1
|
Roth SK, Uth C, Orizar I, Rico A, Hedberg P, Norkko A, Lewandowska A. Synergistic effects of the antibiotic ciprofloxacin and a simulated heatwave on the Baltic Sea dinoflagellate Apocalathium malmogiense. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107155. [PMID: 40258321 DOI: 10.1016/j.marenvres.2025.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 04/23/2025]
Abstract
Climate change-driven heatwaves in the Baltic Sea are becoming more frequent and intense, potentially exacerbating phytoplankton blooms that impact biodiversity and ecosystem functioning. Alongside this, chemical pollutants, such as antibiotics, may compound these effects. This study examined the combined impacts of a simulated heatwave (+5 °C) and the antibiotic ciprofloxacin (0.1 μg L-1) on the dinoflagellate Apocalathium malmogiense. We assessed cell counts, size, growth rates, Chlorophyll-a (Chl-a) content, and nutrient uptake. The simulated heatwave increased growth and Chl-a content but reduced cell size, while ciprofloxacin alone had no effect on growth response parameters. However, the combination of both stressors significantly reduced cell counts (-17 %), Chl-a content (-34 %), and growth rates (-20 %). Ciprofloxacin also decreased nitrogen uptake by over 40 %, exacerbating the nitrogen deficit caused by the heatwave. This study highlights the importance of testing global change stressors in combination, as synergistic effects may otherwise go undetected if only studied in isolation.
Collapse
Affiliation(s)
- Sabrina K Roth
- Tvärminne Zoological Station, University of Helsinki, Finland.
| | - Catharina Uth
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Iris Orizar
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Spain
| | - Per Hedberg
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, Finland
| | | |
Collapse
|
2
|
Détain A, Suzuki H, Wijffels RH, Leborgne-Castel N, Hulatt CJ. Snow algae exhibit diverse motile behaviors and thermal responses. mBio 2025; 16:e0295424. [PMID: 40167318 PMCID: PMC12077220 DOI: 10.1128/mbio.02954-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Snow algal blooms influence snow and glacier melt dynamics, yet the mechanisms involved in community assemblage, development, and dispersal are not well understood. While microbial swimming behavior contributes significantly to the productivity and organization of aquatic and terrestrial microbiomes, the potential impact of algal cell motility in melting snow on the formation of visible, large-scale surface bloom patterns is largely unknown. Here, using video tracking and phototaxis experiments of unique isolates, we evaluated the motility of diverse snow algal taxa from green, red, and golden colored snow blooms in response to light and thermal gradients. We show that many species are efficient cryophilic microswimmers with speed thermal optima below 10°C although taxa with cryotolerant swimming traits were also identified. The significant motility of snow algae at low temperatures, a result of specialized adaptations, supports the importance of active movement in the life histories of algae inhabiting snow meltwater. However, diversity in swimming performance and behavior reveal a range of evolutionary outcomes and sensitivity of motile life stages to dynamic environments.IMPORTANCESwimming motility is a fundamental mechanism that controls the assembly, structure, and productivity of microbiomes across diverse environments and is highly sensitive to temperature. Especially, the role of cell swimming activity in algal bloom formation at the very low temperatures of snowmelt has been hypothesized, but not studied. By examining the movement patterns of snow algae and modeling the thermal response curves of swimming speed, the data reveal the key role of active cell movement that may have further important impacts on the microbial ecology and melt rates of snow and ice in polar and alpine regions.
Collapse
Affiliation(s)
- Alexandre Détain
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Hirono Suzuki
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - René H. Wijffels
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, the Netherlands
| | | | - Chris J. Hulatt
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
3
|
Du J, Gao Q, Sun F, Liu B, Jiao Y, Liu Q. Agricultural soil microbiomes at the climate frontier: Nutrient-mediated adaptation strategies for sustainable farming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118161. [PMID: 40203703 DOI: 10.1016/j.ecoenv.2025.118161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
The equilibrium transformation of soil microbial community dynamics and succession across various temporal and spatial dimensions plays a critical role in maintaining plant adaptability. Intensive agricultural practices accelerate the succession of plant microbial communities, rendering their restoration function more vulnerable. Climate change, with its variable impacts, affects the resilience of plant microbial communities through regulatory and mediating effects. Investigating the spatiotemporal dynamics of soil microbial communities in the context of climate change offers valuable insights into developing robust and resilient microbial ecosystems. This review examines the regulatory role of soil resources in plant microbial communities, the interactive effects of climate change on soil resource regulation, and the prediction of microbial community structures through resource allocation. Additionally, it explores the mechanisms that sustain ecological resilience in plant microbial community systems, emphasizing the application of the profit-averaging law.
Collapse
Affiliation(s)
- Jianfeng Du
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Qixiong Gao
- School of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fuxin Sun
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China
| | - Baoyou Liu
- Plant Protection Institute, Yantai Academy of Agricultural Sciences, Yantai, Shandong 265500, PR China
| | - Yang Jiao
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| | - Qili Liu
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, PR China.
| |
Collapse
|
4
|
Stark KA, Clegg T, Bernhardt JR, Grainger TN, Kempes CP, Savage V, O'Connor MI, Pawar S. Toward a More Dynamic Metabolic Theory of Ecology to Predict Climate Change Effects on Biological Systems. Am Nat 2025; 205:285-305. [PMID: 39965227 DOI: 10.1086/733197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
AbstractThe metabolic theory of ecology (MTE) aims to link biophysical constraints on individual metabolic rates to the emergence of patterns at the population and ecosystem scales. Because MTE links temperature's kinetic effects on individual metabolism to ecological processes at higher levels of organization, it holds great potential to mechanistically predict how complex ecological systems respond to warming and increased temperature fluctuations under climate change. To scale up from individuals to ecosystems, applications of classical MTE implicitly assume that focusing on steady-state dynamics and averaging temperature responses across individuals and populations adequately capture the dominant attributes of biological systems. However, in the context of climate change, frequent perturbations from steady state and rapid changes in thermal performance curves via plasticity and evolution are almost guaranteed. Here, we explain how some of the assumptions made when applying MTE's simplest canonical expression can lead to blind spots in understanding how temperature change affects biological systems and how this presents an opportunity for formal expansion of the theory. We review existing advances in this direction and provide a decision tree for identifying when dynamic modifications to classical MTE are needed for certain research questions. We conclude with empirical and theoretical challenges to be addressed in a more dynamic MTE for understanding biological change in an increasingly uncertain world.
Collapse
|
5
|
Giesler JK, Van de Waal DB, Thomas MK, Šupraha L, Koch F, Harder T, Pein CM, John U, Wohlrab S. What Does It Mean to Be(Come) Arctic? Functional and Genetic Traits of Arctic- and Temperate-Adapted Diatoms. GLOBAL CHANGE BIOLOGY 2025; 31:e70137. [PMID: 40110945 PMCID: PMC11924310 DOI: 10.1111/gcb.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Climate change-induced warming is expected to drive phytoplankton poleward as they track suitable thermal conditions. However, successful establishment in new environments requires adaptation to multiple abiotic factors beyond temperature alone. As little is known about how polar species differ in key functional and genetic traits, simple predictions of poleward movement rely on large assumptions about performance in other relevant dimensions other than thermal responses (e.g., light regime, nutrient uptake). To identify evolutionary bottlenecks of poleward range shifts, we assessed a range of thermal, resource acquisition, and genetic traits for multiple strains of the diatom Thalassiosira rotula from the temperate North Sea, as well as multiple strains of the closely related Arctic Thalassiosira gravida. We found a broader thermal range for the temperate diatoms and a mean optimum temperature of 10.3°C ± 0.8°C and 18.4°C ± 2.4°C for the Arctic and temperate diatoms, respectively, despite similar maximum growth rates. Photoperiod reaction norms had an optimum photoperiod of approximately 17 h for temperate diatoms, whereas the Arctic diatoms exhibited their highest growth performance at a photoperiod of 24 h. Nitrate uptake kinetics showed high intraspecific variation without a habitat-specific signal. The screening for convergent amino acid substitutions (CAAS) of the studied diatom strains and other publicly available transcriptomes revealed 26 candidate genes in which potential habitat-specific genetic adaptation occurred. The identified genes include subunits of the DNA polymerase and multiple transcription factors (zinc-finger proteins). Our findings suggest that the thermal range of the temperate diatom would enable poleward migration, while the extreme polar photoperiods might pose a barrier to the Arctic. Additionally, the identified genetic adaptations are particularly abundant in Arctic diatoms as they may contribute to competitive advantages in polar habitats beyond those detected with our physiological assays, hampering the establishment of temperate diatoms in Arctic habitats.
Collapse
Affiliation(s)
- Jakob K. Giesler
- Ecological Chemistry Section, Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Dedmer B. Van de Waal
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Wageningenthe Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamthe Netherlands
| | - Mridul K. Thomas
- Department. F.‐A. Forel for Environmental and Aquatic Sciences and Institute for Environmental SciencesUniversity of GenevaGenevaSwitzerland
| | - Luka Šupraha
- Department of BiosciencesUniversity of OsloOsloNorway
- Norwegian Institute for Water Research (NIVA)OsloNorway
| | - Florian Koch
- Ecological Chemistry Section, Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Tilmann Harder
- Ecological Chemistry Section, Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
- Department of Biology and ChemistryUniversity of BremenBremenGermany
| | - Carla M. Pein
- Ecological Chemistry Section, Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Uwe John
- Ecological Chemistry Section, Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB)OldenburgGermany
| | - Sylke Wohlrab
- Ecological Chemistry Section, Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB)OldenburgGermany
| |
Collapse
|
6
|
Briddon CL, Estevens R, Ghedini G. Evolution Under Competition Increases Population Production by Reducing the Density-Dependence of Net Energy Fluxes and Growth. Ecol Evol 2025; 15:e71071. [PMID: 40099212 PMCID: PMC11913549 DOI: 10.1002/ece3.71071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Competition can drive rapid evolution, but forecasting how species evolve in communities remains difficult. Life history theory predicts that evolution in crowded environments should maximize population production, with intra- and inter-specific competition producing similar outcomes if species compete for similar resources. Despite its appeal, this prediction has rarely been tested in communities. To test its generality and identify its physiological basis, we used experimental evolution to maintain four species of marine phytoplankton alone or together in a community for 4.5 months. We then quantified changes in their metabolism, demography, and competitive ability at two timepoints (~60 and 120 generations) in common garden experiments. One species was outcompeted during the evolution experiment. For the other three, we found the same evolutionary outcome: species evolved greater biovolume production regardless of competition treatment but did so either by increasing max. population size or individual cell size. Biovolume production increased because of the differential evolution of photosynthesis and respiration under intense competition. These metabolic changes meant that intraspecific competition decreased, and cells maintained higher rates of net energy production and growth as populations neared the stationary phase. Overall, these results show that intra- and inter-specific competition influence physiological and population parameters similarly in species that compete for essential resources. Life history theory thus provides a valuable base for predicting how species evolve in communities, and our results show how these predictions relate to the evolution of metabolism and competitive ability.
