1
|
Gunderson LPK, Brice K, Parra M, Engelhart AS, Centanni TM. A novel paradigm for measuring prediction abilities in a rat model using a speech-sound discrimination task. Behav Brain Res 2024; 472:115143. [PMID: 38986956 DOI: 10.1016/j.bbr.2024.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The ability to predict and respond to upcoming stimuli is a critical skill for all animals, including humans. Prediction operates largely below conscious awareness to allow an individual to recall previously encountered stimuli and prepare an appropriate response, especially in language. The ability to predict upcoming words within typical speech patterns aids fluent comprehension, as conversational speech occurs quickly. Individuals with certain neurodevelopmental disorders such as autism and dyslexia have deficits in their ability to generate and use predictions. Rodent models are often used to investigate specific aspects of these disorders, but there is no existing behavioral paradigm that can assess prediction capabilities with complex stimuli like speech sounds. Thus, the present study modified an existing rapid speech sound discrimination paradigm to assess whether rats can form predictions of upcoming speech sound stimuli and utilize them to improve task performance. We replicated prior work showing that rats can discriminate between speech sounds presented at rapid rates. We also saw that rats responded exclusively to the target at slow speeds but began responding to the predictive cue in anticipation of the target as the speed increased, suggesting that they learned the predictive value of the cue and adjusted their behavior accordingly. This prediction task will be useful in assessing prediction deficits in rat models of various neurodevelopmental disorders through the manipulation of both genetic and environmental factors.
Collapse
Affiliation(s)
- Logun P K Gunderson
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Kelly Brice
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Monica Parra
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Abby S Engelhart
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States
| | - Tracy M Centanni
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, United States; Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
2
|
Qiao M, Huang Q, Wang X, Han J. ZBTB21 suppresses CRE-mediated transcription to impair synaptic function in Down syndrome. SCIENCE ADVANCES 2024; 10:eadm7373. [PMID: 38959316 PMCID: PMC11221507 DOI: 10.1126/sciadv.adm7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Down syndrome (DS) is the most common chromosomal disorder and a major cause of intellectual disability. The genetic etiology of DS is the extra copy of chromosome 21 (HSA21)-encoded genes; however, the contribution of specific HSA21 genes to DS pathogenesis remains largely unknown. Here, we identified ZBTB21, an HSA21-encoded zinc-finger protein, as a transcriptional repressor in the regulation of synaptic function. We found that normalization of the Zbtb21 gene copy number in DS mice corrected deficits in cognitive performance, synaptic function, and gene expression. Moreover, we demonstrated that ZBTB21 binds to canonical cAMP-response element (CRE) DNA and that its binding to CRE could be competitive with CRE-binding factors such as CREB. ZBTB21 represses CRE-dependent gene expression and results in the negative regulation of synaptic plasticity, learning and memory. Together, our results identify ZBTB21 as a CRE-binding protein and repressor in cAMP-dependent gene regulation, contributing to cognitive defects in DS.
Collapse
Affiliation(s)
- Muzhen Qiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qianwen Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Laboratory Animal Center, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Research Unit of Cellular Stress of CAMS, Xiang’an Hospital of Xiamen University, Cancer Research Center of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
3
|
Ji L, Borges BC, Martel DT, Wu C, Liberman MC, Shore SE, Corfas G. From hidden hearing loss to supranormal auditory processing by neurotrophin 3-mediated modulation of inner hair cell synapse density. PLoS Biol 2024; 22:e3002665. [PMID: 38935589 PMCID: PMC11210788 DOI: 10.1371/journal.pbio.3002665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.
Collapse
Affiliation(s)
- Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David T. Martel
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Calvin Wu
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - M. Charles Liberman
- Mass Eye and Ear Infirmary and Harvard Medical School. Boston, Massachusetts, United States of America
| | - Susan E. Shore
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Ludington AJ, Hammond JM, Breen J, Deveson IW, Sanders KL. New chromosome-scale genomes provide insights into marine adaptations of sea snakes (Hydrophis: Elapidae). BMC Biol 2023; 21:284. [PMID: 38066641 PMCID: PMC10709897 DOI: 10.1186/s12915-023-01772-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sea snakes underwent a complete transition from land to sea within the last ~ 15 million years, yet they remain a conspicuous gap in molecular studies of marine adaptation in vertebrates. RESULTS Here, we generate four new annotated sea snake genomes, three of these at chromosome-scale (Hydrophis major, H. ornatus and H. curtus), and perform detailed comparative genomic analyses of sea snakes and their closest terrestrial relatives. Phylogenomic analyses highlight the possibility of near-simultaneous speciation at the root of Hydrophis, and synteny maps show intra-chromosomal variations that will be important targets for future adaptation and speciation genomic studies of this system. We then used a strict screen for positive selection in sea snakes (against a background of seven terrestrial snake genomes) to identify genes over-represented in hypoxia adaptation, sensory perception, immune response and morphological development. CONCLUSIONS We provide the best reference genomes currently available for the prolific and medically important elapid snake radiation. Our analyses highlight the phylogenetic complexity and conserved genome structure within Hydrophis. Positively selected marine-associated genes provide promising candidates for future, functional studies linking genetic signatures to the marine phenotypes of sea snakes and other vertebrates.
Collapse
Affiliation(s)
- Alastair J Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
- John Curtin School of Medical Research, College of Health & Medicine, Australian National University, Canberra, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- The South Australian Museum, Adelaide, Australia.
| |
Collapse
|
5
|
Chasse RY, Perrino PA, McLeod RM, Altmann GTM, Fitch RH. A novel approach to the assessment of higher-order rule learning in male mice. Learn Mem 2023; 30:271-277. [PMID: 37802548 PMCID: PMC10561631 DOI: 10.1101/lm.053771.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
Historically, the development of valid and reliable methods for assessing higher-order cognitive abilities (e.g., rule learning and transfer) has been difficult in rodent models. To date, limited evidence supports the existence of higher cognitive abilities such as rule generation and complex decision-making in mice, rats, and rabbits. To this end, we sought to develop a task that would require mice to learn and transfer a rule. We trained mice to visually discriminate a series of images (image set, six total) of increasing complexity following three stages: (1) learn a visual target, (2) learn a rule (ignore any new images around the target), and finally (3) apply this rule in abstract form to a comparable but new image set. To evaluate learning for each stage, we measured (1) days (and performance by day) to discriminate the original target at criterion, (2) days (and performance by day) to get back to criterion when images in the set were altered by the introduction of distractors (rule learning), and (3) overall days (and performance by day) to criterion when experienced versus naïve cohorts of mice were tested on the same image set (rule transfer). Twenty-seven wild-type male C57 mice were tested using Bussey-Saksida touchscreen operant conditioning boxes (Lafayette Instruments). Two comparable black-white image sets were delivered sequentially (counterbalanced for order) to two identical cohorts of mice. Results showed that all mice were able to effectively learn their initial target image and could recall it >80 d later. We also found that mice were able to quickly learn and apply a "rule" : Ignore new distractors and continue to identify their visual target embedded in more complex images. The presence of rule learning was supported because performance criterion thresholds were regained much faster than initial learning when distractors were introduced. On the other hand, mice appeared unable to transfer this rule to a new set of stimuli. This is supported because visual discrimination curves for a new image set were no better than an initial (naïve) learning by a matched cohort of mice. Overall results have important implications for phenotyping research and particularly for the modeling of complex disorders in mice.
