1
|
Hall KR, Elisa Rønnekleiv S, Gautieri A, Lilleås H, Skaali R, Rieder L, Nikoline Englund A, Landsem E, Emrich-Mills TZ, Ayuso-Fernández I, Kjendseth Røhr Å, Sørlie M, Eijsink VGH. Structure-Function Analysis of an Understudied Type of LPMO with Unique Redox Properties and Substrate Specificity. ACS Catal 2025; 15:10601-10617. [PMID: 40568223 PMCID: PMC12186267 DOI: 10.1021/acscatal.5c03003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2025] [Revised: 05/26/2025] [Accepted: 05/27/2025] [Indexed: 06/28/2025]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are important biotechnological tools due to their ability to activate C-H bonds in recalcitrant polysaccharides. To-date, most research has focused on LPMOs from the AA9 and AA10 families, while LPMOs from the AA11 family have not received the same attention since their classification almost a decade ago, despite their wide abundance in fungi. Previous studies have shown that AfAA11B from Aspergillus fumigatus has exceptionally high oxidase activity, low reduction potential and the ability to degrade soluble chitooligomers. To better understand the catalytic capabilities of AfAA11B, its crystal structure was solved, revealing a unique flexible surface loop that mediates activity on soluble substrates, as shown by molecular dynamics simulations and mutagenesis. Mutation of an active site Glu residue to a Gln, Asp or Asn showed that this residue is crucial in controlling the low reduction potential and high oxidase activity of AfAA11B. The impact of these mutations on copper reactivity aligned well with results obtained for an AA9 LPMO, which naturally has a Gln in this position. However, the impact of these mutations on the productive peroxygenase reaction, measured using an electrochemical hydrogen peroxide sensor, and on protective hole hopping mechanisms, measured using stopped-flow ultraviolet-visible (UV-vis) spectrophotometry, differed from the AA9 LPMO. This shows that the impact of this Glu/Gln residue is dependent on additional structural or dynamic differences between the LPMOs. Despite the presence of several tryptophan residues in the protein core, the hole hopping studies revealed formation of only a tyrosyl feature with a lifespan distinct from similar features detected in other LPMOs, further highlighting the unique properties of AfAA11B.
Collapse
Affiliation(s)
- Kelsi R. Hall
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
- Biomolecular
Interaction Centre and School of Biological Sciences, University of Canterbury, PO Box 4800, Christchurch8140, New Zealand
| | - Synnøve Elisa Rønnekleiv
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Alfonso Gautieri
- Biomolecular
Engineering Lab, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133Milano, Italy
| | - Hedda Lilleås
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Rannei Skaali
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Lukas Rieder
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
- Institute
for Molecular Biotechnology, Graz University
of Technology, 8010Graz, Austria
| | - Andrea Nikoline Englund
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Eirin Landsem
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Tom Z. Emrich-Mills
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Iván Ayuso-Fernández
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Morten Sørlie
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432Ås, Norway
| |
Collapse
|
2
|
Golten O, Schwaiger L, Forsberg Z, Hall KR, Stepnov AA, Emrich‐Mills TZ, Ayuso‐Fernández I, Sørlie M, Ludwig R, Røhr ÅK, Eijsink VGH. Functional variation among LPMOs revealed by the inhibitory effects of cyanide and buffer ions. FEBS Lett 2025; 599:1317-1336. [PMID: 39912371 PMCID: PMC12067858 DOI: 10.1002/1873-3468.15105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Enzymes known as lytic polysaccharide monooxygenases (LPMOs) are mono-copper polysaccharide-degrading peroxygenases that engage in several on- and off-pathway redox reactions involving O2 and H2O2. Herein, we show that the known metalloenzyme inhibitor cyanide inhibits reductive activation of LPMOs by binding to the LPMO-Cu(II) state and that the degree of inhibition depends on the concentrations of the polysaccharide substrate, the reductant and H2O2. Importantly, this analysis revealed differences between fungal NcAA9C and bacterial SmAA10A, which have different secondary copper coordination spheres. These differences were also highlighted by the observation that phosphate, a commonly used buffer ion, strongly inhibits NcAA9C while not affecting reactions with SmAA10A. The results provide insight into LPMO inhibition and catalysis and highlight pitfalls in the analysis thereof.
Collapse
Affiliation(s)
- Ole Golten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Lorenz Schwaiger
- Department of Food Science and Technology, Institute of Food TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Kelsi R. Hall
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Anton A. Stepnov
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Tom Z. Emrich‐Mills
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Iván Ayuso‐Fernández
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
- Biotechnology DepartmentMargarita Salas Center for Biological Research (CIB‐CSIC)MadridSpain
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food TechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
3
|
Zhang N, Haider J, Yew M, Yang J, Zhu L. Discovery and functional characterization of new starch-active lytic polysaccharide monooxygenases. Int J Biol Macromol 2025; 304:140833. [PMID: 39929451 DOI: 10.1016/j.ijbiomac.2025.140833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) play a unique role in biomass saccharification as they catalyze oxidative cleavage of recalcitrant polysaccharides. Here, four new starch-active AA13 LPMOs were identified via phylogenetic analysis and functionally expressed in Pichia pastoris, followed by the investigation of oxidative activity towards different starch substrates. The four purified AA13 LPMOs were capable of oxidizing amylose, amylopectin and corn starch, generating soluble products. Among the four, FvAA13, which exhibited the best oxidative activity, was further studied. Its yield of oxidized products was 1.9-fold, 1.4-fold, and 1.3-fold higher than the previously reported NcAA13 when applied to starch substrates amylose, amylopectin, and corn starch, respectively. Furthermore, the oxidized product yield of FvAA13 was enhanced by 2-fold when supplemented with 100 μM H2O2. FvAA13 also enhanced the amylose degradation catalyzed by α-amylase and glucoamylase at 50 °C with an increment of the product by 1.4-fold and 1.9-fold, respectively. When combined with glucoamylase at a mass concentration ratio of 0.5:1 to 2:1, the reducing sugars released from the enzymatic degradation of amylopectin were improved by 4.5 to 9.7-fold compared to using glucoamylase alone. These findings underscored the substantial promoting effect of the supplementary FvAA13 in amylolytic cocktails for starch saccharification.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China; Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China; National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China.
| | - Junaid Haider
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China; Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China; National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China.
| | - Maxine Yew
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China; National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China.
| | - Jianhua Yang
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China.
| | - Leilei Zhu
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin 300308, PR China; National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, PR China.
| |
Collapse
|
4
|
Turunen R, Tuveng TR, Forsberg Z, Schiml VC, Eijsink VGH, Arntzen MØ. Functional characterization of two AA10 lytic polysaccharide monooxygenases from Cellulomonas gelida. Protein Sci 2025; 34:e70060. [PMID: 39969139 PMCID: PMC11837042 DOI: 10.1002/pro.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are redox enzymes targeting the crystalline region of recalcitrant polysaccharides such as cellulose and chitin. Functional characterization of two LPMOs from the cellulose-degrading soil bacterium Cellulomonas gelida, CgLPMO10A and CgLPMO10B, showed expected activities on cellulose but also revealed novel features of AA10 LPMOs. While clustering together with strictly C1-oxidizing and strictly cellulose-active AA10 LPMOs, CgLPMO10A exhibits activity on both cellulose and chitin, oxidizing the C1 carbon of both substrates. This combination of substrate and oxidative specificity has not been previously observed for family 10 LPMOs and may be due to a conspicuous divergence in two hydrophobic residues on the substrate-binding surface. CgLPMO10B oxidizes cellulose at both the C1 and C4 positions and is also active on chitin, in line with predictions based on phylogeny. Interestingly, while coming from the same organism and both acting on cellulose, the two enzymes have markedly different redox properties with CgLPMO10B displaying the lowest redox potential and the highest oxidase activity observed for an AA10 LPMO so far. These results provide insight into the LPMO machinery of C. gelida and expand the known catalytic repertoire of bacterial LPMOs.
Collapse
Affiliation(s)
- Rosaliina Turunen
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Tina R. Tuveng
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Valerie C. Schiml
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Vincent G. H. Eijsink
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Magnus Ø. Arntzen
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
5
|
Wang Z, Fu X, Diao W, Wu Y, Rovira C, Wang B. Theoretical study of the in situ formation of H 2O 2 by lytic polysaccharide monooxygenases: the reaction mechanism depends on the type of reductant. Chem Sci 2025; 16:3173-3186. [PMID: 39829981 PMCID: PMC11740911 DOI: 10.1039/d4sc06906d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are a unique group of monocopper enzymes that exhibit remarkable ability to catalyze the oxidative cleavage of recalcitrant carbohydrate substrates, such as cellulose and chitin, by utilizing O2 or H2O2 as the oxygen source. One of the key challenges in understanding the catalytic mechanism of LPMOs lies in deciphering how they activate dioxygen using diverse reductants. To shed light on this intricate process, we conducted in-depth investigations using quantum mechanical/molecular mechanical (QM/MM) metadynamics simulations, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations. Specifically, our study focuses on elucidating the in situ formation mechanism of H2O2 by LPMOs in the presence of cellobiose dehydrogenase (CDH), a proposed natural reductant of LPMOs. Our findings reveal a proton-coupled electron transfer (PCET) process in generating the Cu(ii)-hydroperoxide intermediate from the Cu(ii)-superoxide intermediate. Subsequently, a direct proton transfer to the proximal oxygen of Cu(ii)-hydroperoxide results in the formation of H2O2 and LPMO-Cu(ii). Notably, this mechanism significantly differs from the LPMO/ascorbate system, where two hydrogen atom transfer reactions are responsible for generating H2O2 and LPMO-Cu(i). Based on our simulations, we propose a catalytic mechanism of LPMO in the presence of CDH and the polysaccharide substrate, which involves competitive binding of the substrate and CDH to the reduced LPMOs. While the CDH-bound LPMOs can activate dioxygen to generate H2O2, the substrate-bound LPMOs can employ the H2O2 generated from the LPMO/CDH system to perform the peroxygenase reactions of the polysaccharide substrate. Our work not only provides valuable insights into the reductant-dependent mechanisms of O2 activation in LPMOs but also holds implications for understanding the functions of these enzymes in their natural environment.
