1
|
Barrere J, Reineking B, Cordonnier T, Kulha N, Honkaniemi J, Peltoniemi M, Korhonen KT, Ruiz-Benito P, Zavala MA, Kunstler G. Functional traits and climate drive interspecific differences in disturbance-induced tree mortality. GLOBAL CHANGE BIOLOGY 2023; 29:2836-2851. [PMID: 36757005 DOI: 10.1111/gcb.16630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023]
Abstract
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.
Collapse
Affiliation(s)
- Julien Barrere
- Univ. Grenoble Alpes, INRAE, LESSEM, St-Martin-d'Hères, France
| | - Björn Reineking
- Univ. Grenoble Alpes, INRAE, LESSEM, St-Martin-d'Hères, France
| | - Thomas Cordonnier
- Univ. Grenoble Alpes, INRAE, LESSEM, St-Martin-d'Hères, France
- Office National des Forêts, Département Recherche Développement Innovation, Direction Territoriale Bourgogne-Franche-Comté, Dole, France
| | - Niko Kulha
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Juha Honkaniemi
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Kari T Korhonen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Paloma Ruiz-Benito
- Grupo de Ecologıa y Restauracion Forestal, Departamento de Ciencias de la Vida, Universidad de Alcala, Madrid, Spain
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Madrid, Spain
| | - Miguel A Zavala
- Grupo de Ecologıa y Restauracion Forestal, Departamento de Ciencias de la Vida, Universidad de Alcala, Madrid, Spain
| | | |
Collapse
|
2
|
Mulozi L, Vennapusa AR, Elavarthi S, Jacobs OE, Kulkarni KP, Natarajan P, Reddy UK, Melmaiee K. Transcriptome profiling, physiological, and biochemical analyses provide new insights towards drought stress response in sugar maple ( Acer saccharum Marshall) saplings. FRONTIERS IN PLANT SCIENCE 2023; 14:1150204. [PMID: 37152134 PMCID: PMC10154611 DOI: 10.3389/fpls.2023.1150204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023]
Abstract
Sugar maple (Acer saccharum Marshall) is a temperate tree species in the northeastern parts of the United States and is economically important for its hardwood and syrup production. Sugar maple trees are highly vulnerable to changing climatic conditions, especially drought, so understanding the physiological, biochemical, and molecular responses is critical. The sugar maple saplings were subjected to drought stress for 7, 14, and 21 days and physiological data collected at 7, 14, and 21 days after stress (DAS) showed significantly reduced chlorophyll and Normalized Difference Vegetation Index with increasing drought stress time. The drought stress-induced biochemical changes revealed a higher accumulation of malondialdehyde, proline, and peroxidase activity in response to drought stress. Transcriptome analysis identified a total of 14,099 differentially expressed genes (DEGs); 328 were common among all stress periods. Among the DEGs, transcription factors (including NAC, HSF, ZFPs, GRFs, and ERF), chloroplast-related and stress-responsive genes such as peroxidases, membrane transporters, kinases, and protein detoxifiers were predominant. GO enrichment and KEGG pathway analysis revealed significantly enriched processes related to protein phosphorylation, transmembrane transport, nucleic acids, and metabolic, secondary metabolite biosynthesis pathways, circadian rhythm-plant, and carotenoid biosynthesis in response to drought stress. Time-series transcriptomic analysis revealed changes in gene regulation patterns in eight different clusters, and pathway analysis by individual clusters revealed a hub of stress-responsive pathways. In addition, qRT-PCR validation of selected DEGs revealed that the expression patterns were consistent with transcriptome analysis. The results from this study provide insights into the dynamics of physiological, biochemical, and gene responses to progressive drought stress and reveal the important stress-adaptive mechanisms of sugar maple saplings in response to drought stress.
Collapse
Affiliation(s)
- Lungowe Mulozi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Sathya Elavarthi
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
- *Correspondence: Kalpalatha Melmaiee, ; Sathya Elavarthi,
| | - Oluwatomi E. Jacobs
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Krishnanand P. Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Purushothaman Natarajan
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Umesh K. Reddy
- Department of Biology and Gus R. Douglass Institute, West Virginia State University, Institute, WV, United States
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
- *Correspondence: Kalpalatha Melmaiee, ; Sathya Elavarthi,
| |
Collapse
|
3
|
Andrews C, Foster JR, Weiskittel A, D'Amato AW, Simons‐Legaard E. Integrating historical observations alters projections of eastern North American spruce–fir habitat under climate change. Ecosphere 2022. [DOI: 10.1002/ecs2.4016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Caitlin Andrews
- US Geologic Survey Southwest Biological Science Center Flagstaff Arizona USA
- University of Maine Center for Research on Sustainable Forests Orono Maine USA
| | - Jane R. Foster
- Rubenstein School of Environment and Natural Resources, Aiken Center University of Vermont Burlington Vermont USA
| | - Aaron Weiskittel
- University of Maine Center for Research on Sustainable Forests Orono Maine USA
| | - Anthony W. D'Amato
- Rubenstein School of Environment and Natural Resources, Aiken Center University of Vermont Burlington Vermont USA
| | - Erin Simons‐Legaard
- University of Maine Center for Research on Sustainable Forests Orono Maine USA
| |
Collapse
|
4
|
Bogdziewicz M. How will global change affect plant reproduction? A framework for mast seeding trends. THE NEW PHYTOLOGIST 2022; 234:14-20. [PMID: 34409608 DOI: 10.1111/nph.17682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Forest ecology traditionally focuses on plant growth and survival, leaving seed production as a major demographic process lacking a framework for how it will be affected by global change. Understanding plant reproductive responses to changing climate is complicated by masting, the annually variable seed production synchronized within populations. Predicting trends in masting is crucial, because masting impacts seed predation and pollination enough to override simple trends in mean seed production. Proximate mechanisms of seed production patterns in perennial plants are gathered to identify processes through which masting may be affected by a changing environment. Predicting trends in masting will require understanding the mechanisms that cause predictable seed failure after high-seed years, and the stochastic mechanisms that synchronize individuals in high-seed years.
