1
|
Kołodziejczyk J, Fijarczyk A, Porth I, Robakowski P, Vella N, Vella A, Kloch A, Biedrzycka A. Genomic investigations of successful invasions: the picture emerging from recent studies. Biol Rev Camb Philos Soc 2025; 100:1396-1418. [PMID: 39956989 PMCID: PMC12120398 DOI: 10.1111/brv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Invasion biology aims to identify traits and mechanisms that contribute to successful invasions, while also providing general insights into the mechanisms underlying population expansion and adaptation to rapid climate and habitat changes. Certain phenotypic attributes have been linked to successful invasions, and the role of genetics has been critical in understanding adaptation of invasive species. Nevertheless, a comprehensive summary evaluating the most common evolutionary mechanisms associated with successful invasions across species and environments is still lacking. Here we present a systematic review of studies since 2015 that have applied genomic tools to investigate mechanisms of successful invasions across different organisms. We examine demographic patterns such as changes in genomic diversity at the population level, the presence of genetic bottlenecks and gene flow in the invasive range. We review mechanisms of adaptation such as selection from standing genetic variation and de novo mutations, hybridisation and introgression, all of which can have an impact on invasion success. This comprehensive review of recent articles on the genomic diversity of invasive species led to the creation of a searchable database to provide researchers with an accessible resource. Analysis of this database allowed quantitative assessment of demographic and adaptive mechanisms acting in invasive species. A predominant role of admixture in increasing levels of genetic diversity enabling molecular adaptation in novel habitats is the most important finding of our study. The "genetic paradox" of invasive species was not validated in genomic data across species and ecosystems. Even though the presence of genetic drift and bottlenecks is commonly reported upon invasion, a large reduction in genomic diversity is rarely observed. Any decrease in genetic diversity is often relatively mild and almost always restored via gene flow between different invasive populations. The fact that loci under selection are frequently detected suggests that adaptation to novel habitats on a molecular level is not hindered. The above findings are confirmed herein for the first time in a semi-quantitative manner by molecular data. We also point to gaps and potential improvements in the design of studies of mechanisms driving rapid molecular adaptation in invasive populations. These include the scarcity of comprehensive studies that include sampling from multiple native and invasive populations, identification of invasion sources, longitudinal population sampling, and the integration of fitness measures into genomic analyses. We also note that the potential of whole genome studies is often not exploited fully in predicting invasive potential. Comparative genomic studies identifying genome features promoting invasions are underrepresented despite their potential for use as a tool in invasive species control.
Collapse
Affiliation(s)
- Joanna Kołodziejczyk
- Institute of Nature Conservation, Polish Academy of SciencesMickiewicza 33Kraków31‐120Poland
| | - Anna Fijarczyk
- Natural Resources Canada, Laurentian Forestry Centre1055 Rue du PepsQuébec CityQuebecG1V 4C7Canada
- Department of BiologyLaval University1045 Avenue de la MédecineQuébec CityQuebecG1V 0A6Canada
- Institute of Integrative Biology and SystemsLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
| | - Ilga Porth
- Institute of Integrative Biology and SystemsLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
- Department of Wood and Forest SciencesLaval University1030 Avenue de La MédecineQuébec CityQuebecG1V 0A6Canada
- Centre for Forest ResearchLaval University2405 Rue de La TerrasseQuébec CityQuebecG1V 0A6Canada
| | - Piotr Robakowski
- Faculty of Forestry and Wood TechnologyPoznań University of Life Sciences71E Wojska Polskiego StreetPoznańPL 60‐625Poland
| | - Noel Vella
- Conservation Biology Research Group, Department of BiologyUniversity of MaltaMsidaMSD2080Malta
| | - Adriana Vella
- Conservation Biology Research Group, Department of BiologyUniversity of MaltaMsidaMSD2080Malta
| | - Agnieszka Kloch
- Faculty of BiologyUniversity of WarsawMiecznikowa 1Warsaw02‐089Poland
| | - Aleksandra Biedrzycka
- Institute of Nature Conservation, Polish Academy of SciencesMickiewicza 33Kraków31‐120Poland
| |
Collapse
|
2
|
Responte MA, Wu CY, Elias NU, Brown RM, Dai CY, Su YC. Recent Range Expansion and Genomic Admixture in a Kleptoparasitic Spider, Argyrodes lanyuensis: A Case of Adaptive Introgression on Small, Isolated Islands of the Taiwan-Philippine Transition Zone? Mol Ecol 2025; 34:e17630. [PMID: 39688644 DOI: 10.1111/mec.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024]
Abstract
Adaptive introgression involves the acquisition of advantageous genetic variants through hybridisation, which are subsequently favoured by natural selection due to their association with beneficial traits. Here, we analysed speciation patterns of the kleptoparasitic spider, Argyrodes lanyuensis, through genomic analyses and tested for possible genetic evidence of adaptive introgression at the Taiwan-Philippines transition zone. Our study used highly polymorphic SNPs to demonstrate that speciation occurred when the Hualien (on Taiwan Island + Green Island) and Orchid Island + Philippine lineages separated during the early to mid-Pleistocene. The best colonisation model suggested by approximate Bayesian computation and random forests and biogeographical analyses supported an inference of a bottleneck during speciation, an interpretation reinforced by observation of lower FST values and reduced genetic diversity of the Orchid Island + Philippines lineage. We also found the highest support for the occurrence of introgression on the youngest island (Green Island) of the Taiwan-Philippines transition zone based on the ABBA-BABA test. Our study highlights the inference of two noteworthy species (Hualien + Green Island and Orchid Island + Philippines) based on our species delimitation tests, with gene flow between Green Island and Orchid Island that indicates introgression. The potential adaptive alleles in Green Island population, which are under balancing selection, provide initial evidence of possible rare case of adaptive introgression. This could represent an evolutionary response to a newly formed niche (or novel geographical context) lying between the tropical climate of the Philippines and the subtropical climate of Hualien, Taiwan.
Collapse
Affiliation(s)
- Mae A Responte
- Graduate Institute Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences and Environmental Studies, College of Science and Mathematics, University of the Philippines Mindanao, Davao City, Philippines
| | - Cheng-Yu Wu
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Noraya U Elias
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Mindanao State University-Malabang Community High School, Malabang, Lanao del Sur, Philippines
| | - Rafe M Brown
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| | - Chia-Yen Dai
- Graduate Institute Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yong-Chao Su
- Department of Biomedical Science and Environmental Biology, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Deschepper P, Vanbergen S, Virgilio M, Sciarretta A, Colacci M, Rodovitis VG, Jaques JA, Bjeliš M, Bourtzis K, Papadopoulos NT, De Meyer M. Global invasion history with climate-related allele frequency shifts in the invasive Mediterranean fruit fly (Diptera, Tephritidae: Ceratitis capitata). Sci Rep 2024; 14:25549. [PMID: 39461976 PMCID: PMC11513041 DOI: 10.1038/s41598-024-76390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The Mediterranean fruit fly (Ceratitis capitata) is a globally invasive species and an economically significant pest of fruit crops. Understanding the evolutionary history and local climatic adaptation of this species is crucial for developing effective pest management strategies. We conducted a comprehensive investigation using whole genome sequencing to explore (i) the invasion history of C. capitata with an emphasis on historical admixture and (ii) local climatic adaptation across African, European, Central, and South American populations of C. capitata. Our results suggest a stepwise colonization of C. capitata in Europe and Latin America in which Mediterranean and Central American populations share an ancestral lineage. Conversely, South American invasion history is more complex, and our results partly suggest an old secondary invasion into South America from Europe or a colonization of South America directly from Africa, followed by admixture with an European lineage. Throughout its invasive range, C. capitata is challenged with diverse climatic regimes. A genome wide association study identified a relationship between allele frequency changes and specific bioclimatic variables. Notably, we observed a significant allele frequency shift related to adaptation to cold stress (BIO6), highlighting the species' ability to rapidly adapt to seasonal variations in colder climates.