Collapse
Affiliation(s)
- Zhanfeng Wang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University Zhuhai 519087 China
| | - Xiaodi Fu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University Zhuhai 519087 China
| | - Wenwen Diao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Zhejiang 325000 China
| | - Yao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluís Companys, 23 08010 Barcelona Spain
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
6
|
Xu C, Huang Y, Li H, Shen Q, Wang F, Shi J, Duan P, Zhang W. A Photoenzymatic Pathway for Gram-Scale Synthesis of 25-Hydroxyvitamin D 3. CHEMSUSCHEM 2025; 18:e202401196. [PMID: 39104184 DOI: 10.1002/cssc.202401196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Vitamin D and its analogues play a crucial role in promoting the well-being of both humans and animals. However, the current synthesis of this vital class of nutrients heavily relies on chemical transformations, which suffer from low step- and atom-efficiency due to lengthy synthetic pathways. To enhance sustainability in the chemical industry, it is necessary to develop alternative synthetic processes. Herein, we present a photoenzymatic approach for synthesizing 25-hydroxyvitamin D3 from 7-dehydrocholesterol. In this sequential synthesis, 7-dehydrocholesterol is initially hydroxylated at the C25 C-H bond, resulting in an 85 % conversion to 25-hydroxyl-7-dehydrocholesterol. Subsequently, by employing photo-irradiation using a monochromatic LED ultraviolet light source in a batch reactor and thermal isomerization, 25-hydroxyvitamin D3 is obtained in satisfactory yield. This photoenzymatic process significantly reduces the need for purification steps and allows for gram-scale synthesis of the target product. Our work offers a selective, efficient, and environmentally friendly method for synthesizing 25-OH-vitamin D3, addressing the limitations of current synthetic approaches.
Collapse
Affiliation(s)
- Caihong Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Qianqian Shen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Feng Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
7
|
Sayler RI, Thomas WC, Rose AJ, Marletta MA. Electron transfer in polysaccharide monooxygenase catalysis. Proc Natl Acad Sci U S A 2025; 122:e2411229121. [PMID: 39793048 PMCID: PMC11725913 DOI: 10.1073/pnas.2411229121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/06/2024] [Indexed: 01/12/2025] Open
Abstract
Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from Myceliophthora thermophila (MtPMO9E). When Y62, a buried residue 12 Å from the active site, is mutated to F, lower activity is observed with O2. However, a WT-level activity is observed with H2O2 as a cosubstrate indicating an important role in ET for O2 activation. To better understand the structural effects of mutations to Y62 and axial copper ligand Y168, crystal structures were solved of the wild type MtPMO9E and the variants Y62W, Y62F, and Y168F. A bioinformatic analysis revealed that position 62 is conserved as either Y or W in the AA9 family. The MtPMO9E Y62W variant has restored activity with O2. Overall, the use of redox-active residues to supply electrons for the reaction with O2 appears to be widespread in the AA9 family. Furthermore, the results provide a molecular framework to understand catalysis with O2 versus H2O2.
Collapse
Affiliation(s)
- Richard I. Sayler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - William C. Thomas
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
| | - Alexander J. Rose
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Michael A. Marletta
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
| |
Collapse
|
8
|
Xin D, Xing M, Ran G, Blossom BM. The influence of photosynthetic pigment chlorophyllin in light-driven LPMO system on the hydrolytic action of cellulases. Int J Biol Macromol 2024; 281:136714. [PMID: 39427785 DOI: 10.1016/j.ijbiomac.2024.136714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
It has been demonstrated that LPMO reactions can be driven by light, using the photosynthetic pigment chlorophyllin to achieve efficient oxidative degradation of cellulose. However, the effect of chlorophyllin on cellulases remains unclear. This study discovered that chlorophyllin does not affect the hydrolytic activity of cellulases under dark conditions. However, under light exposure, chlorophyllin-derived reactive oxygen species (ROS) exhibit a strong inhibitory effect on cellulases. These ROS primarily inhibit the hydrolytic action of endoglucanase II (Cel5A) and cellobiohydrolase II (Cel6A), while the action of cellobiohydrolase I and β-glucosidase remains unaffected. Scavenger studies revealed that singlet oxygen (1O₂) is the key inhibitory ROS responsible for the inhibition of Cel5A and Cel6A. The removal of 1O₂ by sodium azide effectively mitigates this inhibition, increasing the conversion yield of cellulose to glucose by 25.9 % when using the light-driven LPMO system in conjunction with cellulases. This study provides new insights into the role of chlorophyllin-derived 1O₂ in hindering hydrolytic action of cellulases and demonstrates the successful mitigation of this inhibition by sodium azide, thereby enhancing the cooperative degradation of cellulose to glucose by the light-driven LPMO system and cellulases.
Collapse
Affiliation(s)
- Donglin Xin
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China
| | - Minyu Xing
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 710043, Shaanxi, PR China.
| | - Benedikt M Blossom
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark; Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, 04544 East Boothbay, ME, USA
| |
Collapse
|
9
|
De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Réglier M, Simaan AJ, Le Poul N, Belle C. Copper-oxygen adducts: new trends in characterization and properties towards C-H activation. Chem Sci 2024; 15:10308-10349. [PMID: 38994420 PMCID: PMC11234856 DOI: 10.1039/d4sc01762e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| | - Rébecca Leblay
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Yongxing Wang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Laurianne Wojcik
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Nicolas Le Poul
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| |
Collapse
|
10
|
Munzone A, Pujol M, Tamhankar A, Joseph C, Mazurenko I, Réglier M, Jannuzzi SAV, Royant A, Sicoli G, DeBeer S, Orio M, Simaan AJ, Decroos C. Integrated Experimental and Theoretical Investigation of Copper Active Site Properties of a Lytic Polysaccharide Monooxygenase from Serratia marcescens. Inorg Chem 2024; 63:11063-11078. [PMID: 38814816 DOI: 10.1021/acs.inorgchem.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
In this paper, we employed a multidisciplinary approach, combining experimental techniques and density functional theory (DFT) calculations to elucidate key features of the copper coordination environment of the bacterial lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens (SmAA10). The structure of the holo-enzyme was successfully obtained by X-ray crystallography. We then determined the copper(II) binding affinity using competing ligands and observed that the affinity of the histidine brace ligands for copper is significantly higher than previously described. UV-vis, advanced electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS) techniques, including high-energy resolution fluorescence detected (HERFD) XAS, were further used to gain insight into the copper environment in both the Cu(II) and Cu(I) redox states. The experimental data were successfully rationalized by DFT models, offering valuable information on the electronic structure and coordination geometry of the copper center. Finally, the Cu(II)/Cu(I) redox potential was determined using two different methods at ca. 350 mV vs NHE and rationalized by DFT calculations. This integrated approach not only advances our knowledge of the active site properties of SmAA10 but also establishes a robust framework for future studies of similar enzymatic systems.
Collapse
Affiliation(s)
- Alessia Munzone
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - Manon Pujol
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - Ashish Tamhankar
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Chris Joseph
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - Sergio A V Jannuzzi
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Antoine Royant
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38000, France
- European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Giuseppe Sicoli
- LASIRE UMR CNRS 8516, Université de Lille, Villeneuve-d'Arcy 59655, France
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, Mülheim an der Ruhr 45470, Germany
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
| | - Christophe Decroos
- Aix Marseille Univ, CNRS, Centrale Méditerranée, iSm2, Marseille 13013, France
- Department of Integrative Structural Biology, Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch 67400, France
| |
Collapse
|
11
|
Hall K, Mollatt M, Forsberg Z, Golten O, Schwaiger L, Ludwig R, Ayuso-Fernández I, Eijsink VGH, Sørlie M. Impact of the Copper Second Coordination Sphere on Catalytic Performance and Substrate Specificity of a Bacterial Lytic Polysaccharide Monooxygenase. ACS OMEGA 2024; 9:23040-23052. [PMID: 38826537 PMCID: PMC11137697 DOI: 10.1021/acsomega.4c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of glycosidic bonds in recalcitrant polysaccharides, such as cellulose and chitin, using a single copper cofactor bound in a conserved histidine brace with a more variable second coordination sphere. Cellulose-active LPMOs in the fungal AA9 family and in a subset of bacterial AA10 enzymes contain a His-Gln-Tyr second sphere motif, whereas other cellulose-active AA10s have an Arg-Glu-Phe motif. To shine a light on the impact of this variation, we generated single, double, and triple mutations changing the His216-Gln219-Tyr221 motif in cellulose- and chitin-oxidizing MaAA10B toward Arg-Glu-Phe. These mutations generally reduced enzyme performance due to rapid inactivation under turnover conditions, showing that catalytic fine-tuning of the histidine brace is complex and that the roles of these second sphere residues are strongly interconnected. Studies of copper reactivity showed remarkable effects, such as an increase in oxidase activity following the Q219E mutation and a strong dependence of this effect on the presence of Tyr at position 221. In reductant-driven reactions, differences in oxidase activity, which lead to different levels of in situ generated H2O2, correlated with differences in polysaccharide-degrading ability. The single Q219E mutant displayed a marked increase in activity on chitin in both reductant-driven reactions and reactions fueled by exogenously added H2O2. Thus, it seems that the evolution of substrate specificity in LPMOs involves both the extended substrate-binding surface and the second coordination sphere.