Collapse
Affiliation(s)
- Charlotte L. Briddon
- GIMM—Gulbenkian Institute for Molecular Medicine (Previously Instituto Gulbenkian de Ciência)LisbonPortugal
| | - Ricardo Estevens
- GIMM—Gulbenkian Institute for Molecular Medicine (Previously Instituto Gulbenkian de Ciência)LisbonPortugal
| | - Giulia Ghedini
- GIMM—Gulbenkian Institute for Molecular Medicine (Previously Instituto Gulbenkian de Ciência)LisbonPortugal
- School of Biological SciencesMonash UniversityClaytonAustralia
| |
Collapse
|
7
|
Pinsky ML, Hillebrand H, Chase JM, Antão LH, Hirt MR, Brose U, Burrows MT, Gauzens B, Rosenbaum B, Blowes SA. Warming and cooling catalyse widespread temporal turnover in biodiversity. Nature 2025; 638:995-999. [PMID: 39880943 DOI: 10.1038/s41586-024-08456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Turnover in species composition through time is a dominant form of biodiversity change, which has profound effects on the functioning of ecological communities1-4. Turnover rates differ markedly among communities4, but the drivers of this variation across taxa and realms remain unknown. Here we analyse 42,225 time series of species composition from marine, terrestrial and freshwater assemblages, and show that temporal rates of turnover were consistently faster in locations that experienced faster temperature change, including both warming and cooling. In addition, assemblages with limited access to microclimate refugia or that faced stronger human impacts on land were especially responsive to temperature change, with up to 48% of species replaced per decade. These results reveal a widespread signal of vulnerability to continuing climate change and highlight which ecological communities are most sensitive, raising concerns about ecosystem integrity as climate change and other human impacts accelerate.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laura H Antão
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | | | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
8
|
Fernández M, Duarte C, Aldana M, Delgado-Rioseco J, Blanco-Herrera F, Varas O, Quijón PA, Quintanilla-Ahumada D, García-Huidobro MR, Pulgar J. The importance of upwelling conditions as drivers of feeding behavior and thermal tolerance in a prominent intertidal fish. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106896. [PMID: 39647425 DOI: 10.1016/j.marenvres.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Upwelling, as a large oceanographic phenomenon, increases coastal productivity and influences all levels of biological complexity. Despite decades of research on it, much remains to be understood about the impact of upwelling on the feeding behavior and thermal tolerance of important groups such as fish. Hence, our aim was to investigate how upwelling conditions modify the feeding behavior and thermal tolerance of a prominent intertidal fish, Girella laevifrons. We collected purple mussels (Perumytilus purpuratus) from upwelling (U) and downwelling sites (DU) in central Chile, and used them as prey in feeding trials and measuring the concentration of organic matter and proteins in their tissues. We assessed fish consumption rates and growth in fish collected from the same U and DU sites, feeding on either U or DU mussels. Lastly, we assessed the thermal tolerance of U and DU fish fed with the aforementioned U vs DU mussels. We found that U mussels held higher concentrations of organic matter and proteins compared to their DU counterparts. U mussels were also selected and consumed in larger amounts than DU mussels, although the origin of the fish also influenced consumption rates. Thermal tolerance assays revealed that U fish exhibited higher maximum performance (Max.pf) and critical thermal maxima (Ctmax) and lower sensitivity to temperature changes (as measured by Q10), compared to DU fish. Altogether, these results point to a strong influence of upwelling on the quality of organisms' tissues, indirectly altering key aspects of fish feeding behavior and thermal tolerance. These findings also contribute to understanding the physiological adjustments organisms make in productive upwelling systems, and how they may change in the future with ongoing climate events.
Collapse
Affiliation(s)
- Melissa Fernández
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Santiago, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para El Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Joaquín Delgado-Rioseco
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Biotecnología Vegetal, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago, Chile; Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Oscar Varas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para El Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
9
|
Burc E, Girard-Tercieux C, Metz M, Cazaux E, Baur J, Koppik M, Rêgo A, Hart AF, Berger D. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat Commun 2025; 16:827. [PMID: 39827176 PMCID: PMC11743133 DOI: 10.1038/s41467-025-56177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Climate change is affecting population growth rates of ectothermic pests with potentially dire consequences for agriculture and global food security. However, current projection models of pest impact typically overlook the potential for rapid genetic adaptation, making current forecasts uncertain. Here, we predict how climate change adaptation in life-history traits of insect pests affects their growth rates and impact on agricultural yields by unifying thermodynamics with classic theory on resource acquisition and allocation trade-offs between foraging, reproduction, and maintenance. Our model predicts that warming temperatures will favour resource allocation towards maintenance coupled with increased resource acquisition through larval foraging, and the evolution of this life-history strategy results in both increased population growth rates and per capita host consumption, causing a double-blow on agricultural yields. We find support for these predictions by studying thermal adaptation in life-history traits and gene expression in the wide-spread insect pest, Callosobruchus maculatus; with 5 years of evolution under experimental warming causing an almost two-fold increase in its predicted agricultural footprint. These results show that pest adaptation can offset current projections of agricultural impact and emphasize the need for integrating a mechanistic understanding of life-history evolution into forecasts of pest impact under climate change.
Collapse
Affiliation(s)
- Estelle Burc
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Agronomy Institute Rennes-Angers (IARA), Graduate school of agronomy, 35000, Rennes, France
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Moa Metz
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Elise Cazaux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandre Rêgo
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Alex F Hart
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| |
Collapse
|
10
|
Krinos AI, Shapiro SK, Li W, Haley ST, Dyhrman ST, Dutkiewicz S, Follows MJ, Alexander H. Intraspecific Diversity in Thermal Performance Determines Phytoplankton Ecological Niche. Ecol Lett 2025; 28:e70055. [PMID: 39887926 DOI: 10.1111/ele.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/04/2024] [Accepted: 12/08/2024] [Indexed: 02/01/2025]
Abstract
Temperature has a primary influence on phytoplankton physiology and ecology. We grew 12 strains of Gephyrocapsa huxleyi isolated from different-temperature regions for ~45 generations (2 months) and characterised acclimated thermal response curves across a temperature range. Even with similar temperature optima and overlapping cell size, strain growth rates varied between 0.45 and 1 day-1. Thermal niche widths varied from 16.7°C to 24.8°C, suggesting that strains use distinct thermal response mechanisms. We investigated the implications of this thermal intraspecific diversity using an ocean ecosystem simulation resolving phytoplankton thermal phenotypes. Model analogues of thermal 'generalists' and 'specialists' resulted in a distinctive global biogeography of thermal niche widths with a nonlinear latitudinal pattern. We leveraged model output to predict ranges of the 12 lab-reared strains and demonstrated how this approach could broadly refine geographic range predictions. Our combination of observations and modelled biogeography highlights the capacity of diverse groups to survive temperature shifts.
Collapse
Affiliation(s)
- Arianna I Krinos
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Massachusetts, USA
| | - Sara K Shapiro
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Weixuan Li
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sheean T Haley
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
- Department of Earth and Environmental Science, Columbia University, New York, New York, USA
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
11
|
Briddon CL, Nicoară M, Hegedűs A, Thomas MK, Drugă B. Quantifying evolutionary changes to temperature-CO 2 growth response surfaces in Skeletonema marinoi after adaptation to extreme conditions. ISME COMMUNICATIONS 2025; 5:ycaf069. [PMID: 40371177 PMCID: PMC12075770 DOI: 10.1093/ismeco/ycaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Global warming and ocean acidification are having an unprecedented impact on marine ecosystems, yet we do not yet know how phytoplankton will respond to simultaneous changes in multiple drivers. To better comprehend the combined impact of oceanic warming and acidification, we experimentally estimated how evolution shifted the temperature-CO2 growth response surfaces of two strains of Skeletonema marinoi that were each previously adapted to four different temperature × CO2 combinations. These adapted strains were then grown under a factorial combination of five temperatures and five CO2 concentrations to capture the temperature-CO2 response surfaces for their unacclimated growth rates. The development of the first complete temperature-CO2 response surfaces showed the optimal CO2 concentration for growth to be substantially higher than expected future CO2 levels (~6000 ppm). There was minimal variation in the optimal CO2 concentration across the tested temperatures, suggesting that temperature will have a greater influence on growth rates compared to enhanced CO2. Optimal temperature did not show a unimodal response to CO2, either due to the lack of acclimation or the highly efficient CO2 concentrating mechanisms, which diatoms (e.g. Skeletonema) can up-/downregulate depending on the CO2 conditions. We also found that both strains showed evidence of evolutionary shifts as a result of adaptation to temperature and CO2. The evolutionary response differed between strains, underscoring how genetic differences (perhaps related to historical regimes) can impact phytoplankton performance. Understanding how a dominant algal species responds to multiple drivers provides insight into real-world scenarios and helps construct theoretical predictions of environmental change.
Collapse
Affiliation(s)
- Charlotte L Briddon
- GIMM - Gulbenkian Institute, R. Q.ta Grande 6 2780, Oeiras, Portugal
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania
| | - Maria Nicoară
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania
- Doctoral School of Integrative Biology, Faculty of Biology and Geology, Babeş-Bolyai University, 44 Republicii Street, 400015, Cluj-Napoca, Romania
| | - Adriana Hegedűs
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania
| | - Mridul K Thomas
- Department of F.-A. Forel for Environmental and Aquatic Sciences and Institute for Environmental Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Bogdan Drugă
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania
| |
Collapse
|
12
|
Dal Bello M, Abreu CI. Temperature structuring of microbial communities on a global scale. Curr Opin Microbiol 2024; 82:102558. [PMID: 39423562 PMCID: PMC11609007 DOI: 10.1016/j.mib.2024.102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Temperature is a fundamental physical constraint regulating key aspects of microbial life. Protein binding, membrane fluidity, central dogma processes, and metabolism are all tightly controlled by temperature, such that growth rate profiles across taxa and environments follow the same general curve. An open question in microbial ecology is how the effects of temperature on individual traits scale up to determine community structure and function at planetary scales. Here, we review recent theoretical and experimental efforts to connect physiological responses to the outcome of species interactions, the assembly of microbial communities, and their function as temperature changes. We identify open questions in the field and define a roadmap for future studies.
