1
|
González-Paredes D, Duncan E, Godley BJ, Marsh H, Hamann M. A best practice framework for assessing plastic ingestion in marine turtles. MARINE POLLUTION BULLETIN 2025; 216:117944. [PMID: 40220545 DOI: 10.1016/j.marpolbul.2025.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The ingestion of plastic debris has been reported in all seven marine turtle species, affecting vital processes throughout their entire life cycle and key habitats. Consequently, this emerging threat has been recognized as a priority conservation concern. The potential health impacts range from cryptic sublethal effects to severe injury and death. A comprehensive understanding of these impacts and the processes involved, at both the individual and population levels, is crucial for evaluating the vulnerability of marine turtles to plastic pollution. Aiming to guide researchers and stakeholders from the initial stages of project development, this study discusses essential components for establishing and achieving research on plastic ingestion in marine turtles. Drawing on diverse efforts globally, this manuscript compiles the most common approaches and established methodologies, while evaluating resource availability and capabilities, to outline a globally applicable best practice framework for designing and implementing research and monitoring initiatives on plastic ingestion impacts to marine turtles.
Collapse
Affiliation(s)
- Daniel González-Paredes
- James Cook University, 1 James Cook Dr, Douglas, QLD 4814, Australia; Karumbe NGO, Av. Rivera 3245, Montevideo 11600, Uruguay.
| | - Emily Duncan
- University of Exeter, College of Life and Environmental Sciences, Penryn, Cornwall TR10 9FE, UK
| | - Brendan J Godley
- University of Exeter, College of Life and Environmental Sciences, Penryn, Cornwall TR10 9FE, UK
| | - Helene Marsh
- James Cook University, 1 James Cook Dr, Douglas, QLD 4814, Australia
| | - Mark Hamann
- James Cook University, 1 James Cook Dr, Douglas, QLD 4814, Australia
| |
Collapse
|
2
|
Ronda AC, Adaro ME, Villar-Muñoz L, Tomba JP, Baldrighi E. Microplastic contamination in deep-sea sediments and polymetallic nodules: Insights from the Clarion-Clipperton Zone, Pacific Ocean. MARINE POLLUTION BULLETIN 2025; 216:117945. [PMID: 40239278 DOI: 10.1016/j.marpolbul.2025.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
This study investigates MPs in sediments and polymetallic nodules collected from the Clarion Clipperton Zone (CCZ) in the Pacific Ocean, using samples collected during a deep-sea mining exploration. MPs were detected in over half of the sediment samples and a third of the nodule samples, with an abundance ranging from 0 to 480 items/kg dry weight (d.w.) and 0 to 80 items/kg d.w. for sediments and nodules, respectively, with no significant difference between the two matrices. In terms of size, the smallest particle found was 0.165 mm in sediments and the largest 10 mm in nodules, being >40 % of the particles counted <1 mm, with fibers being the predominant morphology for both matrices. Transparent and blue particles presented the highest percentages, whereas nodules displayed a more balanced percentage distribution among the observed colors. Raman spectroscopy analysis identified polyacrylonitrile (PAN) and polyethylene terephthalate (PET) as the most abundant polymers, along with pigments like indigo blue (IB), acetoacetic arylide (PY), and phthalocyanine blue (PB) commonly associated with synthetic textiles and industrial sources. A global review of deep-sea MPs (>1000 m) reveals considerable variability in reported concentrations, underscoring the challenge of assessing MP pollution in remote marine environments. The findings highlight the need for standardized methodologies to improve comparability across studies and enhance understanding of MP distribution in deep-sea ecosystems. Given the CCZ's ecological and economic significance, further research is crucial to assess the potential risks posed by MPs in this region.
Collapse
Affiliation(s)
- Ana Carolina Ronda
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina; Departamento de Geografía y Turismo, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - María Eugenia Adaro
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Lucía Villar-Muñoz
- Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Tomba
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMDP)-CONICET, Avenida Colón 10850, 7600 Mar del Plata, Argentina
| | - Elisa Baldrighi
- Department of Biology, University of Nevada, Reno (UNR), NV, USA
| |
Collapse
|
3
|
Costello L, Zetterström A, Gardner P, Crespo-Picazo JL, Bussy C, Kane I, Shiels HA. Microplastics accumulate in all major organs of the mediterranean loggerhead sea turtle (Caretta caretta). MARINE ENVIRONMENTAL RESEARCH 2025; 208:107100. [PMID: 40203720 DOI: 10.1016/j.marenvres.2025.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025]
Abstract
Microplastics (MPs) are a pervasive marine environmental pollutant, posing a serious threat to marine ecosystems and organisms at all trophic levels. Plastic ingestion is well documented in marine turtles, and loggerhead sea turtles (Caretta caretta) have been identified as an indicator species to monitor MP pollution globally. Our understanding of the translocation and bioaccumulation potential of MPs beyond the gastrointestinal tract is, however, limited. Here we demonstrate that MP translocation occurs in these marine reptiles and present a comprehensive analysis of MP accumulation in body tissues of 10 stranded Mediterranean loggerhead turtles including the kidney, liver, spleen, heart, skeletal muscle, subcutaneous fat, stomach, intestine, and reproductive organs. Foreign microparticles were identified in 98.8 % of all samples (∼70 % being MPs) and were significantly concentrated in the reproductive organs followed by the heart. Raman spectroscopy revealed that polypropylene, cotton fibres, and polyethylene were the most common microparticle types, and optical photothermal infrared (O-PTIR) spectroscopy provided direct visualisation of cotton microfibres embedded in loggerhead heart tissue. Future studies should determine the biological impact of MP bioaccumulation in sea turtle organs, to fully appreciate the impacts of these anthropogenic pollutants on protected and vulnerable populations worldwide.
Collapse
Affiliation(s)
- Leah Costello
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK; Manchester Environmental Research Institute, The University of Manchester, Manchester, UK.
| | - Anna Zetterström
- School of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Peter Gardner
- School of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | | | - Cyrill Bussy
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Manchester Environmental Research Institute, The University of Manchester, Manchester, UK
| | - Ian Kane
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK; Manchester Environmental Research Institute, The University of Manchester, Manchester, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK; Manchester Environmental Research Institute, The University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Scaglione FE, Cuccato M, Longato E, Pregel P, Zucca D, Nannarelli S, De Lucia A, Pilia M, Manuali E, Gobbi M, Bollo E, Appino S. Pathology of Free-Living Loggerhead Turtle ( Caretta caretta) Embryos on the Island of Linosa (Italy). Vet Sci 2025; 12:328. [PMID: 40284830 PMCID: PMC12031062 DOI: 10.3390/vetsci12040328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
On the beach of Linosa Island (Italy), 43 loggerhead sea turtle (Caretta caretta) unhatched eggs were recovered from nests, formalin-fixed and necropsied. The tissue samples were stained with hematoxylin-eosin (HE), Grocott, von Kossa, periodic acid-Schiff (PAS), and Movat pentachrome stains. Histologically, vacuolar degeneration (100.0%) and increased numbers of melanomacrophages (18.6%) in the liver, and edema (14.0%) in the lungs were observed. Twenty-five kidneys (58.1%) showed deposition of blue amorphous material with HE staining, which also appeared PAS-positive and black with von Kossa staining, allowing a diagnosis of calcium oxalate, confirmed by transmission electron microscopy (TEM). The hepatic lesions may be indicative of toxicosis, infection, or a defense mechanism. A statistically significant association between the nest position and renal oxalosis (renal calcium oxalate deposition) was observed. Renal oxalosis was probably due to the exceptionally high summer temperatures, which were statistically higher compared to the temperatures recorded in the previous two years.
Collapse
Affiliation(s)
- Frine Eleonora Scaglione
- Frine Eleonora Scaglione, Department of Veterinary Science, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy; (M.C.); (E.L.); (P.P.); (E.B.)
| | - Matteo Cuccato
- Frine Eleonora Scaglione, Department of Veterinary Science, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy; (M.C.); (E.L.); (P.P.); (E.B.)
| | - Erica Longato
- Frine Eleonora Scaglione, Department of Veterinary Science, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy; (M.C.); (E.L.); (P.P.); (E.B.)
| | - Paola Pregel
- Frine Eleonora Scaglione, Department of Veterinary Science, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy; (M.C.); (E.L.); (P.P.); (E.B.)
| | - Daniele Zucca
- Institute of Animal Health, University of Las Palmas de Gran Canaria, Calle Perojo 9, 35003 Las Palmas de Gran Canaria, Spain;
| | - Stefano Nannarelli
- Hydrosphera Onlus, Via Appia Nuova 197, 00100 Roma, Italy; (S.N.); (A.D.L.)
| | | | - Marco Pilia
- Independent Researcher, Via Chiusi 16, 00052 Cerveteri, Italy;
| | - Elisabetta Manuali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via G. Salvemini 1, 06126 Perugia, Italy; (E.M.); (M.G.)
| | - Marco Gobbi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via G. Salvemini 1, 06126 Perugia, Italy; (E.M.); (M.G.)
| | - Enrico Bollo
- Frine Eleonora Scaglione, Department of Veterinary Science, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy; (M.C.); (E.L.); (P.P.); (E.B.)
| | - Simonetta Appino
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 79100 Sassari, Italy;
| |
Collapse
|
5
|
Ching XL, Samsol S, Rusli MU, Aqmal-Naser M, Bidai JA, Sonne C, Wu X, Ma NL. Blood and cloacal microbiome profile of captive green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata): Water quality and conservation implications. CHEMOSPHERE 2025; 375:144223. [PMID: 40049002 DOI: 10.1016/j.chemosphere.2025.144223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/08/2025] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
In this study, we studied the environment factors such as plastics and heavy metals affecting the blood and cloacal microbiome of green (Chelonia mydas) and hawksbill (Eretmochelys imbricata) in captivity. By non-metric multidimensional scaling analysis, data has shown that the environment factors (p = 0.02), rather than species differences (p = 0.06), significantly influenced the composition of the cloacal microbiota of green and hawksbill turtles. The cloacal microbiota of both captive green and hawksbill turtles was dominated by several similar dominant phyla at differential abundance. Green turtles' cloacal microbiome was made up of 46% of Proteobacteria, 31% of Bacteroidota, 11% of Campylobacterota and 4% of Firmicutes, while the hawksbill turtles' cloacal microbiome was made up of 33% of Bacteroidota, 18% of Firmicutes, 17% of Proteobacteria, and 2% of Campylobacterota. Water conductivity, salinity, microplastic polymers (polycarbonate, polyethylene terephthalate, polystyrene), and copper are positively associated (p < 0.05) with blood urea nitrogen. Hematocrit and hemoglobin were found also negatively correlated (p < 0.05) with water pH, polyethylene terephthalate, iron, lead and zinc. The correlations established in this study shed light on the intricate interplay between water quality and the physiological responses of sea turtles. Recognizing these relationships is pivotal for monitoring and preserving the well-being of sea turtles in their natural habitats.