Collapse
Affiliation(s)
- Kelsi
R. Hall
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway
- School
of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Maja Mollatt
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway
| | - Zarah Forsberg
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway
| | - Ole Golten
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway
| | - Lorenz Schwaiger
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, BOKU 1190 Vienna, Austria
| | - Roland Ludwig
- Department
of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, BOKU 1190 Vienna, Austria
| | - Iván Ayuso-Fernández
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway
| | - Morten Sørlie
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås 1432, Norway
| |
Collapse
|
12
|
Ayuso-Fernández I, Emrich-Mills TZ, Haak J, Golten O, Hall KR, Schwaiger L, Moe TS, Stepnov AA, Ludwig R, Cutsail Iii GE, Sørlie M, Kjendseth Røhr Å, Eijsink VGH. Mutational dissection of a hole hopping route in a lytic polysaccharide monooxygenase (LPMO). Nat Commun 2024; 15:3975. [PMID: 38729930 PMCID: PMC11087555 DOI: 10.1038/s41467-024-48245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.
Collapse
Affiliation(s)
- Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| | - Tom Z Emrich-Mills
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Julia Haak
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Ole Golten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Kelsi R Hall
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Lorenz Schwaiger
- Biocatalysis and Biosensing Laboratory, Department of Food Sciences and Technology, Institute of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18/2, Vienna, 1190, Austria
| | - Trond S Moe
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Sciences and Technology, Institute of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18/2, Vienna, 1190, Austria
| | - George E Cutsail Iii
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| |
Collapse
|
13
|
Decembrino D, Cannella D. The thin line between monooxygenases and peroxygenases. P450s, UPOs, MMOs, and LPMOs: A brick to bridge fields of expertise. Biotechnol Adv 2024; 72:108321. [PMID: 38336187 DOI: 10.1016/j.biotechadv.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Many scientific fields, although driven by similar purposes and dealing with similar technologies, often appear so isolated and far from each other that even the vocabularies to describe the very same phenomenon might differ. Concerning the vast field of biocatalysis, a special role is played by those redox enzymes that employ oxygen-based chemistry to unlock transformations otherwise possible only with metal-based catalysts. As such, greener chemical synthesis methods and environmentally-driven biotechnological approaches were enabled over the last decades by the use of several enzymes and ultimately resulted in the first industrial applications. Among what can be called today the environmental biorefinery sector, biomass transformation, greenhouse gas reduction, bio-gas/fuels production, bioremediation, as well as bulk or fine chemicals and even pharmaceuticals manufacturing are all examples of fields in which successful prototypes have been demonstrated employing redox enzymes. In this review we decided to focus on the most prominent enzymes (MMOs, LPMO, P450 and UPO) capable of overcoming the ∼100 kcal mol-1 barrier of inactivated CH bonds for the oxyfunctionalization of organic compounds. Harnessing the enormous potential that lies within these enzymes is of extreme value to develop sustainable industrial schemes and it is still deeply coveted by many within the aforementioned fields of application. Hence, the ambitious scope of this account is to bridge the current cutting-edge knowledge gathered upon each enzyme. By creating a broad comparison, scientists belonging to the different fields may find inspiration and might overcome obstacles already solved by the others. This work is organised in three major parts: a first section will be serving as an introduction to each one of the enzymes regarding their structural and activity diversity, whereas a second one will be encompassing the mechanistic aspects of their catalysis. In this regard, the machineries that lead to analogous catalytic outcomes are depicted, highlighting the major differences and similarities. Finally, a third section will be focusing on the elements that allow the oxyfunctionalization chemistry to occur by delivering redox equivalents to the enzyme by the action of diverse redox partners. Redox partners are often overlooked in comparison to the catalytic counterparts, yet they represent fundamental elements to better understand and further develop practical applications based on mono- and peroxygenases.
Collapse
Affiliation(s)
- Davide Decembrino
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| | - David Cannella
- Photobiocatalysis Unit - Crop Production and Biostimulation Lab (CPBL), and Biomass Transformation Lab (BTL), École Interfacultaire de Bioingénieurs, Université Libre de Bruxelles, Belgium.
| |
Collapse
|
14
|
Wieduwilt EK, Lo Leggio L, Hedegård ED. A frontier-orbital view of the initial steps of lytic polysaccharide monooxygenase reactions. Dalton Trans 2024; 53:5796-5807. [PMID: 38445349 DOI: 10.1039/d3dt04275h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that oxidatively cleave the strong C-H bonds in recalcitrant polysaccharide substrates, thereby playing a crucial role in biomass degradation. Recently, LPMOs have also been shown to be important for several pathogens. It is well established that the Cu(II) resting state of LPMOs is inactive, and the electronic structure of the active site needs to be altered to transform the enzyme into an active form. Whether this transformation occurs due to substrate binding or due to a unique priming reduction has remained speculative. Starting from four different crystal structures of the LPMO LsAA9A with well-defined oxidation states, we use a frontier molecular orbital approach to elucidate the initial steps of the LPMO reaction. We give an explanation for the requirement of the unique priming reduction and analyse electronic structure changes upon substrate binding. We further investigate how the presence of the substrate could facilitate an electron transfer from the copper active site to an H2O2 co-substrate. Our findings could help to control experimental LPMO reactions.
Collapse
Affiliation(s)
- Erna Katharina Wieduwilt
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
15
|
Rajagopal BS, Yates N, Smith J, Paradisi A, Tétard-Jones C, Willats WGT, Marcus S, Knox JP, Firdaus-Raih M, Henrissat B, Davies GJ, Walton PH, Parkin A, Hemsworth GR. Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae. IUCRJ 2024; 11:260-274. [PMID: 38446458 PMCID: PMC10916295 DOI: 10.1107/s2052252524001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.
Collapse
Affiliation(s)
- Badri S. Rajagopal
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nick Yates
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jake Smith
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | | - Catherine Tétard-Jones
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - William G. T. Willats
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Susan Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gideon J. Davies
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Paul H. Walton
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Alison Parkin
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Glyn R. Hemsworth
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
16
|
Hagemann MM, Wieduwilt EK, Hedegård ED. Understanding the initial events of the oxidative damage and protection mechanisms of the AA9 lytic polysaccharide monooxygenase family. Chem Sci 2024; 15:2558-2570. [PMID: 38362420 PMCID: PMC10866358 DOI: 10.1039/d3sc05933b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024] Open
Abstract
Lytic polysaccharide monooxygenase (LPMO) is a new class of oxidoreductases that boosts polysaccharide degradation employing a copper active site. This boost may facilitate the cost-efficient production of biofuels and high-value chemicals from polysaccharides such as lignocellulose. Unfortunately, self-oxidation of the active site inactivates LPMOs. Other oxidoreductases employ hole-hopping mechanisms as protection against oxidative damage, but little is generally known about the details of these mechanisms. Herein, we employ highly accurate theoretical models based on density functional theory (DFT) molecular mechanics (MM) hybrids to understand the initial steps in LPMOs' protective measures against self-oxidation; we identify several intermediates recently proposed from experiment, and quantify which are important for protective hole-hopping pathways. Investigations on two different LPMOs show consistently that a tyrosine residue close to copper is crucial for protection: this explains recent experiments, showing that LPMOs without this tyrosine are more susceptible to self-oxidation.
Collapse
Affiliation(s)
- Marlisa M Hagemann
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Erna K Wieduwilt
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Erik D Hedegård
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| |
Collapse
|
17
|
Munzone A, Eijsink VGH, Berrin JG, Bissaro B. Expanding the catalytic landscape of metalloenzymes with lytic polysaccharide monooxygenases. Nat Rev Chem 2024; 8:106-119. [PMID: 38200220 DOI: 10.1038/s41570-023-00565-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and H2O2 for C-H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper-peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.
