 36593730 DOI: 10.1080/10408363.2022.2157791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy of CD4+ T lymphocytes caused by human T lymphotropic virus type-1 (HTLV-1) infection. HTLV-1 was brought to the World Health Organization (WHO) and researchers to address its impact on global public health, oncogenicity, and deterioration of the host immune system toward autoimmunity. In a minority of the infected population (3-5%), it can induce inflammatory networks toward HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), or hijacking the infected CD4+ T lymphocytes into T regulatory subpopulation, stimulating anti-inflammatory signaling networks, and prompting ATLL development. This review critically discusses the complex signaling networks in ATLL pathogenesis during virus-host interactions for better interpretation of oncogenicity and introduces the main candidates in the pathogenesis of ATLL. At least two viral factors, HTLV-1 trans-activator protein (TAX) and HTLV-1 basic leucine zipper factor (HBZ), are implicated in ATLL manifestation, interacting with host responses and deregulating cell signaling in favor of infected cell survival and virus dissemination. Such molecules can be used as potential novel biomarkers for ATLL prognosis or targets for therapy. Moreover, the challenging aspects of HTLV-1 oncogenesis introduced in this review could open new venues for further studies on acute leukemia pathogenesis. These features can aid in the discovery of effective immunotherapies when reversing the gene expression profile toward appropriate immune responses gradually becomes attainable.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran.,Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Ali A, Ara A, Kashyap MK. Gut microbiota: Role and Association with Tumorigenesis in Different Malignancies. Mol Biol Rep 2022; 49:8087-8107. [PMID: 35543828 DOI: 10.1007/s11033-022-07357-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 02/07/2023]
Abstract
The microbiota has been associated with different cancer and may vary from patient to patient. A specific microbial strain can alter the progression of cancer and therapeutic outcome in response to anti-cancer therapy. The variations in microbiota contributed due to the individual microbiome of the microorganism are responsible for diverse clinical outcomes. The expansion of microbiota subpopulation during dysbiosis can lead to toxin production, inducing inflammation and cancer. The microbiota can be a dual-edged sword because it can be tumor-suppressive or oncogenic in the case of the gut. The transition of cancer cells from early to late-stage also impacts the composition of the microbiota, and this alteration could change the behavior of cancer. Multi-omics platforms derived data from an individual's multi-dimensional data (DNA, mRNA, microRNA, protein, metabolite, microbiota, and microbiome), i.e., individualome, to exploit it for personalized tailored treatment for different cancers in a precise manner. A number of studies suggest the importance of microbiota and its add-in suitability to existing treatment options for different malignancies. Furthermore, in vitro, and in vivo studies and cancer clinical trials suggest that probiotics have driven modulation of gut microbiota and other sites discourage the aggressive behavior and progression of different cancers.
Collapse
Affiliation(s)
- Altamas Ali
- Department of Biosciences, Jamia Millia Islamia (A central University), Jamia Nagar, 110025, New Delhi, India
| | - Anam Ara
- Department of Biosciences, Jamia Millia Islamia (A central University), Jamia Nagar, 110025, New Delhi, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute/Amity Medical School, Amity University Haryana, Amity Education Valley, Panchgaon (Manesar), Gurugram, HR, 122413, India.
| |
Collapse
|
26
|
Tram J, Mesnard JM, Peloponese JM. Alternative RNA splicing in cancer: what about adult T-cell leukemia? Front Immunol 2022; 13:959382. [PMID: 35979354 PMCID: PMC9376482 DOI: 10.3389/fimmu.2022.959382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells employ a broad range of mechanisms to regulate gene expression. Among others, mRNA alternative splicing is a key process. It consists of introns removal from an immature mRNA (pre-mRNA) via a transesterification reaction to create a mature mRNA molecule. Large-scale genomic studies have shown that in the human genome, almost 95% of protein-encoding genes go through alternative splicing and produce transcripts with different exons combinations (and sometimes retained introns), thus increasing the proteome diversity. Considering the importance of RNA regulation in cellular proliferation, survival, and differentiation, alterations in the alternative splicing pathway have been linked to several human cancers, including adult T-cell leukemia/lymphoma (ATL). ATL is an aggressive and fatal malignancy caused by the Human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 genome encodes for two oncoproteins: Tax and HBZ, both playing significant roles in the transformation of infected cells and ATL onset. Here, we review current knowledge on alternative splicing and its link to cancers and reflect on how dysregulation of this pathway could participate in HTLV-1-induced cellular transformation and adult T-cell leukemia/lymphoma development.
