1
|
Moreira X, Durán J, Rodríguez A, Cao A, Correia M, Serôdio J, Rodríguez-Echeverría S. Interactions between macro- and micro-climate: Effects on phenolic compound production in Nardus stricta at high elevations. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:417-425. [PMID: 39945121 DOI: 10.1111/plb.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 03/29/2025]
Abstract
Phenolic compounds are key to plant defence, offering protection as antioxidants, UV shields, and antimicrobials. Their production is largely shaped by environmental conditions. It is believed that plants at lower elevations increase phenolic content to counter herbivory, while those at higher elevations rely on phenolics to manage abiotic stresses, such as climate variability. Microhabitat warming also affects phenolic levels, but responses differ, depending on broader climatic contexts: plants in warmer, lower-elevation environments show limited adaptability, whereas high-elevation plants demonstrate greater plasticity. Despite the importance of these environmental interactions, many small-scale abiotic studies lack sufficient spatial replication across broader gradients like elevation or latitude, while large-scale studies frequently overlook microscale factors. This study investigated the effects of macroclimate factors and microhabitat warming on phenolic production in Nardus stricta across five semi-natural grassland sites (1546-1875 m a.s.l.) in Portugal's Serra da Estrela. Warming was simulated using open-top chambers over two growing seasons, after which leaf samples were analysed for phenolic compounds, and soil nutrients were measured. The N. stricta plants at the highest elevation site contained significantly higher leaf flavonoid concentrations. Microhabitat warming led to a significant decrease in flavonoid concentrations, but only at the highest elevation site. These effects occurred independently of soil nutrient levels, suggesting direct thermal effects or stress responses might be involved. Our findings highlight the complex interactions between macro- and microenvironmental factors in shaping plant chemistry, underscoring critical considerations for plant resilience in the face of climate change. This understanding is essential for developing strategies to support plant and ecosystem adaptation to changing climates.
Collapse
Affiliation(s)
- X Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - J Durán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - A Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - A Cao
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - M Correia
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - J Serôdio
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Rodríguez-Echeverría
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
López-Goldar X, Mollema A, Sivak-Schwennesen C, Havko N, Howe G, Agrawal AA, Wetzel WC. Heat waves induce milkweed resistance to a specialist herbivore via increased toxicity and reduced nutrient content. PLANT, CELL & ENVIRONMENT 2024; 47:4530-4542. [PMID: 39011992 DOI: 10.1111/pce.15040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/08/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
Over the last decade, a large effort has been made to understand how extreme climate events disrupt species interactions. Yet, it is unclear how these events affect plants and herbivores directly, via metabolic changes, and indirectly, via their subsequent altered interaction. We exposed common milkweed (Asclepias syriaca) and monarch caterpillars (Danaus plexippus) to control (26:14°C, day:night) or heat wave (HW) conditions (36:24°C, day:night) for 4 days and then moved each organism to a new control or HW partner to disentangle the direct and indirect effects of heat exposure on each organism. We found that the HW directly benefited plants in terms of growth and defence expression (increased latex exudation and total cardenolides) and insect her'bivores through faster larval development. Conversely, indirect HW effects caused both plant latex and total cardenolides to decrease after subsequent herbivory. Nonetheless, increasing trends of more toxic cardenolides and lower leaf nutritional quality after herbivory by HW caterpillars likely led to reduced plant damage compared to controls. Our findings reveal that indirect impacts of HWs may play a greater role in shaping plant-herbivore interactions via changes in key physiological traits, providing valuable understanding of how ecological interactions may proceed in a changing world.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Alyssa Mollema
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | | | - Nathan Havko
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Gregg Howe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - William C Wetzel
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Kozlov MV, Zverev V. Effects of industrial pollution and ambient air temperature on larval performance and population dynamics of Eriocrania leafminers (Lepidoptera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174342. [PMID: 38960173 DOI: 10.1016/j.scitotenv.2024.174342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Pollution is an integral part of global environmental change, yet the combined and interactive effects of pollution and climate on terrestrial ecosystems remain inadequately understood. This study aims to explore whether pollution alters the impacts of ambient air temperature on the population dynamics of herbivorous insects. Between 1995 and 2005, we studied populations of two closely related moths, Eriocrania semipurpurella and E. sangii, at eight sites located 1 to 64 km from a large copper‑nickel smelter in Monchegorsk, Russia. We found that pollution and temperature influence the performance of Eriocrania larvae mining in the leaves of mountain birch, Betula pubescens var. pumila, through multiple pathways. This is evident from the unconsistent changes observed in larval and frass weight, mine area, and leaf size. We found increases in both leaf quality and larval weight with decreasing pollution levels at both spatial and temporal scales and attributed these to the impact of sulphur dioxide, rather than trace elements (nickel and copper). The quality of birch leaves increased with spring (May) temperatures, enabling Eriocrania larvae to achieve greater weight while consuming less biomass. During the larval growth period (early June to early July), Eriocrania larvae increased their consumption with rising temperatures, presumably to compensate for increased metabolic expenses. Contrary to our expectations, the per capita rate of population change did not correlate with larval weight and did not vary along the pollution gradient. Nevertheless, we detected interactive effects of pollution and climate on the rate of population change. This rate decreased with rising winter temperatures in slightly polluted and unpolluted sites but remained unchanged in heavily polluted sites. We conclude that pollution disrupts mechanisms regulating the natural population dynamics of Eriocrania moths.