Collapse
Affiliation(s)
- Michał Bogdziewicz
- Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University in Poznań, Ulica Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
- INRAE, LESSEM, University Grenoble Alpes, 2 rue de la Papeterie, BP 76, Saint-Martin-d'Hères, 38400, France
| |
Collapse
|
5
|
McEvoy SL, Sezen UU, Trouern‐Trend A, McMahon SM, Schaberg PG, Yang J, Wegrzyn JL, Swenson NG. Strategies of tolerance reflected in two North American maple genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1591-1613. [PMID: 34967059 PMCID: PMC9304320 DOI: 10.1111/tpj.15657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/22/2021] [Indexed: 05/24/2023]
Abstract
The first chromosome‐scale assemblies for North American members of the Acer genus, sugar maple (Acer saccharum) and boxelder (Acer negundo), as well as transcriptomic evaluation of the abiotic stress response in A. saccharum are reported. This integrated study describes in‐depth aspects contributing to each species' approach to tolerance and applies current knowledge in many areas of plant genome biology with Acer physiology to help convey the genomic complexities underlying tolerance in broadleaf tree species.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - U. Uzay Sezen
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Alexander Trouern‐Trend
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Sean M. McMahon
- Smithsonian Environmental Research CenterEdgewaterMaryland21037USA
| | - Paul G. Schaberg
- Forest ServiceU.S. Department of Agriculture, Northern Research StationBurlingtonVermont05405USA
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMengla666303YunnanChina
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269USA
| | - Nathan G. Swenson
- Department of Biological SciencesUniversity of Notre DameNotre DameIndiana46556USA
| |
Collapse
|
6
|
Das AJ, Slaton MR, Mallory J, Asner GP, Martin RE, Hardwick P. Empirically validated drought vulnerability mapping in the mixed conifer forests of the Sierra Nevada. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2514. [PMID: 35094444 DOI: 10.1002/eap.2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 06/14/2023]
Abstract
Severe droughts are predicted to become more frequent in the future, and the consequences of such droughts on forests can be dramatic, resulting in massive tree mortality, rapid change in forest structure and composition, and substantially increased risk of catastrophic fire. Forest managers have tools at their disposal to try to mitigate these effects but are often faced with limited resources, forcing them to make choices about which parts of the landscape to target for treatment. Such planning can greatly benefit from landscape vulnerability assessments, but many existing vulnerability analyses are unvalidated and not grounded in robust empirical datasets. We combined robust sets of ground-based plot and remote sensing data, collected during the 2012-2016 California drought, to develop rigorously validated tools for assessing forest vulnerability to drought-related canopy tree mortality for the mixed conifer forests of the Sequoia and Kings Canyon national parks and potentially for mixed conifer forests in the Sierra Nevada as a whole. Validation was carried out using a large external dataset. The best models included normalized difference vegetation index (NDVI), elevation, and species identity. Models indicated that tree survival probability decreased with greenness (as measured by NDVI) and elevation, particularly if trees were growing slowly. Overall, models showed good calibration and validation, especially for Abies concolor, which comprise a large majority of the trees in many mixed conifer forests in the Sierra Nevada. Our models tended to overestimate mortality risk for Calocedrus decurrens and underestimate risk for pine species, in the latter case probably due to pine bark beetle outbreak dynamics. Validation results indicated dangers of overfitting, as well as showing that the inclusion of trees already under attack by bark beetles at the time of sampling can give false confidence in model strength, while also biasing predictions. These vulnerability tools should be useful to forest managers trying to assess which parts of their landscape were vulnerable during the 2012-2016 drought, and, with additional validation, may prove useful for ongoing assessments and predictions of future forest vulnerability.
Collapse
Affiliation(s)
- Adrian J Das
- U.S. Geological Survey, Western Ecological Research Center, Sequoia and Kings Canyon Field Station, Three Rivers, California, USA
| | - Michèle R Slaton
- USDA Forest Service, Pacific Southwest Region, Remote Sensing Laboratory, McClellan, California, USA
| | - Jeffrey Mallory
- USDA Forest Service, Pacific Southwest Region, Remote Sensing Laboratory, McClellan, California, USA
| | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, Arizona, USA
| | - Roberta E Martin
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, Arizona, USA
| | - Paul Hardwick
- Division of Resources Management and Science, Sequoia and Kings Canyon National Parks, Three Rivers, California, USA
| |
Collapse
|
7
|
Ding W, Li H, Wen J. Climate Change Impacts on the Potential Distribution of Apocheima cinerarius (Erschoff) (Lepidoptera: Geometridae). INSECTS 2022; 13:insects13010059. [PMID: 35055902 PMCID: PMC8778446 DOI: 10.3390/insects13010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Among the impacts of ongoing and projected climate change are shifts in the distribution and severity of insect pests. Projecting those impacts is necessary to ensure effective pest management in the future. Apocheima cinerarius (Erschoff) (Lepidoptera: Geometridae) is an important polyphagous forest pest in China where causes huge economic and ecological losses in 20 provinces. Under historical climatic conditions, the suitable areas for A. cinerarius in China are mainly in the northern temperate zone (30-50° N) and the southern temperate zone (20-60° S). Using the CLIMEX model, the potential distribution of the pest in China and globally, both historically and under climate change, were estimated. Suitable habitats for A. cinerarius occur in parts of all continents. With climate change, its potential distribution extends northward in China and generally elsewhere in the northern hemisphere, although effects vary depending on latitude. In other areas of the world, some habitats become less suitable for the species. Based on the simulated growth index in CLIMEX, the onset of A. cinerarius would be earlier under climate change in some of its potential range, including Spain and Korea. Measures should anticipate the need for prevention and control of A. cinerarius in its potential extended range in China and globally.