Collapse
|
27
|
Umekita K. Effect of HTLV-1 Infection on the Clinical Course of Patients with Rheumatoid Arthritis. Viruses 2022; 14:v14071460. [PMID: 35891440 PMCID: PMC9323945 DOI: 10.3390/v14071460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The effects of HTLV-1 on health are not fully elucidated. Epidemiological studies have shown that the prevalence of HTLV-1 infection is high in patients with rheumatic diseases. The prevalence of comorbidities, such as Sjögren’s syndrome and rheumatoid arthritis (RA), is higher in patients with HAM/TSP than the in general population. Studies have shown the effects of HTLV-1-infection on the clinical course of RA. Major questions on the association between HTLV-1 infection and RA: (1) Is it possible that HTLV-1 infection causes RA? (2) Do patients with RA who are infected with HTLV-1 have different clinical features? (3) Are immunosuppressants associated with an increased prevalence of HAM/TSP or ATL in RA patients with HTLV-1 infection? Is ATL an immunosuppressive therapy-associated lymphoproliferative disorder? No large-scale studies have investigated the incidence of ATL in patients with RA. However, several studies have reported the development of ATL in patients with RA who have HTLV-1 infection. This review aimed to shed light on the association between HTLV-1 infection and RA and summarize the unmet medical needs of RA patients with HTLV-1 infection.
Collapse
Affiliation(s)
- Kunihiko Umekita
- Division of Respirology, Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
28
|
Machado CB, da Cunha LS, Maués JHDS, Pessoa FMCDP, de Oliveira MB, Ribeiro RM, Lopes GS, de Moraes Filho MO, de Moraes MEA, Khayat AS, Moreira-Nunes CA. Role of miRNAs in Human T Cell Leukemia Virus Type 1 Induced T Cell Leukemia: A Literature Review and Bioinformatics Approach. Int J Mol Sci 2022; 23:5486. [PMID: 35628297 PMCID: PMC9141946 DOI: 10.3390/ijms23105486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) was identified as the first pathogenic human retrovirus and is estimated to infect 5 to 10 million individuals worldwide. Unlike other retroviruses, there is no effective therapy to prevent the onset of the most alarming diseases caused by HTLV-1, and the more severe cases manifest as the malignant phenotype of adult T cell leukemia (ATL). MicroRNA (miRNA) dysfunction is a common feature of leukemogenesis, and it is no different in ATL cases. Therefore, we sought to analyze studies that reported deregulated miRNA expression in HTLV-1 infected cells and patients' samples to understand how this deregulation could induce malignancy. Through in silico analysis, we identified 12 miRNAs that stood out in the prediction of targets, and we performed functional annotation of the genes linked to these 12 miRNAs that appeared to have a major biological interaction. A total of 90 genes were enriched in 14 KEGG pathways with significant values, including TP53, WNT, MAPK, TGF-β, and Ras signaling pathways. These miRNAs and gene interactions are discussed in further detail for elucidation of how they may act as probable drivers for ATL onset, and while our data provide solid starting points for comprehension of miRNAs' roles in HTLV-1 infection, continuous effort in oncologic research is still needed to improve our understanding of HTLV-1 induced leukemia.
Collapse
Affiliation(s)
- Caio Bezerra Machado
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | | | | | - Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Marcelo Braga de Oliveira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.B.d.O.); (A.S.K.)
| | | | - Germison Silva Lopes
- Department of Hematology, César Cals General Hospital, Fortaleza 60015-152, CE, Brazil;
| | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.B.d.O.); (A.S.K.)
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (C.B.M.); (F.M.C.d.P.P.); (M.O.d.M.F.); (M.E.A.d.M.)
- Unichristus University Center, Faculty of Biomedicine, Fortaleza 60430-275, CE, Brazil;
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (M.B.d.O.); (A.S.K.)
- Department of Health Sciences, Northeast Biotechnology Network (RENORBIO), Itaperi Campus, Ceará State University, Fortaleza 60740-903, CE, Brazil
| |
Collapse
|
29
|
Kiik H, Ramanayake S, Miura M, Tanaka Y, Melamed A, Bangham CRM. Time-course of host cell transcription during the HTLV-1 transcriptional burst. PLoS Pathog 2022; 18:e1010387. [PMID: 35576236 PMCID: PMC9135347 DOI: 10.1371/journal.ppat.1010387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) transactivator protein Tax has pleiotropic functions in the host cell affecting cell-cycle regulation, DNA damage response pathways and apoptosis. These actions of Tax have been implicated in the persistence and pathogenesis of HTLV-1-infected cells. It is now known that tax expression occurs in transcriptional bursts of the proviral plus-strand, but the effects of the burst on host transcription are not fully understood. We carried out RNA sequencing of two naturally-infected T-cell clones transduced with a Tax-responsive Timer protein, which undergoes a time-dependent shift in fluorescence emission, to study transcriptional changes during successive phases of the HTLV-1 plus-strand burst. We found that the transcriptional regulation of genes involved in the NF-κB pathway, cell-cycle regulation, DNA damage response and apoptosis inhibition were immediate effects accompanying the plus-strand burst, and are limited to the duration of the burst. The results distinguish between the immediate and delayed effects of HTLV-1 reactivation on host transcription, and between clone-specific effects and those observed in both clones. The major transcriptional changes in the infected host T-cells observed here, including NF-κB, are transient, suggesting that these pathways are not persistently activated at high levels in HTLV-1-infected cells. The two clones diverged strongly in their expression of genes regulating the cell cycle. Up-regulation of senescence markers was a delayed effect of the proviral plus-strand burst and the up-regulation of some pro-apoptotic genes outlasted the burst. We found that activation of the aryl hydrocarbon receptor (AhR) pathway enhanced and prolonged the proviral burst, but did not increase the rate of reactivation. Our results also suggest that sustained plus-strand expression is detrimental to the survival of infected cells.