Collapse
Affiliation(s)
- Alessia Munzone
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France
| | - Bastien Bissaro
- UMR1163 Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille University, Marseille, France.
| |
Collapse
|
18
|
Østby H, Christensen IA, Hennum K, Várnai A, Buchinger E, Grandal S, Courtade G, Hegnar OA, Aachmann FL, Eijsink VGH. Functional characterization of a lytic polysaccharide monooxygenase from Schizophyllum commune that degrades non-crystalline substrates. Sci Rep 2023; 13:17373. [PMID: 37833388 PMCID: PMC10575960 DOI: 10.1038/s41598-023-44278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that use O2 or H2O2 to oxidatively cleave glycosidic bonds. LPMOs are prevalent in nature, and the functional variation among these enzymes is a topic of great interest. We present the functional characterization of one of the 22 putative AA9-type LPMOs from the fungus Schizophyllum commune, ScLPMO9A. The enzyme, expressed in Escherichia coli, showed C4-oxidative cleavage of amorphous cellulose and soluble cello-oligosaccharides. Activity on xyloglucan, mixed-linkage β-glucan, and glucomannan was also observed, and product profiles differed compared to the well-studied C4-oxidizing NcLPMO9C from Neurospora crassa. While NcLPMO9C is also active on more crystalline forms of cellulose, ScLPMO9A is not. Differences between the two enzymes were also revealed by nuclear magnetic resonance (NMR) titration studies showing that, in contrast to NcLPMO9C, ScLPMO9A has higher affinity for linear substrates compared to branched substrates. Studies of H2O2-fueled degradation of amorphous cellulose showed that ScLPMO9A catalyzes a fast and specific peroxygenase reaction that is at least two orders of magnitude faster than the apparent monooxygenase reaction. Together, these results show that ScLPMO9A is an efficient LPMO with a broad substrate range, which, rather than acting on cellulose, has evolved to act on amorphous and soluble glucans.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Idd A Christensen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Karen Hennum
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Edith Buchinger
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Siri Grandal
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Gaston Courtade
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands Vei 6/8, 7491, Trondheim, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
19
|
Zhao J, Zhuo Y, Diaz DE, Shanmugam M, Telfer AJ, Lindley PJ, Kracher D, Hayashi T, Seibt LS, Hardy FJ, Manners O, Hedison TM, Hollywood KA, Spiess R, Cain KM, Diaz-Moreno S, Scrutton NS, Tovborg M, Walton PH, Heyes DJ, Green AP. Mapping the Initial Stages of a Protective Pathway that Enhances Catalytic Turnover by a Lytic Polysaccharide Monooxygenase. J Am Chem Soc 2023; 145:20672-20682. [PMID: 37688545 PMCID: PMC10515631 DOI: 10.1021/jacs.3c06607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 09/11/2023]
Abstract
Oxygenase and peroxygenase enzymes generate intermediates at their active sites which bring about the controlled functionalization of inert C-H bonds in substrates, such as in the enzymatic conversion of methane to methanol. To be viable catalysts, however, these enzymes must also prevent oxidative damage to essential active site residues, which can occur during both coupled and uncoupled turnover. Herein, we use a combination of stopped-flow spectroscopy, targeted mutagenesis, TD-DFT calculations, high-energy resolution fluorescence detection X-ray absorption spectroscopy, and electron paramagnetic resonance spectroscopy to study two transient intermediates that together form a protective pathway built into the active sites of copper-dependent lytic polysaccharide monooxygenases (LPMOs). First, a transient high-valent species is generated at the copper histidine brace active site following treatment of the LPMO with either hydrogen peroxide or peroxyacids in the absence of substrate. This intermediate, which we propose to be a CuII-(histidyl radical), then reacts with a nearby tyrosine residue in an intersystem-crossing reaction to give a ferromagnetically coupled (S = 1) CuII-tyrosyl radical pair, thereby restoring the histidine brace active site to its resting state and allowing it to re-enter the catalytic cycle through reduction. This process gives the enzyme the capacity to minimize damage to the active site histidine residues "on the fly" to increase the total turnover number prior to enzyme deactivation, highlighting how oxidative enzymes are evolved to protect themselves from deleterious side reactions during uncoupled turnover.
Collapse
Affiliation(s)
- Jingming Zhao
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Ying Zhuo
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Daniel E. Diaz
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Muralidharan Shanmugam
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Abbey J. Telfer
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
- Harwell
Science and Innovation Campus, Diamond Light
Source Ltd., Didcot, Oxfordshire OX11 0DE, U.K.
| | - Peter J. Lindley
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Daniel Kracher
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse
14, Graz 8010, Austria
| | - Takahiro Hayashi
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Lisa S. Seibt
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Florence J. Hardy
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Oliver Manners
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Tobias M. Hedison
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Katherine A. Hollywood
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Reynard Spiess
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Kathleen M. Cain
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sofia Diaz-Moreno
- Harwell
Science and Innovation Campus, Diamond Light
Source Ltd., Didcot, Oxfordshire OX11 0DE, U.K.
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | | | - Paul H. Walton
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Anthony P. Green
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
20
|
Kuusk S, Eijsink VGH, Väljamäe P. The "life-span" of lytic polysaccharide monooxygenases (LPMOs) correlates to the number of turnovers in the reductant peroxidase reaction. J Biol Chem 2023; 299:105094. [PMID: 37507015 PMCID: PMC10458328 DOI: 10.1016/j.jbc.2023.105094] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
21
|
Hall K, Joseph C, Ayuso-Fernández I, Tamhankar A, Rieder L, Skaali R, Golten O, Neese F, Røhr ÅK, Jannuzzi SAV, DeBeer S, Eijsink VGH, Sørlie M. A Conserved Second Sphere Residue Tunes Copper Site Reactivity in Lytic Polysaccharide Monooxygenases. J Am Chem Soc 2023; 145:18888-18903. [PMID: 37584157 PMCID: PMC10472438 DOI: 10.1021/jacs.3c05342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 08/17/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C-H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in NcAA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all NcAA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the H2O2 splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.
Collapse
Affiliation(s)
- Kelsi
R. Hall
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Chris Joseph
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Iván Ayuso-Fernández
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Ashish Tamhankar
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lukas Rieder
- Institute
for Molecular Biotechnology, Graz University
of Technology, 8010, Graz, Austria
| | - Rannei Skaali
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Ole Golten
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Åsmund K. Røhr
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Sergio A. V. Jannuzzi
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vincent G. H. Eijsink
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Morten Sørlie
- Faculty
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| |
Collapse
|
22
|
Tuveng TR, Østby H, Tamburrini KC, Bissaro B, Hegnar OA, Stepnov AA, Várnai A, Berrin JG, Eijsink VGH. Revisiting the AA14 family of lytic polysaccharide monooxygenases and their catalytic activity. FEBS Lett 2023; 597:2086-2102. [PMID: 37418595 DOI: 10.1002/1873-3468.14694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) belonging to the AA14 family are believed to contribute to the enzymatic degradation of lignocellulosic biomass by specifically acting on xylan in recalcitrant cellulose-xylan complexes. Functional characterization of an AA14 LPMO from Trichoderma reesei, TrAA14A, and a re-evaluation of the properties of the previously described AA14 from Pycnoporus coccineus, PcoAA14A, showed that these proteins have oxidase and peroxidase activities that are common for LPMOs. However, we were not able to detect activity on cellulose-associated xylan or any other tested polysaccharide substrate, meaning that the substrate of these enzymes remains unknown. Next to raising questions regarding the true nature of AA14 LPMOs, the present data illustrate possible pitfalls in the functional characterization of these intriguing enzymes.
Collapse
Affiliation(s)
- Tina R Tuveng
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Heidi Østby
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ketty C Tamburrini
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Olav A Hegnar
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
23
|
Qin X, Yang K, Wang X, Tu T, Wang Y, Zhang J, Su X, Yao B, Huang H, Luo H. Insights into the H 2O 2-Driven Lytic Polysaccharide Monooxygenase Activity on Efficient Cellulose Degradation in the White Rot Fungus Irpex lacteus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:8104-8111. [PMID: 37204864 DOI: 10.1021/acs.jafc.3c01777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In contrast to O2, H2O2 as the cosubstrate for lytic polysaccharide monooxygenases (LPMOs) exhibits great advantages in industrial settings for cellulose degradation. However, H2O2-driven LPMO reactions from natural microorganisms have not been fully explored and understood. Herein, secretome analysis unraveled the H2O2-driven LPMO reaction in the efficient lignocellulose-degrading fungus Irpex lacteus, including LPMOs with different oxidative regioselectivities and various H2O2-generating oxidases. Biochemical characterization of H2O2-driven LPMO catalysis showed orders of magnitude improvement in catalytic efficiency compared to that of O2-driven LPMO catalysis for cellulose degradation. Significantly, H2O2 tolerance of LPMO catalysis in I. lacteus was an order of magnitude higher than that in other filamentous fungi. In addition, natural reductants, gallic acid, in particular, presented in lignocellulosic biomass could sufficiently maintain LPMO catalytic reactions. Moreover, the H2O2-driven LPMO catalysis exhibited synergy with canonical endoglucanases for efficient cellulose degradation. Taken together, these findings demonstrate the great application potential of the H2O2-driven LPMO catalysis for upgrading cellulase cocktails to further improve cellulose degradation efficiency.