Collapse
Affiliation(s)
- Martina Dal Bello
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Clare I Abreu
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Vila Duplá M, Villar-Argaiz M, Medina-Sánchez JM, González-Olalla JM, Carrillo P. Constant and fluctuating high temperatures interact with Saharan dust leading to contrasting effects on aquatic microbes over time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175777. [PMID: 39182767 DOI: 10.1016/j.scitotenv.2024.175777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Mediterranean lakes are facing heightened exposure to multiple stressors, such as intensified Saharan dust deposition, temperature increases and fluctuations linked to heatwaves. However, the combined impact of dust and water temperature on the microbial community in freshwater ecosystems remains underexplored. To assess the interactive effect of dust deposition and temperature on aquatic microbes (heterotrophic bacteria and phytoplankton), a combination of field mesocosm experiments covering a dust gradient (five levels, 0-320 mg L-1), and paired laboratory microcosms with increased temperature at two levels (constant and fluctuating high temperature) were conducted in a high mountain lake in the Spanish Sierra Nevada, at three points in time throughout the ice-free period. Heterotrophic bacterial production (HBP) increased with dust load regardless of the temperature regime. However, temperature regime affected the magnitude and nature of the interactive Dust×T effect on HBP. Specifically, constant and fluctuating high temperature showed opposing interactive effects in the short term that became additive over time. The relationships between HBP and predictor variables (soluble reactive phosphorus (SRP), excreted organic carbon (EOC), and heterotrophic bacterial abundance (HBA)), coupled with an evaluation of the mechanistic variable photosynthetic carbon use efficiency by bacteria (%CUEb), revealed that bacteria depended on primary production in nearly all treatments when dust was added. The %CUEb increased with dust load in the control temperature treatment, but it was highest at intermediate dust loads under both constant and fluctuating high temperatures. Overall, our results suggest that while dust addition alone strengthens algae-bacteria coupling, high temperatures lead to decoupling in the long term at intermediate dust loads, potentially impacting ecosystem function.
Collapse
Affiliation(s)
- María Vila Duplá
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain.
| | - Manuel Villar-Argaiz
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain
| | - Juan Manuel Medina-Sánchez
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain; Department of Ecology, University of Granada, Campus Fuentenueva s/n, 18071, Granada Spain
| | | | - Presentación Carrillo
- Institute of Water Research, University of Granada, c/ Ramón y Cajal, 4, 18071, Granada Spain
| |
Collapse
|
14
|
Polazzo F, Limberger R, Pennekamp F, Ross SRP, Simpson GL, Petchey OL. Measuring the Response Diversity of Ecological Communities Experiencing Multifarious Environmental Change. GLOBAL CHANGE BIOLOGY 2024; 30:e17594. [PMID: 39569752 PMCID: PMC11580112 DOI: 10.1111/gcb.17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
The diversity in organismal responses to environmental changes (i.e., response diversity) plays a crucial role in shaping community and ecosystem stability. However, existing measures of response diversity only consider a single environmental variable, whereas natural communities are commonly exposed to changes in multiple environmental variables simultaneously. Thus far, no approach exists to integrate multifarious environmental change and the measurement of response diversity. Here, we show how to consider and quantify response diversity in the context of multifarious environmental change, and in doing so introduce a distinction between response diversity to a defined or anticipated environmental change, and the response capacity to any possible set of (defined or undefined) future environmental changes. First, we describe and illustrate the concepts with empirical data. We reveal the role of the trajectory of environmental change in shaping response diversity when multiple environmental variables fluctuate over time. We show that, when the trajectory of the environmental change is undefined (i.e., there is no information or a priori expectation about how an environmental condition will change in future), we can quantify the response capacity of a community to any possible environmental change scenario. That is, we can estimate the capacity of a system to respond under a range of realistic or extreme environmental changes, with utility for predicting future responses to even multifarious environmental change. Finally, we investigate determinants of response diversity within a multifarious environmental change context. We identify factors such as the diversity of species responses to each environmental variable, the relative influence of different environmental variables and temporal means of environmental variable values as important determinants of response diversity. In doing so, we take an important step towards measuring and understanding the insurance capacity of ecological communities exposed to multifarious environmental change.
Collapse
Affiliation(s)
- Francesco Polazzo
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Romana Limberger
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Samuel R. P.‐J. Ross
- Integrative Community Ecology UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaOkinawaJapan
| | - Gavin L. Simpson
- Department of Animal and Veterinary ScienceAarhus UniversityAarhusDenmark
| | - Owen L. Petchey
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Theoretical Sciences Visiting ProgramOkinawa Institute of Science and Technology Graduate UniversityOnnaOkinawaJapan
| |
Collapse
|
15
|
Yang S, Zu J, Feng Y, Ding L, Zhang Q, Zhang H. A functional-group-based perspective on the response of marine phytoplankton to mesoscale eddies. MARINE POLLUTION BULLETIN 2024; 207:116864. [PMID: 39180965 DOI: 10.1016/j.marpolbul.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
This study analyzed the response of marine phytoplankton to environmental changes induced by mesoscale warm eddies through the lens of functional groups, highlighting the complex interactions within the ecosystem. It was found that warm eddies significantly affected phytoplankton distribution, with cell abundance in the center being only 75.60 cells/L, compared to 1095.00 cells/L in the periphery. Vertical transport within warm eddies altered light conditions, affecting photophilic diatoms more, while increased temperatures favored the growth of warm-water dinoflagellates. This study also emphasized that ocean currents were significant factors, showing correlations with various functional groups and playing a key role in material transport and phytoplankton distribution. Additionally, the distinct responses of different functional groups to temperature and salinity underscored their unique adaptations to environmental changes. In periods without warm eddies, phytoplankton primarily congregated in shallower water layers.
Collapse
Affiliation(s)
- Shimin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Jiying Zu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Youfei Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lichi Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qinchao Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huiling Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
16
|
Heinrichs AL, Hardorp OJ, Hillebrand H, Schott T, Striebel M. Direct and indirect cumulative effects of temperature, nutrients, and light on phytoplankton growth. Ecol Evol 2024; 14:e70073. [PMID: 39091334 PMCID: PMC11289788 DOI: 10.1002/ece3.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Temperature and resource availability are pivotal factors influencing phytoplankton community structures. Numerous prior studies demonstrated their significant influence on phytoplankton stoichiometry, cell size, and growth rates. The growth rate, serving as a reflection of an organism's success within its environment, is linked to stoichiometry and cell size. Consequently, alterations in abiotic conditions affecting cell size or stoichiometry also exert indirect effects on growth. However, such results have their limitations, as most studies used a limited number of factors and factor levels which gives us limited insights into how phytoplankton respond to environmental conditions, directly and indirectly. Here, we tested for the generality of patterns found in other studies, using a combined multiple-factor gradient design and two single species with different size characteristics. We used a structural equation model (SEM) that allowed us to investigate the direct cumulative effects of temperature and resource availability (i.e., light, N and P) on phytoplankton growth, as well as their indirect effects on growth through changes in cell size and cell stoichiometry. Our results mostly support the results reported in previous research thus some effects can be identified as dominant effects. We identified rising temperature as the dominant driver for cell size reduction and increase in growth, and nutrient availability (i.e., N and P) as dominant factor for changes in cellular stoichiometry. However, indirect effects of temperature and resources (i.e., light and nutrients) on species' growth rates through cell size and cell stoichiometry differed across the two species suggesting different strategies to acclimate to its environment.
Collapse
Affiliation(s)
- Anna Lena Heinrichs
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| | - Onja Johannes Hardorp
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)Carl‐von‐Ossietzky University of OldenburgOldenburgGermany
- Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research [AWI]BremerhavenGermany
| | - Toni Schott
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and ScienceOldenburgGermany
| |
Collapse
|
17
|
Kazama T, Hayakawa K, Nagata T, Shimotori K, Imai A. Impact of climate change and oligotrophication on quality and quantity of lake primary production: A case study in Lake Biwa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172266. [PMID: 38583615 DOI: 10.1016/j.scitotenv.2024.172266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Global climate change and anthropogenic oligotrophication are expected to reshape the dynamics of primary production (PP) in aquatic ecosystems; however, few studies have explored their long-term effects. In theory, the PP of phytoplankton in Lake Biwa may decline over decades due to warming, heightened stratification, and anthropogenic oligotrophication. Furthermore, the PP of large phytoplankton, which are inedible to zooplankton, along with biomass-specific productivity (PBc), could decrease. In this study, data from 1976 to 2021 and active fluorometry measurements taken in 2020 and 2021 were evaluated. Quantitatively, the temporal dynamics of mean seasonal PP during 1971-2021 were assessed according to the carbon fixation rate to investigate relationships among environmental factors. Qualitatively, phytoplankton biomass, PP, and PBc were measured in two size fractions [edible (S) or inedible (L) for zooplankton] in 2020 and 2021, and the L:S balance for these three measures was compared between 1992 (low-temperature/high-nutrient conditions) and 2020-2021 (high-temperature/low-nutrient conditions) to assess seasonal dynamics. The results indicated that climate change and anthropogenic oligotrophication over the past 30 years have diminished Lake Biwa's PP since the 1990s, impacting the phenology of PP dynamics. However, the L:S balance in PP and PBc has exhibited minimal change between the data from 1992 and the 2020-2021 period. These findings suggest that, although climate change and oligotrophication may reduce overall PP, they may not markedly alter the inedible/edible phytoplankton balance in terms of PP and PBc. Instead, as total PP declines, the production of small edible phytoplankton may decrease proportionally, potentially affecting trophic transfer efficiency and material cycling in Lake Biwa.
Collapse
Affiliation(s)
- Takehiro Kazama
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan; Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan.
| | | | - Takamaru Nagata
- Lake Biwa Environmental Research Institute, Otsu, Shiga, Japan
| | - Koichi Shimotori
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan; Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Akio Imai
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan; Regional Environment Conservation Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Coblentz KE, Treidel LA, Biagioli FP, Fragel CG, Johnson AE, Thilakarathne DD, Yang L, DeLong JP. A framework for understanding climate change impacts through non-compensatory intra- and interspecific climate change responses. GLOBAL CHANGE BIOLOGY 2024; 30:e17378. [PMID: 38923246 DOI: 10.1111/gcb.17378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024]
Abstract
Understanding and predicting population responses to climate change is a crucial challenge. A key component of population responses to climate change are cases in which focal biological rates (e.g., population growth rates) change in response to climate change due to non-compensatory effects of changes in the underlying components (e.g., birth and death rates) determining the focal rates. We refer to these responses as non-compensatory climate change effects. As differential responses of biological rates to climate change have been documented in a variety of systems and arise at multiple levels of organization within and across species, non-compensatory effects may be nearly ubiquitous. Yet, how non-compensatory climate change responses combine and scale to influence the demographics of populations is often unclear and requires mapping them to the birth and death rates underlying population change. We provide a flexible framework for incorporating non-compensatory changes in upstream rates within and among species and mapping their consequences for additional downstream rates across scales to their eventual effects on population growth rates. Throughout, we provide specific examples and potential applications of the framework. We hope this framework helps to enhance our understanding of and unify research on population responses to climate change.