Collapse
Affiliation(s)
- Weicheng Ding
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (W.D.); (H.L.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Hongyu Li
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (W.D.); (H.L.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Junbao Wen
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (W.D.); (H.L.)
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
8
|
Steiner KC, Graboski LE, Berkebile JL, Fei S, Leites LP. Uncertainty in the modelled mortality of two tree species (
Fraxinus
) under novel climatic regimes. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kim C. Steiner
- Department of Ecosystem Science and Management The Pennsylvania State University University Park PA USA
| | - Lake E. Graboski
- Department of Ecosystem Science and Management The Pennsylvania State University University Park PA USA
| | - Jennifer L. Berkebile
- Department of Ecosystem Science and Management The Pennsylvania State University University Park PA USA
- Pennsylvania Certified Organic Spring Mills PA USA
| | - Songlin Fei
- Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
| | - Laura P. Leites
- Department of Ecosystem Science and Management The Pennsylvania State University University Park PA USA
| |
Collapse
|
9
|
Influence of spatial extent on habitat suitability models for primate species of Atlantic Forest. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2020.101179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
Affiliation(s)
- James S. Clark
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA ,grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Andrus
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Melaine Aubry-Kientz
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, Merced, CA USA
| | - Yves Bergeron
- grid.265695.bForest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC Canada
| | - Michal Bogdziewicz
- grid.5633.30000 0001 2097 3545Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Don C. Bragg
- grid.497399.90000 0001 2106 5338USDA Forest Service, Southern Research Station, Monticello, AR USA
| | - Dale Brockway
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Natalie L. Cleavitt
- grid.5386.8000000041936877XNatural Resources, Cornell University, Ithaca, NY USA
| | - Susan Cohen
- grid.10698.360000000122483208Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Benoit Courbaud
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Daley
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Adrian J. Das
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Michael Dietze
- grid.189504.10000 0004 1936 7558Earth and Environment, Boston University, Boston, MA USA
| | - Timothy J. Fahey
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Istem Fer
- grid.8657.c0000 0001 2253 8678Finnish Meteorological Institute, Helsinki, Finland
| | - Jerry F. Franklin
- grid.34477.330000000122986657Forest Resources, University of Washington, Seattle, WA USA
| | - Catherine A. Gehring
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Cathryn H. Greenberg
- grid.472551.00000 0004 0404 3120USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC USA
| | - Qinfeng Guo
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC USA
| | - Janneke HilleRisLambers
- grid.34477.330000000122986657Department of Biology, University of Washington, Seattle, WA USA
| | - Ines Ibanez
- grid.214458.e0000000086837370School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Jill Johnstone
- grid.25152.310000 0001 2154 235XDepartment of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Christopher L. Kilner
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Johannes Knops
- grid.440701.60000 0004 1765 4000Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Walter D. Koenig
- grid.47840.3f0000 0001 2181 7878Hastings Reservation, University of California Berkeley, Carmel Valley, CA USA
| | - Georges Kunstler
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Jalene M. LaMontagne
- grid.254920.80000 0001 0707 2013Department of Biological Sciences, DePaul University, Chicago, IL USA
| | - Kristin L. Legg
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Jordan Luongo
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Department of Wildland Resources, Utah State University Ecology Center, Logan, UT USA
| | - Diana Macias
- grid.266832.b0000 0001 2188 8502Department of Biology, University of New Mexico, Albuquerque, NM USA
| | | | - Yassine Messaoud
- grid.265704.20000 0001 0665 6279Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec Canada
| | - Christopher M. Moore
- grid.254333.00000 0001 2296 8213Department of Biology, Colby College, Waterville, ME USA
| | - Emily Moran
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Orrin B. Myers
- grid.266832.b0000 0001 2188 8502University of New Mexico, Albuquerque, NM USA
| | - Chase Nunez
- grid.507516.00000 0004 7661 536XDepartment for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Robert Parmenter
- grid.454846.f0000 0001 2331 3972Valles Caldera National Preserve, National Park Service, Jemez Springs, NM USA
| | - Sam Pearse
- grid.2865.90000000121546924Fort Collins Science Center, Fort Collins, CO USA
| | - Scott Pearson
- grid.435676.50000 0000 8528 5973Department of Natural Sciences, Mars Hill University, Mars Hill, NC USA
| | - Renata Poulton-Kamakura
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Ethan Ready
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Miranda D. Redmond
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Chantal D. Reid
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Kyle C. Rodman
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - C. Lane Scher
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - William H. Schlesinger
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Amanda M. Schwantes