Collapse
Affiliation(s)
- Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kun Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
24
|
Yu X, Zhao Y, Yu J, Wang L. Recent advances in the efficient degradation of lignocellulosic metabolic networks by lytic polysaccharide monooxygenase. Acta Biochim Biophys Sin (Shanghai) 2023; 55:529-539. [PMID: 37036250 DOI: 10.3724/abbs.2023059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Along with long-term evolution, the plant cell wall generates lignocellulose and other anti-degradation barriers to confront hydrolysis by fungi. Lytic polysaccharide monooxygenase (LPMO) is a newly defined oxidase in lignocellulosic degradation systems that significantly fuels hydrolysis. LPMO accepts electrons from wide sources, such as cellobiose dehydrogenase (CDH), glucose-methanol-choline (GMC) oxidoreductases, and small phenols. In addition, the extracellular cometabolic network formed by cosubstrates improves the degradation efficiency, forming a stable and efficient lignocellulose degradation system. In recent years, using structural proteomics to explore the internal structure and the complex redox system of LPMOs has become a research hotspot. In this review, the diversity of LPMOs, catalytic domains, carbohydrate binding modules, direct electron transfer with CDH, cosubstrates, and degradation networks of LPMOs are explored, which can provide a systematic reference for the application of lignocellulosic degradation systems in industrial approaches.
Collapse
Affiliation(s)
- Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Qingdao 266035, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
25
|
Hansen LD, Eijsink VGH, Horn SJ, Várnai A. H 2 O 2 feeding enables LPMO-assisted cellulose saccharification during simultaneous fermentative production of lactic acid. Biotechnol Bioeng 2023; 120:726-736. [PMID: 36471631 DOI: 10.1002/bit.28298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Simultaneous saccharification and fermentation (SSF) is a well-known strategy for valorization of lignocellulosic biomass. Because the fermentation process typically is anaerobic, oxidative enzymes found in modern commercial cellulase cocktails, such as lytic polysaccharide monooxygenases (LPMOs), may be inhibited, limiting the overall efficiency of the enzymatic saccharification. Recent discoveries, however, have shown that LPMOs are active under anoxic conditions if they are provided with H2 O2 at low concentrations. In this study, we build on this concept and investigate the potential of using externally added H2 O2 to sustain oxidative cellulose depolymerization by LPMOs during an SSF process for lactic acid production. The results of bioreactor experiments with 100 g/L cellulose clearly show that continuous addition of small amounts of H2 O2 (at a rate of 80 µM/h) during SSF enables LPMO activity and improves lactic acid production. While further process optimization is needed, the present proof-of-concept results show that modern LPMO-containing cellulase cocktails such as Cellic CTec2 can be used in SSF setups, without sacrificing the LPMO activity in these cocktails.
Collapse
Affiliation(s)
- Line D Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway
| |
Collapse
|
26
|
Kommedal EG, Angeltveit CF, Klau LJ, Ayuso-Fernández I, Arstad B, Antonsen SG, Stenstrøm Y, Ekeberg D, Gírio F, Carvalheiro F, Horn SJ, Aachmann FL, Eijsink VGH. Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases. Nat Commun 2023; 14:1063. [PMID: 36828821 PMCID: PMC9958194 DOI: 10.1038/s41467-023-36660-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and are crucial for the conversion of plant biomass in Nature and in industrial applications. Sunlight promotes microbial conversion of plant litter; this effect has been attributed to photochemical degradation of lignin, a major redox-active component of secondary plant cell walls that limits enzyme access to the cell wall carbohydrates. Here, we show that exposing lignin to visible light facilitates cellulose solubilization by promoting formation of H2O2 that fuels LPMO catalysis. Light-driven H2O2 formation is accompanied by oxidation of ring-conjugated olefins in the lignin, while LPMO-catalyzed oxidation of phenolic hydroxyls leads to the required priming reduction of the enzyme. The discovery that light-driven abiotic reactions in Nature can fuel H2O2-dependent redox enzymes involved in deconstructing lignocellulose may offer opportunities for bioprocessing and provides an enzymatic explanation for the known effect of visible light on biomass conversion.
Collapse
Affiliation(s)
- Eirik G Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Camilla F Angeltveit
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Leesa J Klau
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Iván Ayuso-Fernández
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Bjørnar Arstad
- SINTEF Industry, Process Chemistry and Functional Materials, 0373, Oslo, Norway
| | - Simen G Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Yngve Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Dag Ekeberg
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Francisco Gírio
- National Laboratory of Energy and Geology (LNEG), 1649-038, Lisboa, Portugal
| | | | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| |
Collapse
|
27
|
Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry. Essays Biochem 2023; 67:585-595. [PMID: 36748351 PMCID: PMC10154616 DOI: 10.1042/ebc20220164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
The plant cell wall is rich in carbohydrates and many fungi and bacteria have evolved to take advantage of this carbon source. These carbohydrates are largely locked away in polysaccharides and so these organisms deploy a range of enzymes that can liberate individual sugars from these challenging substrates. Glycoside hydrolases (GHs) are the enzymes that are largely responsible for bringing about this sugar release; however, 12 years ago, a family of enzymes known as lytic polysaccharide monooxygenases (LPMOs) were also shown to be of key importance in this process. LPMOs are copper-dependent oxidative enzymes that can introduce chain breaks within polysaccharide chains. Initial work demonstrated that they could activate O2 to attack the substrate through a reaction that most likely required multiple electrons to be delivered to the enzyme. More recently, it has emerged that LPMO kinetics are significantly improved if H2O2 is supplied to the enzyme as a cosubstrate instead of O2. Only a single electron is required to activate an LPMO and H2O2 cosubstrate and the enzyme has been shown to catalyse multiple turnovers following the initial one-electron reduction of the copper, which is not possible if O2 is used. This has led to further studies of the roles of the electron donor in LPMO biochemistry, and this review aims to highlight recent findings in this area and consider how ongoing research could impact our understanding of the interplay between redox processes in nature.
Collapse
|
28
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Cordas CM, Valério GN, Stepnov A, Kommedal E, Kjendseth ÅR, Forsberg Z, Eijsink VGH, Moura JJG. Electrochemical characterization of a family AA10 LPMO and the impact of residues shaping the copper site on reactivity. J Inorg Biochem 2023; 238:112056. [PMID: 36332410 DOI: 10.1016/j.jinorgbio.2022.112056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Research on enzymes for lignocellulose biomass degradation has progressively increased in recent years due to the interest in taking advantage of this natural resource. Among these enzymes are the lytic polysaccharide monooxygenases (LPMOs) that oxidatively depolymerize crystalline cellulose using a reactive oxygen species generated in a reduced mono‑copper active site. The copper site comprises of a highly conserved histidine-brace, providing three equatorial nitrogen ligands, whereas less conserved residues close to the copper contribute to shaping and confining the site. The catalytic copper site is exposed to the solvent and to the crystalline substrates, and as so, the influence of the copper environment on LPMO properties, including the redox potential, is of great interest. In the current work, a direct electrochemical study of an LPMO (ScLPMO10C) was conducted allowing to retrieve kinetic and thermodynamic data associated with the redox transition in the catalytic centre. Moreover, two residues that do not bind to the copper but shape the copper sites were mutated, and the properties of the mutants were compared with those of the wild-type enzyme. The direct electrochemical studies, using cyclic voltammetry, yielded redox potentials in the +200 mV range, well in line with LPMO redox potentials determined by other methods. Interestingly, while the mutations hardly affected the formal redox potential of the enzyme, they drastically affected the reactivity of the copper site and enzyme functionality.
Collapse
Affiliation(s)
- Cristina M Cordas
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Gabriel N Valério
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Anton Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Eirik Kommedal
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Åsmund R Kjendseth
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.
| | - José J G Moura
- LAQV, REQUIMTE, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
30
|
Schwaiger L, Zenone A, Csarman F, Ludwig R. Continuous photometric activity assays for lytic polysaccharide monooxygenase-Critical assessment and practical considerations. Methods Enzymol 2022; 679:381-404. [PMID: 36682872 DOI: 10.1016/bs.mie.2022.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lytic polysaccharide monooxygenase (LPMO) is a monocopper-dependent enzyme that cleaves glycosidic bonds by using an oxidative mechanism. In nature, they act in concert with cellobiohydrolases to facilitate the efficient degradation of lignocellulosic biomass. After more than a decade of LPMO research, it has become evident that LPMOs are abundant in all domains of life and fulfill a diverse range of biological functions. Independent of their biological function and the preferred polysaccharide substrate, studying and characterizing LPMOs is tedious and so far mostly relied on the discontinuous analysis of the solubilized reaction products by HPLC/MS-based methods. In the absence of appropriate substrates, LPMOs can engage in two off-pathway reactions, i.e., an oxidase and a peroxidase-like activity. These futile reactions have been exploited to set up easy-to-use continuous spectroscopic assays. As the natural substrates of newly discovered LPMOs are often unknown, widely applicable, simple, reliable, and robust spectroscopic assays are required to monitor LPMO expression and to perform initial biochemical characterizations, e.g., thermal stability measurements. Here we provide detailed descriptions and practical protocols to perform continuous photometric assays using either 2,6-dimethoxyphenol (2,6-DMP) or hydrocoerulignone as colorimetric substrates as a broadly applicable assay for a range of LPMOs. In addition, a turbidimetric measurement is described as the currently only method available to continuously monitor LPMOs acting on amorphous cellulose.