Collapse
Affiliation(s)
- Renee Y Chasse
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
- Murine Behavioral Neurogenetics Facility, Institute of Brain and Behavioral Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Peter A Perrino
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
- Murine Behavioral Neurogenetics Facility, Institute of Brain and Behavioral Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ruth M McLeod
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
- Murine Behavioral Neurogenetics Facility, Institute of Brain and Behavioral Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Gerry T M Altmann
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| | - R Holly Fitch
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
- Murine Behavioral Neurogenetics Facility, Institute of Brain and Behavioral Sciences, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
6
|
Gao Y, Felsky D, Reyes-Dumeyer D, Sariya S, Rentería MA, Ma Y, Klein HU, Cosentino S, De Jager PL, Bennett DA, Brickman AM, Schellenberg GD, Mayeux R, Barral S. Integration of GWAS and brain transcriptomic analyses in a multiethnic sample of 35,245 older adults identifies DCDC2 gene as predictor of episodic memory maintenance. Alzheimers Dement 2022; 18:1797-1811. [PMID: 34873813 PMCID: PMC9170841 DOI: 10.1002/alz.12524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023]
Abstract
Identifying genes underlying memory function will help characterize cognitively resilient and high-risk declining subpopulations contributing to precision medicine strategies. We estimated episodic memory trajectories in 35,245 ethnically diverse older adults representing eight independent cohorts. We conducted apolipoprotein E (APOE)-stratified genome-wide association study (GWAS) analyses and combined individual cohorts' results via meta-analysis. Three independent transcriptomics datasets were used to further interpret GWAS signals. We identified DCDC2 gene significantly associated with episodic memory (Pmeta = 3.3 x 10-8 ) among non-carriers of APOE ε4 (N = 24,941). Brain transcriptomics revealed an association between episodic memory maintenance and (1) increased dorsolateral prefrontal cortex DCDC2 expression (P = 3.8 x 10-4 ) and (2) lower burden of pathological Alzheimer's disease (AD) hallmarks (paired helical fragment tau P = .003, and amyloid beta load P = .008). Additional transcriptomics results comparing AD and cognitively healthy brain samples showed a downregulation of DCDC2 levels in superior temporal gyrus (P = .007) and inferior frontal gyrus (P = .013). Our work identified DCDC2 gene as a novel predictor of memory maintenance.
Collapse
Affiliation(s)
- Yizhe Gao
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction
and Mental Health, Toronto, ON, Canada.,Department of Psychiatry & Institute of Medical
Science, University of Toronto, Toronto, ON, Canada
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Sanjeev Sariya
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA
| | - Miguel Arce Rentería
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Yiyi Ma
- Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA
| | - Stephanie Cosentino
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Philip L. De Jager
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,Center for Translational & Computational
Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center,
New York, NY, 10032, USA.,Cell Circuits Program, Broad Institute, Cambridge, MA,
USA
| | - David A. Bennett
- Rush University Medical Center, Rush Alzheimer’s
Disease Center, Chicago, IL, USA.,Rush University Medical Center, Department of Neurological
Sciences, Chicago, IL, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Gerard D. Schellenberg
- Department of Pathology and Laboratory Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | - Sandra Barral
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia
University, New York, NY, USA.,G.H. Sergievsky Center, Vagelos College of Physicians and
Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and
Surgeons, New York-Presbyterian Hospital, Columbia University Medical Center, New
York, NY, USA
| | -
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Perrino PA, Chasse RY, Monaco AP, Molnár Z, Velayos‐Baeza A, Fitch RH. Rapid auditory processing and medial geniculate nucleus anomalies in Kiaa0319 knockout mice. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12808. [PMID: 35419947 PMCID: PMC9744489 DOI: 10.1111/gbb.12808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Developmental dyslexia is a common neurodevelopmental disorder characterized by difficulties in reading and writing. Although underlying biological and genetic mechanisms remain unclear, anomalies in phonological processing and auditory processing have been associated with dyslexia. Several candidate risk genes have also been identified, with KIAA0319 as a main candidate. Animal models targeting the rodent homolog (Kiaa0319) have been used to explore putative behavioral and anatomic anomalies, with mixed results. For example after downregulation of Kiaa0319 expression in rats via shRNA, significant adult rapid auditory processing impairments were reported, along with cortical anomalies reflecting atypical neuronal migration. Conversely, Kiaa0319 knockout (KO) mice were reported to have typical adult auditory processing, and no visible cortical anomalies. To address these inconsistencies, we tested Kiaa0319 KO mice on auditory processing tasks similar to those used previously in rat shRNA knockdown studies. Subsequent neuroanatomic analyses on these same mice targeted medial geniculate nucleus (MGN), a receptive communication-related brain structure. Results confirm that Kiaa0319 KO mice exhibit significant auditory processing impairments specific to rapid/brief stimuli, and also show significant volumetric reductions and a shift toward fewer large and smaller neurons in the MGN. The latter finding is consistent with post mortem MGN data from human dyslexic brains. Combined evidence supports a role for KIAA0319 in the development of auditory CNS pathways subserving rapid auditory processing functions critical to the development of speech processing, language, and ultimately reading. Results affirm KIAA0319 variation as a possible risk factor for dyslexia specifically via anomalies in central acoustic processing pathways.
Collapse
Affiliation(s)
- Peter A. Perrino
- Department of Psychological Science/Behavioral NeuroscienceUniversity of ConnecticutStorrsConnecticutUSA
| | - Renee Y. Chasse
- Department of Psychological Science/Behavioral NeuroscienceUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| | - Antonio Velayos‐Baeza
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK,Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - R. Holly Fitch
- Department of Psychological Science/Behavioral NeuroscienceUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
8
|
Animal models of developmental dyslexia: Where we are and what we are missing. Neurosci Biobehav Rev 2021; 131:1180-1197. [PMID: 34699847 DOI: 10.1016/j.neubiorev.2021.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental disorder and the most common learning disability among both school-aged children and across languages. Recently, sensory and cognitive mechanisms have been reported to be potential endophenotypes (EPs) for DD, and nine DD-candidate genes have been identified. Animal models have been used to investigate the etiopathological pathways that underlie the development of complex traits, as they enable the effects of genetic and/or environmental manipulations to be evaluated. Animal research designs have also been linked to cutting-edge clinical research questions by capitalizing on the use of EPs. For the present scoping review, we reviewed previous studies of murine models investigating the effects of DD-candidate genes. Moreover, we highlighted the use of animal models as an innovative way to unravel new insights behind the pathophysiology of reading (dis)ability and to assess cutting-edge preclinical models.
Collapse
|
9
|
Perani D, Scifo P, Cicchini GM, Rosa PD, Banfi C, Mascheretti S, Falini A, Marino C, Morrone MC. White matter deficits correlate with visual motion perception impairments in dyslexic carriers of the DCDC2 genetic risk variant. Exp Brain Res 2021; 239:2725-2740. [PMID: 34228165 PMCID: PMC8448712 DOI: 10.1007/s00221-021-06137-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Motion perception deficits in dyslexia show a large intersubjective variability, partly reflecting genetic factors influencing brain architecture development. In previous work, we have demonstrated that dyslexic carriers of a mutation of the DCDC2 gene have a very strong impairment in motion perception. In the present study, we investigated structural white matter alterations associated with the poor motion perception in a cohort of twenty dyslexics with a subgroup carrying the DCDC2 gene deletion (DCDC2d+) and a subgroup without the risk variant (DCDC2d–). We observed significant deficits in motion contrast sensitivity and in motion direction discrimination accuracy at high contrast, stronger in the DCDC2d+ group. Both motion perception impairments correlated significantly with the fractional anisotropy in posterior ventral and dorsal tracts, including early visual pathways both along the optic radiation and in proximity of occipital cortex, MT and VWFA. However, the DCDC2d+ group showed stronger correlations between FA and motion perception impairments than the DCDC2d– group in early visual white matter bundles, including the optic radiations, and in ventral pathways located in the left inferior temporal cortex. Our results suggest that the DCDC2d+ group experiences higher vulnerability in visual motion processing even at early stages of visual analysis, which might represent a specific feature associated with the genotype and provide further neurobiological support to the visual-motion deficit account of dyslexia in a specific subpopulation.