Collapse
Affiliation(s)
- Mikhail V Kozlov
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Vitali Zverev
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
4
|
Eisenring M, Gessler A, Frei ER, Glauser G, Kammerer B, Moor M, Perret-Gentil A, Wohlgemuth T, Gossner MM. Legacy effects of premature defoliation in response to an extreme drought event modulate phytochemical profiles with subtle consequences for leaf herbivory in European beech. THE NEW PHYTOLOGIST 2024; 242:2495-2509. [PMID: 38641748 DOI: 10.1111/nph.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.
Collapse
Affiliation(s)
- Michael Eisenring
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos, 7260, Switzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, 7260, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg, 79014, Germany
| | - Maurice Moor
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anouchka Perret-Gentil
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
5
|
Zhou XH, Li JJ, Peng PH, He WM. Climate warming impacts chewing Spodoptera litura negatively but sucking Corythucha marmorata positively on native Solidago canadensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171504. [PMID: 38460690 DOI: 10.1016/j.scitotenv.2024.171504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Insect-plant interactions are among importantly ecological processes, and rapid environmental changes such as temperature and resource fluctuations can disrupt long-standing insect-plant interactions. While individual impacts of climate warming, atmospheric nitrogen (N) deposition, and plant provenance on insect-plant interactions are well studied, their joint effects on insect-plant interactions are less explored in ecologically realistic settings. To this end, we performed five experiments with native and invasive Solidago canadensis populations from home and introduced ranges and two insect herbivores (leaf-chewing Spodoptera litura and sap-sucking Corythucha marmorata) in the context of climate warming and N deposition. We determined leaf defensive traits, feeding preference, and insect growth and development, and quantified the possible associations among climate change, host-plant traits, and insect performance with structural equation modeling. First, native S. canadensis populations experienced higher damage by S. litura but lower damage by C. marmorata than invasive S. canadensis populations in the ambient environment. Second, warming decreased the leaf consumption, growth, and survival of S. litura on native S. canadensis populations, but did not affect these traits on invasive S. canadensis populations; warming increased the number of C. marmorata on native S. canadensis populations via direct facilitation, but decreased that on invasive S. canadensis populations via indirect suppression. Third, N addition enhanced the survival of S. litura on native S. canadensis populations, and its feeding preference and leaf consumption on invasive S. canadensis populations. Finally, warming plus N addition exhibited non-additive effects on insect-plant interactions. Based on these results, we tentatively conclude that climate warming could have contrasting effects on insect-plant interactions depending on host-plant provenance and that the effects of atmospheric N deposition on insects might be relatively weak compared to climate warming. Future studies should focus on the molecular mechanisms underlying these different patterns.
Collapse
Affiliation(s)
- Xiao-Hui Zhou
- College of Forestry, Hebei Agricultural University, Baoding, China; Institute of Botany, Chinese Academy of Sciences, Beijing, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Jing-Ji Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Pei-Hao Peng
- Institute of Ecological Resources and Landscape Architecture, Chengdu University of Technology, Chengdu, China
| | - Wei-Ming He
- College of Forestry, Hebei Agricultural University, Baoding, China; Institute of Botany, Chinese Academy of Sciences, Beijing, China; Hebei Urban Forest Health Technology Innovation Center, Baoding, China.
| |
Collapse
|
6
|
Rubert-Nason KF, Yang P, Morrow CJ, Lindroth RL. Environment and Genotype Influence Quantitative and Qualitative Variation in Condensed Tannins in Aspen. J Chem Ecol 2023; 49:325-339. [PMID: 37183205 DOI: 10.1007/s10886-023-01430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Condensed tannins (CTs) are abundant, ecologically-relevant secondary metabolites in many plants, which respond to variables associated with anthropogenic environmental change. While many studies have reported how genetic and environmental factors affect CT concentrations, few have explored how they influence CT molecular structure. Here, using trembling aspen (Populus tremuloides) as a model organism, we report how foliar CT concentrations, polymer sizes, representation of procyanidins and prodelphinidins, and stereochemistry vary in response to changes in air temperature (warming and freeze damage), air composition (elevated CO2 and O3), soil quality (nutrients and microbiome), and herbivory (mammal and lepidopteran). Use of multiple aspen genotypes enabled assessment of genetic influences on aspen CTs. CT concentration and composition were analyzed by thiolysis-ultra high performance liquid chromatography/mass spectrometry in archived leaf samples from prior experiments. All environmental variables explored except for soil microbiome influenced both CT quantity and quality, with climate factors appearing to have larger effect magnitudes than herbivory. Climate, soil, and herbivory effects varied among genotypes, while air composition effects were consistent across genotypes. Considering that CT properties (concentrations and molecular structures) mediate functions at the organismal through ecosystem scales, intraspecific variation in responses of CT properties to environmental factors could provide a pathway through which environmental change exerts selective pressure on Populus populations. Future studies are needed to identify the molecular-level mechanisms by which environmental factors influence CT concentrations and structures, and to establish their ecological and evolutionary significance.
Collapse
Affiliation(s)
- Kennedy F Rubert-Nason
- Dept. of Entomology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI, 53706, USA.