Collapse
Affiliation(s)
- Helen Kiik
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michi Miura
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Anat Melamed
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
NF-κB-Induced R-Loops and Genomic Instability in HTLV-1-Infected and Adult T-Cell Leukemia Cells. Viruses 2022; 14:v14050877. [PMID: 35632619 PMCID: PMC9147355 DOI: 10.3390/v14050877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a human delta retrovirus that causes adult T-cell leukemia/lymphoma (ATL) in 3–5% of the infected population after decades of clinical latency. HTLV-1 Tax is a potent activator of IKK/NF-κB and a clastogen. While NF-κB activities are associated with cell survival and proliferation, constitutive NF-κB activation (NF-κB hyperactivation) by Tax leads to senescence and oncogenesis. Until recently, the mechanisms underlying the DNA damage and senescence induced by Tax and NF-κB were unknown. Current data indicate that NF-κB hyperactivation by Tax causes the accumulation of a nucleic acid structure known as an R-loop. R-loop excision by the transcription-coupled nucleotide excision repair (TC-NER) endonucleases, Xeroderma pigmentosum F (XPF), and XPG, in turn, promotes DNA double-strand breaks (DSBs). NF-κB blockade prevents Tax-induced R-loop accumulation, DNA damage, and senescence. In the same vein, the silencing of XPF and XPG mitigates Tax senescence, while deficiency in either or both frequently occurs in ATL of all types. ATL cells maintain constitutively active NF-κB, accumulate R-loops, and resist Tax-induced senescence. These results suggest that ATL cells must have acquired adaptive changes to prevent senescence and benefit from the survival and proliferation advantages conferred by Tax and NF-κB. In this review, the roles of R-loops in Tax- and NF-κB-induced DNA DSBs, senescence, and ATL development, and the epigenetic and genetic alterations that arise in ATL to reduce R-loop-associated DNA damage and avert senescence will be discussed.
Collapse
|
31
|
Yaghoubi N, Youssefi M, Rafat Panah H, Jarahi L, Zahedi Avval F. Evaluation of antioxidant status and oxidative stress markers in HTLV-1 infected individuals: correlation with the severity of virus-induced complications. J Med Microbiol 2022; 71. [PMID: 35442185 DOI: 10.1099/jmm.0.001408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Human T-cell lymphotropic virus type 1 (HTLV-1), a well-known member of the retroviridae family, potentially causes serious outcomes including adult T-cell leukaemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM-TSP). Oxidative stress plays a key role in progression and clinical exacerbation of several chronic infections. We have previously shown a reduction in serum total antioxidant capacity (TAC) during HTLV-1 infection and this study was set out to investigate the reasons for TAC reduction.Hypothesis/Gap Statement. Oxidant/antioxidant imbalance during HTLV-1 infection may result from disruptions in oxidant levels or antioxidant defence system.Aim. This study aimed to analyse the key enzymes and oxidant molecules playing important roles in virus-induced oxidative stress.Methodology. We measured serum activities of the major antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) as well as serum concentrations of the main oxidant markers: nitric oxide (NO) and malondialdehyde (MDA). Totally 40 HTLV-1 infected patients and 40 healthy controls were enrolled in this study. The patient group consisted of chronic carriers and patients with HAM-TSP (N=20).Results. The current study found that serum levels of MDA and NO were significantly higher in patient groups particularly in HAM-TSP patients (P<0.05). In addition, a reductive trend was observed in the serum activities of CAT, SOD, and GPX in HTLV-1 infected patients compared with healthy controls (P<0.05).Conclusion. Reduced activities of CAT, SOD, and GPX antioxidant enzymes along with the observed elevated concentrations of oxidant molecules may contribute to oxidative stress and worse outcomes during HTLV-1 infection.
Collapse
Affiliation(s)
- Neda Yaghoubi
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooshang Rafat Panah
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lida Jarahi
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Shi RJ, Fan HY, Yu XH, Tang YL, Jiang J, Liang XH. Advances of podophyllotoxin and its derivatives: patterns and mechanisms. Biochem Pharmacol 2022; 200:115039. [DOI: 10.1016/j.bcp.2022.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
33
|
Lopez A, Nichols Doyle R, Sandoval C, Nisson K, Yang V, Fregoso OI. Viral Modulation of the DNA Damage Response and Innate Immunity: Two Sides of the Same Coin. J Mol Biol 2022; 434:167327. [PMID: 34695379 PMCID: PMC9119581 DOI: 10.1016/j.jmb.2021.167327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
The DDR consists of multiple pathways that sense, signal, and respond to anomalous DNA. To promote efficient replication, viruses have evolved to engage and even modulate the DDR. In this review, we will discuss a select set of diverse viruses and the range of mechanisms they evolved to interact with the DDR and some of the subsequent cellular consequences. There is a dichotomy in that the DDR can be both beneficial for viruses yet antiviral. We will also review the connection between the DDR and innate immunity. Previously believed to be disparate cellular functions, more recent research is emerging that links these processes. Furthermore, we will discuss some discrepancies in the literature that we propose can be remedied by utilizing more consistent DDR-focused assays. By doing so, we hope to obtain a much clearer understanding of how broadly these mechanisms and phenotypes are conserved among all viruses. This is crucial for human health since understanding how viruses manipulate the DDR presents an important and tractable target for antiviral therapies.