Collapse
Affiliation(s)
- Pablo Deschepper
- Royal Museum for Central Africa, Invertebrates Section, Tervuren, Belgium.
| | - Sam Vanbergen
- Royal Museum for Central Africa, Invertebrates Section, Tervuren, Belgium
| | | | - Andrea Sciarretta
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Marco Colacci
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Vasilis G Rodovitis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Josep A Jaques
- Universitat Jaume I, Campus del Riu Sec, Castelló de la Plana, Spain
| | - Mario Bjeliš
- Department of Marine Studies, University of Split, Split, Croatia
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Nikos T Papadopoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Marc De Meyer
- Royal Museum for Central Africa, Invertebrates Section, Tervuren, Belgium
| |
Collapse
|
4
|
Bach A, Lauterbach S, Astrin JJ, Thorns HJ, Bauer T. A master in disguise? The rediscovery of Misumena bicolor Simon, 1875 (Araneae: Thomisidae). Zootaxa 2024; 5529:175-185. [PMID: 39646845 DOI: 10.11646/zootaxa.5529.1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Indexed: 12/10/2024]
Abstract
Misumena bicolor Simon, 1875, an enigmatic species known only from the male holotype collected on Corsica (France), has remained elusive since its initial description. In this study, we report new occurrences of M. bicolor from Sardinia (Italy) and Bavaria (Germany) based on male material, considerably expanding its known distribution. Employing an integrative taxonomic approach encompassing both morphological and COI (barcode) analyses, we confirm M. bicolor as a valid species. As the male of M. bicolor apparently has a distinct coloration, we complement the known distributional data with possible sightings of photographic observations from various naturalist portals and hereby provide additional evidence for the establishment of the species on the French mainland and in Germany.
Collapse
Affiliation(s)
- Alexander Bach
- Institute for Environmental Research; RWTH Aachen University; Worringerweg 1; 52074 Aachen.
| | | | - Jonas J Astrin
- Leibniz Institute for the Analysis of Biodiversity Change (LIB); Adenauerallee 127; 53113 Bonn.
| | | | - Tobias Bauer
- Department of Zoology; State Museum of Natural History Karlsruhe; Erbprinzenstr. 13; 76133 Karlsruhe.
| |
Collapse
|
5
|
Brodersen KE, Hansen TH, Vo T, Toft S. Different interaction effects between two invasive harvestmen and a native relative in the laboratory. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Ginal P, Kruger N, Wagener C, Araspin L, Mokhatla M, Secondi J, Herrel A, Measey J, Rödder D. More time for aliens? Performance shifts lead to increased activity time budgets propelling invasion success. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02903-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the Grinnellian niche concept, the realized niche and potential distribution is characterized as an interplay among the fundamental niche, biotic interactions and geographic accessibility. Climate is one of the main drivers for this concept and is essential to predict a taxon’s distribution. Mechanistic approaches can be useful tools, which use fitness-related aspects like locomotor performance and critical thermal limits to predict the potential distribution of an organism. These mechanistic approaches allow the inclusion key ecological processes like local adaptation and can account for thermal performance traits of different life-history stages. The African Clawed Frog, Xenopus laevis, is a highly invasive species occurring on five continents. The French population is of special interest due to an ongoing expansion for 40 years and a broad base of knowledge. We hypothesize that (1) the French population exhibits increased activity time in the invasive European range that could be devoted to fitness-relevant activity and (2) tadpoles may have less activity time available than adult frogs from the same range. We investigate how thermal performance traits translate into activity time budgets and how local adaptation and differences in the thermal responses of life-history stages may boost the European Xenopus invasion. We use a mechanistic approach based on generalized additive mixed models, where thermal performance curves were used to predict the hours of activity and to compare the potential activity time budgets for two life-history stages of native and invasive populations. Our results show that adult French frogs have more activity time available in Europe compared to South African frogs, which might be an advantage in searching for prey or escaping from predators. However, French tadpoles do not have more activity time in Europe compared to the native South African populations suggesting that tadpoles do not suffer the same strong selective pressure as adult frogs.
Collapse
|
7
|
Rodrigues I, Ramos V, Benhadi-Marín J, Moreno A, Fereres A, Pereira JA, Baptista P. A novel molecular diagnostic method for the gut content analysis of Philaenus DNA. Sci Rep 2022; 12:492. [PMID: 35017549 PMCID: PMC8752687 DOI: 10.1038/s41598-021-04422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Philaenus spumarius is a vector of Xylella fastidiosa, one of the most dangerous plants pathogenic bacteria worldwide. There is currently no control measure against this pathogen. Thus, the development of vector control strategies, like generalist predators, such as spiders, could be essential to limit the spread of this vector-borne pathogen. In this study, a polymerase chain reaction (PCR)-based approach was developed to principally detect DNA of P. spumarius in the spider's gut. Accordingly, 20 primer pairs, targeting the mitochondrial cytochrome oxidase I (COI) and cytochrome b (cytB) genes, were tested for specificity, sensitivity, and efficiency in detecting P. spumarius DNA. Overall, two primer sets, targeting COI gene (COI_Ph71F/COI_Ph941R) and the cytB gene (cytB_Ph85F/cytB_Ph635R), showed the highest specificity and sensitivity, being able to amplify 870 pb and 550 bp fragments, respectively, with P. spumarius DNA concentrations 100-fold lower than that of the DNA of non-target species. Among these two primer sets, the cytB_Ph85F/cytB_Ph635R was able to detect P. spumarius in the spider Xysticus acerbus, reaching 50% detection success 82 h after feeding. The feasibility of this primer set to detect predation of P. spumarius by spiders was confirmed in the field, where 20% of the collected spiders presented positive amplifications.