- Division of Natural Sciences, University of Maine - Fort Kent, 23 University Drive, Fort Kent, ME, 04743, USA.
| | - Phia Yang
- Dept. of Zoology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| | - Clay J Morrow
- Dept. of Entomology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Dept. of Entomology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Hillabrand RM, Gordon H, Hynes B, Constabel CP, Landhäusser SM. Populus root salicinoid phenolic glycosides are not mobilized to support metabolism and regrowth under carbon limited conditions. TREE PHYSIOLOGY 2023:tpad020. [PMID: 36809479 DOI: 10.1093/treephys/tpad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Remobilization of carbon storage compounds in trees is crucial for the resilience to disturbances, stress, and the requirements of their perennial lifestyle, all of which can impact photosynthetic carbon gain. Trees contain abundant non-structural carbohydrates (NSC) in the form of starch and sugars for long term carbon storage, yet questions remain about the ability of trees to remobilize non-conventional carbon compounds under stress. Aspens, like other members of the genus Populus, have abundant specialized metabolites called salicinoid phenolic glycosides, which contain a core glucose moiety. In this study, we hypothesized that the glucose-containing salicinoids could be remobilized as an additional carbon source during severe carbon limitation. We made use of genetically modified hybrid aspen (Populus tremula x P. alba) with minimal salicinoid content and compared these to control plants with high salicinoid content during resprouting (suckering) in dark (carbon limited) conditions. As salicinoids are abundant anti-herbivore compounds, identification of such a secondary function for salicinoids may provide insight to the evolutionary pressures that drive their accumulation. Our results show that salicinoid biosynthesis is maintained during carbon limitation and suggests that salicinoids are not remobilized as a carbon source for regenerating shoot tissue. However, we found that salicinoid-producing aspens had reduced resprouting capacity per available root biomass when compared to salicinoid-deficient aspens. Therefore, our work shows that the constitutive salicinoid production in aspens can reduce the capacity for resprouting and survival in carbon limited conditions.
Collapse
Affiliation(s)
- R M Hillabrand
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| | - H Gordon
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, British Columbia, Canada
| | - B Hynes
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| | - C P Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, British Columbia, Canada
| | - S M Landhäusser
- Department of Renewable Resources, University of Alberta, 442 ESB, Edmonton, Alberta, T6G 2E3, Canada
| |
Collapse
|
8
|
Al.Jubouri RAA. Seasonal abundance and population density of Chaitophorus populialbae on euphratica poplar trees in Iraq. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021 2023. [DOI: 10.1063/5.0114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Tian Z, Ma C, Zhao C, Zhang Y, Gao X, Tian Z, Chen H, Guo J, Zhou Z. Heat wave event facilitates defensive responses in invasive C3 plant Ambrosia artemisiifolia L. under elevated CO 2 concentration to the detriment of Ophraella communa. FRONTIERS IN PLANT SCIENCE 2022; 13:907764. [PMID: 35968104 PMCID: PMC9363847 DOI: 10.3389/fpls.2022.907764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
To predict and mitigate the effects of climate change on communities and ecosystems, the joint effects of extreme climatic events on species interactions need to be understood. Using the common ragweed (Ambrosia artemisiifolia L.)-leaf beetle (Ophraella communa) system, we investigated the effects of heat wave and elevated CO2 on common ragweed growth, secondary metabolism, and the consequent impacts on the beetle. The results showed that elevated CO2 and heat wave facilitated A. artemisiifolia growth; further, A. artemisiifolia accumulated large amounts of defensive secondary metabolites. Being fed on A. artemisiifolia grown under elevated CO2 and heat wave conditions resulted in the poor performance of O. communa (high mortality, long development period, and low reproduction). Overall, under elevated CO2, heat wave improved the defensive ability of A. artemisiifolia against herbivores. On the other hand, enhanced adaptability to climatic changes may aggravate invasive plant distribution, posing a challenge to the control of invasive plants in the future.
Collapse
Affiliation(s)
- Zhenya Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Chenchen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Xuyuan Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Zhenqi Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Hongsong Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
10
|
Kebert M, Vuksanović V, Stefels J, Bojović M, Horák R, Kostić S, Kovačević B, Orlović S, Neri L, Magli M, Rapparini F. Species-Level Differences in Osmoprotectants and Antioxidants Contribute to Stress Tolerance of Quercus robur L., and Q. cerris L. Seedlings under Water Deficit and High Temperatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131744. [PMID: 35807695 PMCID: PMC9269681 DOI: 10.3390/plants11131744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 05/13/2023]
Abstract
The general aim of this work was to compare the leaf-level responses of different protective components to water deficit and high temperatures in Quercus cerris L. and Quercus robur L. Several biochemical components of the osmotic adjustment and antioxidant system were investigated together with changes in hormones. Q. cerris and Q. robur seedlings responded to water deficit and high temperatures by: (1) activating a different pattern of osmoregulation and antioxidant mechanisms depending on the species and on the nature of the stress; (2) upregulating the synthesis of a newly-explored osmoprotectant, dimethylsulphoniopropionate (DMSP); (3) trading-off between metabolites; and (4) modulating hormone levels. Under water deficit, Q. cerris had a higher antioxidant capacity compared to Q. robur, which showed a lower investment in the antioxidant system. In both species, exposure to high temperatures induced a strong osmoregulation capacity that appeared largely conferred by DMSP in Q. cerris and by glycine betaine in Q. robur. Collectively, the more stress-responsive compounds in each species were those present at a significant basal level in non-stress conditions. Our results were discussed in terms of pre-adaptation and stress-induced metabolic patterns as related to species-specific stress tolerance features.
Collapse
Affiliation(s)
- Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.); (B.K.); (S.O.)
| | - Vanja Vuksanović
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Jacqueline Stefels
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, The Netherlands;
| | - Mirjana Bojović
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia;
| | - Rita Horák
- Teacher Training Faculty in the Hungarian Language, University of Novi Sad, Subotica, Štrosmajerova 11, 24000 Subotica, Serbia;
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.); (B.K.); (S.O.)
| | - Branislav Kovačević
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.); (B.K.); (S.O.)
| | - Saša Orlović
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia; (M.K.); (S.K.); (B.K.); (S.O.)
| | - Luisa Neri
- Institute of BioEconomy (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; (L.N.); (M.M.)
| | - Massimiliano Magli
- Institute of BioEconomy (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; (L.N.); (M.M.)
| | - Francesca Rapparini
- Institute of BioEconomy (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy; (L.N.); (M.M.)