Collapse
Affiliation(s)
- Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Scifo
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Guido M Cicchini
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy.
| | - Pasquale Della Rosa
- C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Unit of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Banfi
- Institute of Psychology, University of Graz, Graz, Austria
| | - Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute Eugenio Medea, Bosisio Parini, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy.,C.E.R.M.A.C. (Centro di Risonanza Magnetica ad Alto Campo), Milan, Italy.,Unit of Neuroradiology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Cecilia Marino
- Department of Psychiatry, Unviersity of Toronto, Toronto, Canada.,Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Maria Concetta Morrone
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Scientific Institute Stella Maris (IRCSS), Pisa, Italy
| |
Collapse
|
10
|
Gabel LA, Voss K, Johnson E, Lindström ER, Truong DT, Murray EM, Cariño K, Nielsen CM, Paniagua S, Gruen JR. Identifying Dyslexia: Link between Maze Learning and Dyslexia Susceptibility Gene, DCDC2, in Young Children. Dev Neurosci 2021; 43:116-133. [PMID: 34186533 DOI: 10.1159/000516667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
Dyslexia is a common learning disability that affects processing of written language despite adequate intelligence and educational background. If learning disabilities remain untreated, a child may experience long-term social and emotional problems, which influence future success in all aspects of their life. Dyslexia has a 60% heritability rate, and genetic studies have identified multiple dyslexia susceptibility genes (DSGs). DSGs, such as DCDC2, are consistently associated with the risk and severity of reading disability (RD). Altered neural connectivity within temporoparietal regions of the brain is associated with specific variants of DSGs in individuals with RD. Genetically altering DSG expression in mice results in visual and auditory processing deficits as well as neurophysiological and neuroanatomical disruptions. Previously, we demonstrated that learning deficits associated with RD can be translated across species using virtual environments. In this 2-year longitudinal study, we demonstrate that performance on a virtual Hebb-Williams maze in pre-readers is able to predict future reading impairment, and the genetic risk strengthens, but is not dependent on, this relationship. Due to the lack of oral reporting and use of letters, this easy-to-use tool may be particularly valuable in a remote working environment as well as working with vulnerable populations such as English language learners.
Collapse
Affiliation(s)
- Lisa A Gabel
- Department of Psychology, Lafayette College, Easton, Pennsylvania, USA.,Program in Neuroscience, Lafayette College, Easton, Pennsylvania, USA
| | - Kelsey Voss
- Program in Neuroscience, Lafayette College, Easton, Pennsylvania, USA
| | - Evelyn Johnson
- Department of Special Education, Boise State University, Boise, Idaho, USA
| | - Esther R Lindström
- Department of Education and Human Services, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Dongnhu T Truong
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Erin M Murray
- Program in Neuroscience, Lafayette College, Easton, Pennsylvania, USA
| | - Karla Cariño
- Program in Neuroscience, Lafayette College, Easton, Pennsylvania, USA
| | - Christiana M Nielsen
- Department of Education and Human Services, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Steven Paniagua
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeffrey R Gruen
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Mascheretti S, Riva V, Feng B, Trezzi V, Andreola C, Giorda R, Villa M, Dionne G, Gori S, Marino C, Facoetti A. The Mediation Role of Dynamic Multisensory Processing Using Molecular Genetic Data in Dyslexia. Brain Sci 2020; 10:brainsci10120993. [PMID: 33339203 PMCID: PMC7765588 DOI: 10.3390/brainsci10120993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
Although substantial heritability has been reported and candidate genes have been identified, we are far from understanding the etiopathogenetic pathways underlying developmental dyslexia (DD). Reading-related endophenotypes (EPs) have been established. Until now it was unknown whether they mediated the pathway from gene to reading (dis)ability. Thus, in a sample of 223 siblings from nuclear families with DD and 79 unrelated typical readers, we tested four EPs (i.e., rapid auditory processing, rapid automatized naming, multisensory nonspatial attention and visual motion processing) and 20 markers spanning five DD-candidate genes (i.e., DYX1C1, DCDC2, KIAA0319, ROBO1 and GRIN2B) using a multiple-predictor/multiple-mediator framework. Our results show that rapid auditory and visual motion processing are mediators in the pathway from ROBO1-rs9853895 to reading. Specifically, the T/T genotype group predicts impairments in rapid auditory and visual motion processing which, in turn, predict poorer reading skills. Our results suggest that ROBO1 is related to reading via multisensory temporal processing. These findings support the use of EPs as an effective approach to disentangling the complex pathways between candidate genes and behavior.
Collapse
Affiliation(s)
- Sara Mascheretti
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Bei Feng
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Vittoria Trezzi
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
| | - Chiara Andreola
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Laboratoire de Psychologie du Développement et de l’Éducation de l’Enfant (LaPsyDÉ), Universitè de Paris, 75005 Paris, France
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Marco Villa
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (R.G.); (M.V.)
| | - Ginette Dionne
- École de Psychologie, Laval University, Québec, QC G1V 0A6, Canada; (B.F.); (G.D.)
| | - Simone Gori
- Department of Human and Social Sciences, University of Bergamo, 24100 Bergamo, Italy;
| | - Cecilia Marino
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy; (S.M.); (V.R.); (V.T.); (C.A.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- The Division of Child and Youth Psychiatry, Centre for Addiction and Mental Health (CAMH), Toronto, ON M6J 1H4, Canada
- Correspondence: (C.M.); (A.F.)
| | - Andrea Facoetti
- Developmental Cognitive Neuroscience Lab, Department of General Psychology, University of Padua, 35131 Padua, Italy
- Correspondence: (C.M.); (A.F.)
| |
Collapse
|
12
|
Liebig J, Friederici AD, Neef NE. Auditory brainstem measures and genotyping boost the prediction of literacy: A longitudinal study on early markers of dyslexia. Dev Cogn Neurosci 2020; 46:100869. [PMID: 33091833 PMCID: PMC7576516 DOI: 10.1016/j.dcn.2020.100869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 02/05/2023] Open
Abstract
Multi-domain profiles advance retrospective prediction of emergent literacy. DCDC2 and KIAA0319 risk variants influence emergent spelling skills. Combined DYX2 and auditory brainstem measures enhance predictive model fits. Additional benefit of preliterate phonological awareness on predictive power.
Literacy acquisition is impaired in children with developmental dyslexia resulting in lifelong struggle to read and spell. Proper diagnosis is usually late and commonly achieved after structured schooling started, which causes delayed interventions. Legascreen set out to develop a preclinical screening to identify children at risk of developmental dyslexia. To this end we examined 93 preliterate German children, half of them with a family history of dyslexia and half of them without a family history. We assessed standard demographic and behavioral precursors of literacy, acquired saliva samples for genotyping, and recorded speech-evoked brainstem responses to add an objective physiological measure. Reading and spelling was assessed after two years of structured literacy instruction. Multifactorial regression analyses considering demographic information, genotypes, and auditory brainstem encoding, predicted children’s literacy skills to varying degrees. These predictions were improved by adding the standard psychometrics with a slightly higher impact on spelling compared to reading comprehension. Our findings suggest that gene-brain-behavior profiling has the potential to determine the risk of developmental dyslexia. At the same time our results imply the need for a more sophisticated assessment to fully account for the disparate cognitive profiles and the multifactorial basis of developmental dyslexia.
Collapse
Affiliation(s)
- Johanna Liebig
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.
| | - Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Department of Clinical Neurophysiology, Georg-August-University, Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Department of Diagnostic and Interventional Neuroradiology, Georg-August-University, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
13
|
Benson PJ, Wallace L, Beedie SA. Sensory auditory interval perception errors in developmental dyslexia. Neuropsychologia 2020; 147:107587. [DOI: 10.1016/j.neuropsychologia.2020.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
|
14
|
Rotondo EK, Bieszczad KM. Precise memory for pure tones is predicted by measures of learning-induced sensory system neurophysiological plasticity at cortical and subcortical levels. ACTA ACUST UNITED AC 2020; 27:328-339. [PMID: 32669388 PMCID: PMC7365018 DOI: 10.1101/lm.051318.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/02/2020] [Indexed: 01/06/2023]
Abstract
Despite identical learning experiences, individuals differ in the memory formed of those experiences. Molecular mechanisms that control the neurophysiological bases of long-term memory formation might control how precisely the memory formed reflects the actually perceived experience. Memory formed with sensory specificity determines its utility for selectively cueing subsequent behavior, even in novel situations. Here, a rodent model of auditory learning capitalized on individual differences in learning-induced auditory neuroplasticity to identify and characterize neural substrates for sound-specific (vs. general) memory of the training signal's acoustic frequency. Animals that behaviorally revealed a naturally induced signal-"specific" memory exhibited long-lasting signal-specific neurophysiological plasticity in auditory cortical and subcortical evoked responses. Animals with "general" memories did not exhibit learning-induced changes in these same measures. Manipulating a histone deacetylase during memory consolidation biased animals to have more signal-specific memory. Individual differences validated this brain-behavior relationship in both natural and manipulated memory formation, such that the degree of change in sensory cortical and subcortical neurophysiological responses could be used to predict the behavioral precision of memory.