Collapse
Affiliation(s)
- Andrew Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Karly Nisson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Vivian Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Abstract
The Hippo pathway plays critical roles in controlling cell proliferation, and its dysregulation is widely implicated in numerous human cancers. YAP, a Hippo signaling effector, often acts as a nexus and integrator for multiple prominent signaling networks. In this study, we discover NF-κB cross talk with the Hippo pathway and identify p65 as a critical regulator for YAP nuclear retention and transcriptional activity. Furthermore, we find that p65-induced YAP activation is essential for maintaining the proliferation of ATL cells in vitro and in vivo. Our findings unravel the functional interplay between NF-κB and YAP signaling and provide mechanistic insights into the YAP-dependent growth control pathway and tumorigenesis. Adult T-cell leukemia/lymphoma (ATL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. HTLV-1 exerts its oncogenic functions by interacting with signaling pathways involved in cell proliferation and transformation. Dysregulation of the Hippo/YAP pathway is associated with multiple cancers, including virus-induced malignancies. In the present study, we observe that expression of YAP, which is the key effector of Hippo signaling, is elevated in ATL cells by the action of the HTLV-1 Tax protein. YAP transcriptional activity is remarkably enhanced in HTLV-1–infected cells and ATL patients. In addition, Tax activates the YAP protein via a mechanism involving the NF-κB/p65 pathway. As a mechanism for this cross talk between the Hippo and NF-κB pathways, we found that p65 abrogates the interaction between YAP and LATS1, leading to suppression of YAP phosphorylation, inhibition of ubiquitination-dependent degradation of YAP, and YAP nuclear accumulation. Finally, knockdown of YAP suppresses the proliferation of ATL cells in vitro and tumor formation in ATL-engrafted mice. Taken together, our results suggest that p65-induced YAP activation is essential for ATL pathogenesis and implicate YAP as a potential therapeutic target for ATL treatment.
Collapse
|
35
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
36
|
Regulation of HTLV-1 Transformation. Biosci Rep 2022; 42:230803. [PMID: 35169839 PMCID: PMC8919135 DOI: 10.1042/bsr20211921] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the only identified oncogenic human retrovirus. HTLV-1 infects approximately 5–10 million people worldwide and is the infectious cause of adult T-cell leukemia/lymphoma (ATL) and several chronic inflammatory diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), dermatitis, and uveitis. Unlike other oncogenic retroviruses, HTLV-1 does not capture a cellular proto-oncogene or induce proviral insertional mutagenesis. HTLV-1 is a trans-activating retrovirus and encodes accessory proteins that induce cellular transformation over an extended period of time, upwards of several years to decades. Inarguably the most important viral accessory protein involved in transformation is Tax. Tax is a multifunctional protein that regulates several different pathways and cellular processes. This single viral protein is able to modulate viral gene expression, activate NF-κB signaling pathways, deregulate the cell cycle, disrupt apoptosis, and induce genomic instability. The summation of these processes results in cellular transformation and virus-mediated oncogenesis. Interestingly, HTLV-1 also encodes a protein called Hbz from the antisense strand of the proviral genome that counters many Tax functions in the infected cell, such as Tax-mediated viral transcription and NF-κB activation. However, Hbz also promotes cellular proliferation, inhibits apoptosis, and disrupts genomic integrity. In addition to viral proteins, there are other cellular factors such as MEF-2, superoxide-generating NAPDH oxidase 5-α (Nox5α), and PDLIM2 which have been shown to be critical for HTLV-1-mediated T-cell transformation. This review will highlight the important viral and cellular factors involved in HTLV-1 transformation and the available in vitro and in vivo tools used to study this complex process.
Collapse
|
37
|
Elfakhrany A, Abo-Elsoud RAEA, Abd El Kareem HM, Samaka RM, Elfiky SR. Autophagy and Oxidative Balance Mediate the Effect of Carvedilol and Glibenclamide in a Rat Model of Renal Ischemia-Reperfusion Injury. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Reactive oxygen species and cytokines are the main players in the development of renal ischemia-reperfusion (I/R) injury.
AIM: The current study aimed to evaluate the effects of carvedilol and/or glibenclamide and the interaction between autophagy and oxidative stress.
METHODS: 50 male rats were divided into five groups: Control, IR injury (IRI), carvedilol pretreated, glibenclamide pretreated, and combined carvedilol and glibenclamide pretreated. Measurements of renal blood flow (RBF), creatinine clearance, serum blood urea nitrogen (BUN), histopathological, and immunohistochemical evaluation of autophagy marker Becl-1 in the rat kidney were performed. Beclin-1and light chain 3 (LC3) Mrna expression was detected by real time polymerase chain reaction.
RESULTS: IRI was associated with significant increases in BUN, tumor necrosis factor-alpha, nuclear factor κB, and histo (H) score value of Becl-1. However, there was a significant decrease in RBF, creatinine clearance, and glutathione peroxidase compared to the control group. There was significant increase in Beclin-1 and LC3 mRNA gene expression in carvedilol, glibenclamide, and combined treatment groups as compared to IRI and control groups. Combination of carvedilol and glibenclamide significantly restored IRI changes when compared with the other pretreated groups.