Collapse
Affiliation(s)
- Isabel Rodrigues
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.,Departamento de Ingeniería Agrária, Universidad de Léon, Av. Portugal, n° 41, 24071, Léon, Spain
| | - Vítor Ramos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Jacinto Benhadi-Marín
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006, Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006, Madrid, Spain
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Paula Baptista
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
8
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Abstract
Predictions of future biological invasions often rely on the assumption that introduced species establish only under climatic conditions similar to those in their native range. To date, 135 studies have tested this assumption of 'niche conservatism', yielding contradictory results. Here we revisit this literature, consider the evidence for niche shifts, critically assess the methods used, and discuss the authors' interpretations of niche shifts. We find that the true frequency of niche shifts remains unknown because of diverging interpretations of similar metrics, conceptual issues biasing conclusions towards niche conservatism, and the use of climatic data that may not be biologically meaningful. We argue that these issues could be largely addressed by focussing on trends or relative degrees of niche change instead of dichotomous classifications (shift versus no shift), consistently and transparently including non-analogous climates, and conducting experimental studies on mismatches between macroclimates and microclimates experienced by the study organism. Furthermore, an observed niche shift may result either from species filling a greater part of their fundamental niche during the invasion (a 'realised niche shift') or from rapid evolution of traits adapting species to novel climates in the introduced range (a 'fundamental niche shift'). Currently, there is no conclusive evidence distinguishing between these potential mechanisms of niche shifts. We outline how these questions may be addressed by combining computational analyses and experimental evidence.
Collapse
Affiliation(s)
- Olivia K Bates
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, Lausanne 1015, Switzerland.
| | - Cleo Bertelsmeier
- Department of Ecology and Evolution, Biophore, UNIL-Sorge, University of Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
10
|
Chen Y, Hou G, Jing M, Teng H, Liu Q, Yang X, Wang Y, Qu J, Shi C, Lu L, Zhang J, Zhang Y. Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Mol Ecol 2021; 30:6596-6610. [PMID: 34564921 DOI: 10.1111/mec.16194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The Asian house rat (AHR), Rattus tanezumi, has recently invaded the northern half of China. The AHR is a highly adaptive rat species that has also successfully conquered the Qinghai-Tibet Plateau (QTP) and replaced the brown rat (BR), R. norvegicus, at the edge of the QTP. Here, we assembled a draft genome of the AHR and explored the mechanisms of its northward invasion and the genetic basis underlying plateau adaptation in this species. Population genomic analyses revealed that the northwardly invasive AHRs consisted of two independent and genetically distinct populations which might result from multiple independent primary invasion events. One invasive population exhibited reduced genetic diversity and distinct population structure compared with its source population, while the other displayed preserved genetic polymorphisms and little genetic differentiation from its source population. Genes involved in G-protein coupled receptors and carbohydrate metabolism may contribute to the local adaptation of northern AHRs. In particular, RTN4 was identified as a key gene for AHRs in the QTP that favours adaptation to high-altitude hypoxia. Coincidently, the physiological performance and transcriptome profiles of hypoxia-exposed rats both showed better hypoxia adaptation in AHRs than in BRs that failed to colonize the heart of the QTP, which may have facilitated the replacement of the BR population by the invading AHRs at the edge of the QTP. This study provides profound insights into the multiple origins of the northwardly invasive AHR and the great tolerance to hypoxia in this species.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guanmei Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Meidong Jing
- School of Life Sciences, Nantong University, Nantong, China
| | - Huajing Teng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Quansheng Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xingen Yang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Institute of Plant Protection, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yong Wang
- Dongting Lake Station for Wetland Ecosystem Research, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, China
| | - Chengmin Shi
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianxu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Schmidtberg H, von Reumont BM, Lemke S, Vilcinskas A, Lüddecke T. Morphological Analysis Reveals a Compartmentalized Duct in the Venom Apparatus of the Wasp Spider ( Argiope bruennichi). Toxins (Basel) 2021; 13:toxins13040270. [PMID: 33918654 PMCID: PMC8070055 DOI: 10.3390/toxins13040270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Spiders are one of the most successful groups of venomous animals, but surprisingly few species have been examined in sufficient detail to determine the structure of their venom systems. To learn more about the venom system of the family Araneidae (orb-weavers), we selected the wasp spider (Argiope bruennichi) and examined the general structure and morphology of the venom apparatus by light microscopy. This revealed morphological features broadly similar to those reported in the small number of other spiders subject to similar investigations. However, detailed evaluation of the venom duct revealed the presence of four structurally distinct compartments. We propose that these subunits facilitate the expression and secretion of venom components, as previously reported for similar substructures in pit vipers and cone snails.
Collapse
Affiliation(s)
- Henrike Schmidtberg
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany; (H.S.); (S.L.); (A.V.)
| | - Björn M. von Reumont
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany; (H.S.); (S.L.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence: (B.M.v.R.); (T.L.)
| | - Sarah Lemke
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany; (H.S.); (S.L.); (A.V.)
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany; (H.S.); (S.L.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany
- Correspondence: (B.M.v.R.); (T.L.)
| |
Collapse
|
12
|
Bucking the trend of pollinator decline: the population genetics of a range expanding bumblebee. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Abstract
Spiders (Araneae) make up a remarkably diverse lineage of predators that have successfully colonized most terrestrial ecosystems. All spiders produce silk, and many species use it to build capture webs with an extraordinary diversity of forms. Spider diversity is distributed in a highly uneven fashion across lineages. This strong imbalance in species richness has led to several causal hypotheses, such as codiversification with insects, key innovations in silk structure and web architecture, and loss of foraging webs. Recent advances in spider phylogenetics have allowed testing of some of these hypotheses, but results are often contradictory, highlighting the need to consider additional drivers of spider diversification. The spatial and historical patterns of diversity and diversification remain contentious. Comparative analyses of spider diversification will advance only if we continue to make progress with studies of species diversity, distribution, and phenotypic traits, together with finer-scale phylogenies and genomic data.
Collapse
Affiliation(s)
- Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, 5020 Bergen, Norway;
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA;
| |
Collapse
|
14
|
Sheffer MM, Hoppe A, Krehenwinkel H, Uhl G, Kuss AW, Jensen L, Jensen C, Gillespie RG, Hoff KJ, Prost S. Chromosome-level reference genome of the European wasp spider Argiope bruennichi: a resource for studies on range expansion and evolutionary adaptation. Gigascience 2021; 10:giaa148. [PMID: 33410470 PMCID: PMC7788392 DOI: 10.1093/gigascience/giaa148] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Argiope bruennichi, the European wasp spider, has been investigated intensively as a focal species for studies on sexual selection, chemical communication, and the dynamics of rapid range expansion at a behavioral and genetic level. However, the lack of a reference genome has limited insights into the genetic basis for these phenomena. Therefore, we assembled a high-quality chromosome-level reference genome of the European wasp spider as a tool for more in-depth future studies. FINDINGS We generated, de novo, a 1.67 Gb genome assembly of A. bruennichi using 21.8× Pacific Biosciences sequencing, polished with 19.8× Illumina paired-end sequencing data, and proximity ligation (Hi-C)-based scaffolding. This resulted in an N50 scaffold size of 124 Mb and an N50 contig size of 288 kb. We found 98.4% of the genome to be contained in 13 scaffolds, fitting the expected number of chromosomes (n = 13). Analyses showed the presence of 91.1% of complete arthropod BUSCOs, indicating a high-quality assembly. CONCLUSIONS We present the first chromosome-level genome assembly in the order Araneae. With this genomic resource, we open the door for more precise and informative studies on evolution and adaptation not only in A. bruennichi but also in arachnids overall, shedding light on questions such as the genomic architecture of traits, whole-genome duplication, and the genomic mechanisms behind silk and venom evolution.