Collapse
Affiliation(s)
- Elena K Rotondo
- CLEF Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Kasia M Bieszczad
- CLEF Laboratory, Department of Psychology, Behavioral and Systems Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
15
|
Tang K, DeMille MMC, Frijters JC, Gruen JR. DCDC2 READ1 regulatory element: how temporal processing differences may shape language. Proc Biol Sci 2020; 287:20192712. [PMID: 32486976 PMCID: PMC7341942 DOI: 10.1098/rspb.2019.2712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Classic linguistic theory ascribes language change and diversity to population migrations, conquests, and geographical isolation, with the assumption that human populations have equivalent language processing abilities. We hypothesize that spectral and temporal characteristics make some consonant manners vulnerable to differences in temporal precision associated with specific population allele frequencies. To test this hypothesis, we modelled association between RU1-1 alleles of DCDC2 and manner of articulation in 51 populations spanning five continents, and adjusting for geographical proximity, and genetic and linguistic relatedness. RU1-1 alleles, acting through increased expression of DCDC2, appear to increase auditory processing precision that enhances stop-consonant discrimination, favouring retention in some populations and loss by others. These findings enhance classical linguistic theories by adding a genetic dimension, which until recently, has not been considered to be a significant catalyst for language change.
Collapse
Affiliation(s)
- Kevin Tang
- Department of Linguistics, University of Florida, Gainesville, FL 32611-5454, USA
| | - Mellissa M C DeMille
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jan C Frijters
- Child and Youth Studies, Brock University, St. Catherine's, Ontario, Canada L2S 3A1
| | - Jeffrey R Gruen
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Gostic M, Martinelli A, Tucker C, Yang Z, Gasparoli F, Ewart JY, Dholakia K, Sillar KT, Tello JA, Paracchini S. The dyslexia susceptibility KIAA0319 gene shows a specific expression pattern during zebrafish development supporting a role beyond neuronal migration. J Comp Neurol 2019; 527:2634-2643. [PMID: 30950042 PMCID: PMC6767054 DOI: 10.1002/cne.24696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023]
Abstract
Dyslexia is a common neurodevelopmental disorder caused by a significant genetic component. The KIAA0319 gene is one of the most robust dyslexia susceptibility factors but its function remains poorly understood. Initial RNA-interference studies in rats suggested a role in neuronal migration whereas subsequent work with double knock-out mouse models for both Kiaa0319 and its paralogue Kiaa0319-like reported effects in the auditory system but not in neuronal migration. To further understand the role of KIAA0319 during neurodevelopment, we carried out an expression study of its zebrafish orthologue at different embryonic stages. We used different approaches including RNAscope in situ hybridization combined with light-sheet microscopy. The results show particularly high expression during the first few hours of development. Later, expression becomes localized in well-defined structures. In addition to high expression in the brain, we report for the first time expression in the eyes and the notochord. Surprisingly, kiaa0319-like, which generally shows a similar expression pattern to kiaa0319, was not expressed in the notochord suggesting a distinct role for kiaa0319 in this structure. This observation was supported by the identification of notochord enhancers enriched upstream of the KIAA0319 transcription start site, in both zebrafish and humans. This study supports a developmental role for KIAA0319 in the brain as well as in other developing structures, particularly in the notochord which, is key for establishing body patterning in vertebrates.
Collapse
Affiliation(s)
- Monika Gostic
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Angela Martinelli
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Carl Tucker
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Zhengyi Yang
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | - Jade-Yi Ewart
- School of Medicine, University of St Andrews, St Andrews, UK.,School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Kishan Dholakia
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK.,SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Javier A Tello
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, St Andrews, UK.,Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| |
Collapse
|
17
|
Li M, Malins JG, DeMille MMC, Lovett MW, Truong DT, Epstein K, Lacadie C, Mehta C, Bosson-Heenan J, Gruen JR, Frijters JC. A molecular-genetic and imaging-genetic approach to specific comprehension difficulties in children. NPJ SCIENCE OF LEARNING 2018; 3:20. [PMID: 30631481 PMCID: PMC6249284 DOI: 10.1038/s41539-018-0034-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 06/09/2023]
Abstract
Children with poor reading comprehension despite typical word reading skills were examined using neuropsychological, genetic, and neuroimaging data collected from the Genes, Reading and Dyslexia Study of 1432 Hispanic American and African American children. This unexpected poor comprehension was associated with profound deficits in vocabulary, when compared to children with comprehension skills consistent with their word reading. Those with specific comprehension difficulties were also more likely to have RU2Short alleles of READ1 regulatory variants of DCDC2, strongly associated with reading and language difficulties. Subjects with RU2Short alleles showed stronger resting state functional connectivity between the right insula/inferior frontal gyrus and the right supramarginal gyrus, even after controlling for potentially confounding variables including genetic ancestry and socioeconomic status. This multi-disciplinary approach advances the current understanding of specific reading comprehension difficulties, and suggests the need for interventions that are more appropriately tailored to the specific comprehension deficits of this group of children.
Collapse
Affiliation(s)
- Miao Li
- Department of Curriculum and Instruction, College of Education, University of Houston, Houston, TX USA
- Graduate School of Education, Harvard University, Cambridge, MA USA
| | - Jeffrey G. Malins
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT USA
- Haskins Laboratories, New Haven, CT USA
| | | | - Maureen W. Lovett
- Neurosciences and Mental Health Program, Learning Disabilities Research Program, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
| | - Dongnhu T. Truong
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT USA
| | - Katherine Epstein
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT USA
| | - Cheryl Lacadie
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT USA
| | - Chintan Mehta
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT USA
| | - Joan Bosson-Heenan
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT USA
| | - Jeffrey R. Gruen
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT USA
- Department of Genetics and the Investigative Medicine Program, Yale University School of Medicine, New Haven, CT USA
| | - Jan C. Frijters
- Faculty of Social Sciences, Department of Child and Youth Studies, Brock University, St. Catharines, ON Canada
| |
Collapse
|
18
|
Guidi LG, Velayos‐Baeza A, Martinez‐Garay I, Monaco AP, Paracchini S, Bishop DVM, Molnár Z. The neuronal migration hypothesis of dyslexia: A critical evaluation 30 years on. Eur J Neurosci 2018; 48:3212-3233. [PMID: 30218584 PMCID: PMC6282621 DOI: 10.1111/ejn.14149] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022]
Abstract
The capacity for language is one of the key features underlying the complexity of human cognition and its evolution. However, little is known about the neurobiological mechanisms that mediate normal or impaired linguistic ability. For developmental dyslexia, early postmortem studies conducted in the 1980s linked the disorder to subtle defects in the migration of neurons in the developing neocortex. These early studies were reinforced by human genetic analyses that identified dyslexia susceptibility genes and subsequent evidence of their involvement in neuronal migration. In this review, we examine recent experimental evidence that does not support the link between dyslexia and neuronal migration. We critically evaluate gene function studies conducted in rodent models and draw attention to the lack of robust evidence from histopathological and imaging studies in humans. Our review suggests that the neuronal migration hypothesis of dyslexia should be reconsidered, and the neurobiological basis of dyslexia should be approached with a fresh start.
Collapse
Affiliation(s)
- Luiz G. Guidi
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Antonio Velayos‐Baeza
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Isabel Martinez‐Garay
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
- Division of NeuroscienceSchool of BiosciencesCardiff UniversityCardiffUK
| | | | | | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
19
|
Rendall AR, Perrino PA, Buscarello AN, Fitch RH. Shank3B mutant mice display pitch discrimination enhancements and learning deficits. Int J Dev Neurosci 2018; 72:13-21. [DOI: 10.1016/j.ijdevneu.2018.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amanda R. Rendall
- Yale University School of Medicine, Pediatrics464 Congress AveNew Haven06520‐8055CTUSA
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - Peter A. Perrino
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - Alexzandrea N. Buscarello
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| | - R. Holly Fitch
- University of Connecticut, Psychology‐Behavioral Neuroscience406 Babbidge Road, Unit 1020 StorrsMansfield06269CTUSA
| |
Collapse
|
20
|
The influence of DCDC2 risk genetic variants on reading: Testing main and haplotypic effects. Neuropsychologia 2018; 130:52-58. [PMID: 29803723 DOI: 10.1016/j.neuropsychologia.2018.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/17/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022]
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental heritable disorder. Among DD candidate genes, DCDC2 is one of the most replicated, with rs793862, READ1 and rs793842 likely contribute to phenotypic variability in reading (dis)ability. In this study, we tested the effects of these genetic variants on DD as a categorical trait and on quantitative reading-related measures in a sample of 555 Italian nuclear families with 930 offspring, of which 687 were diagnosed with DD. We conducted both single-marker and haplotype analyses, finding that the READ1-deletion was significantly associated with reading, whereas no significant haplotype associations were found. Our findings add further evidence to support the hypothesis of a DCDC2 contribution to inter-individual variation in distinct indicators of reading (dis)ability in transparent languages (i.e., reading accuracy and speed), suggesting a potential pleiotropic effect.