- Correspondence:
| |
Collapse
|
11
|
Jung S, Zhao F, Menzel A. Establishing the twig method for investigations on pollen characteristics of allergenic tree species. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1983-1993. [PMID: 34043087 PMCID: PMC8536639 DOI: 10.1007/s00484-021-02154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The twig method in climate chambers has been shown to successfully work as a proxy for outdoor manipulations in various experimental setups. This study was conducted to further establish this method for the investigation of allergenic pollen from tree species (hazel, alder, and birch). Direct comparison under outdoor conditions revealed that the cut twigs compared to donor trees were similar in the timing of flowering and the amount of pollen produced. Cut twigs were able to flower in climate chambers and produced a sufficient amount of pollen for subsequent laboratory analysis. The addition of different plant or tissue fertilizers in the irrigation of the twigs did not have any influence; rather, the regular exchange of water and the usage of fungicide were sufficient for reaching the stage of flowering. In the experimental setup, the twigs were cut in different intervals before the actual flowering and were put under warming conditions in the climate chamber. An impact of warming on the timing of flowering/pollen characteristics could be seen for the investigated species. Therefore, the twig method is well applicable for experimental settings in pollen research simulating, e.g., accelerated warming under climate change.
Collapse
Affiliation(s)
- Stephan Jung
- TUM School of Life Sciences, Department of Life Science Systems, Technical University of Munich, 85354, Freising, Germany.
| | - Feng Zhao
- Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), 85764, Oberschleißheim, Germany
| | - Annette Menzel
- TUM School of Life Sciences, Department of Life Science Systems, Technical University of Munich, 85354, Freising, Germany
- Institute of Advanced Study, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
12
|
Kharouba HM, Yang LH. Disentangling the direct, indirect, and combined effects of experimental warming on a plant–insect herbivore interaction. Ecosphere 2021. [DOI: 10.1002/ecs2.3778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Heather M. Kharouba
- Center for Population Biology University of California Davis California 95616 USA
- Department of Biology University of Ottawa Ottawa Ontario K1N 9B4 Canada
| | - Louie H. Yang
- Department of Entomology and Nematology University of California Davis California 95616 USA
| |
Collapse
|
13
|
Norisada M, Izuta T, Watanabe M. Distributions of photosynthetic traits, shoot growth, and anti-herbivory defence within a canopy of Quercus serrata in different soil nutrient conditions. Sci Rep 2021; 11:14485. [PMID: 34262110 PMCID: PMC8280270 DOI: 10.1038/s41598-021-93910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
The hypothesis of the present study is that not only distributions of leaf photosynthetic traits and shoot growth along light gradient within a canopy of forest trees, but also that of leaf anti-herbivory defence capacities are influenced by soil nutrient condition. To test this hypothesis, we investigated the distributions of photosynthetic traits, shoot growth, anti-herbivory defence and leaf herbivory rate throughout the canopy of Quercus serrata grown in two sites with different soil nutrient conditions. In both sites, photosynthetic traits, shoot growth, and anti-herbivory defence were greater in the upper canopy. The overall defence and herbivory rate in the lower nutrient condition were higher and lower than those in the higher nutrient condition, respectively. Although differences in leaf traits between upper and lower canopies in the higher nutrient condition were smaller than those in the lower nutrient condition, no difference was found for anti-herbivory defence. These results suggest that soil nutrient condition does not affect the distributions of leaf anti herbivory defence along light gradient within a canopy of Q. serrata.
Collapse
Affiliation(s)
- Masanari Norisada
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Takeshi Izuta
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Makoto Watanabe
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
14
|
Ogran A, Wasserstrom H, Barzilai M, Faraj T, Dai N, Carmi N, Barazani O. Water Deficiency and Induced Defense Against a Generalist Insect Herbivore in Desert and Mediterranean Populations of Eruca sativa. J Chem Ecol 2021; 47:768-776. [PMID: 34185213 DOI: 10.1007/s10886-021-01292-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
In natural and agricultural ecosystems, plants are often simultaneously or sequentially exposed to combinations of stressors. Here we tested whether limited water availability (LWA) affects plant response to insect herbivory using two populations of Eruca sativa from desert and Mediterranean habitats that differ in their induced defenses. Considering that such differences evolved as responses to biotic and possibly abiotic stress factors, the two populations offered an opportunity to study ecological aspects in plant response to combined stresses. Analysis of chemical defense mechanisms showed that LWA significantly induced total glucosinolate concentrations in the Mediterranean plants, but their concentrations were reduced in the desert plants. However, LWA, with and without subsequent jasmonate elicitation, significantly induced the expression of proteinase inhibitor in the desert plants. Results of a no-choice feeding experiment showed that LWA significantly increased desert plant resistance to Spodoptera littoralis larvae, whereas it did not affect the relatively strong basal resistance of the Mediterranean plants. LWA and subsequent jasmonate elicitation increased resistance against the generalist insect in Mediterranean plants, possibly due to both increased proteinase inhibitor expression and glucosinolate accumulation. The effect of LWA on the expression of genes involved in phytohormone signaling, abscisic acid (ABA-1) and jasmonic acid (AOC1), and the jasmonate responsive PDF1.2, suggested the involvement of abscisic acid in the regulation of defense mechanisms in the two populations. Our results indicate that specific genotypic responses should be considered when estimating general patterns in plant response to herbivory under water deficiency conditions.