Collapse
Affiliation(s)
- Xin Li Ching
- Bioses Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Syamsyahidah Samsol
- Sea Turtle Research Unit (SEATRU), Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Mohd Uzair Rusli
- Sea Turtle Research Unit (SEATRU), Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia.
| | - Mohamad Aqmal-Naser
- Terrestrial Ecology, Biodiversity and Aquatic Research (TEBAR), Institute of Tropical Biodiversity and Sustainable Development, University Malaysia of Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Joseph Anak Bidai
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Xin Wu
- Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Hunan Province, 410125, China
| | - Nyuk Ling Ma
- Bioses Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
6
|
Ruidas H, Bora G, Dsouza S, Shanker K. Assessing the impact of microplastics on gonadal health of the spadenose shark (Scoliodon laticaudus) on the west coast of India. MARINE POLLUTION BULLETIN 2025; 212:117464. [PMID: 39756149 DOI: 10.1016/j.marpolbul.2024.117464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025]
Abstract
Pollutants such as microplastics (MPs) are detrimental to the health of humans, animals and reduce the quality of the environment. These particles can be ingested and accumulate in marine biota through the food chain leading to adverse effects on various physiological processes. Sharks, which typically occupy higher trophic levels in the marine food chain, may exhibit the highest accumulation of MPs. However, the prevalence of MPs in sharks and their potential impact on physiology are not well understood. To address this gap, we investigated MP concentrations in the gastrointestinal tract (GI) and gonads of the spadenose shark (Scoliodon laticaudus) on the west coast of India. MPs were detected in all water samples, 97.9 % of the GI tract samples and 95 % of gonadal tissue samples, with gonads exhibiting the highest MP concentrations. Fibres (85 %) were the dominant type, followed by flakes (11.2 %) and films (3 %). Female gonads had a significantly higher concentration of MPs than males. However, in males, a negative correlation between MP concentration and gonadosomatic index (GSI) indicated potential physiological impacts. Raman spectroscopy identified polyethylene and polyamide polymers along with other contaminants. These findings underscore the widespread presence of MP in shark tissues and their potential impact on reproductive health.
Collapse
Affiliation(s)
- Haradhan Ruidas
- Indian Institute of Science Education and Research, Berhampur, Odisha, India.
| | - Garima Bora
- Dakshin Foundation, CQAL Layout, Bengaluru 560092, Karnataka, India
| | - Shawn Dsouza
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, Karnataka, India; Dakshin Foundation, CQAL Layout, Bengaluru 560092, Karnataka, India
| | - Kartik Shanker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, Karnataka, India; Dakshin Foundation, CQAL Layout, Bengaluru 560092, Karnataka, India
| |
Collapse
|
7
|
Legrand A, Blanvillain G, Deschamps T, Chapelet G, Aubret F, Garrido L, Lecomte S, Martinez-Silvestre A, Auguet JC, Sauvaget A. TORPP - Turtles, One Health Research & Plastic Pollution: A multidisciplinary consortium to evaluate the environmental and health impact of Micro/NanoPlastics (MNPs) pollution. One Health 2024; 19:100873. [PMID: 39263319 PMCID: PMC11387352 DOI: 10.1016/j.onehlt.2024.100873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Although the World Health Organization characterizes a One Health concern as one in which there is the capability to incorporate numerous disciplines to tackle health challenges threatening humans, animals and ecosystems, scientific efforts frequently remain compartmentalized. Here we report an original consortium, TORPP, spanning 16 disciplines, focused on Micro/NanoPlastics (MNPs) pollution as a One Health concern. Whereas the MNP topic has been largely studied in marine ecology, research effort remains scarce in human medicine. Equally, while marine ecology is highly skilled in MNP sampling and characterization, human medicine has developed pathophysiological concepts and tools that can be used more broadly to evaluate the health impact of MNPs. TORPP consortium propose that these strengths and knowledges must be transferred across fields of study to advance our understanding of MNP toxicity to organisms, by uniting integrative approaches (ecological, experimental and clinical) under a common conceptual and analytical framework.
Collapse
Affiliation(s)
- A Legrand
- Nantes Université, CHU Nantes, Direction de La Recherche Et de L'Innovation, 44000 Nantes, France
| | - G Blanvillain
- Biological Sciences Department, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - T Deschamps
- Nantes Université, CHU Nantes, Mouvement, Interactions, Performance, MIP, UR 4334, 44000 Nantes, France
| | - G Chapelet
- Pole de gérontologie clinique, Centre hospitalier universitaire de Nantes, Nantes, France
| | - F Aubret
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Port Macquarie, NSW 2444, Australia
| | - L Garrido
- Fundación para la Conservación y Recuperación de Animales Marinos (CRAM), Barcelona, Spain
| | - S Lecomte
- University of Bordeaux, CNRS, Bordeaux INP, CBMN UMR5248, Pessac, France
| | - A Martinez-Silvestre
- Centre de Recuperació d'Amfibis i Rèptils de Catalunya (CRARC), Barcelona, Spain
| | - J C Auguet
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - A Sauvaget
- Addictologie and psychiatrie de liaison, CHU de Nantes, 44000 Nantes, France; Laboratoire "mouvement, interactions, performance" (EA 4334), Faculté Sciences du sport, Université de Nantes, 44000 Nantes, France
| |
Collapse
|
8
|
Zhou F, Wang Y, Liu X, Xu S, Chen D, Wang X. The effects of polystyrene microplastics on feeding, growth, and trophic upgrading of protozoan grazers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175986. [PMID: 39233088 DOI: 10.1016/j.scitotenv.2024.175986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Microplastics have become ubiquitous in the global marine environment, posing substantial influences on marine organism health, food web function and marine ecosystem structure. Protozoan grazers are known for their ability to improve the biochemical constituents of poor-quality algae for subsequent use by higher trophic levels. However, the effects of microplastics on the trophic upgrading of protozoan grazers remain unknown. To address this knowledge gap, the ciliate Euplotes vannus and the heterotrophic dinoflagellate Oxyrrhis marina were exposed to microplastic particles (5 μm) for four days with various concentrations (1-20 mg/L). Both O. marina and E. vannus ingested microplastics. At the exposure level of 20 mg/L, the ingestion rate, growth rate, biovolume, and carbon biomass of E. vannus were significantly decreased by 28.18 %, 32.01 %, 30.46 %, and 82.27 %, respectively, while such effects were not observed for O. marina. The contents of highly unsaturated fatty acids in O. marina and E. vannus on a mixed diet of microplastic particles and green algae significantly reduced by 8.66 % and 41.49 % relative to feeding only on green algae, respectively. Besides, we also observed an increase in the composition of C18:3 (ω-3) and C20:3 (ω-3) concurrence with a significant decrease in C16:0 and C18:0 in E. vannus after 96 h exposure at 20 mg/L. These results indicate that microplastics can weaken trophic upgrading of the nutritional quality by protozoan grazers, which may consequently alter the function of food webs.
Collapse
Affiliation(s)
- Fengli Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China; College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Yan Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaotu Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Shuaishuai Xu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Xiaodong Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Tariq A, Okoffo ED, Fenti A, Fu H, Thomas KV. Unscrambling why plastics aren't detectable in chicken eggs. CHEMOSPHERE 2024; 367:143584. [PMID: 39454765 DOI: 10.1016/j.chemosphere.2024.143584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Several food groups have been reported to contain varying concentrations of plastics. This study was designed to quantitatively investigate for the first time in Australia the presence of plastics in store-bought chicken eggs. Three commonly consumed brands of free-range, free-range organic, barn-laid and backyard (home-laid) chicken egg samples were analyzed for seven common polymers (i.e., polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, polystyrene, poly-(methylmethacrylate) and polycarbonate). Samples were extracted by enzyme digestion and pressurized liquid extraction, followed by quantitative analysis through double-shot microfurnace pyrolysis coupled to gas chromatography-mass spectrometry. No plastics were detected at concentrations > limit of detection (LOD) (from 0.04 μg/g for PS to 0.22 μg/g for PVC) in the egg samples analyzed, regardless of brand and category, suggesting limited exposure of Australians to plastics from consuming eggs This study provides valuable baseline data and underscores the importance of continued monitoring to ensure the safety and integrity of food supplies in the face of rising environmental plastic pollution.
Collapse
Affiliation(s)
- Anum Tariq
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; ARC Training Centre for Hyphenated Analytical Separation Technologies (HyTECH), Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| | - Angelo Fenti
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; Department of Engineering, University of Campania, "Luigi Vanvitelli", Via Roma 29, Aversa, 81031, Italy
| | - Hongrui Fu
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia; ARC Training Centre for Hyphenated Analytical Separation Technologies (HyTECH), Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
10
|
Choi KM, Mun SH, Shin D, Kim CH, Kim TH, Jung JH. The toxic effects of exposure to fibrous and fragmented microplastic in juvenile rockfish based on two omics approach. CHEMOSPHERE 2024; 367:143541. [PMID: 39419335 DOI: 10.1016/j.chemosphere.2024.143541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Although the hazards of environmental microplastics (MPs) are well known, it is unclear which of their characteristics have the greatest effects on organism. We investigated the toxic effects of oral administration according to physical properties, including the shape of fragmented polyethylene terephthalate (PET) (FrPET) and fibrous PET (FiPET) MPs. After 72 h of exposure, apoptosis and phagocytic activity varied significantly among juvenile rockfish (Sebastes schlegeli) exposed to both FrPET and FiPET. The levels of immune-related genes and hepatic metabolic activity also increased after exposure to both shapes of MPs, but the variation in responses was greater in fish exposed to FiPET compared with those exposed to FrPET. The transcriptomic and metabolomics analysis results indicated that the maintenance and homeostasis of immune system was affected by oral exposure to FrPET and FiPET. The amino acid metabolic processes were identified in rockfish exposed to FrPET, but the notch signaling pathway were evident in the FiPET exposure group. Metabolomics analysis revealed that oral ingestion of MP fibers led to a stronger inflammatory response and greater oxidative stress in juvenile rockfish. These results can be used to understand environmentally dominant MP toxic effects such as type, size, shapes, as well as to prioritize ecotoxicological management.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Seong Hee Mun
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Dongju Shin
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea
| | - Chae Hwa Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Tae Hee Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| | - Jee-Hyun Jung
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje, 53201, Republic of Korea; Ocean Science, University of Science and Technology, 217 Gajeong-ro, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
11
|
Dziobak MK, Fahlman A, Wells RS, Takeshita R, Smith C, Gray A, Weinstein J, Hart LB. First evidence of microplastic inhalation among free-ranging small cetaceans. PLoS One 2024; 19:e0309377. [PMID: 39413051 PMCID: PMC11482699 DOI: 10.1371/journal.pone.0309377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/09/2024] [Indexed: 10/18/2024] Open
Abstract
Plastic is a ubiquitous environmental contaminant, resulting in widespread exposure across terrestrial and marine spaces. In the environment, plastics can degrade into microparticles where exposure has been documented in a variety of fauna at all trophic levels. Human epidemiological studies have found relationships between inhaled microplastics and oxidative stress and inflammation. Previous studies of bottlenose dolphins (Tursiops truncatus) have reported prevalent exposure to plasticizing chemicals (e.g., phthalates) as well as particle loads in gastrointestinal tracts, but exposure from inhalation has not yet been studied. The objective of this study was to determine if inhalation is a viable route of microplastic exposure for free-ranging dolphins. Exhalation samples were opportunistically collected from dolphins residing in Sarasota Bay, Florida (n = 5) and Barataria Bay, Louisiana (n = 6) during catch-and-release health assessments to screen for microplastic particles. All dolphin samples contained at least one suspected microplastic particle, and polymer composition was determined for 100% of a subset (n = 17) of samples. Additional studies are warranted to better understand the extent of inhaled microplastics, as well as to explore impacts, given potential risks to lung function and health.