Collapse
Affiliation(s)
- Kyle E Coblentz
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lisa A Treidel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Francis P Biagioli
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Christina G Fragel
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Allison E Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Liuqingqing Yang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
19
|
Aslan IH, Pourtois JD, Chamberlin AJ, Mitchell KR, Mari L, Lwiza KM, Wood CL, Mordecai EA, Yu A, Tuan R, Palasio RGS, Monteiro AMV, Kirk D, Athni TS, Sokolow SH, N’Goran EK, Diakite NR, Ouattara M, Gatto M, Casagrandi R, Little DC, Ozretich RW, Norman R, Allan F, Brierley AS, Liu P, Pereira TA, De Leo GA. Re-assessing thermal response of schistosomiasis transmission risk: Evidence for a higher thermal optimum than previously predicted. PLoS Negl Trop Dis 2024; 18:e0011836. [PMID: 38857289 PMCID: PMC11207148 DOI: 10.1371/journal.pntd.0011836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/26/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3°C and 23.6-27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.
Collapse
Affiliation(s)
- Ibrahim Halil Aslan
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Julie D. Pourtois
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Andrew J. Chamberlin
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Kaitlyn R. Mitchell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| | - Lorenzo Mari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kamazima M. Lwiza
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, New York, United States of America
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | - Ao Yu
- Department of Earth System Science, Stanford University, Stanford, California, United States of America
| | - Roseli Tuan
- Pasteur Institute, São Paulo Health Public Office, São Paulo, Brazil
| | | | | | - Devin Kirk
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tejas S. Athni
- Department of Biology, Stanford University, Stanford, California, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susanne H. Sokolow
- Department of Biology, Stanford University, Stanford, California, United States of America
- Woods Institute for the Environment, Stanford University, Stanford, California, United States of America
| | | | | | | | - Marino Gatto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Renato Casagrandi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Reed W. Ozretich
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Rachel Norman
- Computing Science and Mathematics, University of Stirling, Stirling, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Andrew S. Brierley
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Ping Liu
- School of Marine and Atmospheric Sciences, Stony Brook University, New York, New York, United States of America
| | - Thiago A. Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Giulio A. De Leo
- Department of Biology, Stanford University, Stanford, California, United States of America
- Hopkins Marine Station, Stanford University, Pacific Grove, California, United States of America
| |
Collapse
|
20
|
Aslan IH, Pourtois JD, Chamberlin AJ, Mitchell KR, Mari L, Lwiza KM, Wood CL, Mordecai EA, Yu A, Tuan R, Palasio RGS, Monteiro AM, Kirk D, Athni TS, Sokolow SH, N’Goran EK, Diakite NR, Ouattara M, Gatto M, Casagrandi R, Little DC, Ozretich RW, Norman R, Allan F, Brierley AS, Liu P, Pereira TA, De Leo GA. Re-assessing thermal response of schistosomiasis transmission risk: evidence for a higher thermal optimum than previously predicted. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.04.24300851. [PMID: 38826336 PMCID: PMC11142288 DOI: 10.1101/2024.01.04.24300851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3 °C and 23.6-27.9 °C (95 % CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.
Collapse
Affiliation(s)
- Ibrahim Halil Aslan
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Julie D. Pourtois
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | | | - Kaitlyn R. Mitchell
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Lorenzo Mari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Kamazima M. Lwiza
- School of Marine and Atmospheric Sciences Stony Brook University, New York, NY, USA
| | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Ao Yu
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Roseli Tuan
- Pasteur Institute, São Paulo Health Public Office, São Paulo, SP, Brazil
| | | | | | - Devin Kirk
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Tejas S. Athni
- Department of Biology, Stanford University, Stanford, CA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susanne H. Sokolow
- Department of Biology, Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | | | - Nana R. Diakite
- Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d’Ivoire
| | - Mamadou Ouattara
- Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d’Ivoire
| | - Marino Gatto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Renato Casagrandi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | | | - Rachel Norman
- Computing Science and Mathematics, University of Stirling, Stirling, UK
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, UK
| | - Andrew S. Brierley
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Ping Liu
- School of Marine and Atmospheric Sciences Stony Brook University, New York, NY, USA
| | - Thiago A. Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Giulio A. De Leo
- Department of Biology, Stanford University, Stanford, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
21
|
Li Z, Gaitan-Espitia JD. Temperature-dependent toxicity of fluoxetine alters the thermal plasticity of marine diatoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172146. [PMID: 38569963 DOI: 10.1016/j.scitotenv.2024.172146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Anthropogenic activities have led to the emergence of pharmaceutical pollution in marine ecosystems, posing a significant threat to biodiversity in conjunction with global climate change. While the ecotoxicity of human drugs on aquatic organisms is increasingly recognized, their interactions with environmental factors, such as temperature, remain understudied. This research investigates the physiological effects of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on two diatom species, Phaeodactylum tricornutum and Thalassiosira weissflogii. Results demonstrate that fluoxetine significantly reduces growth rate and biomass production, concurrently affecting pigment contents and the thermal performance curve (TPC) of the diatoms. Fluoxetine reduces the synthesis of chlorophyll a (Chl a) and carotenoid (Car), indicating inhibition of photosynthesis and photoprotection. Furthermore, fluoxetine decreases the maximum growth rate (μmax) while increasing the optimum temperature (Topt) in both species, suggesting an altered thermal plasticity. This shift is attributed to the observed decrease in the inhibition rate of fluoxetine with rising temperatures. These findings emphasize the physiological impacts and ecological implications of fluoxetine on phytoplankton and underscore the significance of considering interactions between multiple environmental drivers when accessing the ecotoxicity of potential pollutants. The present study provides insights into crucial considerations for evaluating the impacts of pharmaceutical pollution on marine primary producers.
Collapse
Affiliation(s)
- Zhenzhen Li
- The SWIRE Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Juan Diego Gaitan-Espitia
- The SWIRE Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong.
| |
Collapse
|
22
|
Ahme A, Happe A, Striebel M, Cabrerizo MJ, Olsson M, Giesler J, Schulte-Hillen R, Sentimenti A, Kühne N, John U. Warming increases the compositional and functional variability of a temperate protist community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171971. [PMID: 38547992 DOI: 10.1016/j.scitotenv.2024.171971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.
Collapse
Affiliation(s)
- Antonia Ahme
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Anika Happe
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Schleusenstraße 1, 26382 Wilhelmshaven, Germany
| | - Marco J Cabrerizo
- Department of Ecology, University of Granada, Campus Fuentenueva s/n 1, 18071 Granada, Spain; Department of Ecology and Animal Biology, University of Vigo, Campus Lagoas Marcosende s/n, 36310 Vigo, Spain
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20A, 106 91 Stockholm, Sweden
| | - Jakob Giesler
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Ruben Schulte-Hillen
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Alexander Sentimenti
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79104 Freiburg i.Br., Germany
| | - Nancy Kühne
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Uwe John
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heersstraße 231, 26129 Oldenburg, Germany
| |
Collapse
|
23
|
Wolf KKE, Hoppe CJM, Rehder L, Schaum E, John U, Rost B. Heatwave responses of Arctic phytoplankton communities are driven by combined impacts of warming and cooling. SCIENCE ADVANCES 2024; 10:eadl5904. [PMID: 38758795 PMCID: PMC11100554 DOI: 10.1126/sciadv.adl5904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Marine heatwaves are increasing in frequency and intensity as climate change progresses, especially in the highly productive Arctic regions. Although their effects on primary producers will largely determine the impacts on ecosystem services, mechanistic understanding on phytoplankton responses to these extreme events is still very limited. We experimentally exposed Arctic phytoplankton assemblages to stable warming, as well as to repeated heatwaves, and measured temporally resolved productivity, physiology, and composition. Our results show that even extreme stable warming increases productivity, while the response to heatwaves depends on the specific scenario applied and is not predictable from stable warming responses. This appears to be largely due to the underestimated impact of the cool phase following a heatwave, which can be at least as important as the warm phase for the overall response. We show that physiological and compositional adjustments to both warm and cool phases drive overall phytoplankton productivity and need to be considered mechanistically to predict overall ecosystem impacts.
Collapse
Affiliation(s)
- Klara K. E. Wolf
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
- Environmental Genomics, University of Konstanz, Konstanz, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Clara J. M. Hoppe
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Linda Rehder
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Elisa Schaum
- Institute of Marine Ecosystem and Fishery Science, University of Hamburg, Hamburg, Germany
| | - Uwe John
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany
| | - Björn Rost
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- FB2, University of Bremen, Bremen, Germany
| |
Collapse
|
24
|
Walberg PB. Competition Increases Risk of Species Extinction during Extreme Warming. Am Nat 2024; 203:323-334. [PMID: 38358815 DOI: 10.1086/728672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractTemperature and interspecific competition are fundamental drivers of community structure in natural systems and can interact to affect many measures of species performance. However, surprisingly little is known about the extent to which competition affects extinction temperatures during extreme warming. This information is important for evaluating future threats to species from extreme high-temperature events and heat waves, which are rising in frequency and severity around the world. Using experimental freshwater communities of rotifers and ciliates, this study shows that interspecific competition can lower the threshold temperature at which local extinction occurs, reducing time to extinction during periods of sustained warming by as much as 2 weeks. Competitors may lower extinction temperatures by altering biochemical characteristics of the natural environment that affect temperature tolerance (e.g., levels of dissolved oxygen, nutrients, and metabolic wastes) or by accelerating population decline through traditional effects of resource depletion on life history parameters that affect population growth rates. The results suggest that changes in community structure in space and time could drive variability in upper thermal limits.