- grid.17063.330000 0001 2157 2938Ecology and Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Erin Shanahan
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Shubhi Sharma
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Michael A. Steele
- grid.268256.d0000 0000 8510 1943Department of Biology, Wilkes University, Wilkes-Barre, PA USA
| | - Nathan L. Stephenson
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Samantha Sutton
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Jennifer J. Swenson
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Margaret Swift
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Thomas T. Veblen
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Thomas G. Whitham
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Andreas P. Wion
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Roman Zlotin
- grid.411377.70000 0001 0790 959XGeography Department and Russian and East European Institute, Bloomington, IN USA
| |
Collapse
|
11
|
Using a Trait-Based Approach to Compare Tree Species Sensitivity to Climate Change Stressors in Eastern Canada and Inform Adaptation Practices. FORESTS 2020. [DOI: 10.3390/f11090989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite recent advances in understanding tree species sensitivities to climate change, ecological knowledge on different species remains scattered across disparate sources, precluding their inclusion in vulnerability assessments. Information on potential sensitivities is needed to identify tree species that require consideration, inform changes to current silvicultural practices and prioritize management actions. A trait-based approach was used to overcome some of the challenges involved in assessing sensitivity, providing a common framework to facilitate data integration and species comparisons. Focusing on 26 abundant tree species from eastern Canada, we developed a series of trait-based indices that capture a species’ ability to cope with three key climate change stressors—increased drought events, shifts in climatically suitable habitat, increased fire intensity and frequency. Ten indices were developed by breaking down species’ response to a stressor into its strategies, mechanisms and traits. Species-specific sensitivities varied across climate stressors but also among the various ways a species can cope with a given stressor. Of the 26 species assessed, Tsuga canadensis (L.) Carrière and Abies balsamea (L.) Mill are classified as the most sensitive species across all indices while Acer rubrum L. and Populus spp. are the least sensitive. Information was found for 95% of the trait-species combinations but the quality of available data varies between indices and species. Notably, some traits related to individual-level sensitivity to drought were poorly documented as well as deciduous species found within the temperate biome. We also discuss how our indices compare with other published indices, using drought sensitivity as an example. Finally, we discuss how the information captured by these indices can be used to inform vulnerability assessments and the development of adaptation measures for species with different management requirements under climate change.
Collapse
|
12
|
Etterson JR, Cornett MW, White MA, Kavajecz LC. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02092. [PMID: 32058650 PMCID: PMC7534057 DOI: 10.1002/eap.2092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/01/2019] [Accepted: 11/25/2019] [Indexed: 05/11/2023]
Abstract
Boreal forests are experiencing dramatic climate change, having warmed 1.0°-1.9°C over the last century. Yet forest regeneration practices are often still dictated by a fixed seed zone framework, in which seeds are both harvested from and planted into predefined areas. Our goal was to determine whether seedlings sourced from southern seed zones in Minnesota USA are already better adapted to northerly seed zones because of climate change. Bur oak (Quercus macrocarpa) and northern red oak (Quercus rubra) seedlings from two seed zones (i.e., tree ecotypes) were planted into 16 sites in two northern seed zones and measured for 3 yr. Our hypotheses were threefold: (1) tree species with more southern geographic distributions would thrive in northern forests where climate has already warmed substantially, (2) southern ecotypes of these species would have higher survival and growth than the northern ecotype in northern environments, and (3) natural selection would favor seedlings that expressed phenotypic and phenological traits characteristic of trees sourced from the more southern seed zone. For both species, survival was high (>93%), and southern ecotypes expressed traits consistent with our climate adaptation hypotheses. Ecotypic differences were especially evident for red oak; the southern ecotype had had higher survival, lower specific leaf area (SLA), faster height and diameter growth, and extended leaf phenology relative to the northern ecotype. Bur oak results were weaker, but the southern ecotype also had earlier budburst and lower SLA than the northern ecotype. Models based on the fixed seed zones failed to explain seedling performance as well as those with continuous predictors (e.g., climate and geographical position), suggesting that plant adaptations within current seed zone delineations do align with changing climate conditions. Adding support for this conclusion, natural selection favored traits expressed by the more southern tree ecotypes. Collectively, these results suggest that state seed sourcing guidelines should be reexamined to permit plantings across seed zones, a form of assisted migration. More extensive experiments (i.e., provenance trails) are necessary to make species-specific seed transfer guidelines that account for climate trends while also considering the precise geographic origin of seed sources.