Collapse
Affiliation(s)
- Miranda K. Dziobak
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Andreas Fahlman
- Fundacion Oceanografic, Valencia, Spain
- Global Diving Research, Sanlucar de Barrameda, Spain
- IFM, Linkoping University, Linkoping, Sweden
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, ℅ Mote Marine Laboratory, Sarasota, FL, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Cynthia Smith
- National Marine Mammal Foundation, San Diego, CA, United States of America
| | - Austin Gray
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - John Weinstein
- Department of Biology, The Citadel, Charleston, SC, United States of America
| | - Leslie B. Hart
- Department of Health and Human Performance, School of Health Sciences, College of Charleston, Charleston, SC, United States of America
| |
Collapse
|
12
|
Iurk VB, Ingles M, Correa GS, Silva CR, Staichak G, Pileggi SAV, Christo SW, Domit C, Pileggi M. The potential influence of microplastics on the microbiome and disease susceptibility in sea turtles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174298. [PMID: 38944299 DOI: 10.1016/j.scitotenv.2024.174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Microplastics (MPs) are particles with sizes of ≤5 mm formed when plastic materials break down. These contaminants are often found in marine environments, making it easy for sea turtles to ingest them and for their microbiome to be exposed. MPs can disrupt microbiome balance, leading to dysbiosis and making organisms more susceptible to diseases. Owing to the significance of these processes, it is crucial to dedicate research to studying the metabolic and genetic analysis of the gut microbiome in sea turtles. The objective of this study was to describe the effects of exposure to MPs on the gut microbiome of sea turtles, based on current knowledge. This review also aimed to explore the potential link between MP exposure and disease susceptibility in these animals. We show that the metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFAs), polyamines, and polysaccharide A, can regulate the expression of host genes. Regulation occurs through various mechanisms, including histone acetylation, DNA methylation, and the modulation of cytokine gene expression. These processes are essential for preserving the integrity of the gut mucosa and enhancing the functionality of immune cells. Exposure to MPs disrupts the gut microbiome and alters gene expression, leading to immune system disturbances in sea turtles. This vulnerability makes turtles more susceptible to opportunistic microorganisms such as chelonid alphaherpesvirus 5 (ChAHV5), which is linked to the development of fibropapillomatosis (FP). Additionally, targeted dietary interventions or the use of live microorganisms such as probiotics can help restore microbial biodiversity and recover lost metabolic pathways. The goal of these interventions is to restore the functionality of the immune system in sea turtles undergoing rehabilitation at specialized centers. The gut microbiome plays a crucial role in sea turtle health, sparking discussions and investigations that can potentially lead to promising treatments for these animals.
Collapse
Affiliation(s)
- Vitória Bonfim Iurk
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil; Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Mariana Ingles
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil
| | - Giovana Sequinel Correa
- Laboratório de Virologia Aplicada, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, SC 88040-900, Brazil
| | - Caroline Rosa Silva
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, PR 87020-900, Brazil
| | - Gabriel Staichak
- Instituto de Biociências da Universidade Federal de Mato Grosso, Universidade Federal do Mato Grosso, MT 79070-900, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| | - Susete Wambier Christo
- Laboratório de Zoologia, Departamento de Biologia Geral, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, PR 832555-000, Brazil.
| | - Marcos Pileggi
- Laboratório de Microbiologia Ambiental, Departamento de Biologia Estrutural, Molecular e Genética, Setor de Ciências Biológicas e da Saúde, Universidade Estadual de Ponta Grossa, PR 84030-000, Brazil.
| |
Collapse
|
13
|
Motivarash YB, Bhatt AJ, Jaiswar RR, Makrani RA, Dabhi RM. Seasonal variability of microplastic contamination in marine fishes of the state of Gujarat, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59852-59865. [PMID: 39361207 DOI: 10.1007/s11356-024-35208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Seasonal variation in microplastics abundance, occurrence, and distribution in pelagic and demersal fishes was observed in this study during December 2021 to November 2022. One hundred percent presence of microplastic in inedible (gut and gills) tissue, while 82% and 54% in edible tissue (muscle) of pelagic and demersal fishes respectively were seen. Post-monsoon period showed high prevalence of microplastics followed by monsoon and the least during pre-monsoon in both pelagic and demersal fishes. In pelagic fishes, the edible tissue had microplastics abundance of 1.56 to 13.34 numbers per 10 g of tissue whereas inedible tissue had 3.36 to 16.67 numbers per 10 g of tissue. In demersal fishes, the edible tissue had microplastics abundance of 1.04 to 5.26 numbers per 10 g of tissue while it was 2.67 to 8.34 numbers per 10 g of inedible tissue. There was significant variation in abundance of microplastic in edible and inedible tissue of all the fishes (Mann-Whitney test, p < 0.05). The most dominant microplastics size was 0.005-0.05 mm followed by 0.05-0.5 mm and the least of greater than 0.5 mm in pelagic and demersal fishes respectively. Taking microplastic shape into consideration, the most dominant was fiber followed by fragment and the film in inedible tissue of all the fishes. The edible tissue of all the fishes had only fiber in them (100% occurrence). The dominance of blue color microplastics was observed followed by red, green, yellow, and orange at least in edible as well as inedible tissues of the fishes. More than 99% microplastics polymer observed in this study include polyethylene (PE), polypropylene (PP), and polystyrene (PS); only less than 1% was unidentified. This is the first study done on seasonal variation of microplastic in the marine fish population of Gujarat waters, Northeast Arabian Sea. The study highlights the nature of micro-pollutant in marine environments, emphasizing the need for comprehensive monitoring and management strategies.
Collapse
Affiliation(s)
- Yagnesh B Motivarash
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India.
| | - Ashishkumar J Bhatt
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| | - Rahul R Jaiswar
- Department of Fish Pharmacology and Toxicology, Institute of Fisheries Post Graduate Studies, TNJFU, Chennai, India
| | - Rehanavaz A Makrani
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| | - Rajkumar M Dabhi
- College of Fisheries Science, Kamdhenu University, Veraval, 362265, Gujarat, India
| |
Collapse
|
14
|
Kimura R, Inoguchi E, Kitayama C, Michishita M, Fujinuma R. Microplastic ingestion by sea turtles around Tokyo Bay: Level of water pollution influences ingestion amounts. MARINE POLLUTION BULLETIN 2024; 206:116673. [PMID: 39018826 DOI: 10.1016/j.marpolbul.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024]
Abstract
We investigated the contents inside the esophagus and stomach of turtles inside and outside of the Tokyo Bay area, which face high and low risks of microplastic (MP) exposure, respectively. 65 synthetic particles were recovered from 8 out of 22 turtles, using ATR-FTIR followed by density separation with calcium chloride solution. Statistical analysis indicated that turtles in high-risk areas ingested significantly more MPs than those in low-risk areas. As the inflow of MPs from major rivers influences pollution levels in the ocean, the results of this study highlight the importance of major rivers for MP ingestion by turtles. Additionally, we discussed the current methodology's shortcomings and addressed scope for subsequent research, along with suggestions on future conservation.
Collapse
Affiliation(s)
- Riko Kimura
- International Christian University, 3-10-2 Osawa, Mitaka-shi, Tokyo 181-8585, Japan
| | - Emi Inoguchi
- Everlasting Nature of Asia (ELNA), 3-17-8 Nishi-kanagawa, Kanagawa-ku, Yokohama-shi, Kanagawa 221-0822, Japan
| | - Chiyo Kitayama
- Everlasting Nature of Asia (ELNA), 3-17-8 Nishi-kanagawa, Kanagawa-ku, Yokohama-shi, Kanagawa 221-0822, Japan
| | - Masaki Michishita
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-shi, Tokyo 180-8602, Japan
| | - Ryosuke Fujinuma
- International Christian University, 3-10-2 Osawa, Mitaka-shi, Tokyo 181-8585, Japan.
| |
Collapse
|
15
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
16
|
Savage J, Chamberlain A, Fellows M, Jones R, Letessier TB, Llewellyn F, Morritt D, Rowcliffe M, Koldewey H. Big brands impact small islands: Sources of plastic pollution in a remote and protected archipelago. MARINE POLLUTION BULLETIN 2024; 203:116476. [PMID: 38781799 DOI: 10.1016/j.marpolbul.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Remote islands are disproportionately affected by plastic pollution, often originating from elsewhere, so it is important to understand its origins, to stop debris entering the ocean at their source. We investigated the origins of beached plastic drink bottles in the Chagos Archipelago, a large remote Marine Protected Area (MPA) in the Indian Ocean. We recorded the brands, countries of manufacture, types of drink, and ages of plastic bottles and their lids. The prevalent type of drink was water, with items mostly manufactured in Indonesia, China, and the Maldives. The main brands were Danone and the Coca-Cola Company. We deduced that 10 % of the items originated from ships passing the archipelago, including all the items manufactured in China. The identification of the brands creating plastic pollution in remote MPAs with high biodiversity supports extended producer responsibility, one of the proposed policy development areas of the Global Plastics Treaty.
Collapse
Affiliation(s)
- J Savage
- Conservation and Policy, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom; Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom; Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, United Kingdom.
| | - A Chamberlain
- Conservation and Policy, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom
| | - M Fellows
- British Indian Ocean Territory Administration, Foreign, Commonwealth & Development Office, King Charles Street, SW1A 2AH, United Kingdom
| | - R Jones
- Conservation and Policy, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom
| | - T B Letessier
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom
| | - F Llewellyn
- Conservation and Policy, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom
| | - D Morritt
- Department of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham TW20 0EX, United Kingdom
| | - M Rowcliffe
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom
| | - H Koldewey
- Conservation and Policy, Zoological Society of London, Regents Park, London NW1 4RY, United Kingdom; Centre of Ecology and Conservation, University of Exeter, Penryn Campus, United Kingdom
| |
Collapse
|
17
|
Ebbesen LG, Strange MV, Gunaalan K, Paulsen ML, Herrera A, Nielsen TG, Shashoua Y, Lindegren M, Almeda R. Do weathered microplastics impact the planktonic community? A mesocosm approach in the Baltic Sea. WATER RESEARCH 2024; 255:121500. [PMID: 38554636 DOI: 10.1016/j.watres.2024.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microplastics (MPs) are ubiquitous pollutants of increasing concern in aquatic systems. However, little is still known about the impacts of weathered MPs on plankton at the community level after long-term exposure. In this study, we investigated the effects of weathered MPs on the structure and dynamics of a Baltic Sea planktonic community during ca. 5 weeks of exposure using a mesocosm approach (2 m3) mimicking natural conditions. MPs were obtained from micronized commercial materials of polyvinyl chloride, polypropylene, polystyrene, and polyamide (nylon) previously weathered by thermal ageing and sunlight exposure. The planktonic community was exposed to 2 μg L-1 and 2 mg L-1 of MPs corresponding to measured particle concentrations (10-120 μm) of 680 MPs L-1 and 680 MPs mL-1, respectively. The abundance and composition of all size classes and groups of plankton and chlorophyll concentrations were periodically analyzed throughout the experiment. The population dynamics of the studied groups showed some variations between treatments, with negative and positive effects of MPs exhibited depending on the group and exposure time. The abundance of heterotrophic bacteria, pico- and nanophytoplankton, cryptophytes, and ciliates was lower in the treatment with the higher MP concentration than in the control at the last weeks of the exposure. The chlorophyll concentration and the abundances of heterotrophic nanoflagellates, Astromoeba, dinoflagellate, diatom, and metazooplankton were not negatively affected by the exposure to MPs and, in some cases, some groups showed even higher abundances in the MP treatments. Despite these tendencies, statistical analyses indicate that in most cases there were no statistically significant differences between treatments over the exposure period, even at very high exposure concentrations. Our results show that weathered MPs of the studied conventional plastic materials have minimal or negligible impact on planktonic communities after long-term exposure to environmentally relevant concentrations.