Collapse
Affiliation(s)
- Monica M Sheffer
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Anica Hoppe
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Henrik Krehenwinkel
- Department of Biogeography, University of Trier, Universitätsring 15, 54296 Trier, Germany
| | - Gabriele Uhl
- Zoological Institute and Museum, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Andreas W Kuss
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Lars Jensen
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Corinna Jensen
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Rosemary G Gillespie
- Department of Environmental Science Policy and Management, University of California Berkeley, 130 Mulford Hall #3114, Berkeley, CA, 94720, USA
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany
- Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorf-Str. 8, 17489 Greifswald, Germany
| | - Stefan Prost
- LOEWE-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- South African National Biodiversity Institute, National Zoological Gardens of South Africa, 232 Boom St., Pretoria 0001, South Africa
| |
Collapse
|
15
|
Bujan J, Charavel E, Bates OK, Gippet JMW, Darras H, Lebas C, Bertelsmeier C. Increased acclimation ability accompanies a thermal niche shift of a recent invasion. J Anim Ecol 2020; 90:483-491. [PMID: 33131068 DOI: 10.1111/1365-2656.13381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Globalization is removing dispersal barriers for the establishment of invasive species and enabling their spread to novel climates. New thermal environments in the invaded range will be particularly challenging for ectotherms, as their metabolism directly depends on environmental temperature. However, we know little about the role climatic niche shifts play in the invasion process, and the underlining physiological mechanisms. We tested if a thermal niche shift accompanies an invasion, and if native and introduced populations differ in their ability to acclimate thermal limits. We used an alien ant species-Tapinoma magnum-which recently started to spread across Europe. Using occurrence data and accompanying climatic variables, we measured the amount of overlap between thermal niches in the native and invaded range. We then experimentally tested the acclimation ability in native and introduced populations by incubating T. magnum at 18, 25 and 30°C. We measured upper and lower critical thermal limits after 7 and 21 days. We found that T. magnum occupies a distinct thermal niche in its introduced range, which is on average 3.5°C colder than its native range. Critical thermal minimum did not differ between populations from the two ranges when colonies were maintained at 25 or 30°C, but did differ after colony acclimation at a lower temperature. We found twofold greater acclimation ability of introduced populations to lower temperatures, after prolonged incubation at 18°C. Increased acclimation ability of lower thermal limits could explain the expansion of the realized thermal niche in the invaded range, and likely contributed to the spread of this species to cooler climates. Such thermal plasticity could be an important, yet so far understudied, factor underlying the expansion of invasive insects into novel climates.
Collapse
Affiliation(s)
- Jelena Bujan
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ellouène Charavel
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Olivia K Bates
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Jérôme M W Gippet
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Hugo Darras
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Claude Lebas
- Antarea (www.antarea.fr), Association pour l'étude et la cartographie des fourmis de France métropolitaine, Canohès, France
| | - Cleo Bertelsmeier
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Lüddecke T, von Reumont BM, Förster F, Billion A, Timm T, Lochnit G, Vilcinskas A, Lemke S. An Economic Dilemma Between Molecular Weapon Systems May Explain an Arachno-atypical Venom in Wasp Spiders ( Argiope bruennichi). Biomolecules 2020; 10:E978. [PMID: 32630016 PMCID: PMC7407881 DOI: 10.3390/biom10070978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Spiders use venom to subdue their prey, but little is known about the diversity of venoms in different spider families. Given the limited data available for orb-weaver spiders (Araneidae), we selected the wasp spider Argiope bruennichi for detailed analysis. Our strategy combined a transcriptomics pipeline based on multiple assemblies with a dual proteomics workflow involving parallel mass spectrometry techniques and electrophoretic profiling. We found that the remarkably simple venom of A. bruennichi has an atypical composition compared to other spider venoms, prominently featuring members of the cysteine-rich secretory protein, antigen 5 and pathogenesis-related protein 1 (CAP) superfamily and other, mostly high-molecular-weight proteins. We also detected a subset of potentially novel toxins similar to neuropeptides. We discuss the potential function of these proteins in the context of the unique hunting behavior of wasp spiders, which rely mostly on silk to trap their prey. We propose that the simplicity of the venom evolved to solve an economic dilemma between two competing yet metabolically expensive weapon systems. This study emphasizes the importance of cutting-edge methods to encompass the lineages of smaller venomous species that have yet to be characterized in detail, allowing us to understand the biology of their venom systems and to mine this prolific resource for translational research.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (A.B.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; (B.M.v.R.); (S.L.)
| | - Björn M. von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; (B.M.v.R.); (S.L.)
- Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Frank Förster
- Institute for Bioinformatics and Systems Biology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany;
| | - André Billion
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (A.B.); (A.V.)
| | - Thomas Timm
- Institute of Biochemistry, Justus-Liebig-University of Gießen, Friedrichstr. 24, 35392 Gießen, Germany; (T.T.); (G.L.)
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig-University of Gießen, Friedrichstr. 24, 35392 Gießen, Germany; (T.T.); (G.L.)
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (A.B.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; (B.M.v.R.); (S.L.)
- Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Sarah Lemke
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany; (B.M.v.R.); (S.L.)
- Institute for Insect Biotechnology, Justus-Liebig-University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
17
|
Blakeslee AMH, Manousaki T, Vasileiadou K, Tepolt CK. An evolutionary perspective on marine invasions. Evol Appl 2020; 13:479-485. [PMID: 32431730 PMCID: PMC7045714 DOI: 10.1111/eva.12906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/29/2022] Open
Abstract
Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non-human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species' potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post-invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.
Collapse
Affiliation(s)
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and AquacultureHellenic Centre for Marine ResearchThalassocosmosGreece
| | | | - Carolyn K. Tepolt
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMAUSA
| |
Collapse
|
18
|
Wolz M, Klockmann M, Schmitz T, Pekár S, Bonte D, Uhl G. Dispersal and life-history traits in a spider with rapid range expansion. MOVEMENT ECOLOGY 2020; 8:2. [PMID: 31921424 PMCID: PMC6947977 DOI: 10.1186/s40462-019-0182-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Dispersal and reproduction are key life-history traits that jointly determine species' potential to expand their distribution, for instance in light of ongoing climate change. These life-history traits are known to be under selection by changing local environmental conditions, but they may also evolve by spatial sorting. While local natural selection and spatial sorting are mainly studied in model organisms, we do not know the degree to which these processes are relevant in the wild, despite their importance to a comprehensive understanding of species' resistance and tolerance to climate change. METHODS The wasp spider Argiope bruennichi has undergone a natural range expansion - from the Mediterranean to Northern Europe during the recent decades. Using reciprocal common garden experiments in the laboratory, we studied differences in crucial traits between replicated core (Southern France) and edge (Baltic States) populations. We tested theoretical predictions of enhanced dispersal (ballooning behaviour) and reproductive performance (fecundity and winter survival) at the expansion front due to spatial sorting and local environmental conditions. RESULTS Dispersal rates were not consistently higher at the northern expansion front, but were impacted by the overwintering climatic conditions experienced, such that dispersal was higher when spiderlings had experienced winter conditions as occur in their region. Hatching success and winter survival were lower at the range border. In agreement with theoretical predictions, spiders from the northern leading edge invested more in reproduction for their given body size. CONCLUSIONS We found no evidence for spatial sorting leading to higher dispersal in northern range edge populations of A. bruennichi. However, reproductive investment and overwintering survival between core and edge populations differed. These life-history traits that directly affect species' expansion rates seem to have diverged during the recent range expansion of A. bruennichi. We discuss the observed changes with respect to the species' natural history and the ecological drivers associated with range expansion to northern latitudes.