Collapse
|
25
|
Thomas MK, Ranjan R. Designing More Informative Multiple-Driver Experiments. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:513-536. [PMID: 37625127 DOI: 10.1146/annurev-marine-041823-095913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
For decades, multiple-driver/stressor research has examined interactions among drivers that will undergo large changes in the future: temperature, pH, nutrients, oxygen, pathogens, and more. However, the most commonly used experimental designs-present-versus-future and ANOVA-fail to contribute to general understanding or predictive power. Linking experimental design to process-based mathematical models would help us predict how ecosystems will behave in novel environmental conditions. We review a range of experimental designs and assess the best experimental path toward a predictive ecology. Full factorial response surface, fractional factorial, quadratic response surface, custom, space-filling, and especially optimal and sequential/adaptive designs can help us achieve more valuable scientific goals. Experiments using these designs are challenging to perform with long-lived organisms or at the community and ecosystem levels. But they remain our most promising path toward linking experiments and theory in multiple-driver research and making accurate, useful predictions.
Collapse
Affiliation(s)
- Mridul K Thomas
- Department F.-A. Forel for Environmental and Aquatic Sciences and Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland;
| | - Ravi Ranjan
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany;
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| |
Collapse
|
26
|
Sunday JM, Bernhardt JR, Harley CDG, O'Connor MI. Temperature dependence of competitive ability is cold-shifted compared to that of growth rate in marine phytoplankton. Ecol Lett 2024; 27:e14337. [PMID: 38069515 DOI: 10.1111/ele.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 01/31/2024]
Abstract
The effect of climate warming on community composition is expected to be contingent on competitive outcomes, yet approaches to projecting ecological outcomes often rely on measures of density-independent performance across temperatures. Recent theory suggests that the temperature response of competitive ability differs in shape from that of population growth rate. Here, we test this hypothesis empirically and find thermal performance curves of competitive ability in aquatic microorganisms to be systematically left-shifted and flatter compared to those of exponential growth rate. The minimum resource requirement for growth, R*-an inverse indicator of competitive ability-changes with temperature following a U-shaped pattern in all four species tested, contrasting from their left-skewed density-independent growth rate thermal performance curves. Our results provide new evidence that exploitative competitive success is highest at temperatures that are sub-optimal for growth, suggesting performance estimates of density-independent variables might underpredict performance in cooler competitive environments.
Collapse
Affiliation(s)
| | - Joey R Bernhardt
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Christopher D G Harley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary I O'Connor
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
González-Olalla JM, Powell JA, Brahney J. Dust storms increase the tolerance of phytoplankton to thermal and pH changes. GLOBAL CHANGE BIOLOGY 2024; 30:e17055. [PMID: 38273543 DOI: 10.1111/gcb.17055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Aquatic communities are increasingly subjected to multiple stressors through global change, including warming, pH shifts, and elevated nutrient concentrations. These stressors often surpass species tolerance range, leading to unpredictable consequences for aquatic communities and ecosystem functioning. Phytoplankton, as the foundation of the aquatic food web, play a crucial role in controlling water quality and the transfer of nutrients and energy to higher trophic levels. Despite the significance in understanding the effect of multiple stressors, further research is required to explore the combined impact of multiple stressors on phytoplankton. In this study, we used a combination of crossed experiment and mechanistic model to analyze the ecological and biogeochemical effects of global change on aquatic ecosystems and to forecast phytoplankton dynamics. We examined the effect of dust (0-75 mg L-1 ), temperature (19-27°C), and pH (6.3-7.3) on the growth rate of the algal species Scenedesmus obliquus. Furthermore, we carried out a geospatial analysis to identify regions of the planet where aquatic systems could be most affected by atmospheric dust deposition. Our mechanistic model and our empirical data show that dust exerts a positive effect on phytoplankton growth rate, broadening its thermal and pH tolerance range. Finally, our geospatial analysis identifies several high-risk areas including the highlands of the Tibetan Plateau, western United States, South America, central and southern Africa, central Australia as well as the Mediterranean region where dust-induced changes are expected to have the greatest impacts. Overall, our study shows that increasing dust storms associated with a more arid climate and land degradation can reverse the negative effects of high temperatures and low pH on phytoplankton growth, affecting the biogeochemistry of aquatic ecosystems and their role in the cycles of the elements and tolerance to global change.
Collapse
Affiliation(s)
| | - James A Powell
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Janice Brahney
- Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| |
Collapse
|
28
|
Bieg C, Vasseur D. Interactions between temperature and nutrients determine the population dynamics of primary producers. Ecol Lett 2024; 27:e14363. [PMID: 38235912 DOI: 10.1111/ele.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Global change is rapidly and fundamentally altering many of the processes regulating the flux of energy throughout ecosystems, and although researchers now understand the effect of temperature on key rates (such as aquatic primary productivity), the theoretical foundation needed to generate forecasts of biomass dynamics and extinction risk remains underdeveloped. We develop new theory that describes the interconnected effects of nutrients and temperature on phytoplankton populations and show that the thermal response of equilibrium biomass (i.e. carrying capacity) always peaks at a lower temperature than for productivity (i.e. growth rate). This mismatch is driven by differences in the thermal responses of growth, death, and per-capita impact on the nutrient pool, making our results highly general and applicable to widely used population models beyond phytoplankton. We further show that non-equilibrium dynamics depend on the pace of environmental change relative to underlying vital rates and that populations respond to variable environments differently at high versus low temperatures due to thermal asymmetries.
Collapse
Affiliation(s)
- Carling Bieg
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - David Vasseur
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Gralka M. Searching for Principles of Microbial Ecology Across Levels of Biological Organization. Integr Comp Biol 2023; 63:1520-1531. [PMID: 37280177 PMCID: PMC10755194 DOI: 10.1093/icb/icad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Microbial communities play pivotal roles in ecosystems across different scales, from global elemental cycles to household food fermentations. These complex assemblies comprise hundreds or thousands of microbial species whose abundances vary over time and space. Unraveling the principles that guide their dynamics at different levels of biological organization, from individual species, their interactions, to complex microbial communities, is a major challenge. To what extent are these different levels of organization governed by separate principles, and how can we connect these levels to develop predictive models for the dynamics and function of microbial communities? Here, we will discuss recent advances that point towards principles of microbial communities, rooted in various disciplines from physics, biochemistry, and dynamical systems. By considering the marine carbon cycle as a concrete example, we demonstrate how the integration of levels of biological organization can offer deeper insights into the impact of increasing temperatures, such as those associated with climate change, on ecosystem-scale processes. We argue that by focusing on principles that transcend specific microbiomes, we can pave the way for a comprehensive understanding of microbial community dynamics and the development of predictive models for diverse ecosystems.
Collapse
Affiliation(s)
- Matti Gralka
- Systems Biology lab, Amsterdam Institute for Life and Environment (A-LIFE), Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
30
|
Li J, Hong T, Yu D, Che K, Chen L. Fiber laser cascaded with an MZ interferometer for simultaneous measurement of temperature and refractive index. APPLIED OPTICS 2023; 62:9119-9124. [PMID: 38108749 DOI: 10.1364/ao.505516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/03/2023] [Indexed: 12/19/2023]
Abstract
A fiber laser with strong spontaneous emission and high signal-to-noise ratio is proposed and experimentally demonstrated for simultaneous measurement of temperature and refractive index (RI). By cascading a single MZ interferometer, the power and the emission spectrum of the fiber laser are modulated by surrounding temperature and RI. The dual parameters are determined from the measured power change and interference dip shift. A temperature sensitivity of 0.146 dB/°C (-0.06n m/∘ C) in the range from 20°C to 90°C at an RI of 1.3910 and an RI sensitivity of -156.07d B/R I U (153.70 nm/RIU) in the range from 1.3333 to 1.3910 at 20°C are achieved.
Collapse
|
31
|
Wang Y, Cui Z, Ding D, Yang Q, Zhu L, Qu K, Sun J, Wei Y. Environmental forcing of phytoplankton carbon-to-diversity ratio and carbon-to-chlorophyll ratio: A case study in Jiaozhou Bay, the Yellow Sea. MARINE POLLUTION BULLETIN 2023; 197:115765. [PMID: 37988882 DOI: 10.1016/j.marpolbul.2023.115765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
The relationships between phytoplankton carbon (C) biomass and diversity (i.e., C-to-H' ratio) and chlorophyll a (i.e., C-to-Chl a ratio) are good indicators of marine ecosystem functioning and stability. Here we conducted four cruises spanning 2 years in Jiaozhou Bay to explore the dynamics of C-to-H' and C-to-Chl a ratios. The results showed that the phytoplankton C biomass and diversity were dominated by diatoms, followed by dinoflagellates. The average C-to-H' ratio ranged from 84.10 to 912.17, with high values occurring in the northern region of the bay. In contrast, the average C-to-Chl a ratio ranged between 15.55 and 89.47, and high values primarily appeared in the northern or northeastern part of the bay. In addition, the redundancy analysis showed that temperature and phosphate (DIP) were significantly correlated with both ratios in most cases, indicating that temperature and DIP may be key factors affecting the dynamics of C-to-H' and C-to-Chl a ratios.
Collapse
Affiliation(s)
- Yingzhe Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Dongsheng Ding
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Qian Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lin Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China
| | - Yuqiu Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| |
Collapse
|
32
|
Giesler JK, Harder T, Wohlrab S. Microbiome and photoperiod interactively determine thermal sensitivity of polar and temperate diatoms. Biol Lett 2023; 19:20230151. [PMID: 37964575 PMCID: PMC10646449 DOI: 10.1098/rsbl.2023.0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
The effect of temperature on ectothermic organisms in the context of climate change has long been considered in isolation (i.e. as a single driver). This is challenged by observations demonstrating that temperature-dependent growth is correlated to further factors. However, little is known how the chronobiological history of an organism reflected in its adaptation to re-occurring cyclic patterns in its environment (e.g. annual range of photoperiods in its habitat) and biotic interactions with its microbiome, contribute to shaping its realized niche. To address this, we conducted a full-factorial microcosm multi-stressor experiment with the marine diatoms Thalassiosira gravida (polar) and Thalassiosira rotula (temperate) across multiple levels of temperature (4°C; 9°C; 13.5°C) and photoperiod (4 h; 16 h; 24 h), both in the presence or absence of their microbiomes. While temperature-dependent growth of the temperate diatom was constrained by short and long photoperiods, the polar diatom coped with a 24 h photoperiod up to its thermal optimum (9°C). The algal microbiomes particularly supported host growth at the margins of their respective fundamental niches except for the combination of the warmest temperature tested at 24 h photoperiod. Overall, this study demonstrates that temperature tolerances may have evolved interactively and that the mutualistic effect of the microbiome can only be determined once the multifactorial abiotic niche is defined.