CONCLUSION: This study suggests that carvedilol and glibenclamide are promising reno-protective drugs to reduce renal injury induced by I/R through their antioxidant and autophagy stimulation.
Collapse
|
38
|
Triple combination of BET plus PI3K and NF-κB inhibitors exhibit synergistic activity in adult T cell leukemia/lymphoma. Blood Adv 2022; 6:2346-2360. [PMID: 35030628 PMCID: PMC9006306 DOI: 10.1182/bloodadvances.2021005948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/02/2022] [Indexed: 11/20/2022] Open
Abstract
Triple combination of I-BET762, copanlisib, and bardoxolone methyl exhibits synergistic activity against ATL in vitro and in vivo. Triple combination synergizes to inhibit c-MYC ex vivo in PBMCs containing leukemic cells from ATL patients.
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T-cell lymphoproliferative malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). ATL is an orphan disease with no curative drug treatment regimens urgently needing new combination therapy. HTLV-1-infected cells rely on viral proteins, Tax and HBZ (HTLV-1-b-ZIP factor), to activate the transcription of various host genes that are critical for promoting leukemic transformation. Inhibition of bromodomain and extraterminal motif (BET) protein was previously shown to collapse the transcriptional network directed by BATF3 super-enhancer and thereby induced ATL cell apoptosis. In the current work, by using xenograft, ex vivo, and in vitro models, we demonstrated that I-BET762 (BETi) synergized with copanlisib (PI3Ki) and bardoxolone methyl (NF-κBi) to dramatically decrease the growth of ATL cells. Mechanistically, the triple combination exhibited synergistic activity by down-regulating the expression of c-MYC while upregulating the level of the glucocorticoid-induced leucine zipper (GILZ). The triple combination also enhanced apoptosis induction by elevating the expression of active caspase-3 and cleaved PARP. Importantly, the triple combination prolonged the survival of ATL-bearing xenograft mice and inhibited the proliferation of ATL cells from peripheral blood mononuclear cells (PBMCs) of both acute and smoldering/chronic ATL patients. Therefore, our data provide the rationale for a clinical trial exploring the multiagent combination of BET, PI3K/AKT, and NF-κB inhibitors for ATL patients and expands the potential treatments for this recalcitrant malignancy.
Collapse
|
39
|
Delbari Z, Khodadadi F, Kazemi M, Koohpaykar H, Iranshahi M, Rafatpanah H, B. Rassouli F. Combination of Umbelliprenin and Arsenic Trioxide Acts as an Effective Modality Against T-Cell Leukemia/Lymphoma Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211072334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a serious blood malignancy with distinct geographical distribution. ATLL patients have a short survival time because of intrinsic chemoresistance and severe immunosuppression. To introduce a novel treatment, we investigated whether umbelliprenin (UMB), a natural coumarin derivative, could improve the toxicity of arsenic trioxide (ATO) on ATLL cells. To determine the viability of MT-2 cells upon treatment with different concentrations of UMB and ATO, alamarBlue assay was applied. Cell cycle analysis was carried out by propidium iodide staining and the expression of candidate genes was assessed by quantitative reverse transcription-polymerase chain reaction. Our findings revealed that combination of UMB and ATO induced considerable cytotoxic effects on ATLL cells. Flow cytometry analysis indicated accumulation of MT-2 cells in the sub G1 phase of the cell cycle after combinatorial treatment. In addition, significant downregulation in BMI-1, CD44, c-MYC, and nuclear factor-κB (REL-A) expression was observed after UMB + ATO administration. Agents with low side effects are potential candidates for novel cancer treatments. We demonstrated, for the first time, that combination of UMB and ATO might be regarded as an effective regimen for ATLL treatment.
Collapse
Affiliation(s)
- Zahra Delbari
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Khodadadi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Kazemi
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Koohpaykar
- Department of Hematology and Blood Bank, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
40
|
Ratner L. Epigenetic Regulation of Human T-Cell Leukemia Virus Gene Expression. Microorganisms 2021; 10:84. [PMID: 35056532 PMCID: PMC8781281 DOI: 10.3390/microorganisms10010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Viral and cellular gene expression are regulated by epigenetic alterations, including DNA methylation, histone modifications, nucleosome positioning, and chromatin looping. Human T-cell leukemia virus type 1 (HTLV-1) is a pathogenic retrovirus associated with inflammatory disorders and T-cell lymphoproliferative malignancy. The transforming activity of HTLV-1 is driven by the viral oncoprotein Tax, which acts as a transcriptional activator of the cAMP response element-binding protein (CREB) and nuclear factor kappa B (NFκB) pathways. The epigenetic effects of Tax and the induction of lymphoproliferative malignancy include alterations in DNA methylation and histone modifications. In addition, alterations in nucleosome positioning and DNA looping also occur in HTLV-1-induced malignant cells. A mechanistic definition of these effects will pave the way to new therapies for HTLV-1-associated disorders.