Collapse
Affiliation(s)
- Julie R. Etterson
- Department of BiologyUniversity of Minnesota DuluthDuluthMinnesota55812USA
| | - Meredith W. Cornett
- The Nature Conservancy in Minnesota—North Dakota—South DakotaDuluthMinnesota55802USA
| | - Mark A. White
- The Nature Conservancy in Minnesota—North Dakota—South DakotaDuluthMinnesota55802USA
| | - Laura C. Kavajecz
- Department of BiologyUniversity of Minnesota DuluthDuluthMinnesota55812USA
| |
Collapse
|
13
|
Fremout T, Thomas E, Gaisberger H, Van Meerbeek K, Muenchow J, Briers S, Gutierrez-Miranda CE, Marcelo-Peña JL, Kindt R, Atkinson R, Cabrera O, Espinosa CI, Aguirre-Mendoza Z, Muys B. Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests. GLOBAL CHANGE BIOLOGY 2020; 26:3552-3568. [PMID: 32020698 DOI: 10.1111/gcb.15028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Understanding the vulnerability of tree species to anthropogenic threats is important for the efficient planning of restoration and conservation efforts. We quantified and compared the effects of future climate change and four current threats (fire, habitat conversion, overgrazing and overexploitation) on the 50 most common tree species of the tropical dry forests of northwestern Peru and southern Ecuador. We used an ensemble modelling approach to predict species distribution ranges, employed freely accessible spatial datasets to map threat exposures, and developed a trait-based scoring approach to estimate species-specific sensitivities, using differentiated trait weights in accordance with their expected importance in determining species sensitivities to specific threats. Species-specific vulnerability maps were constructed from the product of the exposure maps and the sensitivity estimates. We found that all 50 species face considerable threats, with an average of 46% of species' distribution ranges displaying high or very high vulnerability to at least one of the five threats. Our results suggest that current levels of habitat conversion, overexploitation and overgrazing pose larger threats to most of the studied species than climate change. We present a spatially explicit planning strategy for species-specific restoration and conservation actions, proposing management interventions to focus on (a) in situ conservation of tree populations and seed collection for tree planting activities in areas with low vulnerability to climate change and current threats; (b) ex situ conservation or translocation of populations in areas with high climate change vulnerability; and (c) active planting or assisted regeneration in areas under high current threat vulnerability but low climate change vulnerability, provided that interventions are in place to lower threat pressure. We provide an online, user-friendly tool to visualize both the vulnerability maps and the maps indicating priority restoration and conservation actions.
Collapse
Affiliation(s)
- Tobias Fremout
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- Alliance Bioversity International - CIAT, Lima, Peru
| | - Evert Thomas
- Alliance Bioversity International - CIAT, Lima, Peru
| | | | - Koenraad Van Meerbeek
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Jannes Muenchow
- Institute of Geography, Friedrich Schiller University, Jena, Germany
| | - Siebe Briers
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | - Omar Cabrera
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Carlos I Espinosa
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | - Bart Muys
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Wu J. Risk and Uncertainty of Losing Suitable Habitat Areas Under Climate Change Scenarios: A Case Study for 109 Gymnosperm Species in China. ENVIRONMENTAL MANAGEMENT 2020; 65:517-533. [PMID: 32072220 DOI: 10.1007/s00267-020-01262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Taking 109 gymnosperm species in China as a case, the uncertainty and risk of losing habitat areas of gymnosperm species under future climate conditions were investigated via representative concentration pathways climate change scenarios, fuzzy set classifications and Monte Carlo techniques. Under nonrandom climate change scenarios, the richness of 109 species increased in the partial locations of northwestern and northeastern China and declined in the partial locations of eastern and central and southeastern China; the numbers of species that losing <20%, 20-40%, 40-60%, 60-80%, and over 80% of their current habitat areas were ~33-49, 36-40, 11-24, 7-9, and 2-8, respectively; ~99-105 species occupied over 80% of their total suitable areas and ~4-9 species occupied 60-80% their total suitable areas. Under random climate change scenarios, the number of species that losing various level of the habitat areas declined with enhancing probability; with a probabilities of over 0.6, the numbers of species that losing <20%, 20-40%, 40-60%, 60-80% and over 80% of their current habitat areas were ~19-28, 3-19, 0-3, 1-2, and 9-14, respectively, and the numbers of species that occupying ~20%, 20-40%, 40-60%, 60-80%, and over 80% of their total suitable areas were ~9-14, 4-11, 2-6, 1-3, and 34-45, respectively. Approximately 41% of 109 species will face extinction risks from climate change; the losing habitat areas in future climate condition will cause the varying of coniferous forest composition and the losing of ecosystem service related to the species; the uncertainty of losing distribution areas for species should not be ignored.
Collapse
Affiliation(s)
- Jianguo Wu
- The Institute of Environmental Ecology, Chinese Research Academy of Environmental Sciences, No 8, Da Yang Fang, Beiyuan, Anwai, Chaoyang District, Beijing, 100012, China.
| |
Collapse
|
15
|
Smith CF, Schuett GW, Reiserer RS, Dana CE, Collyer ML, Davis MA. Drought-induced Suppression of Female Fecundity in a Capital Breeder. Sci Rep 2019; 9:15499. [PMID: 31664072 PMCID: PMC6820553 DOI: 10.1038/s41598-019-51810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Human-induced global climate change is exerting increasingly strong selective pressures on a myriad of fitness traits that affect organisms. These traits, in turn, are influenced by a variety of environmental parameters such as temperature and precipitation, particularly in ectothermic taxa such as amphibians and reptiles. Over the past several decades, severe and prolonged episodes of drought are becoming commonplace throughout North America. Documentation of responses to this environmental crisis, however, is often incomplete, particularly in cryptic species. Here, we investigated reproduction in a population of pitviper snakes (copperhead, Agkistrodon contortrix), a live-bearing capital breeder. This population experienced a severe drought from 2012 through 2016. We tested whether declines in number of progeny were linked to this drought. Decline in total number offspring was significant, but offspring length and mass were unaffected. Reproductive output was positively impacted by precipitation and negatively impacted by high temperatures. We hypothesized that severe declines of prey species (e.g., cicada, amphibians, and small mammals) reduced energy acquisition during drought, negatively impacting reproductive output of the snakes. Support for this view was found using the periodical cicada (Magicicada spp.) as a proxy for prey availability. Various climate simulations, including our own qualitative analysis, predict that drought events will continue unabated throughout the geographic distribution of copperheads which suggests that long-term monitoring of populations are needed to better understand geographic variation in drought resilience and cascading impacts of drought phenomena on ecosystem function.