Collapse
Affiliation(s)
- Jakob K. Giesler
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Tilmann Harder
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Marine Chemistry, Department of Chemistry and Biology, University of Bremen, 28359 Bremen, Germany
| | - Sylke Wohlrab
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129 Oldenburg, Germany
| |
Collapse
|
33
|
Ahn SH, Glibert PM, Heil CA. In hot water: Interactions of temperature, nitrogen form and availability and photosynthetic and nitrogen uptake responses in natural Karenia brevis populations. HARMFUL ALGAE 2023; 129:102519. [PMID: 37951619 DOI: 10.1016/j.hal.2023.102519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
During 2020-2021, an unusually prolonged bloom of the toxigenic dinoflagellate Karenia brevis persisted for more than 12 months along the Gulf coast of Florida, resulting in severe environmental effects. Motivated by the possibility that unusual nutrient conditions existed during summer 2021, the short-term interactions of temperature, nitrogen (N) forms (ammonium (NH4+), nitrate (NO3-), and urea) and availability on photosynthesis-irradiance responses and N uptake rates were examined in summer 2021 and compared to such responses from the earlier winter. Winter samples were exposed to temperatures of 15, 20, 25, 30 °C while summer samples were incubated at 15, 25, 30, 33 °C, representing the maximum range the cells might experience throughout the water column due to daytime surface heating or extreme weather events. Depending on thermal history of the cells, photosynthetic performance differed when cells were exposed to the same temperature, showing a capacity for thermal acclimation in this species. Although blooms generally do not persist throughout the summer, bloom biomass was remarkably higher in summer than during the winter. However, most of the photosynthetic parameters and N uptake rates, as well as total carbon (C) and N cell-1 were significantly lower in the summer populations, showing that the summer populations were photosynthetically and nutritionally stressed. When the summer cells were treated with urea, however, uptake rates and total C and N cell-1 were higher than with the other N substrates, especially in warmer waters, showing differential thermal responses depending on N forms.
Collapse
Affiliation(s)
- So Hyun Ahn
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Road, Cambridge, MD 21613, United States.
| | - Patricia M Glibert
- Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Road, Cambridge, MD 21613, United States
| | - Cynthia A Heil
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, United States
| |
Collapse
|
34
|
Bazin S, Hemmer‐Brepson C, Logez M, Sentis A, Daufresne M. Distinct impacts of feeding frequency and warming on life history traits affect population fitness in vertebrate ectotherms. Ecol Evol 2023; 13:e10770. [PMID: 38020679 PMCID: PMC10667609 DOI: 10.1002/ece3.10770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Body size shifts in ectotherms are mostly attributed to the Temperature Size Rule (TSR) stating that warming speeds up initial growth rate but leads to smaller size when food does not limit growth. Investigating the links between temperature, growth, and life history traits is key to understand the adaptive value of TSR, which might be context dependent. In particular, global warming can affect food quantity or quality which is another major driver of growth, fecundity, and survival. However, we have limited information on how temperature and food jointly influence life history traits in vertebrate predators and how changes in different life history traits combine to influence fitness and population demography. We investigate (1) whether TSR is maintained under different food conditions, (2) if food exacerbates or dampens the effects of temperature on growth and life history traits and (3) if food influences the adaptive value of TSR. We combine experiments on the medaka with Integral Projection Models to scale from life history traits to fitness consequences. Our results confirm that warming triggers a higher initial growth rate and a lower adult size, reduces generation time and increases mean fitness. A lower level of food exacerbates the effects of warming on growth trajectories. Although lower feeding frequency increased survival and decreased fecundity, it did not influence the effects of warming on fish development rates, fecundity, and survival. In contrast, feeding frequency influenced the adaptive value of TSR, as, under intermittent feeding, generation time decreased faster with warming and the increase in growth rate with warming was weaker compared to continuously fed fish. These results are of importance in the context of global warming as resources are expected to change with increasing temperatures but, surprisingly, our results suggest that feeding frequency have a lower impact on fitness at high temperature.
Collapse
Affiliation(s)
- Simon Bazin
- INRAE, Univ. Savoie Mont Blanc, CARRTELThonon‐les‐BainsFrance
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
| | | | - Maxime Logez
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
- INRAE, RIVERLYVilleurbanne CedexFrance
| | - Arnaud Sentis
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
| | | |
Collapse
|
35
|
Jin L, Chen H, Matsuzaki SIS, Shinohara R, Wilkinson DM, Yang J. Tipping points of nitrogen use efficiency in freshwater phytoplankton along trophic state gradient. WATER RESEARCH 2023; 245:120639. [PMID: 37774538 DOI: 10.1016/j.watres.2023.120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Eutrophication and harmful algal blooms have severe effects on water quality and biodiversity in lakes and reservoirs. Ecological regime shifts of phytoplankton blooms are generally thought to be driven by the rapidly rising nutrient use efficiency of bloom-forming species over short periods, and often exhibit nonlinear dynamics. Regime shifts of trophic state, eutrophication, stratification, and clear or turbid waters are well-studied topics in aquatic ecology. However, information on the prevalence of regime shifts in relationships between trophic states and phytoplankton resource transfer efficiencies in ecosystems is still lacking. Here, we provided a first insight into regime shifts in nitrogen use efficiency of phytoplankton along the trophic state gradient. We explored the regime shifts of phytoplankton resource use efficiency and detected the tipping points by combining four temporal or spatial datasets from tropical to temperate zones in Asia and Europe. We first observed significant abrupt transitions (abruptness > 1) in phytoplankton nitrogen use efficiency along the trophic state gradient. The tipping point values were lower in subtropical/tropical waterbodies (mesotrophic states; TSIc: around 50) than those in temperate zones (eutrophic states; TSIc: 60-70). The regime shifts significantly reduced the primary production transfer efficiency via zooplankton (from 0.15 ± 0.03 to 0.03 ± 0.01; mean ± standard error) in the aquatic food web. Nitrogen-fixing filamentous cyanobacteria can drive eutrophication under mesotrophic state. Our findings imply that the time-window of opportunity for harmful algae prevention and control in lakes and reservoirs is earlier in subtropical/tropical regions.
Collapse
Affiliation(s)
- Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shin-Ichiro S Matsuzaki
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ryuichiro Shinohara
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - David M Wilkinson
- School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
36
|
De Laender F, Carpentier C, Carletti T, Song C, Rumschlag SL, Mahon MB, Simonin M, Meszéna G, Barabás G. Mean species responses predict effects of environmental change on coexistence. Ecol Lett 2023; 26:1535-1547. [PMID: 37337910 DOI: 10.1111/ele.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Environmental change research is plagued by the curse of dimensionality: the number of communities at risk and the number of environmental drivers are both large. This raises the pressing question if a general understanding of ecological effects is achievable. Here, we show evidence that this is indeed possible. Using theoretical and simulation-based evidence for bi- and tritrophic communities, we show that environmental change effects on coexistence are proportional to mean species responses and depend on how trophic levels on average interact prior to environmental change. We then benchmark our findings using relevant cases of environmental change, showing that means of temperature optima and of species sensitivities to pollution predict concomitant effects on coexistence. Finally, we demonstrate how to apply our theory to the analysis of field data, finding support for effects of land use change on coexistence in natural invertebrate communities.
Collapse
Grants
- 2.5020.11, GEQ U.G006.15, 1610468, RW/GEQ2016 et U FNRS-FRFC
- NKFI-123796 Hungarian National Research, Development and Innovation Offi
- 2.5020.11, GEQ U.G006.15, 1610468, RW/GEQ2016 et U Université de Namur
- NARC fellowsh Université de Namur
- 2.5020.11, GEQ U.G006.15, 1610468, RW/GEQ2016 et U Waalse Gewest
Collapse
Affiliation(s)
- Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, naXys, ILEE, University of Namur, Namur, Belgium
| | - Camille Carpentier
- Research Unit of Environmental and Evolutionary Biology, naXys, ILEE, University of Namur, Namur, Belgium
| | - Timoteo Carletti
- Department of Mathematics and naXys, University of Namur, Namur, Belgium
| | - Chuliang Song
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Samantha L Rumschlag
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Michael B Mahon
- Department of Biological Sciences, Environmental Change Initiative, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Marie Simonin
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Géza Meszéna
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - György Barabás
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Division of Ecological and Environmental Modeling, Linköping University, Linköping, Sweden
| |
Collapse
|
37
|
Barton S, Padfield D, Masterson A, Buckling A, Smirnoff N, Yvon-Durocher G. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming. GLOBAL CHANGE BIOLOGY 2023; 29:5261-5275. [PMID: 37395481 DOI: 10.1111/gcb.16827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
A number of experimental studies have demonstrated that phytoplankton can display rapid thermal adaptation in response to warmed environments. While these studies provide insight into the evolutionary responses of single species, they tend to employ different experimental techniques. Consequently, our ability to compare the potential for thermal adaptation across different, ecologically relevant, species remains limited. Here, we address this limitation by conducting simultaneous long-term warming experiments with the same experimental design on clonal isolates of three phylogenetically diverse species of marine phytoplankton; the cyanobacterium Synechococcus sp., the prasinophyte Ostreococcus tauri and the diatom Phaeodoactylum tricornutum. Over the same experimental time period, we observed differing levels of thermal adaptation in response to stressful supra-optimal temperatures. Synechococcus sp. displayed the greatest improvement in fitness (i.e., growth rate) and thermal tolerance (i.e., temperature limits of growth). Ostreococcus tauri was able to improve fitness and thermal tolerance, but to a lesser extent. Finally, Phaeodoactylum tricornutum showed no signs of adaptation. These findings could help us understand how the structure of phytoplankton communities may change in response to warming, and possible biogeochemical implications, as some species show relatively more rapid adaptive shifts in their thermal tolerance.
Collapse
Affiliation(s)
- Samuel Barton
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Daniel Padfield
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Abigail Masterson
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| |
Collapse
|
38
|
Seifert M, Nissen C, Rost B, Vogt M, Völker C, Hauck J. Interaction matters: Bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change. GLOBAL CHANGE BIOLOGY 2023; 29:4234-4258. [PMID: 37265254 DOI: 10.1111/gcb.16799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
Phytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large-scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple-driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual-driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta-analysis on multiple-driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present-day and future high-emission (SSP5-8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%-6%), interactive driver effects are group-specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (-8.1% with interactions vs. no change without interactions). Small-phytoplankton biomass, by contrast, decreases less with on-going climate change when the model accounts for driver interactions (-5.0% vs. -9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of -10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (-7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.