Collapse
Affiliation(s)
- Marina Wolz
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Michael Klockmann
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | - Torben Schmitz
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| | | | | | - Gabriele Uhl
- Zoological Institute and Museum, General and Systematic Zoology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Sheffer MM, Uhl G, Prost S, Lueders T, Urich T, Bengtsson MM. Tissue- and Population-Level Microbiome Analysis of the Wasp Spider Argiope bruennichi Identified a Novel Dominant Bacterial Symbiont. Microorganisms 2019; 8:E8. [PMID: 31861544 PMCID: PMC7023434 DOI: 10.3390/microorganisms8010008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many ecological and evolutionary processes in animals depend upon microbial symbioses. In spiders, the role of the microbiome in these processes remains mostly unknown. We compared the microbiome between populations, individuals, and tissue types of a range-expanding spider, using 16S rRNA gene sequencing. Our study is one of the first to go beyond targeting known endosymbionts in spiders and characterizes the total microbiome across different body compartments (leg, prosoma, hemolymph, book lungs, ovaries, silk glands, midgut, and fecal pellets). Overall, the microbiome differed significantly between populations and individuals, but not between tissue types. The microbiome of the wasp spider Argiope bruennichi features a novel dominant bacterial symbiont, which is abundant in every tissue type in spiders from geographically distinct populations and that is also present in offspring. The novel symbiont is affiliated with the Tenericutes, but has low sequence identity (<85%) to all previously named taxa, suggesting that the novel symbiont represents a new bacterial clade. Its presence in offspring implies that it is vertically transmitted. Our results shed light on the processes that shape microbiome differentiation in this species and raise several questions about the implications of the novel dominant bacterial symbiont on the biology and evolution of its host.
Collapse
Affiliation(s)
- Monica M. Sheffer
- Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany;
| | - Gabriele Uhl
- Zoological Institute and Museum, University of Greifswald, 17489 Greifswald, Germany;
| | - Stefan Prost
- LOEWE-Center for Translational Biodiversity Genomics, Senckenberg Museum, 60325 Frankfurt, Germany;
- South African National Biodiversity Institute, National Zoological Gardens of South Africa, Pretoria 0001, South Africa
| | - Tillmann Lueders
- Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, 95448 Bayreuth, Germany;
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, 174897 Greifswald, Germany;
| | - Mia M. Bengtsson
- Institute of Microbiology, University of Greifswald, 174897 Greifswald, Germany;
| |
Collapse
|
20
|
Czypionka T, Fields PD, Routtu J, van den Berg E, Ebert D, De Meester L. The genetic architecture underlying diapause termination in a planktonic crustacean. Mol Ecol 2019; 28:998-1008. [PMID: 30592346 DOI: 10.1111/mec.15001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/15/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023]
Abstract
Diapause is a feature of the life cycle of many invertebrates by which unfavourable environmental conditions can be outlived. The seasonal timing of diapause allows organisms to adapt to seasonal changes in habitat suitability and thus is key to their fitness. In the planktonic crustacean Daphnia, various cues can induce the production of diapause stages that are resistant to heat, drought or freezing and contain one to two embryos in developmental arrest. Daphnia is a keystone species of many freshwater ecosystems, where it acts as the main link between phytoplankton and higher trophic levels. The correct seasonal timing of diapause termination is essential to maintain trophic interactions and is achieved via a genetically based interpretation of environmental cues like photoperiod and temperature. Field monitoring and modelling studies raised concerns on whether populations can advance their seasonal release from diapause to advances in spring phenology under global change, or if a failure to adapt will cause trophic mismatches negatively affecting ecosystem functioning. Our capacity to understand and predict the evolution of diapause timing requires information about the genetic architecture underlying this trait. In this study, we identified eight quantitative trait loci (QTLs) and four epistatic interactions that together explained 66.5% of the variation in diapause termination in Daphnia magna using QTL mapping. Our results suggest that the most significant QTL is modulating diapause termination dependent on photoperiod and is involved in three of the four detected epistatic interactions. Candidate genes at this QTL could be identified through the integration with genome data and included the presynaptic active zone protein bruchpilot. Our findings contribute to understanding the genomic control of seasonal diapause timing in an ecological relevant species.
Collapse
Affiliation(s)
- Till Czypionka
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Jarkko Routtu
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Molecular Ecology, Martin-Luther-Universität, Halle-Wittenberg, Germany
| | - Edwin van den Berg
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Luc De Meester
- Laboratory of Aquatic Ecology and Evolutionary Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Postiglioni R, Bidegaray-Batista L, Simó M, Arnedo MA. Move to stay: genetic structure and demographic history of a wolf spider inhabiting coastal sand dunes of southern South America. SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1689197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rodrigo Postiglioni
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, CP 11600, Uruguay
- Sección Entomología. Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, CP 11400, Uruguay
| | - Leticia Bidegaray-Batista
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, CP 11600, Uruguay
| | - Miguel Simó
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, CP 11600, Uruguay
- Sección Entomología. Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, CP 11400, Uruguay
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 643, Barcelona, CP 08028, Spain
| |
Collapse
|
22
|
Cornelissen B, Neumann P, Schweiger O. Global warming promotes biological invasion of a honey bee pest. GLOBAL CHANGE BIOLOGY 2019; 25:3642-3655. [PMID: 31394018 PMCID: PMC6856679 DOI: 10.1111/gcb.14791] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/19/2019] [Accepted: 07/29/2019] [Indexed: 05/19/2023]
Abstract
Climate change and biological invasions are two major global environmental challenges. Both may interact, e.g. via altered impact and distribution of invasive alien species. Even though invasive species play a key role for compromising the health of honey bees, the impact of climate change on the severity of such species is still unknown. The small hive beetle (SHB, Aethina tumida, Murray) is a parasite of honey bee colonies. It is endemic to sub-Saharan Africa and has established populations on all continents except Antarctica. Since SHBs pupate in soil, pupation performance is governed foremost by two abiotic factors, soil temperature and moisture, which will be affected by climate change. Here, we investigated SHB invasion risk globally under current and future climate scenarios. We modelled survival and development time during pupation (=pupal performance) in response to soil temperature and soil moisture using published and novel experimental data. Presence data on SHB distribution were used for model validation. We then linked the model with global soil data in order to classify areas (resolution: 10 arcmin; i.e. 18.6 km at the equator) as unsuitable, marginal and suitable for SHB pupation performance. Under the current climate, the results show that many areas globally yet uninvaded are actually suitable, suggesting considerable SHB invasion risk. Future scenarios of global warming project a vehement increase in climatic suitability for SHB and corresponding potential for invasion, especially in the temperate regions of the Northern hemisphere, thereby creating demand for enhanced and adapted mitigation and management. Our analysis shows, for the first time, effects of global warming on a honey bee pest and will help areas at risk to prepare adequately. In conclusion, this is a clear case for global warming promoting biological invasion of a pest species with severe potential to harm important pollinator species globally.