Collapse
Affiliation(s)
- Linea Gry Ebbesen
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Markus Varlund Strange
- Department of Environmental Engineering, Technical University of Denmark, Denmark; National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Kuddithamby Gunaalan
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | | | - Alicia Herrera
- EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain
| | - Torkel Gissel Nielsen
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Yvonne Shashoua
- Environmental Archaeology and Materials Science, National Museum of Denmark, Denmark
| | - Martin Lindegren
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark
| | - Rodrigo Almeda
- National Institute of Aquatic Resources (DTU AQUA) Technical University of Denmark, Denmark; EOMAR, ECOAQUA, University of Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
18
|
García-Regalado A, Herrera A, Almeda R. Microplastic and mesoplastic pollution in surface waters and beaches of the Canary Islands: A review. MARINE POLLUTION BULLETIN 2024; 201:116230. [PMID: 38479326 DOI: 10.1016/j.marpolbul.2024.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
The Canary Archipelago is a group of volcanic islands located in the North Atlantic Ocean with high marine biodiversity. This archipelago intercepts the Canary Current, the easternmost branch of the Azores Current in the North Atlantic Subtropical Gyre, which brings large amounts of litter from remote sources via oceanic transportation. It is, therefore, particularly vulnerable to marine plastic pollution. Here, we present a review of the available studies on mesoplastics and microplastics in the Canary Islands over the last decade to evaluate the level and distribution of plastic pollution in this archipelago. Specifically, we focused on data from beaches and surface waters to assess the pollution level among the different islands as well as between windward and leeward zones, and the main characteristics (size, type, colour, and polymer) of the plastics found in the Canary Islands. The concentrations of meso- and MPs on beaches ranged from 1.5 to 2972 items/m2 with a mean of 381 ± 721 items/m2. The concentration of MPs (>200 μm) in surface waters was highly variable with mean values of 998 × 103 ± 3364 × 103 items/km2 and 10 ± 31 items/m3. Plastic pollution in windward beaches was one order of magnitude significantly higher than in leeward beaches. The accumulation of MPs in surface waters was higher in the leeward zones of the high-elevation islands, corresponding to the Special Areas of Conservation (ZECs) and where the presence of marine litter windrows (MLW) has been reported. Microplastic fragments of polyethylene of the colour category "white/clear/uncoloured" were the most common type of plastic reported in both beaches and surface waters. More studies on the occurrence of MLW in ZECS and plastic pollution in the water column and sediments, including small-size fractions (<200 μm), are needed to better assess the level of plastic pollution and its fate in the Canary Islands. Overall, this review confirms that the Canary Archipelago is a hotspot of oceanic plastic pollution, with concentrations of MPs in surface waters in the highest range reported for oceanic islands and one of the highest recorded mean concentrations of beached meso- and microplastics in the world.
Collapse
Affiliation(s)
| | - Alicia Herrera
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain
| | - Rodrigo Almeda
- EOMAR, ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
19
|
Aranda DA, Sindou P, Cauich Rodriguez JV, Saldaña GM, Coronado RFV, González WDN, Díaz ME, Escalante VC. A non-invasive method of microplastics pollution quantification in green sea turtle Chelonia mydas of the Mexican Caribbean. MARINE POLLUTION BULLETIN 2024; 200:116092. [PMID: 38359479 DOI: 10.1016/j.marpolbul.2024.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Due to the amply exposure of marine turtles to marine plastic pollution, this is a reason that the green sea turtle Chelonia mydas makes a good candidate species as a bioindicator for plastic pollution. Turtle feces were collected at Isla Blanca on the northeast Caribbean coast of the Yucatan Peninsula, Mexico. Microplastic extraction was done following Hidalgo-Ruz et al. (2012) and Masura et al. (2015) methods. After organic matter degradation of the feces samples, microplastics were identified and quantified by stereomicroscope. Their morphostructure was analyzed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, while their composition was determined by Fourier transform infrared spectroscopy and Raman spectroscopy. Microplastics (MP) abundance ranged from 10 ± 2 MP·g-1 to 89 ± 3 MP·g-1. Kruskal Wallis test (KW = 70.31, p < 0.001) showed a significant difference between 22 green turtles analyzed. Most of the microplastics were fiber type. Blue, purple, and transparent fibers were the most abundant. The identified microplastics were nylon (polyamide), PVC, polypropylene, polyester, and viscose (cellulose). The non-invasive method used here allowed the detection of microplastic pollution and is promising for long-term microplastic pollution monitoring.
Collapse
Affiliation(s)
- Dalila Aldana Aranda
- Recursos del Mar, Cinvestav IPN Mérida, Antigua Carretera a Progreso Km. 6, 97310 Mérida, Yucatan, Mexico.
| | - Pauline Sindou
- Recursos del Mar, Cinvestav IPN Mérida, Antigua Carretera a Progreso Km. 6, 97310 Mérida, Yucatan, Mexico; Université des Antilles, Campus Fouillole, BP 250, 97157 Pointe-á-Pitre, Guadeloupe
| | - Juan V Cauich Rodriguez
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, 97205 Merida, Yucatan, Mexico
| | | | - Rossana Faride Vargas Coronado
- Unidad de Materiales, Centro de Investigación Científica de Yucatán, Col. Chuburná de Hidalgo, 97205 Merida, Yucatan, Mexico
| | | | - Martha Enríquez Díaz
- Recursos del Mar, Cinvestav IPN Mérida, Antigua Carretera a Progreso Km. 6, 97310 Mérida, Yucatan, Mexico
| | - Víctor Castillo Escalante
- Recursos del Mar, Cinvestav IPN Mérida, Antigua Carretera a Progreso Km. 6, 97310 Mérida, Yucatan, Mexico
| |
Collapse
|
20
|
Ragesh S, Abdul Jaleel KU, Nikki R, Abdul Razaque MA, Muhamed Ashraf P, Ravikumar CN, Abdulaziz A, Dinesh Kumar PK. Environmental and ecological risk of microplastics in the surface waters and gastrointestinal tract of skipjack tuna (Katsuwonus pelamis) around the Lakshadweep Islands, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22715-22735. [PMID: 38411916 DOI: 10.1007/s11356-024-32564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
The presence of microplastics (MPs) in marine ecosystems is widespread and extensive. They have even reached the deepest parts of the ocean and polar regions. The number of articles on plastic pollution has increased in recent years, but few have investigated the MPs from oceanic islands which are biodiversity hotspots. We investigated the possible microplastic contamination their source and characteristics in surface waters off Kavaratti Island and in the gastrointestinal tract (GT) of skipjack tuna, Katsuwonus pelamis collected from Kavaratti Island of the Lakshadweep archipelago. A total of 424 MP particles were isolated from the surface water samples collected from off Kavaratti Island with an average abundance of 5 ± 1nos./L. A total of 117 MPs were recovered from the GT of skipjack tuna from 30 individual fishes. This points to a potential threat of MP contamination in seafood around the world since this species has a high value in local and international markets. Fiber and blue color were the most common microplastic morphotypes and colors encountered, respectively, both from surface water and GT of fish. Smaller MPs (0.01-1 mm) made up a greater portion of the recovered materials, and most of them were secondary MPs. Polyethylene and polypropylene were the most abundant polymers found in this study. The Pollution Load Index (1.3 ± 0.21) of the surface water and skipjack tuna (1 ± 0.7) indicates a minor ecological risk for the coral islands, while the Polymer Hazard Index highlights the ecological risk of polymers, even at low MP concentrations. This pioneer study sheds preliminary light on the abundance, properties, and environmental risks of MPs to this highly biodiverse ecosystem.
Collapse
Affiliation(s)
- Saraswathi Ragesh
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
| | | | - Ramachandran Nikki
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin, 682016, Kerala, India
| | - Mannayath Abdulazeez Abdul Razaque
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin, 682016, Kerala, India
| | | | | | - Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, Kerala, India
| | | |
Collapse
|
21
|
Munno K, Hoopes L, Lyons K, Drymon M, Frazier B, Rochman CM. High microplastic and anthropogenic particle contamination in the gastrointestinal tracts of tiger sharks (Galeocerdo cuvier) caught in the western North Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123185. [PMID: 38147950 DOI: 10.1016/j.envpol.2023.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Few studies have documented microplastics (<5 mm) in shark gastrointestinal (GI) tracts. Here, we report microplastic contamination in the tiger shark (Galeocerdo cuvier), an apex predator and generalist feeder, at several different life stages. We examined seven stomachs and one spiral valve from eight individuals captured off the United States Atlantic and Gulf of Mexico coasts (eastern US) and conducted a literature review of publications reporting anthropogenic debris ingestion in elasmobranchs. Specimens were chemically digested in potassium hydroxide (KOH) and density separated using calcium chloride (CaCl2) before quantifying and categorizing suspected anthropogenic particles (>45 μm) by size, morphology, and colour. Anthropogenic particles were found in the stomachs and spiral valve of all sharks. A total of 3151 anthropogenic particles were observed across all stomachs with 1603 anthropogenic particles observed in a single specimen. A subset of suspected anthropogenic particles (14%) were chemically identified using Raman spectroscopy and μ-Fourier Transform Infrared spectroscopy to confirm anthropogenic origin. Overall, ≥95% of particles analyzed via spectroscopy were confirmed anthropogenic, with 45% confirmed as microplastics. Of the microplastics, polypropylene (32%) was the most common polymer. Diverse microparticle morphologies were found, with fragments (57%) and fibers (41%) most frequently observed. The high occurrence and abundance of anthropogenic particle contamination in tiger sharks is likely due to their generalist feeding strategy and high trophic position compared to other marine species. The literature review resulted in 32 studies published through 2022. Several methodologies were employed, and varying amounts of contamination were reported, but none reported contamination as high as detected in our study. Anthropogenic particle ingestion studies should continue in the tiger shark, in addition to other elasmobranch species, to further understand the effects of anthropogenic activities and associated pollution on these predators.
Collapse
Affiliation(s)
- Keenan Munno
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.
| | - Lisa Hoopes
- Georgia Aquarium, IUCN Center for Species Survival, 225 Baker Street NW, Atlanta, GA, 30313, USA
| | - Kady Lyons
- Georgia Aquarium, IUCN Center for Species Survival, 225 Baker Street NW, Atlanta, GA, 30313, USA
| | - Marcus Drymon
- Mississippi State University, Coastal Research and Extension Center, 1815 Popps Ferry Road, Biloxi, MS, 39532, USA; Mississippi-Alabama Sea Grant Consortium, 703 East Beach Drive, Ocean Springs, MS, 39564, USA
| | - Bryan Frazier
- South Carolina Department of Natural Resources, Marine Resources Research Institute, 217 Ft. Johnson Rd. Charleston, SC, 29412, USA
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Curl LF, Hurst SA, Pomory CM, Lamont MM, Janosik AM. Assessing microplastics contamination in unviable loggerhead sea turtle eggs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169434. [PMID: 38104820 DOI: 10.1016/j.scitotenv.2023.169434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Sea turtles, in comparison with marine mammals, sea birds, and fishes, are the most affected by microplastics in terms of number of individuals impacted and concentration within each organism. The ubiquitous nature and persistence of microplastics in the environment further compromises sea turtles as many species are currently vulnerable, endangered, or critically endangered. The objective of this study was to quantify microplastic contamination in unviable loggerhead sea turtle eggs (Caretta caretta). Eggs were collected from seven locations along the northwest coast of Florida. A total of 70 nests and 350 eggs were examined. Microplastics (n = 510) were found in undeveloped loggerhead sea turtle eggs across all seven sites, suggesting that maternal transference and/or exchange between the internal and external environment were possible. The frequency found was 7.29 ± 1.83 microplastic pieces per nest and 1.46 ± 0.01 per egg. Microplastics were categorized based on color, shape, size, and type of polymer. The predominant color of microplastics were blue/green (n = 236), shape was fibers (n = 369), and length was 10-300 μm (n = 191). Identified fragments, films, beads and one foam (n = 187) had the most common area of 1-10 μm2 (n = 45). Micro-Fourier Transform Infrared (μ-FTIR) spectroscopy analysis demonstrated that polyethylene (11 %) and polystyrene (7 %) were the main polymer types. For the first time microplastics were found in unviable, undeveloped loggerhead sea turtle eggs collected in northwest Florida. This work provides insight into the distribution patterns of microplastic pollutants in loggerhead sea turtle eggs and may extend to other species worldwide.