Collapse
Affiliation(s)
- Lorenz Schwaiger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Alice Zenone
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Florian Csarman
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
31
|
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are unique redox enzymes capable of disrupting the crystalline surfaces of industry-relevant recalcitrant polysaccharides, such as chitin and cellulose. Historically, LPMOs were thought to be slow enzymes relying on O2 as the co-substrate, but it is now clear that these enzymes prefer H2O2, allowing for fast depolymerization of polysaccharides through a peroxygenase reaction. Thus, quantifying H2O2 in LPMO reaction set-ups is of a great interest. The horseradish peroxidase (HRP)/Amplex Red (AR) assay is one of the most popular and accessible tools for measuring hydrogen peroxide. This assay has been used in various types of biological and biochemical studies, including LPMO research, but suffers from pitfalls that need to be accounted for. In this Chapter, we discuss this method and its use for assessing the often rate-limiting in situ formation of H2O2 in LPMO reactions. We show that, after accounting for multiple potential side reactions, quantitative data on H2O2 production obtained with the HRP/Amplex Red assay provide useful clues for understanding the catalytic activity of LPMOs, including the impact of reductants and transition metal ions.
Collapse
Affiliation(s)
- Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU-Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
32
|
Evaluation of Enzymatic Hydrolysis of Sugarcane Bagasse Using Combination of Enzymes or Co-Substrate to Boost Lytic Polysaccharide Monooxygenases Action. Catalysts 2022. [DOI: 10.3390/catal12101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This study evaluated innovative approaches for the enzymatic hydrolysis of lignocellulosic biomass. More specifically, assays were performed to evaluate the supplementation of the commercial cellulolytic cocktail Cellic® CTec2 (CC2) with LPMO (GcLPMO9B), H2O2, or cello-oligosaccharide dehydrogenase (CelDH) FgCelDH7C in order to boost the LPMO action and improve the saccharification efficiency of biomass into monosaccharides. The enzymatic hydrolysis was carried out using sugarcane bagasse pretreated by hydrodynamic cavitation-assisted oxidative process, 10% (w/w) solid loading, and 30 FPU CC2/g dry biomass. The results were compared in terms of sugars release and revealed an important influence of the supplementations at the initial 6 h of hydrolysis. While the addition of CelDH led to a steady increase in glucose production to reach 101.1 mg of glucose/g DM, accounting for the highest value achieved after 72 h of hydrolysis, boosting the LPMOs activity by the supplementation of pure LPMOs or the LPMO co-substrate H2O2 were also effective to improve the cellulose conversion, increasing the initial reaction rate of the hydrolysis. These results revealed that LPMOs play an important role on enzymatic hydrolysis of cellulose and boosting their action can help to improve the reaction rate and increase the hydrolysis yield. LPMOs-CelDH oxidative pairs represent a novel potent combination for use in the enzymatic hydrolysis of lignocellulose biomass. Finally, the strategies presented in this study are promising approaches for application in lignocellulosic biorefineries, especially using sugarcane bagasse as a feedstock.
Collapse
|
33
|
Rezić I, Kracher D, Oros D, Mujadžić S, Anđelini M, Kurtanjek Ž, Ludwig R, Rezić T. Application of Causality Modelling for Prediction of Molecular Properties for Textile Dyes Degradation by LPMO. Molecules 2022; 27:molecules27196390. [PMID: 36234925 PMCID: PMC9572501 DOI: 10.3390/molecules27196390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
The textile industry is one of the largest water-polluting industries in the world. Due to an increased application of chromophores and a more frequent presence in wastewaters, the need for an ecologically favorable dye degradation process emerged. To predict the decolorization rate of textile dyes with Lytic polysaccharide monooxygenase (LPMO), we developed, validated, and utilized the molecular descriptor structural causality model (SCM) based on the decision tree algorithm (DTM). Combining mathematical models and theories with decolorization experiments, we have elucidated the most important molecular properties of the dyes and confirm the accuracy of SCM model results. Besides the potential utilization of the developed model in the treatment of textile dye-containing wastewater, the model is a good base for the prediction of the molecular properties of the molecule. This is important for selecting chromophores as the reagents in determining LPMO activities. Dyes with azo- or triarylmethane groups are good candidates for colorimetric LPMO assays and the determination of LPMO activity. An adequate methodology for the LPMO activity determination is an important step in the characterization of LPMO properties. Therefore, the SCM/DTM model validated with the 59 dyes molecules is a powerful tool in the selection of adequate chromophores as reagents in the LPMO activity determination and it could reduce experimentation in the screening experiments.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, Prilaz b. Filipovića 28a, 10000 Zagreb, Croatia
- Correspondence: (I.R.); (T.R.); Tel.: +385-1-3712-500 (I.R.); +385-1-4605-056 (T.R.)
| | - Daniel Kracher
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Damir Oros
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Sven Mujadžić
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Magdalena Anđelini
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Želimir Kurtanjek
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Roland Ludwig
- Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Tonči Rezić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence: (I.R.); (T.R.); Tel.: +385-1-3712-500 (I.R.); +385-1-4605-056 (T.R.)
| |
Collapse
|
34
|
Natural photoredox catalysts promote light-driven lytic polysaccharide monooxygenase reactions and enzymatic turnover of biomass. Proc Natl Acad Sci U S A 2022; 119:e2204510119. [PMID: 35969781 PMCID: PMC9407654 DOI: 10.1073/pnas.2204510119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) catalyze oxidative cleavage of crystalline polysaccharides such as cellulose and chitin and are important for biomass conversion in the biosphere as well as in biorefineries. The target polysaccharides of LPMOs naturally occur in copolymeric structures such as plant cell walls and insect cuticles that are rich in phenolic compounds, which contribute rigidity and stiffness to these materials. Since these phenolics may be photoactive and since LPMO action depends on reducing equivalents, we hypothesized that LPMOs may enable light-driven biomass conversion. Here, we show that redox compounds naturally present in shed insect exoskeletons enable harvesting of light energy to drive LPMO reactions and thus biomass conversion. The primary underlying mechanism is that irradiation of exoskeletons with visible light leads to the generation of H2O2, which fuels LPMO peroxygenase reactions. Experiments with a cellulose model substrate show that the impact of light depends on both light and exoskeleton dosage and that light-driven LPMO activity is inhibited by a competing H2O2-consuming enzyme. Degradation experiments with the chitin-rich exoskeletons themselves show that solubilization of chitin by a chitin-active LPMO is promoted by light. The fact that LPMO reactions, and likely reactions catalyzed by other biomass-converting redox enzymes, are fueled by light-driven abiotic reactions in nature provides an enzyme-based explanation for the known impact of visible light on biomass conversion.
Collapse
|
35
|
Breslmayr E, Poliak P, Požgajčić A, Schindler R, Kracher D, Oostenbrink C, Ludwig R. Inhibition of the Peroxygenase Lytic Polysaccharide Monooxygenase by Carboxylic Acids and Amino Acids. Antioxidants (Basel) 2022; 11:1096. [PMID: 35739992 PMCID: PMC9220355 DOI: 10.3390/antiox11061096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are widely distributed in fungi, and catalyze the oxidative degradation of polysaccharides such as cellulose. Despite their name, LPMOs possess a dominant peroxygenase activity that is reflected in high turnover numbers but also causes deactivation. We report on the influence of small molecules and ions on the activity and stability of LPMO during catalysis. Turbidimetric and photometric assays were used to identify LPMO inhibitors and measure their inhibitory effect. Selected inhibitors were employed to study LPMO activity and stability during cellulose depolymerization by HPLC and turbidimetry. It was found that the fungal metabolic products oxalic acid and citric acid strongly reduce LPMO activity, but also protect the enzyme from deactivation. QM calculations showed that the copper atom in the catalytic site could be ligated by bi- or tridentate chelating compounds, which replace two water molecules. MD simulations and QM calculations show that the most likely inhibition pattern is the competition between the inhibitor and reducing agent in the oxidized Cu(II) state. A correlation between the complexation energy and the IC50 values demonstrates that small, bidentate molecules interact strongest with the catalytic site copper and could be used by the fungus as physiological effectors to regulate LPMO activity.
Collapse
Affiliation(s)
- Erik Breslmayr
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (E.B.); (A.P.); (R.S.); (R.L.)
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (P.P.); (C.O.)
| | - Peter Poliak
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (P.P.); (C.O.)
- Department of Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Alen Požgajčić
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (E.B.); (A.P.); (R.S.); (R.L.)
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Roman Schindler
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (E.B.); (A.P.); (R.S.); (R.L.)
| | - Daniel Kracher
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (E.B.); (A.P.); (R.S.); (R.L.)