Collapse
Affiliation(s)
- Charles F Smith
- Department of Biology, Wofford College, Spartanburg, South Carolina, 29303, USA.
- The Copperhead Institute, Spartanburg, South Carolina, 29323, USA.
- Chiricahua Desert Museum, Rodeo, New Mexico, 88056, USA.
| | - Gordon W Schuett
- The Copperhead Institute, Spartanburg, South Carolina, 29323, USA
- Chiricahua Desert Museum, Rodeo, New Mexico, 88056, USA
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30303, USA
| | - Randall S Reiserer
- The Copperhead Institute, Spartanburg, South Carolina, 29323, USA
- Chiricahua Desert Museum, Rodeo, New Mexico, 88056, USA
| | - Catherine E Dana
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, 61820, USA
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Michael L Collyer
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, 15232, USA
| | - Mark A Davis
- The Copperhead Institute, Spartanburg, South Carolina, 29323, USA.
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, 61820, USA.
| |
Collapse
|
16
|
Comparative Analysis of Flood Vulnerability Indicators by Aggregation Frameworks for the IPCC’s Assessment Components to Climate Change. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As severe flood damages have been increasing due to climate change, the flood vulnerability assessment is needed in the flood mitigation plans to cope with climate-related flood disasters. Since the Intergovernmental Panel on Climate Change Third Assessment Report (IPCC TAR) presented the three assessment components, such as exposure, sensitivity, and adaptability for the vulnerability to climate change, several aggregation frameworks have been used to compile individual components into the composite indicators to measure the flood vulnerability. It is therefore necessary to select an appropriate aggregation framework for the flood vulnerability assessments because the aggregation frameworks can have a large influence on the composite indicator outcomes. For a comparative analysis of flood vulnerability indicators across different aggregation frameworks for the IPCC’s assessment components, the composite indicators are derived by four representative types of aggregation frameworks with all the same proxy variable set in the Republic of Korea. It is found in the study site that there is a key driver component of the composite indicator outcomes and the flood vulnerability outcomes largely depend on whether the key component is treated independently or dependently in each aggregation framework. It is concluded that the selection of an aggregation framework can be based on the correlation and causality analysis to determine the relative contribution of the assessment components to the overall performance of the composite indicators across different aggregation frameworks.
Collapse
|
17
|
Important Insect and Disease Threats to United States Tree Species and Geographic Patterns of Their Potential Impacts. FORESTS 2019. [DOI: 10.3390/f10040304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diseases and insects, particularly those that are non-native and invasive, arguably pose the most destructive threat to North American forests. Currently, both exotic and native insects and diseases are producing extensive ecological damage and economic impacts. As part of an effort to identify United States tree species and forests most vulnerable to these epidemics, we compiled a list of the most serious insect and disease threats for 419 native tree species and assigned a severity rating for each of the 1378 combinations between mature tree hosts and 339 distinct insect and disease agents. We then joined this list with data from a spatially unbiased and nationally consistent forest inventory to assess the potential ecological impacts of insect and disease infestations. Specifically, potential host species mortality for each host/agent combination was used to weight species importance values on approximately 132,000 Forest Inventory and Analysis (FIA) plots across the conterminous 48 United States. When summed on each plot, these weighted importance values represent an estimate of the proportion of the plot’s existing importance value at risk of being lost. These plot estimates were then used to identify statistically significant geographic hotspots and coldspots and of potential forest impacts associated with insects and diseases in total, and for different agent types. In general, the potential impacts of insects and diseases were greater in the West, where there are both fewer agents and less diverse forests. The impact of non-native invasive agents, however, was potentially greater in the East. Indeed, the impacts of current exotic pests could be greatly magnified across much of the Eastern United States if these agents are able to reach the entirety of their hosts’ ranges. Both the list of agent/host severities and the spatially explicit results can inform species-level vulnerability assessments and broad-scale forest sustainability reporting efforts, and should provide valuable information for decision-makers who need to determine which tree species and locations to target for monitoring efforts and pro-active management activities.
Collapse
|
18
|
Wilson CM, Schaeffer RN, Hickin ML, Rigsby CM, Sommi AF, Thornber CS, Orians CM, Preisser EL. Chronic impacts of invasive herbivores on a foundational forest species: a whole‐tree perspective. Ecology 2018; 99:1783-1791. [DOI: 10.1002/ecy.2384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/22/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Claire M. Wilson
- Department of Biological Sciences University of Rhode Island Kingston Rhode Island 02881 USA
| | - Robert N. Schaeffer
- Department of Biological Sciences Tufts University Medford Massachusetts 02155 USA
- Department of Entomology Washington State University Pullman Washington 99164 USA
| | - Mauri L. Hickin
- Department of Biological Sciences University of Rhode Island Kingston Rhode Island 02881 USA
- USDA‐APHIS Buzzards Bay Massachusetts 02542 USA
| | - Chad M. Rigsby
- Department of Biological Sciences University of Rhode Island Kingston Rhode Island 02881 USA
| | - Amanda F. Sommi
- Department of Biological Sciences Tufts University Medford Massachusetts 02155 USA
| | - Carol S. Thornber
- Department of Biological Sciences University of Rhode Island Kingston Rhode Island 02881 USA
- Department of Natural Resources Science University of Rhode Island Kingston Rhode Island 02881 USA
| | - Colin M. Orians
- Department of Biological Sciences Tufts University Medford Massachusetts 02155 USA
| | - Evan L. Preisser
- Department of Biological Sciences University of Rhode Island Kingston Rhode Island 02881 USA
| |
Collapse
|
19
|
Wan JZ, Wang CJ, Qu H, Liu R, Zhang ZX. Vulnerability of forest vegetation to anthropogenic climate change in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1633-1641. [PMID: 29122346 DOI: 10.1016/j.scitotenv.2017.10.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China.