Collapse
|
21
|
Worldwide distribution of the DCDC2 READ1 regulatory element and its relationship with phoneme variation across languages. Proc Natl Acad Sci U S A 2018; 115:4951-4956. [PMID: 29666269 PMCID: PMC5948951 DOI: 10.1073/pnas.1710472115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Languages evolve rapidly due to an interaction between sociocultural factors and underlying phonological processes that are influenced by genetic factors. DCDC2 has been strongly associated with core components of the phonological processing system in animal models and multiple independent studies of populations and languages. To characterize subtle language differences arising from genetic variants associated with phonological processes, we examined the relationship between READ1, a regulatory element in DCDC2, and phonemes in languages of 43 populations across five continents. Variation in READ1 was significantly correlated with the number of consonants. Our results suggest that subtle cognitive biases conferred by different READ1 alleles are amplified through cultural transmission that shape consonant use by populations over time. DCDC2 is a gene strongly associated with components of the phonological processing system in animal models and in multiple independent studies of populations and languages. We propose that it may also influence population-level variation in language component usage. To test this hypothesis, we investigated the evolution and worldwide distribution of the READ1 regulatory element within DCDC2, and compared its distribution with variation in different language properties. The mutational history of READ1 was estimated by examining primate and archaic hominin sequences. This identified duplication and expansion events, which created a large number of polymorphic alleles based on internal repeat units (RU1 and RU2). Association of READ1 alleles was studied with respect to the numbers of consonants and vowels for languages in 43 human populations distributed across five continents. Using population-based approaches with multivariate ANCOVA and linear mixed effects analyses, we found that the RU1-1 allele group of READ1 is significantly associated with the number of consonants within languages independent of genetic relatedness, geographic proximity, and language family. We propose that allelic variation in READ1 helped create a subtle cognitive bias that was amplified by cultural transmission, and ultimately shaped consonant use by different populations over time.
Collapse
|
22
|
Rendall AR, Perrino PA, LoTurco JJ, Fitch RH. Evaluation of visual motion perception ability in mice with knockout of the dyslexia candidate susceptibility gene Dcdc2. GENES BRAIN AND BEHAVIOR 2018; 18:e12450. [PMID: 29232042 DOI: 10.1111/gbb.12450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022]
Abstract
Developmental dyslexia is a heritable disability characterized by difficulties in learning to read and write. The neurobiological and genetic mechanisms underlying dyslexia remain poorly understood; however, several dyslexia candidate risk genes have been identified. One of these candidate risk genes-doublecortin domain containing 2 (DCDC2)-has been shown to play a role in neuronal migration and cilia function. At a behavioral level, variants of DCDC2 have been associated with impairments in phonological processing, working memory and reading speed. Additionally, a specific mutation in DCDC2 has been strongly linked to deficits in motion perception-a skill subserving reading abilities. To further explore the relationship between DCDC2 and dyslexia, a genetic knockout (KO) of the rodent homolog of DCDC2 (Dcdc2) was created. Initial studies showed that Dcdc2 KOs display deficits in auditory processing and working memory. The current study was designed to evaluate the association between DCDC2 and motion perception, as these skills have not yet been assessed in the Dcdc2 KO mouse model. We developed a novel motion perception task, utilizing touchscreen technology and operant conditioning. Dcdc2 KOs displayed deficits on the Pairwise Discrimination task specifically as motion was added to visual stimuli. Following behavioral assessment, brains were histologically prepared for neuroanatomical analysis of the lateral geniculate nucleus (LGN). The cumulative distribution showed that Dcdc2 KOs exhibited more small neurons and fewer larger neurons in the LGN. Results compliment findings that DCDC2 genetic alteration results in anomalies in visual motion pathways in a subpopulation of dyslexic patients.
Collapse
Affiliation(s)
- A R Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - P A Perrino
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| | - J J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - R H Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
23
|
Guidi LG, Mattley J, Martinez-Garay I, Monaco AP, Linden JF, Velayos-Baeza A, Molnár Z. Knockout Mice for Dyslexia Susceptibility Gene Homologs KIAA0319 and KIAA0319L have Unaffected Neuronal Migration but Display Abnormal Auditory Processing. Cereb Cortex 2017; 27:5831-5845. [PMID: 29045729 PMCID: PMC5939205 DOI: 10.1093/cercor/bhx269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developmental dyslexia is a neurodevelopmental disorder that affects reading ability caused by genetic and non-genetic factors. Amongst the susceptibility genes identified to date, KIAA0319 is a prime candidate. RNA-interference experiments in rats suggested its involvement in cortical migration but we could not confirm these findings in Kiaa0319-mutant mice. Given its homologous gene Kiaa0319L (AU040320) has also been proposed to play a role in neuronal migration, we interrogated whether absence of AU040320 alone or together with KIAA0319 affects migration in the developing brain. Analyses of AU040320 and double Kiaa0319;AU040320 knockouts (dKO) revealed no evidence for impaired cortical lamination, neuronal migration, neurogenesis or other anatomical abnormalities. However, dKO mice displayed an auditory deficit in a behavioral gap-in-noise detection task. In addition, recordings of click-evoked auditory brainstem responses revealed suprathreshold deficits in wave III amplitude in AU040320-KO mice, and more general deficits in dKOs. These findings suggest that absence of AU040320 disrupts firing and/or synchrony of activity in the auditory brainstem, while loss of both proteins might affect both peripheral and central auditory function. Overall, these results stand against the proposed role of KIAA0319 and AU040320 in neuronal migration and outline their relationship with deficits in the auditory system.
Collapse
Affiliation(s)
- Luiz G Guidi
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Jane Mattley
- Ear Institute, University College London, London WC1X 8EE, UK
| | - Isabel Martinez-Garay
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Current address: Office of the President, Ballou Hall, Tufts University, Medford, MA 02155, USA
| | - Jennifer F Linden
- Ear Institute, University College London, London WC1X 8EE, UK
- Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
24
|
Rendall AR, Ford AL, Perrino PA, Holly Fitch R. Auditory processing enhancements in the TS2-neo mouse model of Timothy Syndrome, a rare genetic disorder associated with autism spectrum disorders. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2017; 1:176-189. [PMID: 29159279 PMCID: PMC5693350 DOI: 10.1007/s41252-017-0029-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Amanda R. Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - Aiden L. Ford
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - Peter A. Perrino
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - R. Holly Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| |
Collapse
|
25
|
The role of READ1 and KIAA0319 genetic variations in developmental dyslexia: testing main and interactive effects. J Hum Genet 2017; 62:949-955. [DOI: 10.1038/jhg.2017.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/23/2022]
|
26
|
Knockdown of Dyslexia-Gene Dcdc2 Interferes with Speech Sound Discrimination in Continuous Streams. J Neurosci 2017; 36:4895-906. [PMID: 27122044 DOI: 10.1523/jneurosci.4202-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. SIGNIFICANCE STATEMENT Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing. These animals also exhibited abnormal neural plasticity after training, which may be a mechanism for why some children with dyslexia do not respond to intervention. These results are in stark contrast to our previous work with a different candidate gene, which caused a different set of deficits. Our results shed some light on possible neural and genetic mechanisms causing heterogeneity in the dyslexic population.
Collapse
|
27
|
Lauer AM, Behrens D, Klump G. Acoustic startle modification as a tool for evaluating auditory function of the mouse: Progress, pitfalls, and potential. Neurosci Biobehav Rev 2017; 77:194-208. [PMID: 28327385 PMCID: PMC5446932 DOI: 10.1016/j.neubiorev.2017.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
Abstract
Acoustic startle response (ASR) modification procedures, especially prepulse inhibition (PPI), are increasingly used as behavioral measures of auditory processing and sensorimotor gating in rodents due to their perceived ease of implementation and short testing times. In practice, ASR and PPI procedures are extremely variable across animals, experimental setups, and studies, and the interpretation of results is subject to numerous caveats and confounding influences. We review considerations for modification of the ASR using acoustic stimuli, and we compare the sensitivity of PPI procedures to more traditional operant psychoacoustic techniques. We also discuss non-auditory variables that must be considered. We conclude that ASR and PPI measures cannot substitute for traditional operant techniques due to their low sensitivity. Additionally, a substantial amount of pilot testing must be performed to properly optimize an ASR modification experiment, negating any time benefit over operant conditioning. Nevertheless, there are some circumstances where ASR measures may be the only option for assessing auditory behavior, such as when testing mouse strains with early-onset hearing loss or learning impairments.