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (P.P.); (C.O.)
| | - Roland Ludwig
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria; (E.B.); (A.P.); (R.S.); (R.L.)
| |
Collapse
|
36
|
Vandhana TM, Reyre JL, Sushmaa D, Berrin JG, Bissaro B, Madhuprakash J. On the expansion of biological functions of lytic polysaccharide monooxygenases. THE NEW PHYTOLOGIST 2022; 233:2380-2396. [PMID: 34918344 DOI: 10.1111/nph.17921] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 05/21/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) constitute an enigmatic class of enzymes, the discovery of which has opened up a new arena of riveting research. LPMOs can oxidatively cleave the glycosidic bonds found in carbohydrate polymers enabling the depolymerisation of recalcitrant biomasses, such as cellulose or chitin. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. In the present review, we propose a historical perspective of LPMO research providing a succinct overview of the major achievements of LPMO research over the past decade. This journey through LPMOs landscape leads us to dive into the emerging biological functions of LPMOs and LPMO-like proteins. We notably highlight roles in fungal and oomycete plant pathogenesis (e.g. potato late blight), but also in mutualistic/commensalism symbiosis (e.g. ectomycorrhizae). We further present the potential importance of LPMOs in other microbial pathogenesis including diseases caused by bacteria (e.g. pneumonia), fungi (e.g. human meningitis), oomycetes and viruses (e.g. entomopox), as well as in (micro)organism development (including several plant pests). Our assessment of the literature leads to the formulation of outstanding questions, promising for the coming years exciting research and discoveries on these moonlighting proteins.
Collapse
Affiliation(s)
- Theruvothu Madathil Vandhana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Lou Reyre
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Dangudubiyyam Sushmaa
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Jean-Guy Berrin
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Bastien Bissaro
- INRAE, UMR1163 Biodiversité et Biotechnologie Fongiques, Aix Marseille University, 13009, Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| |
Collapse
|
37
|
Stepnov AA, Christensen IA, Forsberg Z, Aachmann FL, Courtade G, Eijsink VGH. The impact of reductants on the catalytic efficiency of a lytic polysaccharide monooxygenase and the special role of dehydroascorbic acid. FEBS Lett 2022; 596:53-70. [PMID: 34845720 DOI: 10.1002/1873-3468.14246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Monocopper lytic polysaccharide monooxygenases (LPMOs) catalyse oxidative cleavage of glycosidic bonds in a reductant-dependent reaction. Recent studies indicate that LPMOs, rather than being O2 -dependent monooxygenases, are H2 O2 -dependent peroxygenases. Here, we describe SscLPMO10B, a novel LPMO from the phytopathogenic bacterium Streptomyces scabies and address links between this enzyme's catalytic rate and in situ hydrogen peroxide production in the presence of ascorbic acid, gallic acid and l-cysteine. Studies of Avicel degradation showed a clear correlation between the catalytic rate of SscLPMO10B and the rate of H2 O2 generation in the reaction mixture. We also assessed the impact of oxidised ascorbic acid, dehydroascorbic acid (DHA), on LPMO activity, since DHA, which is not considered a reductant, was recently reported to drive LPMO reactions. Kinetic studies, combined with NMR analysis, showed that DHA is unstable and converts into multiple derivatives, some of which are redox active and can fuel the LPMO reaction by reducing the active site copper and promoting H2 O2 production. These results show that the apparent monooxygenase activity observed in SscLPMO10B reactions without exogenously added H2 O2 reflects a peroxygenase reaction.
Collapse
Affiliation(s)
- Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Idd A Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Gaston Courtade
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
38
|
Wahart AJC, Staniland J, Miller GJ, Cosgrove SC. Oxidase enzymes as sustainable oxidation catalysts. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211572. [PMID: 35242351 PMCID: PMC8753158 DOI: 10.1098/rsos.211572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Oxidation is one of the most important processes used by the chemical industry. However, many of the methods that are used pose significant sustainability and environmental issues. Biocatalytic oxidation offers an alternative to these methods, with a now significant enzymatic oxidation toolbox on offer to chemists. Oxidases are one of these options, and as they only depend on molecular oxygen as a terminal oxidant offer perfect atom economy alongside the selectivity benefits afforded by enzymes. This review will focus on examples of oxidase biocatalysts that have been used for the sustainable production of important molecules and highlight some important processes that have been significantly improved through the use of oxidases. It will also consider emerging classes of oxidases, and how they might fit in a future biorefinery approach for the sustainable production of important chemicals.
Collapse
Affiliation(s)
- Alice J. C. Wahart
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | | | - Gavin J. Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| | - Sebastian C. Cosgrove
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
39
|
Rieder L, Stepnov AA, Sørlie M, Eijsink VG. Fast and Specific Peroxygenase Reactions Catalyzed by Fungal Mono-Copper Enzymes. Biochemistry 2021; 60:3633-3643. [PMID: 34738811 PMCID: PMC8638258 DOI: 10.1021/acs.biochem.1c00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/27/2021] [Indexed: 11/28/2022]
Abstract
The copper-dependent lytic polysaccharide monooxygenases (LPMOs) are receiving attention because of their role in the degradation of recalcitrant biomass and their intriguing catalytic properties. The fundamentals of LPMO catalysis remain somewhat enigmatic as the LPMO reaction is affected by a multitude of LPMO- and co-substrate-mediated (side) reactions that result in a complex reaction network. We have performed kinetic studies with two LPMOs that are active on soluble substrates, NcAA9C and LsAA9A, using various reductants typically employed for LPMO activation. Studies with NcAA9C under "monooxygenase" conditions showed that the impact of the reductant on catalytic activity is correlated with the hydrogen peroxide-generating ability of the LPMO-reductant combination, supporting the idea that a peroxygenase reaction is taking place. Indeed, the apparent monooxygenase reaction could be inhibited by a competing H2O2-consuming enzyme. Interestingly, these fungal AA9-type LPMOs were found to have higher oxidase activity than bacterial AA10-type LPMOs. Kinetic analysis of the peroxygenase activity of NcAA9C on cellopentaose revealed a fast stoichiometric conversion of high amounts of H2O2 to oxidized carbohydrate products. A kcat value of 124 ± 27 s-1 at 4 °C is 20 times higher than a previously described kcat for peroxygenase activity on an insoluble substrate (at 25 °C) and some 4 orders of magnitude higher than typical "monooxygenase" rates. Similar studies with LsAA9A revealed differences between the two enzymes but confirmed fast and specific peroxygenase activity. These results show that the catalytic site arrangement of LPMOs provides a unique scaffold for highly efficient copper redox catalysis.
Collapse
Affiliation(s)
- Lukas Rieder
- Faculty of Chemistry, Biotechnology,
and Food Sciences, Norwegian University
of Life Sciences (NMBU), P.O. Box 5003,
NO, 1432 Ås, Norway
| | - Anton A. Stepnov
- Faculty of Chemistry, Biotechnology,
and Food Sciences, Norwegian University
of Life Sciences (NMBU), P.O. Box 5003,
NO, 1432 Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology,
and Food Sciences, Norwegian University
of Life Sciences (NMBU), P.O. Box 5003,
NO, 1432 Ås, Norway
| | - Vincent G.H. Eijsink
- Faculty of Chemistry, Biotechnology,
and Food Sciences, Norwegian University
of Life Sciences (NMBU), P.O. Box 5003,
NO, 1432 Ås, Norway
| |
Collapse
|
40
|
Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Appl Environ Microbiol 2021; 87:e0165221. [PMID: 34613755 PMCID: PMC8612270 DOI: 10.1128/aem.01652-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Family AA9 lytic polysaccharide monooxygenases (LPMOs) are abundant in fungi, where they catalyze oxidative depolymerization of recalcitrant plant biomass. These AA9 LPMOs cleave cellulose and some also act on hemicelluloses, primarily other (substituted) β-(1→4)-glucans. Oxidative cleavage of xylan has been shown for only a few AA9 LPMOs, and it remains unclear whether this activity is a minor side reaction or primary function. Here, we show that Neurospora crassa LPMO9F (NcLPMO9F) and the phylogenetically related, hitherto uncharacterized NcLPMO9L from N. crassa are active on both cellulose and cellulose-associated glucuronoxylan but not on glucuronoxylan alone. A newly developed method for simultaneous quantification of xylan-derived and cellulose-derived oxidized products showed that NcLPMO9F preferentially cleaves xylan when acting on a cellulose–beechwood glucuronoxylan mixture, yielding about three times more xylan-derived than cellulose-derived oxidized products. Interestingly, under similar conditions, NcLPMO9L and the previously characterized McLPMO9H, from Malbranchea cinnamomea, showed different xylan-to-cellulose preferences, giving oxidized product ratios of about 0.5:1 and 1:1, respectively, indicative of functional variation among xylan-active LPMOs. Phylogenetic and structural analysis of xylan-active AA9 LPMOs led to the identification of characteristic structural features, including unique features that do not occur in phylogenetically remote AA9 LPMOs, such as four AA9 LPMOs whose lack of activity toward glucuronoxylan was demonstrated in the present study. Taken together, the results provide a path toward discovery of additional xylan-active LPMOs and show that the huge family of AA9 LPMOs has members that preferentially act on xylan. These findings shed new light on the biological role and industrial potential of these fascinating enzymes. IMPORTANCE Plant cell wall polysaccharides are highly resilient to depolymerization by hydrolytic enzymes, partly due to cellulose chains being tightly packed in microfibrils that are covered by hemicelluloses. Lytic polysaccharide monooxygenases (LPMOs) seem well suited to attack these resilient copolymeric structures, but the occurrence and importance of hemicellulolytic activity among LPMOs remain unclear. Here, we show that certain AA9 LPMOs preferentially cleave xylan when acting on a cellulose–glucuronoxylan mixture, and that this ability is the result of protein evolution that has resulted in a clade of AA9 LPMOs with specific structural features. Our findings strengthen the notion that the vast arsenal of AA9 LPMOs in certain fungal species provides functional versatility and that AA9 LPMOs may have evolved to promote oxidative depolymerization of a wide variety of recalcitrant, copolymeric plant polysaccharide structures. These findings have implications for understanding the biological roles and industrial potential of LPMOs.