Collapse
Affiliation(s)
- Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Box 8069, 660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
41
|
Kazemi M, Kouhpeikar H, Delbari Z, Khodadadi F, Gerayli S, Iranshahi M, Mosavat A, Behnam Rassouli F, Rafatpanah H. Combination of auraptene and arsenic trioxide induces apoptosis and cellular accumulation in the subG1 phase in adult T-cell leukemia cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1643-1649. [PMID: 35432798 PMCID: PMC8976908 DOI: 10.22038/ijbms.2021.58633.13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
Objectives Despite advances in the treatment of adult T-cell leukemia/lymphoma (ATLL), the survival rate of this malignancy remains significantly low. Auraptene (AUR) is a natural coumarin with broad-spectrum anticancer activities. To introduce a more effective therapeutic strategy for ATLL, we investigated the combinatorial effects of AUR and arsenic trioxide (ATO) on MT-2 cells. Materials and Methods The cells were treated with different concentrations of AUR for 24, 48, and 72 hr, and viability was measured by alamarBlue assay. Then, the combination of AUR (20 μg/ml) and ATO (3 μg/ml) was administrated and the cell cycle was analyzed by PI staining followed by flow cytometry analysis. In addition, the expression of NF-κB (REL-A), CD44, c-MYC, and BMI-1 was evaluated via qPCR. Results Assessment of cell viability revealed increased toxicity of AUR and ATO when used in combination. Our findings were confirmed by accumulation of cells in the sub G1 phase of the cell cycle and significant down-regulation of NF-κB (REL-A), CD44, c-MYC, and BMI-1. Conclusion Obtained findings suggest that combinatorial use of AUR and ATO could be considered for designing novel chemotherapy regimens for ATLL.
Collapse
Affiliation(s)
- Mohaddeseh Kazemi
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Kouhpeikar
- Department of Hematology and Blood Bank, Tabas School of Nursing, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Delbari
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faeze Khodadadi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Gerayli
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Fatemeh Behnam Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
New Look of EBV LMP1 Signaling Landscape. Cancers (Basel) 2021; 13:cancers13215451. [PMID: 34771613 PMCID: PMC8582580 DOI: 10.3390/cancers13215451] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Epstein-Barr Virus (EBV) infection is associated with various lymphomas and carcinomas as well as other diseases in humans. The transmembrane protein LMP1 plays versatile roles in EBV life cycle and pathogenesis, by perturbing, reprograming, and regulating a large range of host cellular mechanisms and functions, which have been increasingly disclosed but not fully understood so far. We summarize recent research progress on LMP1 signaling, including the novel components LIMD1, p62, and LUBAC in LMP1 signalosome and LMP1 novel functions, such as its induction of p62-mediated selective autophagy, regulation of metabolism, induction of extracellular vehicles, and activation of NRF2-mediated antioxidative defense. A comprehensive understanding of LMP1 signal transduction and functions may allow us to leverage these LMP1-regulated cellular mechanisms for clinical purposes. Abstract The Epstein–Barr Virus (EBV) principal oncoprotein Latent Membrane Protein 1 (LMP1) is a member of the Tumor Necrosis Factor Receptor (TNFR) superfamily with constitutive activity. LMP1 shares many features with Pathogen Recognition Receptors (PRRs), including the use of TRAFs, adaptors, and kinase cascades, for signal transduction leading to the activation of NFκB, AP1, and Akt, as well as a subset of IRFs and likely the master antioxidative transcription factor NRF2, which we have gradually added to the list. In recent years, we have discovered the Linear UBiquitin Assembly Complex (LUBAC), the adaptor protein LIMD1, and the ubiquitin sensor and signaling hub p62, as novel components of LMP1 signalosome. Functionally, LMP1 is a pleiotropic factor that reprograms, balances, and perturbs a large spectrum of cellular mechanisms, including the ubiquitin machinery, metabolism, epigenetics, DNA damage response, extracellular vehicles, immune defenses, and telomere elongation, to promote oncogenic transformation, cell proliferation and survival, anchorage-independent cell growth, angiogenesis, and metastasis and invasion, as well as the development of the tumor microenvironment. We have recently shown that LMP1 induces p62-mediated selective autophagy in EBV latency, at least by contributing to the induction of p62 expression, and Reactive Oxygen Species (ROS) production. We have also been collecting evidence supporting the hypothesis that LMP1 activates the Keap1-NRF2 pathway, which serves as the key antioxidative defense mechanism. Last but not least, our preliminary data shows that LMP1 is associated with the deregulation of cGAS-STING DNA sensing pathway in EBV latency. A comprehensive understanding of the LMP1 signaling landscape is essential for identifying potential targets for the development of novel strategies towards targeted therapeutic applications.