Collapse
Affiliation(s)
| | | | | | - Margaret M Lamont
- United States Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, United States of America
| | | |
Collapse
|
23
|
Gunaalan K, Almeda R, Vianello A, Lorenz C, Iordachescu L, Papacharalampos K, Nielsen TG, Vollertsen J. Does water column stratification influence the vertical distribution of microplastics? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122865. [PMID: 37926412 DOI: 10.1016/j.envpol.2023.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/12/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Microplastic pollution has been confirmed in all marine compartments. However, information on the sub-surface microplastics (MPs) abundance is still limited. The vertical distribution of MPs can be influenced by water column stratification due to water masses of contrasting density. In this study, we investigated the vertical distribution of MPs in relation to the water column structure at nine sites in the Kattegat/Skagerrak (Denmark) in October 2020.A CTD was used to determine the stratification and pycnocline depth before sampling. Plastic-free pump-filter sampling devices were used to collect MPs from water samples (1-3 m3) at different depths. MPs concentration (MPs m-3) ranged from 18 to 87 MP m-3 (Median: 40 MP m-3; n = 9) in surface waters. In the mid waters, concentrations ranged from 16 to 157 MP m-3 (Median: 31 MP m-3; n = 6), while at deeper depths, concentrations ranged from 13 to 95 MP m-3 (Median: 34 MP m-3; n = 9). There was no significant difference in the concentration of MPs between depths. Regardless of the depth, polyester (47%), polypropylene (24%), polyethylene (10%), and polystyrene (9%) were the dominating polymers. Approximately 94% of the MPs fell within the size range of 11-300 μm across all depths. High-density polymers accounted for 68% of the MPs, while low-density polymers accounted for 32% at all depths. Overall, our results show that MPs are ubiquitous in the water column from surface to deep waters; we did not find any impact of water density on the depth distribution of MPs despite the strong water stratification in the Kattegat/Skagerrak.
Collapse
Affiliation(s)
- Kuddithamby Gunaalan
- National Institute of Aquatic Resource, Technical University of Denmark, Denmark; Department of the Built Environment, Aalborg University, Denmark.
| | - Rodrigo Almeda
- National Institute of Aquatic Resource, Technical University of Denmark, Denmark; EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria, Spain
| | - Alvise Vianello
- Department of the Built Environment, Aalborg University, Denmark
| | - Claudia Lorenz
- Department of the Built Environment, Aalborg University, Denmark; Department of Science and Environment, Roskilde University, Denmark
| | | | | | | | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Denmark
| |
Collapse
|
24
|
Balabantaray SR, Singh PK, Pandey AK, Chaturvedi BK, Sharma AK. Forecasting global plastic production and microplastic emission using advanced optimised discrete grey model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123039-123054. [PMID: 37980320 DOI: 10.1007/s11356-023-30799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Plastic pollution has become a prominent and pressing environmental concern within the realm of pollution. In recent times, microplastics have entered our ecosystem, especially in freshwater. In the contemporary global landscape, there exists a mounting apprehension surrounding the manifold environmental and public health issues that have emerged as a result of the substantial accumulation of microplastics. The objective of the current study is to employ an enhanced grey prediction model in order to forecast global plastic production and microplastic emissions. This study compared the accuracy level of the four grey prediction models, namely, EGM (1,1, α, θ), DGM (1,1), EGM (1,1), and DGM (1,1, α) models, to evaluate the accuracy levels. As per the estimation of the study, DGM (1,1, α) was found to be more suitable with higher accuracy levels to predict microplastic emission. The EGM (1,1, α, θ) model has slightly better accuracy than the DGM (1,1, α) model in predicting global plastic production. Various accuracy measurement tools (MAPE and RMSE) were used to determine the model's efficiency. There has been a gradual growth in both plastic production and microplastic emission. The current study using the DGM (1,1, α) model predicted that microplastic emission would be 1,084,018 by 2030. The present study aims to provide valuable insights for policymakers in formulating effective strategies to address the complex issues arising from the release of microplastics into the environment and the continuous production of plastic materials.
Collapse
Affiliation(s)
| | | | - Alok Kumar Pandey
- Centre for Integrated Rural Development, Banaras Hindu University, Varanasi, India
| | | | - Aditya Kumar Sharma
- School of Liberal Arts and Management, DIT University, Makka Wala, Uttarakhand, India
| |
Collapse
|
25
|
Chemello G, Trotta E, Notarstefano V, Papetti L, Di Renzo L, Matiddi M, Silvestri C, Carnevali O, Gioacchini G. Microplastics evidence in yolk and liver of loggerhead sea turtles (Caretta caretta), a pilot study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122589. [PMID: 37734631 DOI: 10.1016/j.envpol.2023.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The potential toxicity of microplastics is a growing concern for the scientific community. The loggerhead sea turtle (Caretta caretta) is particularly inclined to accidently ingest plastic and microplastic due to its long-life cycle features. The possible transfer of microplastics from the female to the eggs should be investigated. The present study investigated the presence of microplastics in yolk and liver samples evaluating the number of melanomacrophages in the hepatic tissue as a possible biomarker of microplastics impact on the embryonic health status. The biometric parameters and liver histological analysis of 27 and 48 embryos (from two different nests respectively) at the 30 stage of development were analyzed. Raman Microspectroscopy was performed to identify the microplastics after alkaline digestion (10% KOH) of yolk and portion of liver from 5 embryos at the 30 developmental stage per nest. Microplastics were found in yolk and liver of loggerhead sea turtles at late embryonic stage for the first time. All microplastics were smaller than 5 μm and were made of polymers and colors suggesting their diverse origins. A total number of 21 microplastics, with dimensions lower than 5 μm, were found between the two nests (11 and 10 microplastics respectively). Only two shape categories were identified: spheres and fragments. The most frequent polymers observed were polyethylene, polyvinyl chloride and acrylonitrile butadiene styrene (31.5%, 21.1% and 15.8% respectively). Despite the eggs showing a higher number of microplastics in yolk samples than liver (15 and 6 microplastics in yolk and liver respectively), a positive correlation was observed only between the number of melanomacrophages (r = 0.863 p < 0.001) and microplastics in the liver. This result may suggest that microplastics could exert some effects on the hepatic tissues. Future studies should investigate this aspect and the possible relation between microplastics and other stress biomarkers.
Collapse
Affiliation(s)
- Giulia Chemello
- Department of Environmental and Life Science (DISVA), Polytechnic University of Marche, 60131, Ancona, Italy.
| | - Erica Trotta
- Department of Environmental and Life Science (DISVA), Polytechnic University of Marche, 60131, Ancona, Italy.
| | - Valentina Notarstefano
- Department of Environmental and Life Science (DISVA), Polytechnic University of Marche, 60131, Ancona, Italy.
| | - Luana Papetti
- CRTM, TartAmare Onlus, 85100, Marina di Grosseto, Italy.
| | - Ludovica Di Renzo
- Istituto Zooprofilattico Dell'Abruzzo e Del Molise "G. Caporale", 64100, Teramo, Italy; Centro Studi Cetacei, 65125, Pescara, Italy.
| | - Marco Matiddi
- Centro Nazionale per La Rete Nazionale Dei Laboratori CN-LAB, Istituto Superiore per La Ricerca e La Protezione Ambientale (ISPRA), 00144, Roma, Italy.
| | - Cecilia Silvestri
- Centro Nazionale per La Rete Nazionale Dei Laboratori CN-LAB, Istituto Superiore per La Ricerca e La Protezione Ambientale (ISPRA), 00144, Roma, Italy.
| | - Oliana Carnevali
- Department of Environmental and Life Science (DISVA), Polytechnic University of Marche, 60131, Ancona, Italy.
| | - Giorgia Gioacchini
- Department of Environmental and Life Science (DISVA), Polytechnic University of Marche, 60131, Ancona, Italy.
| |
Collapse
|
26
|
Tasnim J, Ahmed MK, Hossain KB, Islam MS. Spatiotemporal distribution of microplastic debris in the surface beach sediment of the southeastern coast of Bangladesh. Heliyon 2023; 9:e21864. [PMID: 38058634 PMCID: PMC10695837 DOI: 10.1016/j.heliyon.2023.e21864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
This study undertakes a spatiotemporal analysis of microplastic pollution in surface beach sediments, covering 7 coastal beaches in Bangladesh and two seasons-monsoon and winter. The concentration of microplastics extracted from the surface beach sediment is 242.86 particles/kg dw. The results showed both significant seasonal (p value = 0.001) and spatial (p value = 0.004) variation. The abundance and polymer types were significantly higher (57 %) in winter than in the monsoon season (43 %). Touristic and commercial beaches showed higher levels of microplastic pollution than the non-touristic beaches. Polyethylene (28.8 %) and Polypropylene (27.6 %) were the most abundant polymer. The most dominant coloration of microplastics was white (42.6 %). The majority of the microplastics were fibers (33.5 %). Smallest particles measuring <1 mm constituted nearly half of the total microplastics load (48.5 %). This baseline data can be useful in terms of coastal zone management for the southeastern coastal beaches of Bangladesh.
Collapse
Affiliation(s)
- Jarin Tasnim
- Department of Oceanography, Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Kawser Ahmed
- Department of Oceanography, Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
- International Centre for Ocean Governance (ICOG), Faculty of Earth & Environmental Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Kazi Belayet Hossain
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China
- College of Environment and Ecology, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| |
Collapse
|
27
|
Sá S, Torres-Pereira A, Ferreira M, Monteiro SS, Fradoca R, Sequeira M, Vingada J, Eira C. Microplastics in Cetaceans Stranded on the Portuguese Coast. Animals (Basel) 2023; 13:3263. [PMID: 37893986 PMCID: PMC10603649 DOI: 10.3390/ani13203263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
This study characterises microplastics in small cetaceans on the coast of Portugal and assesses the relationship between several biological variables and the amount of detected microplastics. The intestines of 38 stranded dead cetaceans were processed in the laboratory, with digestion methods adapted to the amount of organic matter in each sample. The influence of several biological and health variables (e.g., species, sex, body condition) on the amount of microplastics was tested in all analysed species and particularly in common dolphins, due to the larger number of available samples. Most of the analysed individuals had microplastics in the intestine (92.11%), with harbour porpoises revealing a significantly higher median number of microplastics than common dolphins, probably due to their different diets, use of habitat and feeding strategies. None of the other tested variables significantly influenced the number of microplastics. Moreover, the microplastics found should not be enough to cause physical or chemical sublethal effects, although the correlation between microplastic ingestion and plastic additive bioaccumulation in cetacean tissues requires further investigation. Future monitoring in biota should rely on improved and standardised protocols for microplastic analyses in complex samples to allow for accurate analyses of larger samples and spatio-temporal comparisons.
Collapse
Affiliation(s)
- Sara Sá
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Andreia Torres-Pereira
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Marisa Ferreira
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Sílvia S. Monteiro
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Raquel Fradoca
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Marina Sequeira
- Instituto da Conservação da Natureza e Florestas (ICNF), Av. da República 16, 1050-191 Lisboa, Portugal;
| | - José Vingada
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Catarina Eira
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| |
Collapse
|
28
|
Gunaalan K, Nielsen TG, Rodríguez Torres R, Lorenz C, Vianello A, Andersen CA, Vollertsen J, Almeda R. Is Zooplankton an Entry Point of Microplastics into the Marine Food Web? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11643-11655. [PMID: 37497822 PMCID: PMC10413952 DOI: 10.1021/acs.est.3c02575] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Microplastics (MPs) overlap in size with phytoplankton and can be ingested by zooplankton, transferring them to higher trophic levels. Copepods are the most abundant metazoans among zooplankton and the main link between primary producers and higher trophic levels. Ingestion of MPs has been investigated in the laboratory, but we still know little about the ingestion of MPs by zooplankton in the natural environment. In this study, we determined the concentration and characteristics of MPs down to 10 μm in zooplankton samples, sorted calanoid copepods, and fecal pellets collected in the Kattegat/Skagerrak Sea (Denmark). We found a median concentration of 1.7 × 10-3 MPs ind-1 in the zooplankton samples, 2.9 × 10-3 MPs ind-1 in the sorted-copepods, and 3 × 10-3 MPs per fecal pellet. Most MPs in the zooplankton samples and fecal pellets were fragments smaller than 100 μm, whereas fibers dominated in the sorted copepods. Based on the collected data, we estimated a MP budget for the surface layer (0-18 m), where copepods contained only 3% of the MPs in the water, while 5% of the MPs were packed in fecal pellets. However, the number of MPs exported daily to the pycnocline via fecal pellets was estimated to be 1.4% of the total MPs in the surface layer. Our results indicate that zooplankton are an entry point of small MPs in the food web, but the number of MPs in zooplankton and their fecal pellets was low compared with the number of MPs found in the water column and the occurrence and/or ingestion of MPs reported for nekton. This suggests a low risk of MP transferring to higher trophic levels through zooplankton and a quantitatively low, but ecologically relevant, contribution of fecal pellets to the vertical exportation of MPs in the ocean.