Collapse
Affiliation(s)
- Ji-Zhong Wan
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Chun-Jing Wang
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Hong Qu
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ran Liu
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhi-Xiang Zhang
- School of Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Petersen B, Aslan C, Stuart D, Beier P. Incorporating Social and Ecological Adaptive Capacity into Vulnerability Assessments and Management Decisions for Biodiversity Conservation. Bioscience 2018. [DOI: 10.1093/biosci/biy020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Brian Petersen
- Department of Geography, Planning and Recreation at Northern Arizona University, in Flagstaff
| | - Clare Aslan
- School of Earth Sciences and Environmental Sustainability and the Landscape Conservation Initiative at Northern Arizona University, as well as with Conservation Science Partners
| | - Diana Stuart
- Sustainable Communities Program and the School of Earth Sciences and Environmental Sustainability at Northern Arizona University
| | - Paul Beier
- School of Forestry at Northern Arizona University
| |
Collapse
|
21
|
Sanginés de Cárcer P, Vitasse Y, Peñuelas J, Jassey VEJ, Buttler A, Signarbieux C. Vapor-pressure deficit and extreme climatic variables limit tree growth. GLOBAL CHANGE BIOLOGY 2018; 24:1108-1122. [PMID: 29105230 DOI: 10.1111/gcb.13973] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Assessing the effect of global warming on forest growth requires a better understanding of species-specific responses to climate change conditions. Norway spruce and European beech are among the dominant tree species in Europe and are largely used by the timber industry. Their sensitivity to changes in climate and extreme climatic events, however, endangers their future sustainability. Identifying the key climatic factors limiting their growth and survival is therefore crucial for assessing the responses of these two species to ongoing climate change. We studied the vulnerability of beech and spruce to warmer and drier conditions by transplanting saplings from the top to the bottom of an elevational gradient in the Jura Mountains in Switzerland. We (1) demonstrated that a longer growing season due to warming could not fully account for the positive growth responses, and the positive effect on sapling productivity was species-dependent, (2) demonstrated that the contrasting growth responses of beech and spruce were mainly due to different sensitivities to elevated vapor-pressure deficits (VPD), (3) determined the species-specific limits to VPD above which growth rate began to decline, and (4) demonstrated that models incorporating extreme climatic events could account for the response of growth to warming better than models using only average values. These results support that the sustainability of forest trees in the coming decades will depend on how extreme climatic events will change, irrespective of the overall warming trend.
Collapse
Affiliation(s)
- Paula Sanginés de Cárcer
- École Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Site Lausanne, Lausanne, Switzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Neuchatel, Switzerland
- Institute of Geography, University of Neuchatel, Neuchâtel, Switzerland
| | - Josep Peñuelas
- CREAF-CSIC, Global Ecology, Facultat Ciències Universitat Autonoma Barcelona, Bellaterra, Catalonia, Spain
| | - Vincent E J Jassey
- École Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Site Lausanne, Lausanne, Switzerland
- INP, UPS, CNRS, Laboratoire d'Ecologie Fonctionnelle et Environnement (Ecolab), Université de Toulouse, Toulouse, France
| | - Alexandre Buttler
- École Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Site Lausanne, Lausanne, Switzerland
- UMR CNRS 6249, UFR des Sciences et Techniques, Laboratoire de Chrono-Environnement, Université de Franche-Comté, Besançon, France
| | - Constant Signarbieux
- École Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Site Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Aubin I, Boisvert-Marsh L, Kebli H, McKenney D, Pedlar J, Lawrence K, Hogg EH, Boulanger Y, Gauthier S, Ste-Marie C. Tree vulnerability to climate change: improving exposure-based assessments using traits as indicators of sensitivity. Ecosphere 2018. [DOI: 10.1002/ecs2.2108] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- I. Aubin
- Great Lakes Forestry Centre; Canadian Forest Service; Natural Resources Canada; Sault Ste Marie Ontario P6A 2E5 Canada
| | - L. Boisvert-Marsh
- Great Lakes Forestry Centre; Canadian Forest Service; Natural Resources Canada; Sault Ste Marie Ontario P6A 2E5 Canada
| | - H. Kebli
- Great Lakes Forestry Centre; Canadian Forest Service; Natural Resources Canada; Sault Ste Marie Ontario P6A 2E5 Canada
| | - D. McKenney
- Great Lakes Forestry Centre; Canadian Forest Service; Natural Resources Canada; Sault Ste Marie Ontario P6A 2E5 Canada
| | - J. Pedlar
- Great Lakes Forestry Centre; Canadian Forest Service; Natural Resources Canada; Sault Ste Marie Ontario P6A 2E5 Canada
| | - K. Lawrence
- Great Lakes Forestry Centre; Canadian Forest Service; Natural Resources Canada; Sault Ste Marie Ontario P6A 2E5 Canada
| | - E. H. Hogg
- Northern Forestry Centre; Canadian Forest Service; Natural Resources Canada; Edmonton Alberta T6H 3S5 Canada
| | - Y. Boulanger
- Laurentian Forestry Centre; Canadian Forest Service; Natural Resources Canada; Quebec City Quebec G1V 4C7 Canada
| | - S. Gauthier
- Laurentian Forestry Centre; Canadian Forest Service; Natural Resources Canada; Quebec City Quebec G1V 4C7 Canada
| | - C. Ste-Marie
- Geological Survey of Canada; Natural Resources Canada; Ottawa Ontario K1A 0E8 Canada
| |
Collapse
|
23
|