Collapse
Affiliation(s)
- Bram Cornelissen
- bees@wur, Wageningen Plant ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Oliver Schweiger
- Department of Community EcologyUFZ Helmholtz Centre for Environmental ResearchHalle (Saale)Germany
| |
Collapse
|
23
|
Adams RH, Schield DR, Castoe TA. Recent Advances in the Inference of Gene Flow from Population Genomic Data. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40610-019-00120-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Bauer T, Feldmeier S, Krehenwinkel H, Wieczorrek C, Reiser N, Breitling R. Steatoda nobilis, a false widow on the rise: a synthesis of past and current distribution trends. NEOBIOTA 2019. [DOI: 10.3897/neobiota.42.31582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Noble False Widow, Steatodanobilis (Thorell, 1875) (Araneae, Theridiidae), is, due to its relatively large size and potential medical importance, one of the most notable invasive spider species worldwide. Probably originating from the Canary Islands and Madeira, the species is well established in Western Europe and large parts of the Mediterranean area and has spread recently into California and South America, while Central European populations were not known until 2011.
We report on long-time observations that reveal that at least two flourishing populations in Germany (Cologne) have been present for over five years, while in Ecuador one population has been observed between 2014 and 2018 and several other records were made in other parts of the country. Data obtained from the British Spider Recording Scheme demonstrate that the species moved significantly northwards since the report of the first populations in the very South of England, after several decades of relative stasis. The sudden northward expansion highly correlates with a massive rise in press coverage of the species.
In the Americas, S.nobilis is currently known from four countries (USA, Chile, Ecuador, Colombia), and available DNA barcoding data obtained for specimens from this area suggest that multiple introductions occurred within each country. Using ecological niche modeling, we identified suitable climate regions for the species and discuss possible reasons for its current spread. We propose that seaside cities and villages with a temperate oceanic or Mediterranean climate are especially favourable potential habitats for S.nobilis and will face the highest colonization pressure in the future, while tropical upland regions with temperate climates are also vulnerable to invasion by S.nobilis.
Collapse
|
25
|
Andrade MC. Sexual selection and social context: Web-building spiders as emerging models for adaptive plasticity. ADVANCES IN THE STUDY OF BEHAVIOR 2019. [DOI: 10.1016/bs.asb.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Torres U, Godsoe W, Buckley HL, Parry M, Lustig A, Worner SP. Using niche conservatism information to prioritize hotspots of invasion by non-native freshwater invertebrates in New Zealand. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ursula Torres
- Bio-protection Research Centre; Lincoln University; Canterbury New Zealand
| | - William Godsoe
- Bio-protection Research Centre; Lincoln University; Canterbury New Zealand
| | | | - Matthew Parry
- Department of Mathematics & Statistics; University of Otago; Dunedin New Zealand
| | - Audrey Lustig
- Te Pūnaha Matatini and the Geospatial Research Institute; University of Canterbury; Christchurch New Zealand
| | - Susan P. Worner
- Bio-protection Research Centre; Lincoln University; Canterbury New Zealand
| |
Collapse
|
27
|
MEESTER LD, STOKS R, BRANS KI. Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integr Zool 2018; 13:372-391. [PMID: 29168625 PMCID: PMC6221008 DOI: 10.1111/1749-4877.12298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Climate change profoundly impacts ecosystems and their biota, resulting in range shifts, novel interactions, food web alterations, changed intensities of host-parasite interactions, and extinctions. An increasing number of studies have documented evolutionary changes in traits such as phenology and thermal tolerance. In this opinion paper, we argue that, while evolutionary responses have the potential to provide a buffer against extinctions or range shifts, a number of constraints and complexities blur this simple prediction. First, there are limits to evolutionary potential both in terms of genetic variation and demographic effects, and these limits differ strongly among taxa and populations. Second, there can be costs associated with genetic adaptation, such as a reduced evolutionary potential towards other (human-induced) environmental stressors or direct fitness costs due to tradeoffs. Third, the differential capacity of taxa to genetically respond to climate change results in novel interactions because different organism groups respond to a different degree with local compared to regional (dispersal and range shift) responses. These complexities result in additional changes in the selection pressures on populations. We conclude that evolution can provide an initial buffer against climate change for some taxa and populations but does not guarantee their survival. It does not necessarily result in reduced extinction risks across the range of taxa in a region or continent. Yet, considering evolution is crucial, as it is likely to strongly change how biota will respond to climate change and will impact which taxa will be the winners or losers at the local, metacommunity and regional scales.
Collapse
Affiliation(s)
- Luc De MEESTER
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| | - Robby STOKS
- Evolutionary Stress Ecology and EcotoxicologyLeuvenBelgium
| | - Kristien I. BRANS
- Laboratory of Aquatic Ecology, Evolution and ConservationLeuvenBelgium
| |
Collapse
|
28
|
Krehenwinkel H, Wolf M, Lim JY, Rominger AJ, Simison WB, Gillespie RG. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci Rep 2017; 7:17668. [PMID: 29247210 PMCID: PMC5732254 DOI: 10.1038/s41598-017-17333-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Amplicon based metabarcoding promises rapid and cost-efficient analyses of species composition. However, it is disputed whether abundance estimates can be derived from metabarcoding due to taxon specific PCR amplification biases. PCR-free approaches have been suggested to mitigate this problem, but come with considerable increases in workload and cost. Here, we analyze multilocus datasets of diverse arthropod communities, to evaluate whether amplification bias can be countered by (1) targeting loci with highly degenerate primers or conserved priming sites, (2) increasing PCR template concentration, (3) reducing PCR cycle number or (4) avoiding locus specific amplification by directly sequencing genomic DNA. Amplification bias is reduced considerably by degenerate primers or targeting amplicons with conserved priming sites. Surprisingly, a reduction of PCR cycles did not have a strong effect on amplification bias. The association of taxon abundance and read count was actually less predictable with fewer cycles. Even a complete exclusion of locus specific amplification did not exclude bias. Copy number variation of the target loci may be another explanation for read abundance differences between taxa, which would affect amplicon based and PCR free methods alike. As read abundance biases are taxon specific and predictable, the application of correction factors allows abundance estimates.
Collapse
Affiliation(s)
- Henrik Krehenwinkel
- Department of Environmental Sciences, Policy and Management University of California Berkeley Mulford Hall, Berkeley, California, USA.