Collapse
Affiliation(s)
- Kuddithamby Gunaalan
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Torkel Gissel Nielsen
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
| | - Rocío Rodríguez Torres
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- Laboratoire
d’Océanographie de Villefranche sur mer (LOV), UPMC
Université Paris 06, CNRS UMR 7093, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Claudia Lorenz
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Alvise Vianello
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Ceelin Aila Andersen
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
| | - Jes Vollertsen
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East, Denmark
| | - Rodrigo Almeda
- National
Institute of Aquatic Resource, Technical
University of Denmark, Kemitorvet, 201, 2800 Kgs. Lyngby, Denmark
- EOMAR-ECOAQUA, University of Las Palmas of Gran Canaria, 35017 Las Palmas
de Gran Canaria, Spain
| |
Collapse
|
29
|
Li A, Cui H, Sheng Y, Qiao J, Li X, Huang H. Global plastic upcycling during and after the COVID-19 pandemic: The status and perspective. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:110092. [PMID: 37200549 PMCID: PMC10167783 DOI: 10.1016/j.jece.2023.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Plastic pollution has become one of the most pressing environmental issues worldwide since the vast majority of post-consumer plastics are hard to degrade in the environment. The coronavirus disease (COVID-19) pandemic had disrupted the previous effort of plastic pollution mitigation to a great extent due to the overflow of plastic-based medical waste. In the post-pandemic era, the remaining challenge is how to motivate global action towards a plastic circular economy. The need for one package of sustainable and systematic plastic upcycling approaches has never been greater to address such a challenge. In this review, we summarized the threat of plastic pollution during COVID-19 to public health and ecosystem. In order to solve the aforementioned challenges, we present a shifting concept, regeneration value from plastic waste, that provides four promising pathways to achieve a sustainable circular economy: 1) Increasing reusability and biodegradability of plastics; 2) Transforming plastic waste into high-value products by chemical approaches; 3) The closed-loop recycling can be promoted by biodegradation; 4) Involving renewable energy into plastic upcycling. Additionally, the joint efforts from different social perspectives are also encouraged to create the necessary economic and environmental impetus for a circular economy.
Collapse
Affiliation(s)
- Anni Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
| | - Yijie Sheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
30
|
Caldwell J, Loussert-Fonta C, Toullec G, Heidelberg Lyndby N, Haenni B, Taladriz-Blanco P, Espiña B, Rothen-Rutishauser B, Petri-Fink A. Correlative Light, Electron Microscopy and Raman Spectroscopy Workflow To Detect and Observe Microplastic Interactions with Whole Jellyfish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6664-6672. [PMID: 37058431 PMCID: PMC10134485 DOI: 10.1021/acs.est.2c09233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Many researchers have turned their attention to understanding microplastic interaction with marine fauna. Efforts are being made to monitor exposure pathways and concentrations and to assess the impact such interactions may have. To answer these questions, it is important to select appropriate experimental parameters and analytical protocols. This study focuses on medusae of Cassiopea andromeda jellyfish: a unique benthic jellyfish known to favor (sub-)tropical coastal regions which are potentially exposed to plastic waste from land-based sources. Juvenile medusae were exposed to fluorescent poly(ethylene terephthalate) and polypropylene microplastics (<300 μm), resin embedded, and sectioned before analysis with confocal laser scanning microscopy as well as transmission electron microscopy and Raman spectroscopy. Results show that the fluorescent microplastics were stable enough to be detected with the optimized analytical protocol presented and that their observed interaction with medusae occurs in a manner which is likely driven by the microplastic properties (e.g., density and hydrophobicity).
Collapse
Affiliation(s)
- Jessica Caldwell
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Céline Loussert-Fonta
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Gaëlle Toullec
- Laboratory
for Biological Geochemistry, School of Architecture, Civil and Environmental
Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rte Cantonale, CH-1015 Lausanne, Switzerland
| | - Niclas Heidelberg Lyndby
- Laboratory
for Biological Geochemistry, School of Architecture, Civil and Environmental
Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Rte Cantonale, CH-1015 Lausanne, Switzerland
| | - Beat Haenni
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Patricia Taladriz-Blanco
- Water
Quality Group, International Iberian Nanotechnology
Laboratory (INL), Av. Mestre Jose Veiga s/n, 4715-330 Braga, Portugal
| | - Begoña Espiña
- Water
Quality Group, International Iberian Nanotechnology
Laboratory (INL), Av. Mestre Jose Veiga s/n, 4715-330 Braga, Portugal
| | | | - Alke Petri-Fink
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Department
of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
31
|
Ji J, Wu X, Li X, Zhu Y. Effects of microplastics in aquatic environments on inflammatory bowel disease. ENVIRONMENTAL RESEARCH 2023; 229:115974. [PMID: 37088319 DOI: 10.1016/j.envres.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The incidence of inflammatory bowel disease (IBD) has been increasing in recent years, particularly in newly industrialized nations. Environmental factors have been identified as playing a crucial role in IBD pathogenesis. Microplastics (MPs), a novel class of environmental pollutants, are a significant global pollution concern. MPs are found in almost all aquatic environments. MPs in the environment may pose health risks, specifically concerning the intestinal system, due to prolonged exposure through the consumption of aquatic foods and drinking water. In this review, we aimed to provide a comprehensive overview of the current knowledge on the impact of MPs in water resources on the occurrence and progression of IBD. Our systematic analysis of in vitro and in vivo studies found that MPs induce intestinal barrier dysfunction, imbalance in the intestinal microbiome, and metabolic abnormalities, ultimately leading to IBD. In addition, MP exposure causes greater harm to individuals with preexisting gastrointestinal disorders than those without them. Our analysis of this literature review highlights the need for further research to improve the understanding of the complex relationship between MP exposure and IBD.
Collapse
Affiliation(s)
- Jiali Ji
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xi Li
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- The Affiliated Kangning Hospital, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
32
|
Bond AL, Lavers JL. Can the mass of plastic ingested by seabirds be predicted by the number of ingested items? MARINE POLLUTION BULLETIN 2023; 188:114673. [PMID: 36736263 DOI: 10.1016/j.marpolbul.2023.114673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Plastics pollution has been documented for decades, yet repeatable methods for evaluating quantities are lacking. For wildlife, the mass and number of ingested plastics are widely reported, but these are not without their challenges, especially in field settings. Rapid methods for estimating the mass of ingested plastic could therefore be useful, but the relationship with the number of ingested pieces has not been explored. Using a dataset covering 1278 individuals of 11 Procellariiform species, we investigated this relationship to determine if counts could act as a proxy for the mass of ingested plastic by seabirds. Larger species ingested larger pieces of plastic, and birds that consumed more pieces also ingested items that are physically larger. Across species, sample size significantly influenced the slope of the relationship between the mass and number of ingested plastics. The mass-number relationship is species-specific, highly driven by sample size, and varies temporally.
Collapse
Affiliation(s)
- Alexander L Bond
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom.
| | - Jennifer L Lavers
- Bird Group, The Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, United Kingdom
| |
Collapse
|
33
|
Recabarren-Villalón T, Ronda AC, La Sala L, Sanhueza C, Díaz L, Rodríguez Pirani LS, Picone AL, Romano RM, Petracci P, Arias AH. First assessment of debris pollution in the gastrointestinal content of juvenile Magellanic penguins (Spheniscus magellanicus) stranded on the west south Atlantic coasts. MARINE POLLUTION BULLETIN 2023; 188:114628. [PMID: 36701975 DOI: 10.1016/j.marpolbul.2023.114628] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
This paper provides the first evidence of debris pollution, including plastic, in juvenile Magellanic penguins (Spheniscus magellanicus) found stranded on the Atlantic coast of southern Buenos Aires Province, Argentina. Macro-, meso- and microparticles of anthropogenic origin were observed in 100 % of the studied birds, with debris abundance ranging between 33 and 200 items/bird. Microparticles represented 91 % of the total debris and 97 % of them were fibers. Black particles were the most abundant (30 %), followed by transparent (26 %), blue (14 %), yellow (10.3 %), and red (10 %). Infrared and Raman spectroscopy identified 62.7 % of the total particles as plastics, with polypropylene (27.8 %) and polyester (21.6 %) being the most abundant polymers. Semi-synthetic cellulosic fibers, metallic particles, and pigments were also found. The presence of metallic microparticles was suggested for the first time in penguins. Stranded juvenile Magellanic penguins are proposed as promising bioindicators of plastic pollution in the South Atlantic.
Collapse
Affiliation(s)
- Tatiana Recabarren-Villalón
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina
| | - Ana C Ronda
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Luciano La Sala
- Instituto de Ciencias Biológicas y Biomédicas del Sur, CONICET/UNS, Bahía Blanca, Argentina
| | - Cristina Sanhueza
- Grupo de Estudio en Conservación y Manejo (Gekko), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Lucrecia Díaz
- Grupo de Investigación y Rehabilitación de Tortugas Marinas (Quelona), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Lucas S Rodríguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - A Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Rosana M Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Pablo Petracci
- Grupo de Estudio en Conservación y Manejo (Gekko), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina; Estación de Rescate de Fauna Marina Guillermo "Indio" Fidalgo, Sitio 11, Puerto Galván Bahía Blanca Buenos Aires, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
34
|
He H, Liu K, Guo Z, Li F, Liao Z, Yang X, Ren X, Huang H, Huang B, Pan X. Photoaging mechanisms of microplastics mediated by dissolved organic matter in an iron-rich aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160488. [PMID: 36436646 DOI: 10.1016/j.scitotenv.2022.160488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, microplastics (MPs) have aroused worldwide concern due to their ubiquitous distribution, environmental persistence, and potential ecological risks. However, the ageing mechanisms, environmental behaviours and risks of photoaged MPs mediated by environmental factors remain obscure. Herein, systems containing a light source, humic acid (HA) and Fe were established to investigate the natural photoaging process of MPs including polyvinyl chloride (PVC) and polyethylene terephthalate (PET). The dehydrochlorination reaction of PVC-MP was inhibited by HA and Fe, which resulted from the coeffect of photon competition, excited state quenching, radical deactivation or transformation, and defect structure destruction. In contrast, the enhanced fluorescence effect suggested that the photooxidation reactions of PET-MP were promoted by HA and Fe. Therefore, the presence of HA and Fe in the environment inhibited the photoreduction of MPs while favoring the photooxidative process. Additionally, the adsorption capacity for 17α-ethinylestradiol and the cytotoxicity of MPs were increased after ageing in the hv + HA and hv + HA + Fe systems, which was attributed to the changes in morphology, elements and functional groups. This study provided new insight into the ageing behaviours of MPs in the natural environment with widespread dissolved organic matter and Fe.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kunqian Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huang Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| |
Collapse
|
35
|
Pietroluongo G, Centelleghe C, Sciancalepore G, Ceolotto L, Danesi P, Pedrotti D, Mazzariol S. Environmental and pathological factors affecting the hatching success of the two northernmost loggerhead sea turtle (Caretta caretta) nests. Sci Rep 2023; 13:2938. [PMID: 36806250 PMCID: PMC9941489 DOI: 10.1038/s41598-023-30211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In recent years, the report of loggerhead sea turtle (Caretta caretta) Mediterranean nesting range has expanded together with new records of nests becoming northward on the Italian coastline of the Tyrrhenian and Adriatic seas. These areas are characterized by intensive human activities, such as tourism, fishery, and marine traffic, all possibly involved in the influence of the use of coastal habitat by marine species. These anthropic threats, in addition to the natural ones and the changing environmental characteristics of the beach, may influence the growth of microorganisms causing hatching failures. Among microorganisms, fungal infection by the genus Fusarium (Link, 1809) is considered one of the main causes of globally declining sea turtle populations. In summer 2021, the two northernmost worldwide loggerhead sea turtle nests were monitored along the Northern Adriatic coastline (Veneto, Italy). These first records may potentially candidate this area as suitable for a large part of the loggerhead turtle's life cycle and it could represent a minor sea turtle nesting area that, according to Prato and colleagues, remained unnoticed due to the lack of specific monitoring. Sea Turtle Egg Fusariosis (STEF) was deemed to have deeply compromised the hatching success of the northmost one. Climate change and anthropogenic impacts have been scored as one of the highest hazards to sea turtle health and could have played a role in the STEF development. Environmental changes, human activities, and emerging pathogens deserve the highest attention in terms of health research, and conservation management.