Collapse
Affiliation(s)
- Ariel Ogran
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Haggai Wasserstrom
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Michal Barzilai
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Tomer Faraj
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Nir Dai
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Oz Barazani
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
| |
Collapse
|
15
|
Root Secondary Metabolites in Populus tremuloides: Effects of Simulated Climate Warming, Defoliation, and Genotype. J Chem Ecol 2021; 47:313-321. [PMID: 33683546 DOI: 10.1007/s10886-021-01259-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/07/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Climate warming can influence interactions between plants and associated organisms by altering levels of plant secondary metabolites. In contrast to studies of elevated temperature on aboveground phytochemistry, the consequences of warming on root chemistry have received little attention. Herein, we investigated the effects of elevated temperature, defoliation, and genotype on root biomass and phenolic compounds in trembling aspen (Populus tremuloides). We grew saplings of three aspen genotypes under ambient or elevated temperatures (+4-6 °C), and defoliated (by 75%) half of the trees in each treatment. After 4 months, we harvested roots and determined their condensed tannin and salicinoid (phenolic glycoside) concentrations. Defoliation reduced root biomass, with a slightly larger impact under elevated, relative to ambient, temperature. Elevated temperature decreased condensed tannin concentrations by 21-43% across the various treatment combinations. Warming alone did not alter salicinoid concentrations but eliminated a small negative impact of defoliation on those compounds. Graphical vector analysis suggests that effects of warming and defoliation on condensed tannins and salicinoids were predominantly due to reduced biosynthesis of these metabolites in roots, rather than to changes in root biomass. In general, genotypes did not differ in their responses to temperature or temperature by defoliation interactions. Collectively, our results suggest that future climate warming will alter root phytochemistry, and that effects will vary among different classes of secondary metabolites and be influenced by concurrent ecological interactions such as herbivory. Temperature- and herbivory-mediated changes in root chemistry have the potential to influence belowground trophic interactions and soil nutrient dynamics.
Collapse
|
16
|
Eisenring M, Unsicker SB, Lindroth RL. Spatial, genetic and biotic factors shape within‐crown leaf trait variation and herbivore performance in a foundation tree species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Eisenring
- Department of Entomology University of Wisconsin‐Madison Madison WI USA
- Forest Entomology Swiss Federal Research Institute WSL Birmensdorf Switzerland
| | - Sybille B. Unsicker
- Department of BiochemistryMax Planck Institute for Chemical Ecology Jena Germany
| | | |
Collapse
|
17
|
Li T, Tiiva P, Rinnan Å, Julkunen-Tiitto R, Michelsen A, Rinnan R. Long-term effects of elevated CO2, nighttime warming and drought on plant secondary metabolites in a temperate heath ecosystem. ANNALS OF BOTANY 2020; 125:1065-1075. [PMID: 32157285 PMCID: PMC7262464 DOI: 10.1093/aob/mcaa037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/06/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS Plant secondary metabolites play critical roles in plant stress tolerance and adaptation, and are known to be influenced by the environment and climate changes, yet the impacts and interactions of multiple climate change components are poorly understood, particularly under natural conditions. METHODS Accumulation of phenolics and emissions of volatile organic compounds (VOCs) were assessed on heather, Calluna vulgaris, an abundant evergreen dwarf shrub in European heathlands, after 6 years of exposure to elevated CO2, summer drought and nighttime warming. KEY RESULTS Drought alone had the strongest effects on phenolic concentrations and compositions, with moderate effects of elevated CO2 and temperature. Elevated CO2 exerted the greatest impact on VOC emissions, mainly by increasing monoterpene emissions. The response magnitudes varied among plant tissue types and chemical constituents, and across time. With respect to interactive effects of the studied climate change components, the interaction between drought and elevated CO2 was most apparent. Drought mainly reduced phenolic accumulation and VOC emissions, while elevated CO2 mitigated such effects. CONCLUSIONS In natural ecosystems, co-occurring climate factors can exert complex impacts on plant secondary metabolite profiles, which may in turn alter ecosystem processes.
Collapse
Affiliation(s)
- Tao Li
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, Denmark
| | - Päivi Tiiva
- Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio Campus, Kuopio, Finland
| | - Åsmund Rinnan
- Chemometrics and Analytical Technology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg C, Denmark
| | - Riitta Julkunen-Tiitto
- Department of Biological and Environmental Sciences, University of Eastern Finland, Joensuu Campus, Joensuu, Finland
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, Denmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen Ø, Denmark
| |
Collapse
|
18
|
Xie H, Shi J, Shi F, Xu H, He K, Wang Z. Aphid fecundity and defenses in wheat exposed to a combination of heat and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2713-2722. [PMID: 31943041 PMCID: PMC7210778 DOI: 10.1093/jxb/eraa017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 05/10/2023]
Abstract
Plants are routinely subjected simultaneously to different abiotic and biotic stresses, such as heat, drought, and insect infestation. Plant-insect interactions in such complex stress situations are poorly understood. We evaluated the performance of the grain aphid (Sitobion avenae) in wheat (Triticum aestivum L.) exposed to a combination of heat and drought stresses. We also performed assays of the relative water content, nutritional quality, and responses of phytohormone signaling pathways. Lower relative water content and accumulation of soluble sugars and amino acids were observed in plants exposed to combined heat and drought stress. These conditions increased abscisic acid levels in the absence of aphids, as well as leading to higher levels of jasmonate-dependent transcripts. The grain aphid infestation further increased abscisic acid levels and the abundance of jasmonic acid- and salicylic acid-dependent defenses under the combined stress conditions. Aphids reared on plants grown under drought stress alone showed lower net reproductive rates, intrinsic rates of increase, and finite rates of increase compared with aphids reared on plants in the absence of stress. The heat-treated plants also showed a decreased aphid net reproductive rate. These findings demonstrate that exposure to a combination of stresses enhances plant defense responses against aphids as well as altering nutritional quality.