Collapse
Affiliation(s)
- Miriam Seifert
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Cara Nissen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Björn Rost
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- FB2, Universität Bremen, Bremen, Germany
| | - Meike Vogt
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Christoph Völker
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Judith Hauck
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
39
|
Turnham KE, Aschaffenburg MD, Pettay DT, Paz-García DA, Reyes-Bonilla H, Pinzón J, Timmins E, Smith RT, McGinley MP, Warner ME, LaJeunesse TC. High physiological function for corals with thermally tolerant, host-adapted symbionts. Proc Biol Sci 2023; 290:20231021. [PMID: 37465983 PMCID: PMC10354691 DOI: 10.1098/rspb.2023.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The flexibility to associate with more than one symbiont may considerably expand a host's niche breadth. Coral animals and dinoflagellate micro-algae represent one of the most functionally integrated and widespread mutualisms between two eukaryotic partners. Symbiont identity greatly affects a coral's ability to cope with extremes in temperature and light. Over its broad distribution across the Eastern Pacific, the ecologically dominant branching coral, Pocillopora grandis, depends on mutualisms with the dinoflagellates Durusdinium glynnii and Cladocopium latusorum. Measurements of skeletal growth, calcification rates, total mass increase, calyx dimensions, reproductive output and response to thermal stress were used to assess the functional performance of these partner combinations. The results show both host-symbiont combinations displayed similar phenotypes; however, significant functional differences emerged when exposed to increased temperatures. Negligible physiological differences in colonies hosting the more thermally tolerant D. glynnii refute the prevailing view that these mutualisms have considerable growth tradeoffs. Well beyond the Eastern Pacific, pocilloporid colonies with D. glynnii are found across the Pacific in warm, environmentally variable, near shore lagoonal habitats. While rising ocean temperatures threaten the persistence of contemporary coral reefs, lessons from the Eastern Pacific indicate that co-evolved thermally tolerant host-symbiont combinations are likely to expand ecologically and spread geographically to dominate reef ecosystems in the future.
Collapse
Affiliation(s)
- Kira E. Turnham
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - D. Tye Pettay
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902,USA
| | - David A. Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur 23096, México
| | - Héctor Reyes-Bonilla
- Universidad Autónoma de Baja California Sur, Carretera al Sur 5.5, La Paz, C.P 23080, Mexico
| | - Jorge Pinzón
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ellie Timmins
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Robin T. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Todd C. LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
40
|
Álvarez‐Codesal S, Faillace CA, Garreau A, Bestion E, Synodinos AD, Montoya JM. Thermal mismatches explain consumer-resource dynamics in response to environmental warming. Ecol Evol 2023; 13:e10179. [PMID: 37325725 PMCID: PMC10264966 DOI: 10.1002/ece3.10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Changing temperatures will impact food webs in ways we yet to fully understand. The thermal sensitivities of various physiological and ecological processes differ across organisms and study systems, hindering the generation of accurate predictions. One step towards improving this picture is to acquire a mechanistic understanding of how temperature change impacts trophic interactions before we can scale these insights up to food webs and ecosystems. Here, we implement a mechanistic approach centered on the thermal sensitivity of energetic balances in pairwise consumer-resource interactions, measuring the thermal dependence of energetic gain and loss for two resource and one consumer freshwater species. Quantifying the balance between energy gain and loss, we determined the temperature ranges where the balance decreased for each species in isolation (intraspecific thermal mismatch) and where a mismatch in the balance between consumer and resource species emerged (interspecific thermal mismatch). The latter reveals the temperatures for which consumer and resource energetic balances respond either differently or in the same way, which in turn informs us of the strength of top-down control. We found that warming improved the energetic balance for both resources, but reduces it for the consumer, due to the stronger thermal sensitivity of respiration compared to ingestion. The interspecific thermal mismatch yielded different patterns between the two consumer-resource pairs. In one case, the consumer-resource energetic balance became weaker throughout the temperature gradient, and in the other case it produced a U-shaped response. By also measuring interaction strength for these interaction pairs, we demonstrated the correspondence of interspecific thermal mismatches and interaction strength. Our approach accounts for the energetic traits of both consumer and resource species, which combined produce a good indication of the thermal sensitivity of interaction strength. Thus, this novel approach links thermal ecology with parameters typically explored in food-web studies.
Collapse
Affiliation(s)
| | - Cara A. Faillace
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
- Present address:
Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Elvire Bestion
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| | | | - José M. Montoya
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| |
Collapse
|
41
|
Dedman CJ, Barton S, Fournier M, Rickaby REM. The cellular response to ocean warming in Emiliania huxleyi. Front Microbiol 2023; 14:1177349. [PMID: 37256052 PMCID: PMC10225680 DOI: 10.3389/fmicb.2023.1177349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Marine phytoplankton contribute substantially to the global flux of carbon from the atmosphere to the deep ocean. Sea surface temperatures will inevitably increase in line with global climate change, altering the performance of marine phytoplankton. Differing sensitivities of photosynthesis and respiration to temperature, will likely shift the strength of the future oceanic carbon sink. To further clarify the molecular mechanisms driving these alterations in phytoplankton function, shotgun proteomic analysis was carried out on the globally-occurring coccolithophore Emiliania huxleyi exposed to moderate- (23°C) and elevated- (28°C) warming. Compared to the control (17°C), growth of E. huxleyi increased under elevated temperatures, with higher rates recorded under moderate- relative to elevated- warming. Proteomic analysis revealed a significant modification of the E. huxleyi cellular proteome as temperatures increased: at lower temperature, ribosomal proteins and photosynthetic machinery appeared abundant, as rates of protein translation and photosynthetic performance are restricted by low temperatures. As temperatures increased, evidence of heat stress was observed in the photosystem, characterized by a relative down-regulation of the Photosystem II oxygen evolving complex and ATP synthase. Acclimation to elevated warming (28°C) revealed a substantial alteration to carbon metabolism. Here, E. huxleyi made use of the glyoxylate cycle and succinate metabolism to optimize carbon use, maintain growth and maximize ATP production in heat-damaged mitochondria, enabling cultures to maintain growth at levels significantly higher than those recorded in the control (17°C). Based on the metabolic changes observed, we can predict that warming may benefit photosynthetic carbon fixation by E. huxleyi in the sub-optimal to optimal thermal range. Past the thermal optima, increasing rates of respiration and costs of repair will likely constrain growth, causing a possible decline in the contribution of this species to the oceanic carbon sink depending on the evolvability of these temperature thresholds.
Collapse
Affiliation(s)
- Craig J. Dedman
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Samuel Barton
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Advanced Proteomics Facility, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
42
|
Godoy RFB, Trevisan E, Battistelli AA, Crisigiovanni EL, do Nascimento EA, da Fonseca Machado AL. Does water temperature influence in microcystin production? A case study of Billings Reservoir, São Paulo, Brazil. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 255:104164. [PMID: 36848739 DOI: 10.1016/j.jconhyd.2023.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
We investigated the relationship between some water quality parameters and microcystin, chlorophyll-a, and cyanobacteria in different conditions of water temperature. We also proposed to predict chlorophyll-a concentration in the Billings Reservoir using three machine learning techniques. Our results indicate that in the condition of higher water temperatures with high density of cyanobacteria, microcystin concentration can increase severely (>102 μg/L). Besides the magnitude observed in higher concentrations, in water temperatures above 25.3 °C (classified as high extreme event), higher frequencies of inadequate values of microcystin (87.5%), chlorophyll-a (70%), and cyanobacteria (82.5%) compared to cooler temperatures (<19.6 °C) were observed. The prediction of chlorophyll-a in Billings Reservoir presented good results (0.76 ≤ R2 ≤ 0.82; 0.17 ≤ RMSE≤0.20) using water temperature, total phosphorus, and cyanobacteria as predictors, with the best result using Support Vector Machine.
Collapse
Affiliation(s)
- Rodrigo Felipe Bedim Godoy
- Centre de recherche sur les interactions bassins versants-écosystèmes aquatiques (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada; Interuniversity Research Group in Limnology (GRIL), Université de Montréal, Montreal, Quebec, Canada.
| | - Elias Trevisan
- Instituto Federal do Paraná, Campus União da Vitória, União da Vitória, Paraná, Brazil
| | - André Aguiar Battistelli
- Department of Environmental Engineering, Midwestern State University (UNICENTRO), Maria Roza de Almeida Street, Irati, Paraná CEP 84505-677, Brazil
| | | | - Elynton Alves do Nascimento
- Department of Environmental Engineering, Midwestern State University (UNICENTRO), Maria Roza de Almeida Street, Irati, Paraná CEP 84505-677, Brazil.
| | | |
Collapse
|
43
|
Chen Y, Zheng M, Jiang J, Hu W, Xu N, Li Y. Enhancement of growth in Ulva prolifera by diurnal temperature difference combined with nitrogen enrichment. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105905. [PMID: 36796112 DOI: 10.1016/j.marenvres.2023.105905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Many studies have documented the responses of Ulva prolifera to environmental factors. However, the diurnal temperature differences and interactive effects of eutrophication are usually ignored. In this study, we selected U. prolifera as material to examine the effects of diurnal temperature on growth, photosynthesis and primary metabolites under two nitrogen levels. We cultured U. prolifera seedlings under two temperature conditions (22-22 °C: 22 °C during day and night; 22-18 °C: 22 °C during day and 18 °C at night) and two nitrogen levels (LN: 0.1235 mg L-1; HN: and 0.6 mg L-1). The results showed that 1) HN-grown thalli had higher growth rates, the chlorophyll a (Chl a) content, photosynthesis, superoxide dismutase (SOD) activity, soluble sugar, and protein contents under the two temperature conditions; 2) The growth of thalli was enhanced by 22-18 °C condition compared with 22-22 °C, but the increase was only significant under HN condition; 3) 22-18°C-grown thalli had a lower net photosynthetic rate, maximal quantum yield (Fv/Fm), and dark respiration rate (Rd) than those grown at 22-22 °C; 4) No significant effects of diurnal temperature difference were detected on the SOD activity and soluble sugar content under LN and HN conditions, while the soluble protein content was enhanced by 22-18 °C under LN condition; 5) The nitrogen affected metabolite variations in U. prolifera more significantly than the diurnal temperature difference. The metabolite levels in the tricarboxylic acid cycle, amino acid, phospholipids, pyrimidine, and purine metabolism pathways increased under HN condition. The levels of glutamine, γ-aminobutyrate (GABA), 1-aminocyclopropane-1-carboxylate (ACC), glutamic acid, citrulline, glucose, sucrose, stachyose, and maltotriose were enhanced by 22-18 °C, especially under HN condition. These results identify the potential role of the diurnal temperature difference and offer new insight into the molecular mechanisms for U. prolifera responses to eutrophication and temperature.