Collapse
Affiliation(s)
- Giudo Pietroluongo
- grid.5608.b0000 0004 1757 3470Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Legnaro, Italy.
| | - Giuseppe Sciancalepore
- grid.5608.b0000 0004 1757 3470Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| | - Luca Ceolotto
- grid.5608.b0000 0004 1757 3470Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| | - Patrizia Danesi
- grid.419593.30000 0004 1805 1826Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy
| | - Davide Pedrotti
- grid.5608.b0000 0004 1757 3470Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| | - Sandro Mazzariol
- grid.5608.b0000 0004 1757 3470Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy
| |
Collapse
|
36
|
A Preliminary Report of Plastic Ingestion by Hawksbill and Green Turtles in the Saudi Arabian Red Sea. Animals (Basel) 2023; 13:ani13020314. [PMID: 36670854 PMCID: PMC9854423 DOI: 10.3390/ani13020314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
(1) Background: Plastic pollution is a major environmental concern confronting marine animals. Sea turtles are considered a bio-indicator of plastic pollution, but there is little information regarding plastic ingestion by turtles in the Red Sea. With large-scale development projects being built along the Saudi Arabian coast, it is important to have a baseline for plastic ingestion before construction is complete. (2) Methods: Ten deceased sea turtles (four hawksbill and six green turtles) were collected along the Saudi Arabian coastline. Necropsies were conducted, and the entire gastrointestinal tracts were extracted and the contents were passed through a 1 mm mesh sieve. (3) Results: We found that 40% of the turtles in this study had ingested plastics. Thread-like plastics were the most common plastic category, and multi-colored was the most prevalent color category. (4) Conclusions: Monitoring of the plastic ingestion by marine megafauna should be conducted as a long-term assessment of the developments' impacts. Additionally, conservation efforts should be focused on removing plastics (namely ghost nests and fishing lines) from the reefs and reducing the amount of plastic entering the sea.
Collapse
|
37
|
Nguyen LH, Nguyen BS, Le DT, Alomar TS, AlMasoud N, Ghotekar S, Oza R, Raizada P, Singh P, Nguyen VH. A concept for the biotechnological minimizing of emerging plastics, micro- and nano-plastics pollutants from the environment: A review. ENVIRONMENTAL RESEARCH 2023; 216:114342. [PMID: 36181894 DOI: 10.1016/j.envres.2022.114342] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Plastics, micro- and nano-plastics pollution are undoubtedly a severe and crucial ecological threat due to the durability of plastics and their destructive impacts on humans and wildlife. Most scientific investigations have addressed the classification, types, distribution, ingestion, fate, impacts, degradation, and various adverse effect of plastics. Heretofore, scanty reports have addressed implementing strategies for the remediation and mitigation of plastics. Therefore, in this paper, we review the current studies on the degradation of plastics, micro- and nano-plastics aided by microorganisms, and explore the relevant degradation properties and mechanisms. Diverse microorganisms are classified, such as bacteria, fungi, algae, cyanobacteria, wax worms, and enzymes that can decompose various plastics. Furthermore, bio-degradation is influenced by microbial features and environmental parameters; therefore, the ecological factors affecting plastic degradation and the resulting degradation consequences are discussed. In addition, the mechanisms underlying microbial-mediated plastic degradation are carefully studied. Finally, upcoming research directions and prospects for plastics degradation employing microorganisms are addressed. This review covers a comprehensive overview of the microorganism-assisted degradation of plastics, micro- and nano-plastics, and serves as a resource for future research into sustainable plastics pollution management methods.
Collapse
Affiliation(s)
- Lan Huong Nguyen
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Ba-Son Nguyen
- Department of Renewable Energy, HCMC University of Technology and Education, Ho Chi Minh City, 700000, Viet Nam
| | - Duy-Tien Le
- Faculty of Pharmacy, Lac Hong University, Dong Nai Province, Viet Nam.
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa, 396 230, Dadra and Nagar Haveli (UT), India.
| | - Rajeshwari Oza
- Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, 422 605, Maharashtra, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Chengalpattu District, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
38
|
Yagi M, Ono Y, Kawaguchi T. Microplastic pollution in aquatic environments may facilitate misfeeding by fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120457. [PMID: 36270564 DOI: 10.1016/j.envpol.2022.120457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Numerous recent studies have documented ingestion of microplastics (MPs) by many aquatic animals, yet an explanation for misfeeding by fish remains unexplained. Here we tested the hypothesis that biofilm (biofouling) on MP surfaces due to exposure in the aquatic environment facilitates misfeeding in fish. Spherical polystyrene (PS) was cultured for 0-22 weeks in a freshwater environment to grow a biofilm on the MPs. Goldfish were employed in a simple feeding experiment with and without provision of genuine food at ecologically relevant MP concentrations. Absorbance (ABS), which is a proxy for biofilm formation, increased exponentially within three weeks of initiation and reached a plateau after approximately five weeks. Although fish did not swallow the MPs, "capture" occurred when food pellets were in the vicinity and significantly increased in probability with aging. Duration of capture also increased significantly with increasing aging. These results suggest that drifting of MPs in aquatic environments may facilitate fish misidentification of MPs as edible prey.
Collapse
Affiliation(s)
- Mitsuharu Yagi
- Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan; Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan; Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Yurika Ono
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Toshiya Kawaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| |
Collapse
|
39
|
Pietroluongo G, Quintana Martín-Montalvo B, Antichi S, Miliou A, Costa V. First Assessment of Micro-Litter Ingested by Dolphins, Sea Turtles and Monk Seals Found Stranded along the Coasts of Samos Island, Greece. Animals (Basel) 2022; 12:ani12243499. [PMID: 36552419 PMCID: PMC9774117 DOI: 10.3390/ani12243499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
This study is the first to assess the occurrence of micro-litter ingested by marine megafauna in the north-eastern Aegean Sea. A total of 25 specimens from four species of marine mammals, including dolphins and monk seals, and two species of sea turtles, found stranded along the coastline of Samos Island, Greece, were selected for the analysis. Litter particles, identified as microplastics (MPs), were ubiquitous throughout all sections of the gastrointestinal tract (oesophagus, stomach and intestine) in all specimens. Overall, the MPs most frequently found were black fibres 0.21-0.50 mm in size. These results provide insight into the extent of micro-litter ingestion and contamination in marine vertebrates. Here we propose a method of standardisation to establish a baseline for marine taxa in this region of the Mediterranean Sea, where knowledge of the topic is still lacking.
Collapse
Affiliation(s)
- Guido Pietroluongo
- Archipelagos Institute of Marine Conservation, P.O. Box 42, 83103 Pythagorio, Samos, Greece
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy
- Correspondence: (G.P.); (V.C.)
| | | | - Simone Antichi
- Archipelagos Institute of Marine Conservation, P.O. Box 42, 83103 Pythagorio, Samos, Greece
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, Sur KM 5.5, La Paz 23080, Mexico
| | - Anastasia Miliou
- Archipelagos Institute of Marine Conservation, P.O. Box 42, 83103 Pythagorio, Samos, Greece
| | - Valentina Costa
- Archipelagos Institute of Marine Conservation, P.O. Box 42, 83103 Pythagorio, Samos, Greece
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn (SZN), Contrada Torre Spaccata, Località Torre Spaccata, 87071 Amendolara, Italy
- Correspondence: (G.P.); (V.C.)
| |
Collapse
|
40
|
Darmon G, Schulz M, Matiddi M, Loza AL, Tòmàs J, Camedda A, Chaieb O, El Hili HA, Bradai MN, Bray L, Claro F, Dellinger T, Dell'Amico F, de Lucia GA, Duncan EM, Gambaiani D, Godley B, Kaberi H, Kaska Y, Martin J, Moreira C, Ostiategui P, Pham CK, Piermarini R, Revuelta O, Rodríguez Y, Silvestri C, Snape R, Sozbilen D, Tsangaris C, Vale M, Vandeperre F, Miaud C. Drivers of litter ingestion by sea turtles: Three decades of empirical data collected in Atlantic Europe and the Mediterranean. MARINE POLLUTION BULLETIN 2022; 185:114364. [PMID: 36435019 DOI: 10.1016/j.marpolbul.2022.114364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Sea turtles are considered as bio-indicators for monitoring the efficiency of restoration measures to reduce marine litter impacts on health. However, the lack of extended and standardised empirical data has prevented the accurate analysis of the factors influencing litter ingestion and the relationships with individual health. Historic data collected from 1988 and standard data collected from 2016 were harmonised to enable such analyses on necropsied loggerhead turtles (Caretta caretta) in eight Mediterranean and North-East Atlantic countries. Litter was found in 69.24 % of the 1121 individuals, mostly single-use and fishing-related plastics. Spatial location, sex and life history stage explained a minor part of litter ingestion. While no relationships with health could be detected, indicating that all individuals can be integrated as bio-indicators, the mechanistic models published in literature suggest that the high proportion of plastics in the digestive contents (38.77 % per individual) could have long-term repercussions on population dynamics.