Collapse
Affiliation(s)
- Haicui Xie
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Jianqin Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Fengyu Shi
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao City, Hebei Province, China
| | - Haiyun Xu
- College of Life Science, Hebei University, Baoding City, Hebei Province, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Accumulation of Urban Insect Pests in China: 50 Years’ Observations on Camphor Tree (Cinnamomum camphora). SUSTAINABILITY 2020. [DOI: 10.3390/su12041582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since China experienced a rapid and unprecedented process of urbanization and climate change from 1978 onwards, pest outbreaks were frequently reported on urban forests, which reflects a significant imbalance between natural regulation and human control. Based on information extracted from all journal articles and reports about insect pests on camphor tree (Cinnamomum camphora) in urban China, we characterized historical patterns and trends in pest outbreaks over large areas. Our results suggested that (1) most distribution areas of C. camphora in urban China had pest records (14 provinces) over the last 50 years, especially at the south-eastern coastal areas; (2) pests on camphor tree in urban China showed an accelerated growth since the 1990s; and (3) pests on camphor tree in urban China were characterized by native and leaf-feeding species. Urbanization seems to positively correlate with urban pest outbreaks. Changes of urban pest outbreaks could largely be described by synchronic changes of socio-economic indicators, of which CO2 emissions as metric tons per capita is the most significant predictor, followed by GDP and human population. Thus, managers and city planners should allocate resources to socio-economic-related pest outbreaks for a sustainable ecosystem.
Collapse
|
20
|
Van De Velde H, AbdElgawad H, Asard H, Beemster GTS, Selim S, Nijs I, Bonte D. Interspecific plant competition mediates the metabolic and ecological signature of a plant–herbivore interaction under warming and elevated CO
2. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helena Van De Velde
- Terrestrial Ecology Unit, Department of Biology Ghent University Ghent Belgium
- Department of Biology, Centre of Excellence Plants and Ecosystems University of Antwerp Wilrijk Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology University of Antwerp Antwerp Belgium
- Department of Botany and Microbiology, Faculty of Science Beni‐Suef University Beni‐Suef Egypt
| | - Han Asard
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology University of Antwerp Antwerp Belgium
| | - Gerrit T. S. Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology University of Antwerp Antwerp Belgium
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences Jouf University Sakaka Saudi Arabia
| | - Ivan Nijs
- Department of Biology, Centre of Excellence Plants and Ecosystems University of Antwerp Wilrijk Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology Ghent University Ghent Belgium
| |
Collapse
|
21
|
Carper AL, Enger M, Bowers MD. Host Plant Effects on Immune Response Across Development of a Specialist Caterpillar. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
22
|
Hunter MD, Kozlov MV. The relative strengths of rapid and delayed density dependence acting on a terrestrial herbivore change along a pollution gradient. J Anim Ecol 2018; 88:665-676. [PMID: 30471097 DOI: 10.1111/1365-2656.12930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022]
Abstract
Animal populations vary in response to a combination of density-dependent and density-independent forces, which interact to drive their population dynamics. Understanding how abiotic forces mediate the form and strength of density-dependent processes remains a central goal of ecology, and is of increasing urgency in a rapidly changing world. Here, we report for the first time that industrial pollution determines the relative strength of rapid and delayed density dependence operating on an animal population. We explored the impacts of pollution and climate on the population dynamics of an eruptive leafmining moth, Phyllonorycter strigulatella, around a coal-fired power plant near Apatity, north-western Russia. Populations were monitored at 14 sites over 26 years. The relative strengths of rapid and delayed density dependence varied with distance from the power plant. Specifically, the strength of rapid density dependence increased while the strength of delayed density dependence decreased with increasing distance from the pollution source. Paralleling the increasing strength of rapid density dependence, we observed declines in the densities of P. strigulatella, increases in predation pressure from birds and ants, and declines in an unknown source of mortality (perhaps plant antibiosis) with increasing distance from the power plant. In contrast to the associations with pollution, associations between climate change and leafminer population densities were negligible. Our results may help to explain the outbreaks of insect herbivores that are frequently observed in polluted environments. We show that they can result from the weakening of rapid (stabilizing) density dependence relative to the effects of destabilizing delayed density dependence. Moreover, our results may explain some of the variation reported in published studies of animal populations in polluted habitats. Variable results may emerge in part because of the location of the study sites on different parts of pollution gradients. Finally, in a rapidly changing world, effects of anthropogenic pollution may be as, or more, important than are effects of climate change on the future dynamics of animal populations.