Collapse
|
43
|
Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22:ijms22158001. [PMID: 34360767 PMCID: PMC8347336 DOI: 10.3390/ijms22158001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus–host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Maria Grazia Romanelli
- Department of Biosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
44
|
Gilmore TD. NF-κB and Human Cancer: What Have We Learned over the Past 35 Years? Biomedicines 2021; 9:biomedicines9080889. [PMID: 34440093 PMCID: PMC8389606 DOI: 10.3390/biomedicines9080889] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Transcription factor NF-κB has been extensively studied for its varied roles in cancer development since its initial characterization as a potent retroviral oncogene. It is now clear that NF-κB also plays a major role in a large variety of human cancers, including especially ones of immune cell origin. NF-κB is generally constitutively or aberrantly activated in human cancers where it is involved. These activations can occur due to mutations in the NF-κB transcription factors themselves, in upstream regulators of NF-κB, or in pathways that impact NF-κB. In addition, NF-κB can be activated by tumor-assisting processes such as inflammation, stromal effects, and genetic or epigenetic changes in chromatin. Aberrant NF-κB activity can affect many tumor-associated processes, including cell survival, cell cycle progression, inflammation, metastasis, angiogenesis, and regulatory T cell function. As such, inhibition of NF-κB has often been investigated as an anticancer strategy. Nevertheless, with a few exceptions, NF-κB inhibition has had limited success in human cancer treatment. This review covers general themes that have emerged regarding the biological roles and mechanisms by which NF-κB contributes to human cancers and new thoughts on how NF-κB may be targeted for cancer prognosis or therapy.
Collapse
|
45
|
Zhu L, Xie S, Yang C, Hua N, Wu Y, Wang L, Ni W, Tong X, Fei M, Wang S. Current Progress in Investigating Mature T- and NK-Cell Lymphoma Gene Aberrations by Next-Generation Sequencing (NGS). Cancer Manag Res 2021; 13:5275-5286. [PMID: 34239326 PMCID: PMC8259727 DOI: 10.2147/cmar.s299505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022] Open
Abstract
Despite efforts to abrogate the severe threat to life posed by the profound malignancy of mature natural killer/T-cell lymphoma (NKTCL), therapeutic advances still require further investigation of its inherent regulatory biochemical processes. Next-generation sequencing (NGS) is an increasingly developing gene detection technique, which has been widely used in lymphoma genetic research in recent years. Targeted therapy based on the above studies has also generated a series of advances, making genetic mutation a new research hotspot in lymphoma. Advances in NKTCL-related gene mutations are reviewed in this paper.
Collapse
Affiliation(s)
- Lifen Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Lei Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Wanmao Ni
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Min Fei
- Center of Health Management, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
46
|
Rauch DA, Harding JC, Ratner L, Wickline SA, Pan H. Targeting NF-κB with Nanotherapy in a Mouse Model of Adult T-Cell Leukemia/Lymphoma. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1582. [PMID: 34208564 PMCID: PMC8234599 DOI: 10.3390/nano11061582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is an aggressive, clonal malignancy of mature T cells caused by human T-cell leukemia virus type 1. Although it is a rare tumor type, it serves as an excellent model of a virus driven process that transforms cells and engenders a highly malignant tumor that is extraordinarily difficult to treat. The viral transcriptional transactivator (Tax) in the HTLV-1 genome directly promotes tumorigenesis, and Tax-induced oncogenesis depends on its ability to constitutively activate NF-κB signaling. Accordingly, we developed and evaluated a nano-delivery system that simultaneously inhibits both canonical (p65) and noncanonical (p100) NF-κB signaling pathways locally in tumors after systemic administration. Our results demonstrate that siRNA is delivered rapidly to ATLL tumors after either i.p. or i.v. injection. The siRNA treatment significantly reduced both p65 and p100 mRNA and protein expression. Anti-NF-κB nanotherapy significantly inhibited tumor growth in two distinct tumor models in mice: a spontaneous Tax-driven tumor model, and a Tax tumor cell transplant model. Moreover, siRNA nanotherapy sensitized late-stage ATLL tumors to the conventional chemotherapeutic agent etoposide, indicating a pleiotropic benefit for localized siRNA nanotherapeutics.
Collapse
Affiliation(s)
- Daniel A. Rauch
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.C.H.); (L.R.)
| | - John C. Harding
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.C.H.); (L.R.)
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.C.H.); (L.R.)
| | - Samuel A. Wickline
- USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA;
| | - Hua Pan
- USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA;
| |
Collapse
|
47
|
Ducasa N, Grasso D, Benencio P, Papademetrio DL, Biglione M, Kashanchi F, Berini C, Garcia MN. Autophagy in Human T-Cell Leukemia Virus Type 1 (HTLV-1) Induced Leukemia. Front Oncol 2021; 11:641269. [PMID: 33869030 PMCID: PMC8045967 DOI: 10.3389/fonc.2021.641269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Viruses play an important role in the development of certain human cancers. They are estimated to contribute 16% to all human cancers. Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be discovered and is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive T-cell malignancy with poor prognosis. HTLV-1 viral proteins interact with mechanisms and proteins present in host cells for their own benefit, evading the immune system and promoting the establishment of disease. Several viruses manipulate the autophagy pathway to achieve their infective goals, and HTLV-1 is not the exception. HTLV-1 Tax viral protein engages NF-κB and autophagy pathways prone favoring viral replication and T cell transformation. In this review we focus on describing the relationship of HTLV-1 with the autophagy machinery and its implication in the development of ATLL.