Samson EA, Boykin KG, Kepner WG, Andersen MC, Fernald A. Evaluating Biodiversity Metric Response to Forecasted Land Use Change in the Northern Rio Grande Basin. ENVIRONMENTS 2018; 5:91. [PMID: 32982030 PMCID: PMC7513895 DOI: 10.3390/environments5080091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of future land use change on arid and semi-arid watersheds in the American Southwest have important management implications. Seamless, national-scale land-use-change scenarios for developed land were acquired from the US Environmental Protection Agency Integrated Climate and Land Use Scenarios (lCLUS) project and extracted to fit the Northern Rio Grande River Basin, New Mexico relative to projections of housing density for the period from 2000 through 2100. Habitat models developed from the Southwest Regional Gap Analysis Project were invoked to examine changes in wildlife habitat and biodiversity metrics using five ICLUS scenarios. The scenarios represent a US Census base-case and four modifications that were consistent with the different assumptions underlying the A1, A2, B1, and B2 Intergovernmental Panel on Climate Change global greenhouse gas emission storylines. Habitat models for terrestrial vertebrate species were used to derive metrics reflecting ecosystem services or biodiversity aspects valued by humans that could be quantified and mapped. Example metrics included total terrestrial vertebrate species richness, bird species richness, threatened and endangered species, and harvestable species (e.g., waterfowl, big game). Overall, the defined scenarios indicated that the housing density and extent of developed lands will increase throughout the century with a resultant decrease in area for all species richness categories. The A2 Scenario, in general, showed greatest effect on area by species richness category. The integration of the land use scenarios with biodiversity metrics derived from deductive habitat models may prove to be an important tool for decision makers involved in impact assessments and adaptive planning processes.
Collapse
Affiliation(s)
- Elizabeth A. Samson
- Center for Applied Spatial Ecology, New Mexico Cooperative Fish and Wildlife Research Unit, Department of Fish, Wildlife, and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Kenneth G. Boykin
- Center for Applied Spatial Ecology, New Mexico Cooperative Fish and Wildlife Research Unit, Department of Fish, Wildlife, and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA
- Correspondence: ; Tel.: +1-575-646-6303
| | - William G. Kepner
- U.S. Environmental Protection Agency, Office of Research and Development, Las Vegas, NV 89119, USA
| | - Mark C. Andersen
- Department of Fish, Wildlife, and Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Alexander Fernald
- Department of Animal and Range Science, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
24
|
Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proc Natl Acad Sci U S A 2017; 114:E10142-E10150. [PMID: 29109266 DOI: 10.1073/pnas.1708109114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.
Collapse
|
25
|
Costanza JK, Coulston JW, Wear DN. An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios. PLoS One 2017; 12:e0184062. [PMID: 28877258 PMCID: PMC5587308 DOI: 10.1371/journal.pone.0184062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/17/2017] [Indexed: 11/30/2022] Open
Abstract
The composition of tree species occurring in a forest is important and can be affected by global change drivers such as climate change. To inform assessment and projection of global change impacts at broad extents, we used hierarchical cluster analysis and over 120,000 recent forest inventory plots to empirically define forest tree assemblages across the U.S., and identified the indicator and dominant species associated with each. Cluster typologies in two levels of a hierarchy of forest assemblages, with 29 and 147 groups respectively, were supported by diagnostic criteria. Groups in these two levels of the hierarchy were labeled based on the top indicator species in each, and ranged widely in size. For example, in the 29-cluster typology, the sugar maple-red maple assemblage contained the largest number of plots (30,068), while the butternut-sweet birch and sourwood-scarlet oak assemblages were both smallest (6 plots each). We provide a case-study demonstration of the utility of the typology for informing forest climate change impact assessment. For five assemblages in the 29-cluster typology, we used existing projections of changes in importance value (IV) for the dominant species under one low and one high climate change scenario to assess impacts to the assemblages. Results ranged widely for each scenario by the end of the century, with each showing an average decrease in IV for dominant species in some assemblages, including the balsam fir-quaking aspen assemblage, and an average increase for others, like the green ash-American elm assemblage. Future work should assess adaptive capacity of these forest assemblages and investigate local population- and community-level dynamics in places where dominant species may be impacted. This typology will be ideal for monitoring, assessing, and projecting changes to forest communities within the emerging framework of macrosystems ecology, which emphasizes hierarchies and broad extents.
Collapse
Affiliation(s)
- Jennifer K. Costanza
- Department of Forestry and Environmental Resources, North Carolina State University, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - John W. Coulston
- Southern Research Station, USDA Forest Service, Blacksburg, Virginia, United States of America
| | - David N. Wear
- Southern Research Station, USDA Forest Service, Raleigh, North Carolina, United States of America
| |
Collapse
|
26
|
Projected Future Distribution of Tsuga canadensis across Alternative Climate Scenarios in Maine, U.S. FORESTS 2017. [DOI: 10.3390/f8080285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|