Collapse
Affiliation(s)
- Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Mikhail V Kozlov
- Section of Ecology and Evolutionary Biology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Berini JL, Brockman SA, Hegeman AD, Reich PB, Muthukrishnan R, Montgomery RA, Forester JD. Combinations of Abiotic Factors Differentially Alter Production of Plant Secondary Metabolites in Five Woody Plant Species in the Boreal-Temperate Transition Zone. FRONTIERS IN PLANT SCIENCE 2018; 9:1257. [PMID: 30233611 PMCID: PMC6134262 DOI: 10.3389/fpls.2018.01257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/09/2018] [Indexed: 05/18/2023]
Affiliation(s)
- John L. Berini
- Conservation Biology Graduate Program, University of Minnesota, St. Paul, MN, United States
- Institute on the Environment, University of Minnesota, St. Paul, MN, United States
| | - Stephen A. Brockman
- Department of Horticultural Science, The Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, United States
| | - Adrian D. Hegeman
- Department of Horticultural Science, The Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, MN, United States
| | - Peter B. Reich
- Institute on the Environment, University of Minnesota, St. Paul, MN, United States
- Department of Forest Resources, University of Minnesota, St. Paul, MN, United States
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Ranjan Muthukrishnan
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, United States
| | - Rebecca A. Montgomery
- Institute on the Environment, University of Minnesota, St. Paul, MN, United States
- Department of Forest Resources, University of Minnesota, St. Paul, MN, United States
| | - James D. Forester
- Institute on the Environment, University of Minnesota, St. Paul, MN, United States
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
24
|
Lämke JS, Unsicker SB. Phytochemical variation in treetops: causes and consequences for tree-insect herbivore interactions. Oecologia 2018; 187:377-388. [PMID: 29473116 PMCID: PMC5997108 DOI: 10.1007/s00442-018-4087-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/06/2018] [Indexed: 11/27/2022]
Abstract
The interaction of plants and their herbivorous opponents has shaped the evolution of an intricate network of defences and counter-defences for millions of years. The result is an astounding diversity of phytochemicals and plant strategies to fight and survive. Trees are specifically challenged to resist the plethora of abiotic and biotic stresses due to their dimension and longevity. Here, we review the recent literature on the consequences of phytochemical variation in trees on insect-tree-herbivore interactions. We discuss the importance of genotypic and phenotypic variation in tree defence against insects and suggest some molecular mechanisms that might bring about phytochemical diversity in crowns of individual trees.
Collapse
Affiliation(s)
- Jörn S Lämke
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Sybille B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745, Jena, Germany.
| |
Collapse
|
25
|
Haber AI, Rivera Sustache J, Carr DE. A generalist and a specialist herbivore are differentially affected by inbreeding and trichomes in
Mimulus guttatus. Ecosphere 2018. [DOI: 10.1002/ecs2.2130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ariela I. Haber
- Department of Environmental Sciences University of Virginia Charlottesville Virginia 22904 USA
| | | | - David E. Carr
- Blandy Experimental Farm University of Virginia Boyce Virginia 22620 USA
| |
Collapse
|
26
|
Zhang P, Grutters BMC, van Leeuwen CHA, Xu J, Petruzzella A, van den Berg RF, Bakker ES. Effects of Rising Temperature on the Growth, Stoichiometry, and Palatability of Aquatic Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1947. [PMID: 30671079 PMCID: PMC6331454 DOI: 10.3389/fpls.2018.01947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/14/2018] [Indexed: 05/10/2023]
Abstract
Global warming is expected to strengthen herbivore-plant interactions leading to enhanced top-down control of plants. However, latitudinal gradients in plant quality as food for herbivores suggest lower palatability at higher temperatures, but the underlying mechanisms are still unclear. If plant palatability would decline with temperature rise, then this may question the expectation that warming leads to enhanced top-down control. Therefore, experiments that directly test plant palatability and the traits underlying palatability along a temperature gradient are needed. Here we experimentally tested the impact of temperature on aquatic plant growth, plant chemical traits (including stoichiometry) and plant palatability. We cultured three aquatic plant species at three temperatures (15, 20, and 25°C), measured growth parameters, determined chemical traits and performed feeding trial assays using the generalist consumer Lymnaea stagnalis (pond snail). We found that rising temperature significantly increased the growth of all three aquatic plants. Plant nitrogen (N) and phosphorus (P) content significantly decreased, and carbon (C):N and C:P stoichiometry increased as temperature increased, for both Potamogeton lucens and Vallisneria spiralis, but not for Elodea nuttallii. By performing the palatability test, we found that rising temperatures significantly decreased plant palatability in P. lucens, which could be explained by changes in the underlying chemical plant traits. In contrast, the palatability of E. nuttallii and V. spiralis was not affected by temperature. Overall, P. lucens and V. spiralis were always more palatable than E. nuttallii. We conclude that warming generally stimulates aquatic plant growth, whereas the effects on chemical plant traits and plant palatability are species-specific. These results suggest that the outcome of the impact of temperature rise on macrophyte stoichiometry and palatability from single-species studies may not be broadly applicable. In contrast, the plant species tested consistently differed in palatability, regardless of temperature, suggesting that palatability may be more strongly linked to species identity than to intraspecific variation in plant stoichiometry.
Collapse
Affiliation(s)
- Peiyu Zhang
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- *Correspondence: Peiyu Zhang
| | - Bart M. C. Grutters
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Casper H. A. van Leeuwen
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Antonella Petruzzella
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Reinier F. van den Berg
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Elisabeth S. Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
27
|
Jamieson MA, Burkle LA, Manson JS, Runyon JB, Trowbridge AM, Zientek J. Global change effects on plant-insect interactions: the role of phytochemistry. CURRENT OPINION IN INSECT SCIENCE 2017; 23:70-80. [PMID: 29129286 DOI: 10.1016/j.cois.2017.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 05/10/2023]
Abstract
Natural and managed ecosystems are undergoing rapid environmental change due to a growing human population and associated increases in industrial and agricultural activity. Global environmental change directly and indirectly impacts insect herbivores and pollinators. In this review, we highlight recent research examining how environmental change factors affect plant chemistry and, in turn, ecological interactions among plants, herbivores, and pollinators. Recent studies reveal the complex nature of understanding global change effects on plant secondary metabolites and plant-insect interactions. Nonetheless, these studies indicate that phytochemistry mediates insect responses to environmental change. Future research on the chemical ecology of plant-insect interactions will provide critical insight into the ecological effects of climate change and other anthropogenic disturbances. We recommend greater attention to investigations examining interactive effects of multiple environmental change factors in addition to chemically mediated plant-pollinator interactions, given limited research in these areas.