- Center for Comparative Genomics California Academy of Sciences Music Concourse Drive, San Francisco, California, USA.
| | - Madeline Wolf
- Department of Environmental Sciences, Policy and Management University of California Berkeley Mulford Hall, Berkeley, California, USA
| | - Jun Ying Lim
- Department of Environmental Sciences, Policy and Management University of California Berkeley Mulford Hall, Berkeley, California, USA
| | - Andrew J Rominger
- Department of Environmental Sciences, Policy and Management University of California Berkeley Mulford Hall, Berkeley, California, USA
| | - Warren B Simison
- Center for Comparative Genomics California Academy of Sciences Music Concourse Drive, San Francisco, California, USA
| | - Rosemary G Gillespie
- Department of Environmental Sciences, Policy and Management University of California Berkeley Mulford Hall, Berkeley, California, USA
| |
Collapse
|
29
|
Cory AL, Schneider JM. Effects of social information on life history and mating tactics of males in the orb-web spider Argiope bruennichi. Ecol Evol 2017; 8:344-355. [PMID: 29321876 PMCID: PMC5756857 DOI: 10.1002/ece3.3672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 01/14/2023] Open
Abstract
Informed mating decisions are often based on social cues providing information about prospective mating opportunities. Social information early in life can trigger developmental modifications and influence later mating decisions. A high adaptive value of such adjustments is particularly obvious in systems where potential mating rates are extremely limited and have to be carried out in a short time window. Males of the sexually cannibalistic spider Argiope bruennichi can achieve maximally two copulations which they can use for one (monogyny) or two females (bigyny). The choice between these male mating tactics should rely on female availability that males might assess through volatile sex pheromones emitted by virgin females. We predict that in response to those female cues, males of A. bruennichi should mature earlier and at a smaller body size and favor a bigynous mating tactic in comparison with controls. We sampled spiders from two areas close to the Southern and Northern species range to account for differences in mate quality and seasonality. In a fully factorial design, half of the subadult males from both areas obtained silk cues of females, while the other half remained without female exposure. Adult males were subjected to no‐choice mating tests and could either monopolize the female or leave her (bigyny). We found that Southern males matured later and at a larger size than Northern males. Regardless of their origin, males also shortened the subadult stage in response to female cues, which, however, had no effects on male body mass. Contrary to our prediction, the frequencies of mating tactics were unaffected by the treatment. We conclude that while social cues during late development elicit adaptive life history adjustments, they are less important for the adjustment of mating decisions. We suggest that male tactics mostly rely on local information at the time of mate search.
Collapse
Affiliation(s)
- Anna-Lena Cory
- Zoologisches Institut Universität Hamburg Hamburg Hamburg Germany
| | | |
Collapse
|
30
|
Ellegaard M, Godhe A, Ribeiro S. Time capsules in natural sediment archives-Tracking phytoplankton population genetic diversity and adaptation over multidecadal timescales in the face of environmental change. Evol Appl 2017; 11:11-16. [PMID: 29302268 PMCID: PMC5748521 DOI: 10.1111/eva.12513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/05/2017] [Indexed: 01/30/2023] Open
Abstract
Undisturbed records of resting stages produced in the past and stored in coastal sediments are very valuable to science, because they may provide unique insights into past evolutionary and ecological trajectories. Within marine phytoplankton, multidecadal time series of monoclonal strains germinated from resting stages have been established for diatoms (Skeletonema marinoi) and dinoflagellates (Pentapharsodinium dalei), spanning ca. a century. Phenotypic and genotypic analyses of these time series have revealed effects of past environmental changes on population genetic structure. Future perspectives include direct comparisons of phenotypes and genotypic data of populations, for example, by genomewide assays that can correlate phenotypic trends with genotypes and allele frequencies in temporally separated strains. Besides their usefulness as historical records, “seed” banks of phytoplankton resting stages also have the potential to provide an inoculum that influences present populations through “dispersal from the past” (the storage effect) and are important for adaptation to future environments through their standing genetic diversity.
Collapse
Affiliation(s)
- Marianne Ellegaard
- Department of Plant and Environmental Sciences University of Copenhagen Frederiksberg Denmark
| | - Anna Godhe
- Department of Marine Sciences University of Gothenburg Gothenburg Sweden
| | - Sofia Ribeiro
- Glaciology and Climate Department Geological Survey of Denmark and Greenland (GEUS) Copenhagen K Denmark
| |
Collapse
|
31
|
Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii. PLoS One 2017; 12:e0183108. [PMID: 28873401 PMCID: PMC5584761 DOI: 10.1371/journal.pone.0183108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/28/2017] [Indexed: 11/30/2022] Open
Abstract
In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton’s condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species’ trophic niches, climate change may alter the main impacts of invasive alien species.
Collapse
|
32
|
Rödder D, Ihlow F, Courant J, Secondi J, Herrel A, Rebelo R, Measey GJ, Lillo F, De Villiers FA, De Busschere C, Backeljau T. Global realized niche divergence in the African clawed frog Xenopus laevis. Ecol Evol 2017; 7:4044-4058. [PMID: 28616199 PMCID: PMC5468131 DOI: 10.1002/ece3.3010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/02/2017] [Accepted: 03/26/2017] [Indexed: 01/30/2023] Open
Abstract
Although of crucial importance for invasion biology and impact assessments of climate change, it remains widely unknown how species cope with and adapt to environmental conditions beyond their currently realized climatic niches (i.e., those climatic conditions existing populations are exposed to). The African clawed frog Xenopus laevis, native to southern Africa, has established numerous invasive populations on multiple continents making it a pertinent model organism to study environmental niche dynamics. In this study, we assess whether the realized niches of the invasive populations in Europe, South, and North America represent subsets of the species’ realized niche in its native distributional range or if niche shifts are traceable. If shifts are traceable, we ask whether the realized niches of invasive populations still contain signatures of the niche of source populations what could indicate local adaptations. Univariate comparisons among bioclimatic conditions at native and invaded ranges revealed the invasive populations to be nested within the variable range of the native population. However, at the same time, invasive populations are well differentiated in multidimensional niche space as quantified via n‐dimensional hypervolumes. The most deviant invasive population are those from Europe. Our results suggest varying degrees of realized niche shifts, which are mainly driven by temperature related variables. The crosswise projection of the hypervolumes that were trained in invaded ranges revealed the south‐western Cape region as likely area of origin for all invasive populations, which is largely congruent with DNA sequence data and suggests a gradual exploration of novel climate space in invasive populations.