Collapse
Affiliation(s)
- Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, 515 Traylor Building, 720 Rutland Ave., Baltimore, MD 21205, USA.
| | - Derik Behrens
- Cluster of Excellence Hearing4all, Animal Physiology & Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl Von Ossietzky Str. 9-11, 26111 Oldenburg, Germany
| | - Georg Klump
- Cluster of Excellence Hearing4all, Animal Physiology & Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Carl Von Ossietzky University Oldenburg, Carl Von Ossietzky Str. 9-11, 26111 Oldenburg, Germany
| |
Collapse
|
28
|
Hancock R, Pugh KR, Hoeft F. Neural Noise Hypothesis of Developmental Dyslexia. Trends Cogn Sci 2017; 21:434-448. [PMID: 28400089 PMCID: PMC5489551 DOI: 10.1016/j.tics.2017.03.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/27/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Developmental dyslexia (decoding-based reading disorder; RD) is a complex trait with multifactorial origins at the genetic, neural, and cognitive levels. There is evidence that low-level sensory-processing deficits precede and underlie phonological problems, which are one of the best-documented aspects of RD. RD is also associated with impairments in integrating visual symbols with their corresponding speech sounds. Although causal relationships between sensory processing, print-speech integration, and fluent reading, and their neural bases are debated, these processes all require precise timing mechanisms across distributed brain networks. Neural excitability and neural noise are fundamental to these timing mechanisms. Here, we propose that neural noise stemming from increased neural excitability in cortical networks implicated in reading is one key distal contributor to RD.
Collapse
Affiliation(s)
- Roeland Hancock
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA.
| | - Kenneth R Pugh
- Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Linguistics, Yale University, 370 Temple Street, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale University, 330 Cedar Street, New Haven, CT 06520, USA; Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Haskins Laboratories, 300 George Street, New Haven, CT 06511, USA; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan; Science-based Innovation in Learning Center (SILC), 401 Parnassus Ave. Box-0984, San Francisco, CA 94143, USA; Dyslexia Center, UCSF, 675 Nelson Rising Lane, San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Martinez-Garay I, Guidi LG, Holloway ZG, Bailey MAG, Lyngholm D, Schneider T, Donnison T, Butt SJB, Monaco AP, Molnár Z, Velayos-Baeza A. Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice. Brain Struct Funct 2017; 222:1367-1384. [PMID: 27510895 PMCID: PMC5368214 DOI: 10.1007/s00429-016-1282-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.
Collapse
Affiliation(s)
- Isabel Martinez-Garay
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, UK
| | - Luiz G Guidi
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Zoe G Holloway
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Melissa A G Bailey
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Daniel Lyngholm
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Tomasz Schneider
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Timothy Donnison
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Simon J B Butt
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Anthony P Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Office of the President, Ballou Hall, Tufts University, Medford, MA, 02155, USA.
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Antonio Velayos-Baeza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
30
|
Neef NE, Müller B, Liebig J, Schaadt G, Grigutsch M, Gunter TC, Wilcke A, Kirsten H, Skeide MA, Kraft I, Kraus N, Emmrich F, Brauer J, Boltze J, Friederici AD. Dyslexia risk gene relates to representation of sound in the auditory brainstem. Dev Cogn Neurosci 2017; 24:63-71. [PMID: 28182973 PMCID: PMC6987796 DOI: 10.1016/j.dcn.2017.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/20/2022] Open
Abstract
Previous studies associate poor reading with unstable speech-evoked brainstem responses. DCDC2 and KIAA0319 risk alleles form a strong genetic link with developmental dyslexia. Genetic burden with KIAA0319 risk is related to unstable speech-evoked brainstem responses. Genetic burden with DCDC2 risk is related to intact speech-evoked brainstem responses. Revealed brain-gene relationships may inform the multifactorial pathophysiology of dyslexia.
Dyslexia is a reading disorder with strong associations with KIAA0319 and DCDC2. Both genes play a functional role in spike time precision of neurons. Strikingly, poor readers show an imprecise encoding of fast transients of speech in the auditory brainstem. Whether dyslexia risk genes are related to the quality of sound encoding in the auditory brainstem remains to be investigated. Here, we quantified the response consistency of speech-evoked brainstem responses to the acoustically presented syllable [da] in 159 genotyped, literate and preliterate children. When controlling for age, sex, familial risk and intelligence, partial correlation analyses associated a higher dyslexia risk loading with KIAA0319 with noisier responses. In contrast, a higher risk loading with DCDC2 was associated with a trend towards more stable responses. These results suggest that unstable representation of sound, and thus, reduced neural discrimination ability of stop consonants, occurred in genotypes carrying a higher amount of KIAA0319 risk alleles. Current data provide the first evidence that the dyslexia-associated gene KIAA0319 can alter brainstem responses and impair phoneme processing in the auditory brainstem. This brain-gene relationship provides insight into the complex relationships between phenotype and genotype thereby improving the understanding of the dyslexia-inherent complex multifactorial condition.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - Bent Müller
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Johanna Liebig
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; Department of Psychology, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Maren Grigutsch
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Thomas C Gunter
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Arndt Wilcke
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Holger Kirsten
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig and LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Michael A Skeide
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Indra Kraft
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL 60208, USA
| | - Frank Emmrich
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| | - Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Johannes Boltze
- Department of Cell Therapy, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany; Department of Medical Cell Technology, Fraunhofer Research Institution for Marine Biotechnology, and Institute for Medical and Marine Biotechnology, University of Lübeck, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| |
Collapse
|
31
|
Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry 2017; 7:e987. [PMID: 28045463 PMCID: PMC5545717 DOI: 10.1038/tp.2016.240] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.
Collapse
|
32
|
Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P, Knisely AS, Wagner B, Deheragoda M, Starling C, Mieli-Vergani G, Smith J, Bull L, Thompson RJ. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol 2016; 65:1179-1187. [PMID: 27469900 PMCID: PMC5116266 DOI: 10.1016/j.jhep.2016.07.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Neonatal sclerosing cholangitis (NSC) is a severe neonatal-onset cholangiopathy commonly leading to liver transplantation (LT) for end-stage liver disease in childhood. Liver biopsy findings histopathologically resemble those in biliary atresia (BA); however, in NSC extrahepatic bile ducts are patent, whilst in BA their lumina are obliterated. NSC is commonly seen in consanguineous kindreds, suggesting autosomal recessive inheritance. METHODS From 29 NSC patients (24 families) identified, DNA was available in 24 (21 families). Thirteen (7 male) patients (12 families) of consanguineous parentage were selected for whole exome sequencing. Sequence variants were filtered for homozygosity, pathogenicity, minor allele frequency, quality score, and encoded protein expression pattern. RESULTS Four of 13 patients were homozygous and two were compound heterozygous for mutations in the doublecortin domain containing 2 gene (DCDC2), which encodes DCDC2 protein and is expressed in cholangiocyte cilia. Another 11 patients were sequenced: one (with one sibling pair) was compound heterozygous for DCDC2 mutations. All mutations were protein-truncating. In available liver tissue from patients with DCDC2 mutations, immunostaining for human DCDC2 and the ciliary protein acetylated alpha-tubulin (ACALT) showed no expression (n=6) and transmission electron microscopy found that cholangiocytes lacked primary cilia (n=5). DCDC2 and ACALT were expressed in NSC patients without DCDC2 mutations (n=22). Of the patients carrying DCDC2 mutations, one died awaiting LT; five came to LT, of whom one died 2years later. The other 4 are well. CONCLUSION Among 24 NSC patients with available DNA, 7 had mutations in DCDC2 (6 of 19 families). NSC patients in substantial proportion harbour mutations in DCDC2. Their disease represents a novel liver-based ciliopathy. LAY SUMMARY Neonatal sclerosing cholangitis (NSC) is a rare genetic form of liver disease presenting in infancy. Through next generation sequencing we identified mutations in the gene encoding for doublecortin domain containing 2 (DCDC2) protein in a group of NSC children. DCDC2 is a signalling and structural protein found in primary cilia of cholangiocytes. Cholangiocytes are the cells forming the biliary system which is the draining system of the liver.