Collapse
Affiliation(s)
- Mary A Jamieson
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA
| | - Jessamyn S Manson
- Department of Biology, University of Virginia, Charlottesville, VA 22902, USA
| | - Justin B Runyon
- Rocky Mountain Research Station, USDA Forest Service, Bozeman, MT 59717, USA
| | - Amy M Trowbridge
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Joseph Zientek
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
28
|
Robinson A, Inouye DW, Ogilvie JE, Mooney EH. Multitrophic interactions mediate the effects of climate change on herbivore abundance. Oecologia 2017; 185:181-190. [DOI: 10.1007/s00442-017-3934-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/13/2017] [Indexed: 01/07/2023]
|
29
|
Fuentealba A, Pureswaran D, Bauce É, Despland E. How does synchrony with host plant affect the performance of an outbreaking insect defoliator? Oecologia 2017; 184:847-857. [DOI: 10.1007/s00442-017-3914-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/05/2017] [Indexed: 11/28/2022]
|
30
|
Abstract
Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.
Collapse
Affiliation(s)
- Judith H Myers
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada;
- Biodiversity Research Center, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Rana M Sarfraz
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada;
- Biodiversity Research Center, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
31
|
Li Y, Zhou G, Liu J. Different Growth and Physiological Responses of Six Subtropical Tree Species to Warming. FRONTIERS IN PLANT SCIENCE 2017; 8:1511. [PMID: 28912795 PMCID: PMC5583599 DOI: 10.3389/fpls.2017.01511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/16/2017] [Indexed: 05/13/2023]
Abstract
Quantifying changes in interspecific plant growth and physiology under climate warming will facilitate explanation of the shifts in community structure in subtropical forest. We evaluated the effects of 3 years climate warming (ca. 1°C, 2012-2015) on plant growth and physiological parameters of six subtropical tree species by translocating seedlings and soil from a higher to a lower elevation site. We found that an increase in soil/air temperature had divergent effects on six co-occurring species. Warming increased the biomass of Schima superba and Pinus massoniana, whereas it decreased their specific leaf area and intrinsic water use efficiency compared to other species. Warming decreased the foliar non-structural carbohydrates for all species. Our findings demonstrated that a warmer climate would have species-specific effects on the physiology and growth of subtropical trees, which may cause changes in the competitive balance and composition of these forests.
Collapse
Affiliation(s)
- Yiyong Li
- School of Forestry and Landscape Architecture, Anhui Agricultural UniversityHefei, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Guoyi Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- *Correspondence: Juxiu Liu,
| |
Collapse
|
32
|
Zvereva EL, Hunter MD, Zverev V, Kozlov MV. Factors affecting population dynamics of leaf beetles in a subarctic region: The interplay between climate warming and pollution decline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:1277-1288. [PMID: 27266523 DOI: 10.1016/j.scitotenv.2016.05.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
Understanding the mechanisms by which abiotic drivers, such as climate and pollution, influence population dynamics of animals is important for our ability to predict the population trajectories of individual species under different global change scenarios. We monitored four leaf beetle species (Coleoptera: Chrysomelidae) feeding on willows (Salix spp.) in 13 sites along a pollution gradient in subarctic forests of north-western Russia from 1993 to 2014. During a subset of years, we also measured the impacts of natural enemies and host plant quality on the performance of one of these species, Chrysomela lapponica. Spring and fall temperatures increased by 2.5-3°C during the 21-year observation period, while emissions of sulfur dioxide and heavy metals from the nickel-copper smelter at Monchegorsk decreased fivefold. However, contrary to predictions of increasing herbivory with climate warming, and in spite of discovered increase in host plant quality with increase in temperatures, none of the beetle species became more abundant during the past 20years. No directional trends were observed in densities of either Phratora vitellinae or Plagiodera versicolora, whereas densities of both C. lapponica and Gonioctena pallida showed a simultaneous rapid 20-fold decline in the early 2000s, remaining at very low levels thereafter. Time series analysis and model selection indicated that these abrupt population declines were associated with decreases in aerial emissions from the smelter. Observed declines in the population densities of C. lapponica can be explained by increases in mortality from natural enemies due to the combined action of climate warming and declining pollution. This pattern suggests that at least in some tri-trophic systems, top-down factors override bottom-up effects and govern the impacts of environmental changes on insect herbivores.
Collapse
Affiliation(s)
- Elena L Zvereva
- Section of Ecology, Department of Biology, University of Turku, Turku 20014, Finland.
| | - Mark D Hunter
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Vitali Zverev
- Section of Ecology, Department of Biology, University of Turku, Turku 20014, Finland
| | - Mikhail V Kozlov
- Section of Ecology, Department of Biology, University of Turku, Turku 20014, Finland
| |
Collapse
|
33
|
Abarca M, Lill JT. Warming affects hatching time and early season survival of eastern tent caterpillars. Oecologia 2015; 179:901-12. [DOI: 10.1007/s00442-015-3371-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
|