Collapse
Affiliation(s)
- Dennis Rödder
- Herpetology Section Zoologisches Forschungsmuseum Alexander Koenig (ZFMK) Bonn Germany
| | - Flora Ihlow
- Herpetology Section Zoologisches Forschungsmuseum Alexander Koenig (ZFMK) Bonn Germany
| | | | - Jean Secondi
- UMR 5023 Ecologie des Hydrosystèmes Naturels et Anthropisés ENTPE CNRS Université de Lyon Université Lyon 1 Villeurbanne France.,UMR CNRS 6554 LETG-LEESA University of Angers Angers France
| | | | - Rui Rebelo
- Centre for Ecology, Evolution and Environmental Changes Faculdade de Ciências da Universidade de Lisboa Lisboa Portugal
| | - G J Measey
- Centre for Invasion Biology Department of Botany & Zoology Stellenbosch University Stellenbosch South Africa
| | | | - F A De Villiers
- Centre for Invasion Biology Department of Botany & Zoology Stellenbosch University Stellenbosch South Africa
| | | | - Thierry Backeljau
- Royal Belgian Institute of Natural Sciences Brussels Belgium.,Evolutionary Ecology Group University of Antwerp Antwerp Belgium
| |
Collapse
|
33
|
Cotto O, Wessely J, Georges D, Klonner G, Schmid M, Dullinger S, Thuiller W, Guillaume F. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat Commun 2017; 8:15399. [PMID: 28474676 PMCID: PMC5424169 DOI: 10.1038/ncomms15399] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 03/22/2017] [Indexed: 12/18/2022] Open
Abstract
Withstanding extinction while facing rapid climate change depends on a species' ability to track its ecological niche or to evolve a new one. Current methods that predict climate-driven species' range shifts use ecological modelling without eco-evolutionary dynamics. Here we present an eco-evolutionary forecasting framework that combines niche modelling with individual-based demographic and genetic simulations. Applying our approach to four endemic perennial plant species of the Austrian Alps, we show that accounting for eco-evolutionary dynamics when predicting species' responses to climate change is crucial. Perennial species persist in unsuitable habitats longer than predicted by niche modelling, causing delayed range losses; however, their evolutionary responses are constrained because long-lived adults produce increasingly maladapted offspring. Decreasing population size due to maladaptation occurs faster than the contraction of the species range, especially for the most abundant species. Monitoring of species' local abundance rather than their range may likely better inform on species' extinction risks under climate change.
Collapse
Affiliation(s)
- Olivier Cotto
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
- CEFE-CNRS, 1919 Route de Mende, Montpellier 5 34293, France
| | - Johannes Wessely
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Damien Georges
- Univesity Grenoble Alpes, CNRS, Laboratoire d'Écologie Alpine, Grenoble F-38000, France
| | - Günther Klonner
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Max Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, Faculty of Life Sciences, University of Vienna, Rennweg 14, Vienna 1030, Austria
| | - Wilfried Thuiller
- Univesity Grenoble Alpes, CNRS, Laboratoire d'Écologie Alpine, Grenoble F-38000, France
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
34
|
Krehenwinkel H, Rödder D, Năpăruş‐Aljančič M, Kuntner M. Rapid genetic and ecological differentiation during the northern range expansion of the venomous yellow sac spider Cheiracanthium punctorium in Europe. Evol Appl 2016; 9:1229-1240. [PMID: 27877202 PMCID: PMC5108215 DOI: 10.1111/eva.12392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/29/2016] [Indexed: 01/15/2023] Open
Abstract
Although poleward range expansions are commonly attributed to global change, a complex interaction of ecological and evolutionary factors might contribute to expansion success. Here, we study the expansion of the yellow sac spider Cheiracanthium punctorium, a medically important species in Central Europe. Using microsatellite markers and DNA sequences, morphological and climate niche analyses, we identify factors associated with the spider's expansion success. Our results indicate that the species' initial expansion has been triggered by environmental change and preadaptation in the source populations. However, despite extensive gene flow, expanding populations maintain genetic and morphological differentiation from native ones, which is correlated with climatic niche differences. Moreover, expanding spiders might have temporarily escaped an eggsac parasite that causes high mortality in the native range. Hence, our results paint a complex picture of diverse factors associated with expansion success. We speculate that expanding populations might be capable of adapting to novel ecological conditions in northern Europe. This could allow a substantial range expansion, much farther than by environmental change alone. Our distribution model predicts that the spider will soon massively spread over most of northern Europe, bringing along considerable health concerns.
Collapse
Affiliation(s)
- Henrik Krehenwinkel
- Max Planck Institute for Evolutionary BiologyPlönGermany
- Environmental Science Policy and ManagementUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Dennis Rödder
- Zoologisches Forschungsmuseum Alexander KoenigBonnGermany
| | - Magdalena Năpăruş‐Aljančič
- Transdisciplinary Research Centre Landscape – Territory – Information SystemsCeLTISUniversity of Bucharest Research InstituteICUBBucharestRomania
- Tular Cave LaboratoryKranjSlovenia
| | - Matjaž Kuntner
- Evolutionary Zoology LaboratoryBiological Institute ZRC SAZULjubljanaSlovenia
| |
Collapse
|
35
|
Bush A, Mokany K, Catullo R, Hoffmann A, Kellermann V, Sgrò C, McEvey S, Ferrier S. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol Lett 2016; 19:1468-1478. [DOI: 10.1111/ele.12696] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Alex Bush
- CSIRO Land and Water; Canberra Australia
| | | | - Renee Catullo
- CSIRO Land and Water; Canberra Australia
- Biological Sciences; Macquarie University; Sydney Australia
- School of Science and Health; Western Sydney University; Australia
| | | | | | | | | | | |
Collapse
|
36
|
Lancaster LT, Dudaniec RY, Chauhan P, Wellenreuther M, Svensson EI, Hansson B. Gene expression under thermal stress varies across a geographical range expansion front. Mol Ecol 2016; 25:1141-56. [DOI: 10.1111/mec.13548] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/22/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Lesley T. Lancaster
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Rachael Y. Dudaniec
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | | | - Maren Wellenreuther
- Department of Biology; Lund University; Lund Sweden
- Institute of Plant and Food Research; Auckland New Zealand
| | | | | |
Collapse
|
37
|
Krehenwinkel H, Pekar S. An Analysis of Factors Affecting Genotyping Success from Museum Specimens Reveals an Increase of Genetic and Morphological Variation during a Historical Range Expansion of a European Spider. PLoS One 2015; 10:e0136337. [PMID: 26309219 PMCID: PMC4550360 DOI: 10.1371/journal.pone.0136337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022] Open
Abstract
Natural history collections house an enormous amount of plant and animal specimens, which constitute a promising source for molecular analyses. Storage conditions differ among taxa and can have a dramatic effect on the success of DNA work. Here, we analyze the feasibility of DNA extraction from ethanol preserved spiders (Araneae). We tested genotyping success using several hundred specimens of the wasp spider, Argiope bruennichi, deposited in two large German natural history collections. We tested the influence of different factors on the utility of specimens for genotyping. Our results show that not the specimen’s age, but the museum collection is a major predictor of genotyping success. These results indicate that long term storage conditions should be optimized in natural history museums to assure the utility of collections for DNA work. Using historical material, we also traced historical genetic and morphological variation in the course of a poleward range expansion of A. bruennichi by comparing contemporary and historical specimens from a native and an invasive population in Germany. We show that the invasion of A. bruennichi is tightly correlated with an historical increase of genetic and phenotypic variation in the invasive population.
Collapse
Affiliation(s)
- Henrik Krehenwinkel
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, August Thienemann Strasse 2, 24306, Plön, Germany
- University of California, Department of Environmental Science, Policy, and Management, 130 Mulford Hall, Berkeley, United States of America
- * E-mail:
| | - Stano Pekar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|