Collapse
Affiliation(s)
- Tassos Grammatikopoulos
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK.
| | - Melissa Sambrotta
- Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| | | | - Pierre Foskett
- Institute of Liver Studies, King's College Hospital, London, UK
| | - A S Knisely
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Bart Wagner
- Histopathology Department, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Chris Starling
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| | - Joshua Smith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Laura Bull
- Liver Center Laboratory, Department of Medicine and Institute for Human Genetics, University of California San Francisco, CA, USA
| | - Richard J Thompson
- Paediatric Liver, GI & Nutrition Centre, King's College Hospital, London, UK; Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, King's College London, London, UK
| |
Collapse
|
33
|
Perugorria MJ, Bujanda L, Banales JM. More insight into the diversity of cholangiocyte ciliopathies. J Hepatol 2016; 65:1083-1085. [PMID: 27592305 DOI: 10.1016/j.jhep.2016.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/25/2016] [Indexed: 12/04/2022]
Affiliation(s)
- Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
34
|
Gabel LA, Manglani M, Escalona N, Cysner J, Hamilton R, Pfaffmann J, Johnson E. Translating dyslexia across species. ANNALS OF DYSLEXIA 2016; 66:319-336. [PMID: 27013331 DOI: 10.1007/s11881-016-0125-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Direct relationships between induced mutation in the DCDC2 candidate dyslexia susceptibility gene in mice and changes in behavioral measures of visual spatial learning have been reported. We were interested in determining whether performance on a visual-spatial learning and memory task could be translated across species (study 1) and whether children with reading impairment showed a similar impairment to animal models of the disorder (study 2). Study 1 included 37 participants who completed six trials of four different virtual Hebb-Williams maze configurations. A 2 × 4 × 6 mixed factorial repeated measures ANOVA indicated consistency in performance between humans and mice on these tasks, enabling us to translate across species. Study 2 included a total of 91 participants (age range = 8-13 years). Eighteen participants were identified with reading disorder by performance on the Woodcock-Johnson III Tests of Achievement. Participants completed six trials of five separate virtual Hebb-Williams maze configurations. A 2 × 5 × 6 mixed factorial ANCOVA (gender as covariate) indicated that individuals with reading impairment demonstrated impaired visuo-spatial performance on this task. Overall, results from this study suggest that we are able to translate behavioral deficits observed in genetic animal models of dyslexia to humans with reading impairment. Future studies will utilize the virtual environment to further explore the underlying basis for this impairment.
Collapse
Affiliation(s)
- Lisa A Gabel
- Department of Psychology, Lafayette College, Easton, PA, USA.
- Program in Neuroscience, Lafayette College, Easton, PA, USA.
| | | | | | - Jessica Cysner
- Program in Neuroscience, Lafayette College, Easton, PA, USA
| | | | | | - Evelyn Johnson
- Department of Special Education, Boise State University, Boise, ID, USA
| |
Collapse
|
35
|
Girard M, Bizet AA, Lachaux A, Gonzales E, Filhol E, Collardeau-Frachon S, Jeanpierre C, Henry C, Fabre M, Viremouneix L, Galmiche L, Debray D, Bole-Feysot C, Nitschke P, Pariente D, Guettier C, Lyonnet S, Heidet L, Bertholet A, Jacquemin E, Henrion-Caude A, Saunier S. DCDC2Mutations Cause Neonatal Sclerosing Cholangitis. Hum Mutat 2016; 37:1025-9. [DOI: 10.1002/humu.23031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Muriel Girard
- Hepatology Unit; Necker Hospital; Assistance Publique-Hopitaux de Paris; France
- Paris Descartes Sorbonne Paris Cité University; Imagine institute; Paris France
- Inserm UMR-1163; Laboratory of Embryology and Genetics of Human Malformations; Paris France
| | - Albane A. Bizet
- Paris Descartes Sorbonne Paris Cité University; Imagine institute; Paris France
- Inserm UMR-1163; Laboratory of Hereditary Kidney Diseases; Paris France
| | - Alain Lachaux
- Service d'Hépatologie; Gastroentérologie et Nutrition Pédiatriques; Hôpital Femme-Mère-Enfant; Hospices Civils de Lyon Bron France
- Université Claude Bernard Lyon 1; Lyon France
| | - Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation Unit; Reference Centre for Pediatric Liver Diseases, Bicêtre Hospital; Assistance Publique-Hôpitaux de Paris; France
- Université Paris-Sud 11; France
| | - Emilie Filhol
- Paris Descartes Sorbonne Paris Cité University; Imagine institute; Paris France
- Inserm UMR-1163; Laboratory of Hereditary Kidney Diseases; Paris France
| | - Sophie Collardeau-Frachon
- Université Claude Bernard Lyon 1; Lyon France
- Service de Pathologie; Groupement Hospitalier Est; Hospices Civils de Lyon; Bron France
| | - Cécile Jeanpierre
- Paris Descartes Sorbonne Paris Cité University; Imagine institute; Paris France
- Inserm UMR-1163; Laboratory of Hereditary Kidney Diseases; Paris France
| | - Charline Henry
- Paris Descartes Sorbonne Paris Cité University; Imagine institute; Paris France
- Inserm UMR-1163; Laboratory of Hereditary Kidney Diseases; Paris France
| | - Monique Fabre
- Pathology Department; Necker Hospital; Assistance Publique-Hôpitaux de Paris; France
| | - Loic Viremouneix
- Hospices Civils de Lyon; Département D'imagerie Digestive; Hôpital E. Herriot; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
| | - Louise Galmiche
- Pathology Department; Necker Hospital; Assistance Publique-Hôpitaux de Paris; France
| | - Dominique Debray
- Hepatology Unit; Necker Hospital; Assistance Publique-Hopitaux de Paris; France
| | | | | | - Danièle Pariente
- Department of Pediatric Radiology; Bicêtre Hospital; Le Kremlin-Bicêtre France
- Université Paris-Sud 11; France
| | - Catherine Guettier
- Service d'Anatomopathologie; AP-HP Hôpital Kremlin-Bicêtre; Paris France
- Université Paris-Sud 11; France
| | - Stanislas Lyonnet
- Paris Descartes Sorbonne Paris Cité University; Imagine institute; Paris France
- Inserm UMR-1163; Laboratory of Embryology and Genetics of Human Malformations; Paris France
| | - Laurence Heidet
- Paris Descartes Sorbonne Paris Cité University; Imagine institute; Paris France
- Inserm UMR-1163; Laboratory of Hereditary Kidney Diseases; Paris France
| | - Aurelia Bertholet
- Néphrogones; Centre de Référence des Maladies Rénales Rares; Hospices Civils de Lyon; Bron France
- Université Claude Bernard Lyon 1; Lyon France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit; Reference Centre for Pediatric Liver Diseases, Bicêtre Hospital; Assistance Publique-Hôpitaux de Paris; France
- Université Paris-Sud 11; France
| | | | - Sophie Saunier
- Paris Descartes Sorbonne Paris Cité University; Imagine institute; Paris France
- Inserm UMR-1163; Laboratory of Hereditary Kidney Diseases; Paris France
| |
Collapse
|
36
|
Paracchini S, Diaz R, Stein J. Advances in Dyslexia Genetics—New Insights Into the Role of Brain Asymmetries. ADVANCES IN GENETICS 2016; 96:53-97. [DOI: 10.1016/bs.adgen.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Powers NR, Eicher JD, Miller LL, Kong Y, Smith SD, Pennington BF, Willcutt EG, Olson RK, Ring SM, Gruen JR. The regulatory element READ1 epistatically influences reading and language, with both deleterious and protective alleles. J Med Genet 2015; 53:163-71. [PMID: 26660103 PMCID: PMC4789805 DOI: 10.1136/jmedgenet-2015-103418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/14/2015] [Indexed: 01/05/2023]
Abstract
Background Reading disability (RD) and language impairment (LI) are heritable learning disabilities that obstruct acquisition and use of written and spoken language, respectively. We previously reported that two risk haplotypes, each in strong linkage disequilibrium (LD) with an allele of READ1, a polymorphic compound short tandem repeat within intron 2 of risk gene DCDC2, are associated with RD and LI. Additionally, we showed a non-additive genetic interaction between READ1 and KIAHap, a previously reported risk haplotype in risk gene KIAA0319, and that READ1 binds the transcriptional regulator ETV6. Objective To examine the hypothesis that READ1 is a transcriptional regulator of KIAA0319. Methods We characterised associations between READ1 alleles and RD and LI in a large European cohort, and also assessed interactions between READ1 and KIAHap and their effect on performance on measures of reading, language and IQ. We also used family-based data to characterise the genetic interaction, and chromatin conformation capture (3C) to investigate the possibility of a physical interaction between READ1 and KIAHap. Results and conclusions READ1 and KIAHap show interdependence—READ1 risk alleles synergise with KIAHap, whereas READ1 protective alleles act epistatically to negate the effects of KIAHap. The family data suggest that these variants interact in trans genetically, while the 3C results show that a region of DCDC2 containing READ1 interacts physically with the region upstream of KIAA0319. These data support a model in which READ1 regulates KIAA0319 expression through KIAHap and in which the additive effects of READ1 and KIAHap alleles are responsible for the trans genetic interaction.