Collapse
|
41
|
Støpamo FG, Røhr ÅK, Mekasha S, Petrović DM, Várnai A, Eijsink VGH. Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. J Biol Chem 2021; 297:101421. [PMID: 34798071 PMCID: PMC8668981 DOI: 10.1016/j.jbc.2021.101421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
The discovery of oxidative cleavage of recalcitrant polysaccharides by lytic polysaccharide monooxygenases (LPMOs) has affected the study and industrial application of enzymatic biomass processing. Despite being widespread in fungi, LPMOs belonging to the auxiliary activity (AA) family AA11 have been understudied. While these LPMOs are considered chitin active, some family members have little or no activity toward chitin, and the only available crystal structure of an AA11 LPMO lacks features found in bacterial chitin-active AA10 LPMOs. Here, we report structural and functional characteristics of a single-domain AA11 LPMO from Aspergillus fumigatus, AfAA11A. The crystal structure shows a substrate-binding surface with features resembling those of known chitin-active LPMOs. Indeed, despite the absence of a carbohydrate-binding module, AfAA11A has considerable affinity for α-chitin and, more so, β-chitin. AfAA11A is active toward both these chitin allomorphs and enhances chitin degradation by an endoacting chitinase, in particular for α-chitin. The catalytic activity of AfAA11A on chitin increases when supplying reactions with hydrogen peroxide, showing that, like LPMOs from other families, AfAA11A has peroxygenase activity. These results show that, in stark contrast to the previously characterized AfAA11B from the same organism, AfAA11A likely plays a role in fungal chitin turnover. Thus, members of the hitherto rather enigmatic family of AA11 LPMOs show considerable structural and functional differences and may have multiple roles in fungal physiology.
Collapse
Affiliation(s)
- Fredrik Gjerstad Støpamo
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åsmund Kjendseth Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sophanit Mekasha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dejan M Petrović
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
42
|
Brander S, Tokin R, Ipsen JØ, Jensen PE, Hernández-Rollán C, Nørholm MHH, Lo Leggio L, Dupree P, Johansen KS. Scission of Glucosidic Bonds by a Lentinus similis Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H2O2 while the Oxidation of Saccharide Products Depends on O2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Søren Brander
- Department of Geosciences and Natural Resource Management, Copenhagen University, DK-1958 Frederiksberg, Denmark
| | - Radina Tokin
- Department of Plant and Environmental Sciences, Copenhagen University, DK-1871 Frederiksberg, Denmark
| | - Johan Ø. Ipsen
- Department of Plant and Environmental Sciences, Copenhagen University, DK-1871 Frederiksberg, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Cristina Hernández-Rollán
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, CB2 1QW Cambridge, U.K
| | - Katja S. Johansen
- Department of Geosciences and Natural Resource Management, Copenhagen University, DK-1958 Frederiksberg, Denmark
| |
Collapse
|
43
|
Kuusk S, Väljamäe P. Kinetics of H 2O 2-driven catalysis by a lytic polysaccharide monooxygenase from the fungus Trichoderma reesei. J Biol Chem 2021; 297:101256. [PMID: 34597668 PMCID: PMC8528726 DOI: 10.1016/j.jbc.2021.101256] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/17/2023] Open
Abstract
Owing to their ability to break glycosidic bonds in recalcitrant crystalline polysaccharides such as cellulose, the catalysis effected by lytic polysaccharide monooxygenases (LPMOs) is of major interest. Kinetics of these reductant-dependent, monocopper enzymes is complicated by the insoluble nature of the cellulose substrate and parallel, enzyme-dependent, and enzyme-independent side reactions between the reductant and oxygen-containing cosubstrates. Here, we provide kinetic characterization of cellulose peroxygenase (oxidative cleavage of glycosidic bonds in cellulose) and reductant peroxidase (oxidation of the reductant) activities of the LPMO TrAA9A of the cellulose-degrading model fungus Trichoderma reesei. The catalytic efficiency (kcat/Km(H2O2)) of the cellulose peroxygenase reaction (kcat = 8.5 s−1, and Km(H2O2)=30μM) was an order of magnitude higher than that of the reductant (ascorbic acid) peroxidase reaction. The turnover of H2O2 in the ascorbic acid peroxidase reaction followed the ping-pong mechanism and led to irreversible inactivation of the enzyme with a probability of 0.0072. Using theoretical analysis, we suggest a relationship between the half-life of LPMO, the values of kinetic parameters, and the concentrations of the reactants.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
44
|
Rieder L, Petrović D, Väljamäe P, Eijsink VG, Sørlie M. Kinetic Characterization of a Putatively Chitin-Active LPMO Reveals a Preference for Soluble Substrates and Absence of Monooxygenase Activity. ACS Catal 2021; 11:11685-11695. [PMID: 34567832 PMCID: PMC8453653 DOI: 10.1021/acscatal.1c03344] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Indexed: 12/23/2022]
Abstract
![]()
Enzymes known as
lytic polysaccharide monooxygenases (LPMOs) are
recognized as important contributors to aerobic enzymatic degradation
of recalcitrant polysaccharides such as chitin and cellulose. LPMOs
are remarkably abundant in nature, with some fungal species possessing
more than 50 LPMO genes, and the biological implications of this diversity
remain enigmatic. For example, chitin-active LPMOs have been encountered
in biological niches where chitin conversion does not seem to take
place. We have carried out an in-depth kinetic characterization of
a putatively chitin-active LPMO from Aspergillus fumigatus (AfAA11B), which, as we show here, has multiple
unusual properties, such as a low redox potential and high oxidase
activity. Furthermore, AfAA11B is hardly active on
chitin, while being very active on soluble oligomers of N-acetylglucosamine. In the presence of chitotetraose, the enzyme
can withstand considerable amounts of H2O2,
which it uses to efficiently and stoichiometrically convert this substrate.
The unique properties of AfAA11B allowed experiments
showing that it is a strict peroxygenase and does not catalyze a monooxygenase
reaction. This study shows that nature uses LPMOs for breaking glycosidic
bonds in non-polymeric substrates in reactions that depend on H2O2. The quest for the true substrates of these
enzymes, possibly carbohydrates in the cell wall of the fungus or
its competitors, will be of major interest.
Collapse
Affiliation(s)
- Lukas Rieder
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås N-1432, Norway
| | - Dejan Petrović
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås N-1432, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 50090, Estonia
| | - Vincent G.H. Eijsink
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås N-1432, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås N-1432, Norway
| |
Collapse
|
45
|
Kadić A, Várnai A, Eijsink VGH, Horn SJ, Lidén G. In situ measurements of oxidation-reduction potential and hydrogen peroxide concentration as tools for revealing LPMO inactivation during enzymatic saccharification of cellulose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:46. [PMID: 33602308 PMCID: PMC7893893 DOI: 10.1186/s13068-021-01894-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biochemical conversion of lignocellulosic biomass to simple sugars at commercial scale is hampered by the high cost of saccharifying enzymes. Lytic polysaccharide monooxygenases (LPMOs) may hold the key to overcome economic barriers. Recent studies have shown that controlled activation of LPMOs by a continuous H2O2 supply can boost saccharification yields, while overdosing H2O2 may lead to enzyme inactivation and reduce overall sugar yields. While following LPMO action by ex situ analysis of LPMO products confirms enzyme inactivation, currently no preventive measures are available to intervene before complete inactivation. RESULTS Here, we carried out enzymatic saccharification of the model cellulose Avicel with an LPMO-containing enzyme preparation (Cellic CTec3) and H2O2 feed at 1 L bioreactor scale and followed the oxidation-reduction potential and H2O2 concentration in situ with corresponding electrode probes. The rate of oxidation of the reductant as well as the estimation of the amount of H2O2 consumed by LPMOs indicate that, in addition to oxidative depolymerization of cellulose, LPMOs consume H2O2 in a futile non-catalytic cycle, and that inactivation of LPMOs happens gradually and starts long before the accumulation of LPMO-generated oxidative products comes to a halt. CONCLUSION Our results indicate that, in this model system, the collapse of the LPMO-catalyzed reaction may be predicted by the rate of oxidation of the reductant, the accumulation of H2O2 in the reactor or, indirectly, by a clear increase in the oxidation-reduction potential. Being able to monitor the state of the LPMO activity in situ may help maximizing the benefit of LPMO action during saccharification. Overcoming enzyme inactivation could allow improving overall saccharification yields beyond the state of the art while lowering LPMO and, potentially, cellulase loads, both of which would have beneficial consequences on process economics.
Collapse
Affiliation(s)
- Adnan Kadić
- Department of Chemical Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432, Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, NO-1432, Ås, Norway.
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden.
| |
Collapse
|