Collapse
Affiliation(s)
- Nicolás Ducasa
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Grasso
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Paula Benencio
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela L. Papademetrio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirna Biglione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Carolina Berini
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Noé Garcia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
He Y, Pasupala N, Zhi H, Dorjbal B, Hussain I, Shih HM, Bhattacharyya S, Biswas R, Miljkovic M, Semmes OJ, Waldmann TA, Snow AL, Giam CZ. NF-κB-induced R-loop accumulation and DNA damage select for nucleotide excision repair deficiencies in adult T cell leukemia. Proc Natl Acad Sci U S A 2021; 118:e2005568118. [PMID: 33649200 PMCID: PMC7958262 DOI: 10.1073/pnas.2005568118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Constitutive NF-κB activation (NF-κBCA) confers survival and proliferation advantages to cancer cells and frequently occurs in T/B cell malignancies including adult T cell leukemia (ATL) caused by human T-cell leukemia virus type 1 (HTLV-1). Counterintuitively, NF-κBCA by the HTLV-1 transactivator/oncoprotein Tax induces a senescence response, and HTLV-1 infections in culture mostly result in senescence or cell-cycle arrest due to NF-κBCA How NF-κBCA induces senescence, and how ATL cells maintain NF-κBCA and avert senescence, remain unclear. Here we report that NF-κBCA by Tax increases R-loop accumulation and DNA double-strand breaks, leading to senescence. R-loop reduction via RNase H1 overexpression, and short hairpin RNA silencing of two transcription-coupled nucleotide excision repair (TC-NER) endonucleases that are critical for R-loop excision-Xeroderma pigmentosum F (XPF) and XPG-attenuate Tax senescence, enabling HTLV-1-infected cells to proliferate. Our data indicate that ATL cells are often deficient in XPF, XPG, or both and are hypersensitive to ultraviolet irradiation. This TC-NER deficiency is found in all ATL types. Finally, ATL cells accumulate R-loops in abundance. Thus, TC-NER deficits are positively selected during HTLV-1 infection because they facilitate the outgrowth of infected cells initially and aid the proliferation of ATL cells with NF-κBCA later. We suggest that TC-NER deficits and excess R-loop accumulation represent specific vulnerabilities that may be targeted for ATL treatment.
Collapse
Affiliation(s)
- Yunlong He
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Nagesh Pasupala
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Huijun Zhi
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Batsuhk Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Imran Hussain
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County 350, Taiwan
| | - Sharmistha Bhattacharyya
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Roopa Biswas
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Milos Miljkovic
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501
- The Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501
| | - Thomas A Waldmann
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814;
| |
Collapse
|
49
|
Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021; 22:2724. [PMID: 33800390 PMCID: PMC7962867 DOI: 10.3390/ijms22052724] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| |
Collapse
|
50
|
Shimizu Y, Arima K, Noguchi Y, Kawashiri SY, Yamanashi H, Tamai M, Nagata Y, Maeda T. Possible mechanisms underlying the association between human T-cell leukemia virus type 1 (HTLV-1) and hypertension in elderly Japanese population. Environ Health Prev Med 2021; 26:17. [PMID: 33514303 PMCID: PMC7846982 DOI: 10.1186/s12199-021-00938-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/13/2021] [Indexed: 11/12/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) activates inflammatory cascades by activating the NF-κB pathway. The minor allele of single nucleotide polymorphism (SNP) in breast cancer suppressor BRCA1-associated protein (BRAP), which has a common etiology with HTLV-1 infection, has been reported to be positively associated with carotid atherosclerosis, but inversely associated with hypertension. Therefore, HTLV-1 infection may be inversely associated with hypertension by activating endothelial maintenance, including atherosclerosis. To clarify these associations, a cross-sectional study was conducted using 2989 Japanese individuals aged 60–99 years participating in a general health check-up. Methods Logistic regression models were used to clarify the association between HTLV-1 and hypertension. Platelet levels stratified analyses were also performed since platelet production, which plays a crucial role in endothelium maintenance, can be stimulated by activating the NF-κB pathway. Results HTLV-1 infection was found to be significantly inversely associated with hypertension, particularly in subjects with high platelet levels (≥ second tertiles of platelet levels); the fully adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were 0.75 (0.62, 0.92) for total and 0.64 (0.50, 0.82) for high platelet levels, respectively. Further analysis of the non-hypertensive subjects demonstrated that HTLV-1 infection was significantly positively associated with atherosclerosis in subjects with the highest tertile of platelet levels (2.11 [1.15, 3.86]) but not in subjects with low platelet levels (first and second tertiles of platelet level) (0.89 [0.57, 1.39]). Conclusion Asymptomatic HTLV-1 infection is inversely associated with hypertension, possibly by activating endothelial maintenance, including atherosclerosis progression.
Collapse
Affiliation(s)
- Yuji Shimizu
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan. .,Department of Cardiovascular Disease Prevention, Osaka Center for Cancer and Cardiovascular Disease Prevention, Osaka, Japan.
| | - Kazuhiko Arima
- Department of Public Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuko Noguchi
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Shin-Ya Kawashiri
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan
| | - Hirotomo Yamanashi
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mami Tamai
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuhiro Nagata
- Center for Comprehensive Community Care Education, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahiro Maeda
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki-shi, Sakamoto 1-12-4, Nagasaki, 852-8523, Japan.,Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|