Collapse
Affiliation(s)
- Yili Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Mingshan Zheng
- Key Laboratory of Marine Biotechnology of Zhejiang Province, National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Angel Yeast Co., Ltd, Yichang, 443000, China
| | - Jianan Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wei Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, National Engineering Research Laboratory of Marine Biotechnology and Engineering, Key Laboratory of Applied Marine Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
44
|
Elhabashy A, Li J, Sokolova E. Water quality modeling of a eutrophic drinking water source: Impact of future climate on Cyanobacterial blooms. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
45
|
van Moorsel SJ, Thébault E, Radchuk V, Narwani A, Montoya JM, Dakos V, Holmes M, De Laender F, Pennekamp F. Predicting effects of multiple interacting global change drivers across trophic levels. GLOBAL CHANGE BIOLOGY 2023; 29:1223-1238. [PMID: 36461630 PMCID: PMC7614140 DOI: 10.1111/gcb.16548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 05/26/2023]
Abstract
Global change encompasses many co-occurring anthropogenic drivers, which can act synergistically or antagonistically on ecological systems. Predicting how different global change drivers simultaneously contribute to observed biodiversity change is a key challenge for ecology and conservation. However, we lack the mechanistic understanding of how multiple global change drivers influence the vital rates of multiple interacting species. We propose that reaction norms, the relationships between a driver and vital rates like growth, mortality, and consumption, provide insights to the underlying mechanisms of community responses to multiple drivers. Understanding how multiple drivers interact to affect demographic rates using a reaction-norm perspective can improve our ability to make predictions of interactions at higher levels of organization-that is, community and food web. Building on the framework of consumer-resource interactions and widely studied thermal performance curves, we illustrate how joint driver impacts can be scaled up from the population to the community level. A simple proof-of-concept model demonstrates how reaction norms of vital rates predict the prevalence of driver interactions at the community level. A literature search suggests that our proposed approach is not yet used in multiple driver research. We outline how realistic response surfaces (i.e., multidimensional reaction norms) can be inferred by parametric and nonparametric approaches. Response surfaces have the potential to strengthen our understanding of how multiple drivers affect communities as well as improve our ability to predict when interactive effects emerge, two of the major challenges of ecology today.
Collapse
Affiliation(s)
- Sofia J. van Moorsel
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Department of GeographyUniversity of ZurichZurichSwitzerland
| | - Elisa Thébault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES‐Paris)ParisFrance
| | - Viktoriia Radchuk
- Department of Ecological DynamicsLeibniz Institute for Zoo and Wildlife ResearchBerlinGermany
| | - Anita Narwani
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | - José M. Montoya
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| | - Vasilis Dakos
- Institut des Sciences de l'Evolution de Montpellier (ISEM)Université de Montpellier, IRD, EPHEMontpellierFrance
| | - Mark Holmes
- Namur Institute for Complex Systems (naXys), Institute of Life, Earth, and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of NamurNamurBelgium
| | - Frederik De Laender
- Namur Institute for Complex Systems (naXys), Institute of Life, Earth, and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of NamurNamurBelgium
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
46
|
Siegel P, Baker KG, Low‐Décarie E, Geider RJ. Phytoplankton competition and resilience under fluctuating temperature. Ecol Evol 2023; 13:e9851. [PMID: 36950368 PMCID: PMC10025077 DOI: 10.1002/ece3.9851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/03/2023] [Accepted: 02/02/2023] [Indexed: 03/21/2023] Open
Abstract
Environmental variability is an inherent feature of natural systems which complicates predictions of species interactions. Primarily, the complexity in predicting the response of organisms to environmental fluctuations is in part because species' responses to abiotic factors are non-linear, even in stable conditions. Temperature exerts a major control over phytoplankton growth and physiology, yet the influence of thermal fluctuations on growth and competition dynamics is largely unknown. To investigate the limits of coexistence in variable environments, stable mixed cultures with constant species abundance ratios of the marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana, were exposed to different temperature fluctuation regimes (n = 17) under high and low nitrogen (N) conditions. Here we demonstrate that phytoplankton exhibit substantial resilience to temperature variability. The time required to observe a shift in the species abundance ratio decreased with increasing fluctuations, but coexistence of the two model species under high N conditions was disrupted only when amplitudes of temperature fluctuation were high (±8.2°C). N limitation caused the thermal amplitude for disruption of species coexistence to become lower (±5.9°C). Furthermore, once stable conditions were reinstated, the two species differed in their ability to recover from temperature fluctuations. Our findings suggest that despite the expectation of unequal effect of fluctuations on different competitors, cycles in environmental conditions may reduce the rate of species replacement when amplitudes remain below a certain threshold. Beyond these thresholds, competitive exclusion could, however, be accelerated, suggesting that aquatic heatwaves and N availability status are likely to lead to abrupt and unpredictable restructuring of phytoplankton community composition.
Collapse
Affiliation(s)
- Philipp Siegel
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
| | - Kirralee G. Baker
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
- Present address:
Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTasmaniaAustralia
| | - Etienne Low‐Décarie
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
- Present address:
Biological Informatics Center of Expertise, Agriculture and Agrifoods Canada, Government of CanadaMontrealQuebecCanada
| | - Richard J. Geider
- School of Life SciencesUniversity of Essex Colchester CampusColchesterUK
| |
Collapse
|
47
|
Parker AL, Albright A, Kingsolver JG, Legault G. Predicting age and mass at maturity from feeding behavior and diet in Manduca sexta: An empirical test of a life history model. Ecol Evol 2023; 13:e9848. [PMID: 36844672 PMCID: PMC9944182 DOI: 10.1002/ece3.9848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023] Open
Abstract
Feeding for most animals involves bouts of active ingestion alternating with bouts of no ingestion. In insects, the temporal patterning of bouts varies widely with resource quality and is known to affect growth, development time, and fitness. However, the precise impacts of resource quality and feeding behavior on insect life history traits are poorly understood. To explore and better understand the connections between feeding behavior, resource quality, and insect life history traits, we combined laboratory experiments with a recently proposed mechanistic model of insect growth and development for a larval herbivore, Manduca sexta. We ran feeding trials for 4th and 5th instar larvae across different diet types (two hostplants and artificial diet) and used these data to parameterize a joint model of age and mass at maturity that incorporates both insect feeding behavior and hormonal activity. We found that the estimated durations of both feeding and nonfeeding bouts were significantly shorter on low-quality than on high-quality diets. We then explored how well the fitted model predicted historical out-of-sample data on age and mass of M. sexta. We found that the model accurately described qualitative outcomes for the out-of-sample data, notably that a low-quality diet results in reduced mass and later age at maturity compared with high-quality diets. Our results clearly demonstrate the importance of diet quality on multiple components of insect feeding behavior (feeding and nonfeeding) and partially validate a joint model of insect life history. We discuss the implications of these findings with respect to insect herbivory and discuss ways in which our model could be improved or extended to other systems.
Collapse
Affiliation(s)
- Anna L. Parker
- University of North Carolina – Chapel HillChapel HillNorth CarolinaUSA
| | - Anna Albright
- University of North Carolina – Chapel HillChapel HillNorth CarolinaUSA
| | | | - Geoffrey Legault
- University of North Carolina – Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
48
|
Litchman E, Thomas MK. Are we underestimating the ecological and evolutionary effects of warming? Interactions with other environmental drivers may increase species vulnerability to high temperatures. OIKOS 2022. [DOI: 10.1111/oik.09155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Elena Litchman
- Kellogg Biological Station, Michigan State Univ. Hickory Corners MI USA
- Dept of Global Ecology, Carnegie Inst. for Science Stanford CA USA
| | - Mridul K. Thomas
- Dept F.‐A. Forel for Environmental and Aquatic Sciences, Univ. of Geneva Geneva Switzerland
| |
Collapse
|
49
|
Lepori‐Bui M, Paight C, Eberhard E, Mertz CM, Moeller HV. Evidence for evolutionary adaptation of mixotrophic nanoflagellates to warmer temperatures. GLOBAL CHANGE BIOLOGY 2022; 28:7094-7107. [PMID: 36107442 PMCID: PMC9828162 DOI: 10.1111/gcb.16431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/19/2022] [Indexed: 05/28/2023]
Abstract
Mixotrophs, organisms that combine photosynthesis and heterotrophy to gain energy, play an important role in global biogeochemical cycles. Metabolic theory predicts that mixotrophs will become more heterotrophic with rising temperatures, potentially creating a positive feedback loop that accelerates carbon dioxide accumulation in the atmosphere. Studies testing this theory have focused on phenotypically plastic (short-term, non-evolutionary) thermal responses of mixotrophs. However, as small organisms with short generation times and large population sizes, mixotrophs may rapidly evolve in response to climate change. Here, we present data from a 3-year experiment quantifying the evolutionary response of two mixotrophic nanoflagellates to temperature. We found evidence for adaptive evolution (increased growth rates in evolved relative to acclimated lineages) in the obligately phototrophic strain, but not in the facultative phototroph. All lineages showed trends of increased carbon use efficiency, flattening of thermal reaction norms, and a return to homeostatic gene expression. Generally, mixotrophs evolved reduced photosynthesis and higher grazing with increased temperatures, suggesting that evolution may act to exacerbate mixotrophs' effects on global carbon cycling.
Collapse
Affiliation(s)
- Michelle Lepori‐Bui
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
- Washington Sea GrantUniversity of WashingtonSeattleWashingtonUSA
| | - Christopher Paight
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Ean Eberhard
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Conner M. Mertz
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Holly V. Moeller
- Department of Ecology, Evolution, and Marine BiologyUniversity of California – Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
50
|
Kefford BJ, Ghalambor CK, Dewenter B, Poff NL, Hughes J, Reich J, Thompson R. Acute, diel, and annual temperature variability and the thermal biology of ectotherms. GLOBAL CHANGE BIOLOGY 2022; 28:6872-6888. [PMID: 36177681 PMCID: PMC9828456 DOI: 10.1111/gcb.16453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Global warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.
Collapse
Affiliation(s)
- Ben J. Kefford
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Cameron K. Ghalambor
- Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Beatrice Dewenter
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - N. LeRoy Poff
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
- Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jane Hughes
- Australian Rivers InstituteGriffith UniversityNathanQueenslandAustralia
| | - Jollene Reich
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Ross Thompson
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|