Collapse
Affiliation(s)
- Natalie R Powers
- Investigate Medicine, Yale University, New Haven, Connecticut, USA Department of Pediatrics, Yale University, New Haven, Connecticut, USA
| | - John D Eicher
- Investigate Medicine, Yale University, New Haven, Connecticut, USA
| | - Laura L Miller
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut, USA
| | - Shelley D Smith
- Departments of Pediatrics and Developmental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | - Erik G Willcutt
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA Departments of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Richard K Olson
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA Departments of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Susan M Ring
- School of Social and Community Medicine, University of Bristol, Bristol, UK MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Jeffrey R Gruen
- Investigate Medicine, Yale University, New Haven, Connecticut, USA Department of Pediatrics, Yale University, New Haven, Connecticut, USA Department of Investigative Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Abstract
Language is a defining characteristic of the human species, but its foundations remain mysterious. Heritable disorders offer a gateway into biological underpinnings, as illustrated by the discovery that FOXP2 disruptions cause a rare form of speech and language impairment. The genetic architecture underlying language-related disorders is complex, and although some progress has been made, it has proved challenging to pinpoint additional relevant genes with confidence. Next-generation sequencing and genome-wide association studies are revolutionizing understanding of the genetic bases of other neurodevelopmental disorders, like autism and schizophrenia, and providing fundamental insights into the molecular networks crucial for typical brain development. We discuss how a similar genomic perspective, brought to the investigation of language-related phenotypes, promises to yield equally informative discoveries. Moreover, we outline how follow-up studies of genetic findings using cellular systems and animal models can help to elucidate the biological mechanisms involved in the development of brain circuits supporting language.
Collapse
Affiliation(s)
- Sarah A Graham
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands;
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands; .,Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands;
| |
Collapse
|
39
|
Che A, Truong DT, Fitch RH, LoTurco JJ. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex. Cereb Cortex 2015; 26:3705-3718. [PMID: 26250775 DOI: 10.1093/cercor/bhv168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.
Collapse
Affiliation(s)
- Alicia Che
- Department of Physiology and Neurobiology.,Current address: Weill Cornell Medical College, Brain & Mind Research Institute, New York, NY 10021, USA
| | - Dongnhu T Truong
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.,Current address: Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | - R Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
40
|
Schueler M, Braun DA, Chandrasekar G, Gee HY, Klasson TD, Halbritter J, Bieder A, Porath JD, Airik R, Zhou W, LoTurco JJ, Che A, Otto EA, Böckenhauer D, Sebire NJ, Honzik T, Harris PC, Koon SJ, Gunay-Aygun M, Saunier S, Zerres K, Bruechle NO, Drenth JPH, Pelletier L, Tapia-Páez I, Lifton RP, Giles RH, Kere J, Hildebrandt F. DCDC2 mutations cause a renal-hepatic ciliopathy by disrupting Wnt signaling. Am J Hum Genet 2015; 96:81-92. [PMID: 25557784 DOI: 10.1016/j.ajhg.2014.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022] Open
Abstract
Nephronophthisis-related ciliopathies (NPHP-RC) are recessive diseases characterized by renal dysplasia or degeneration. We here identify mutations of DCDC2 as causing a renal-hepatic ciliopathy. DCDC2 localizes to the ciliary axoneme and to mitotic spindle fibers in a cell-cycle-dependent manner. Knockdown of Dcdc2 in IMCD3 cells disrupts ciliogenesis, which is rescued by wild-type (WT) human DCDC2, but not by constructs that reflect human mutations. We show that DCDC2 interacts with DVL and DCDC2 overexpression inhibits β-catenin-dependent Wnt signaling in an effect additive to Wnt inhibitors. Mutations detected in human NPHP-RC lack these effects. A Wnt inhibitor likewise restores ciliogenesis in 3D IMCD3 cultures, emphasizing the importance of Wnt signaling for renal tubulogenesis. Knockdown of dcdc2 in zebrafish recapitulates NPHP-RC phenotypes, including renal cysts and hydrocephalus, which is rescued by a Wnt inhibitor and by WT, but not by mutant, DCDC2. We thus demonstrate a central role of Wnt signaling in the pathogenesis of NPHP-RC, suggesting an avenue for potential treatment of NPHP-RC.
Collapse
Affiliation(s)
- Markus Schueler
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniela A Braun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gayathri Chandrasekar
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Heon Yung Gee
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy D Klasson
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Jan Halbritter
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Jonathan D Porath
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rannar Airik
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph J LoTurco
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Alicia Che
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Edgar A Otto
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Detlef Böckenhauer
- University College London, Institute of Child Health and Pediatric Nephrology, Great Ormond Street Hospital, London WC1N3JH, UK
| | - Neil J Sebire
- Department of Histopathology, Great Ormond Street Hospital, London WC1N3JH, UK
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah J Koon
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Meral Gunay-Aygun
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sophie Saunier
- Inserm U574 and Department of Genetics, Paris 5 University, Necker Hospital, 75015 Paris, France
| | - Klaus Zerres
- Institute of Human Genetics, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Nadina Ortiz Bruechle
- Institute of Human Genetics, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud UMC, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Isabel Tapia-Páez
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden; Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, 00014 Helsinki, Finland; Science for Life Laboratory, Karolinska Institutet, 171 21 Solna, Sweden.
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
41
|
Zhu X, Liu X, Wei F, Wang F, Merzenich MM, Schreiner CE, Sun X, Zhou X. Perceptual Training Restores Impaired Cortical Temporal Processing Due to Lead Exposure. ACTA ACUST UNITED AC 2014; 26:334-345. [PMID: 25405943 DOI: 10.1093/cercor/bhu258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Low-level lead exposure is a risk factor for cognitive and learning disabilities in children and has been specifically associated with deficits in auditory temporal processing that impair aural language and reading abilities. Here, we show that rats exposed to low levels of lead in early life display a significant behavioral impairment in an auditory temporal rate discrimination task. Lead exposure also results in a degradation of the neuronal repetition-rate following capacity and response synchronization in primary auditory cortex. A modified go/no-go repetition-rate discrimination task applied in adult animals for ∼50 days nearly restores to normal these lead-induced deficits in cortical temporal fidelity. Cortical expressions of parvalbumin, brain-derived neurotrophic factor, and NMDA receptor subunits NR2a and NR2b, which are down-regulated in lead-exposed animals, are also partially reversed with training. These studies in an animal model identify the primary auditory cortex as a novel target for low-level lead exposure and demonstrate that perceptual training can ameliorate lead-induced deficits in cortical discrimination between sound sequences.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Xia Liu
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Fanfan Wei
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Fang Wang
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Michael M Merzenich
- Coleman Memorial Laboratory, Keck Center for Integrative Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Christoph E Schreiner
- Coleman Memorial Laboratory, Keck Center for Integrative Neuroscience, University of California, San Francisco, CA 94143, USA
| | - Xinde Sun
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Xiaoming Zhou
- Key Laboratory of Brain Functional Genomics of Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai 200062, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|