Collapse
Affiliation(s)
- Gaëlle Darmon
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Biogéographie et Écologie des Vertébrés, Montpellier, France.
| | - Marcus Schulz
- AquaEcology GmbH & Co. KG, AquaEcology, Steinkamp 19, 26125 Oldenburg, Germany
| | - Marco Matiddi
- Italian National Institute for Environmental Protection and Research (ISPRA), Nekton Lab, Via di Castel Romano 100, 00144 Roma, RM, Italy
| | - Ana Liria Loza
- University of Las Palmas de Gran Canaria, EcoAqua University Institute, Telde, Las Palmas 35214, Spain
| | - Jesús Tòmàs
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, UVEG, Valencia, Spain
| | - Andrea Camedda
- Institute for Coastal Marine Environment-National Research Council (IAS-CNR) - Institute of Anthropic Impacts and Sustainability in marine environment/National Research Council, Institute of Anthropic Impact and Sustainability in Marine Environment - National Research Council Oristano Section, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - Olfa Chaieb
- Tunisian National Institute for the Sciences and Technologies of the Sea, 28 rue du 2 mars 1934, 2025 Salammbô, Tunisia
| | - Hedia A El Hili
- Centre National de Veille Zoosanitaire (National Center for wildlife health monitoring), Tunisia
| | - Mohamed N Bradai
- Tunisian National Institute for the Sciences and Technologies of the Sea, 28 rue du 2 mars 1934, 2025 Salammbô, Tunisia
| | - Laura Bray
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 46.7 km Athinon-Souniou Ave., Anavyssos, Attiki, 19013, Greece
| | - Françoise Claro
- National museum of natural history, UMS OFB-MNHN-CNRS, 75005 Paris, France
| | - Thomas Dellinger
- University of Madeira - Estação de Biologia Marinha do Funchal, Cais de Carvão - Promenade da Orla Marítima P-9000-107 Funchal / Madeira, Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), 4485-661 Vairão, Portugal
| | - Florence Dell'Amico
- Centre d'études et de soins pour les tortues marines (CESTM) - Aquarium La Rochelle, Quai Louis Prunier, 17000 La Rochelle, France
| | - Giuseppe A de Lucia
- Institute for Coastal Marine Environment-National Research Council (IAS-CNR) - Institute of Anthropic Impacts and Sustainability in marine environment/National Research Council, Institute of Anthropic Impact and Sustainability in Marine Environment - National Research Council Oristano Section, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - Emily M Duncan
- Marine Turtle Research Group, Centre for Ecology and Conservation, University of Exeter, Penryn, UK; Ocean Science Institute - OKEANOS, Universidade dos Açores, MARE - Marine and Environmental Sciences Centre, 9900-138 Horta, Portugal
| | - Delphine Gambaiani
- CESTMED Center for the Study and Conservation of Mediterranean Sea Turtles, Av. du Palais de la Mer, 30240 Le Grau-du-Roi, France
| | - Brendan Godley
- Marine Turtle Research Group, Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Helen Kaberi
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 46.7 km Athinon-Souniou Ave., Anavyssos, Attiki, 19013, Greece
| | - Yakup Kaska
- Pamukkale University, Department of Biology, Faculty of Arts and Sciences, Denizli, Turkey
| | - Jessica Martin
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Biogéographie et Écologie des Vertébrés, Montpellier, France
| | - Cláudia Moreira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3004-517 Coimbra, Portugal
| | - Patricia Ostiategui
- University of Las Palmas de Gran Canaria, EcoAqua University Institute, Telde, Las Palmas 35214, Spain
| | - Christopher K Pham
- Ocean Science Institute - OKEANOS, Universidade dos Açores, MARE - Marine and Environmental Sciences Centre, 9900-138 Horta, Portugal
| | - Raffaella Piermarini
- Italian National Institute for Environmental Protection and Research (ISPRA), Nekton Lab, Via di Castel Romano 100, 00144 Roma, RM, Italy
| | - Ohiana Revuelta
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, UVEG, Valencia, Spain
| | - Yasmina Rodríguez
- Ocean Science Institute - OKEANOS, Universidade dos Açores, MARE - Marine and Environmental Sciences Centre, 9900-138 Horta, Portugal
| | - Cecilia Silvestri
- Italian National Institute for Environmental Protection and Research (ISPRA), Nekton Lab, Via di Castel Romano 100, 00144 Roma, RM, Italy
| | - Robin Snape
- Marine Turtle Research Group, Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Dogăn Sozbilen
- Pamukkale University, Department of Biology, Faculty of Arts and Sciences, Denizli, Turkey
| | - Catherine Tsangaris
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 46.7 km Athinon-Souniou Ave., Anavyssos, Attiki, 19013, Greece
| | - Maria Vale
- Regional Fund for Science and Technology (FRCT), Azores Regional Government, Ponta Delgada, Azores, Portugal
| | - Frederic Vandeperre
- Ocean Science Institute - OKEANOS, Universidade dos Açores, MARE - Marine and Environmental Sciences Centre, 9900-138 Horta, Portugal
| | - Claude Miaud
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Biogéographie et Écologie des Vertébrés, Montpellier, France
| |
Collapse
|
41
|
Bitter H, Krause L, Kirchen F, Fundneider T, Lackner S. Semi-crystalline microplastics in wastewater plant effluents and removal efficiencies of post-treatment filtration systems. WATER RESEARCH X 2022; 17:100156. [PMID: 36177246 PMCID: PMC9513168 DOI: 10.1016/j.wroa.2022.100156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 09/18/2022] [Indexed: 06/03/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and have been found in every environmental compartment. Wastewater and wastewater treatment plants (WWTPs) have been identified as possible point sources contributing to the emission of microplastic particles (MPP) into the aquatic environment. So far, MPP in wastewater effluents have mainly been analyzed by spectroscopic methods resulting in concentrations as number per volume. In this study, we present mass concentrations in the secondary effluents of four German municipal WWTPs, removal efficiencies of seven post-treatment systems and the resulting load emissions. Differential Scanning Calorimetry (DSC) was used for the analysis of semi-crystalline MPs. The concentrations of secondary effluents ranged from 0.1 to 19.6 µg L-1. Removal efficiencies > 94% were found for a microfiltration membrane (MF), two cloth types of a pile cloth media filter (PCMF), a micro strainer, a discontinuous downflow granulated activated carbon filter (GAC) and a powdered activated carbon (PAC) stage with clarifier and rapid sand filtration. A rapid sand filter (RSF) at WWTP B showed a removal efficiency of 82.38%. Only a continuous upflow GAC filter at WWTP C proved to be unsuitable for MP removal with an average removal efficiency of 1.9%.
Collapse
Affiliation(s)
- Hajo Bitter
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Franziska-Braun-Strasse 7, Darmstadt 64287, Germany
| | - Leonie Krause
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Franziska-Braun-Strasse 7, Darmstadt 64287, Germany
- Weber-Ingenieure GmbH, Darmstadt, Germany
| | - Franziska Kirchen
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Franziska-Braun-Strasse 7, Darmstadt 64287, Germany
| | - Thomas Fundneider
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Franziska-Braun-Strasse 7, Darmstadt 64287, Germany
- Mecana Umwelttechnik GmbH, Reichenburg, Switzerland
| | - Susanne Lackner
- Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Franziska-Braun-Strasse 7, Darmstadt 64287, Germany
| |
Collapse
|
42
|
Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Battulga B, Atarashi-Andoh M, Nakanishi T, Koarashi J. A new approach to extracting biofilm from environmental plastics using ultrasound-assisted syringe treatment for isotopic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157758. [PMID: 35926621 DOI: 10.1016/j.scitotenv.2022.157758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Plastics are one of the ubiquitous and artificial types of substrates for microbial colonization and biofilm development in the aquatic environment. Characterizing plastic-associated biofilms is key to the better understanding of organic material and mineral cycling in the "Plastisphere"-the thin layer of microbial life on plastics. In this study, we propose a new method to extract biofilms from environmental plastics, in order to evaluate the properties of biofilm-derived organic matter through stable carbon (δ13C) and nitrogen (δ15N) isotope signatures and their interactions with radionuclides especially radiocesium (137Cs). The extraction method is simple and cost-effective, requiring only an ultrasonic bath, disposable plastic syringes, and a freeze drier. After ultrasound-assisted separation from the plastics, biofilm samples were successfully collected via a sequence of syringe treatments, with less contamination from plastics and other mineral particles. Effective removal of small microplastics from the experimental suspension was satisfactorily achieved using the method with syringe treatments. Biofilm-derived organic matter samples (14.5-65.4 mg) from four river mouths in Japan showed 137Cs activity concentrations of <75 to 820 Bq·kg-1 biofilm (dw), providing evidence that environmental plastics, mediated by developed biofilms, serve as a carrier for 137Cs in the coastal riverine environment. Significant differences in the δ13C and δ15N signatures were also obtained for the biofilms, indicating the different sources, pathways, and development processes of biofilms on plastics. We demonstrate here a straightforward method for extracting biofilms from environmental plastics; the results obtained with this method could provide useful insights into the plastic-associated nutrient cycling in the environment.
Collapse
Affiliation(s)
- Batdulam Battulga
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan.
| | - Mariko Atarashi-Andoh
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
| | - Takahiro Nakanishi
- Sector of Fukushima Research and Development, Japan Atomic Energy Agency, Fukushima 975-0036, Japan
| | - Jun Koarashi
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
| |
Collapse
|
44
|
Carbery M, Herb F, Reynes J, Pham CK, Fong WK, Lehner R. How small is the big problem? Small microplastics <300 μm abundant in marine surface waters of the Great Barrier Reef Marine Park. MARINE POLLUTION BULLETIN 2022; 184:114179. [PMID: 36206615 DOI: 10.1016/j.marpolbul.2022.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Particle size plays an important role in determining the behaviour, fate and effects of microplastics (MPs), yet little is known about MPs <300 μm in aquatic environments. Therefore, we performed the first assessment of MPs in marine surface waters around the Whitsunday Islands region of the Great Barrier Reef Marine Park, Australia, to test for the presence of small MPs (50-300 μm) in-situ. Using a modified manta net, we demonstrate that MPs were present in all marine surface water samples, with a mean sea surface concentration of 0.23 ± 0.03 particles m-3. Microplastics were mainly blue, clear and black fibres and fragments, consisting of polyethylene terephthalate, high-density polyethylene and polypropylene plastic polymers. Tourism and marine recreation were considered the major contributing sources of MPs to surface waters around the Whitsunday Islands. Between 10 and 124 times the number of MPs exist in the 50 μm-300 μm size class, compared with the 1 mm-5 mm size range. This finding indicates that the global abundance of small MPs in marine surface waters is grossly underestimated and warrants further investigation. Research into the occurrence, characteristics and environmental fate of MPs <300 μm is needed to improve our understanding of the cumulative threats facing valuable ecosystems due to this smaller, potentially more hazardous size class.
Collapse
Affiliation(s)
- Maddison Carbery
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Frithjof Herb
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia
| | - Julien Reynes
- Institute of Geological Sciences, University of Bern, CH-3012 Bern, Switzerland; Institute of Earth Sciences, University of Lausanne, Géopolis, Quartier Mouline, 1015 Lausanne, Switzerland
| | - Christopher K Pham
- Instituto de Investigação em Ciências do Mar - IMAR/OKEANOS, Universidade dos Açores, 9900-138 Horta, Portugal
| | - Wye-Khay Fong
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia.
| | - Roman Lehner
- Sail and Explore Association, Kramgasse 18, 3011 Bern, Switzerland.
| |
Collapse
|
45
|
Krasucka P, Bogusz A, Baranowska-Wójcik E, Czech B, Szwajgier D, Rek M, Ok YS, Oleszczuk P. Digestion of plastics using in vitro human gastrointestinal tract and their potential to adsorb emerging organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157108. [PMID: 35779726 DOI: 10.1016/j.scitotenv.2022.157108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Excessive plastic use has inevitably led to its consumption by organisms, including humans. It is estimated that humans consume 20 kg of plastic during their lifetime. The presence of microplastics in the human body can carry serious health risks, such as biological reactions e.g. inflammation, genotoxicity, oxidative stress, apoptosis, as well toxic compounds leaching of unbound chemicals/monomers, free radicals or adsorbed organic pollutants, which mainly depend on the properties of the ingested plastic. Plastics are exposed to different substances (e.g., enzymes and acids) in the digestive system, which potentially affects their properties and structure. By stimulating the human digestive system and applying a set of advanced analytical tools, we showed that the surface of polystyrene and high-density polyethylene plastics frequently in contact with food undergoes fundamental changes during digestion. This results in the appearance of additional functional groups, and consequent increase in the plastic adsorption capacity for hydrophobic ionic compounds (such as triclosan and diclofenac) while reducing its adsorption capacity for hydrophobic non-ionic compounds (such as phenanthrene). Micro- and nanostructures that formed on the flat surface of the plastics after digestion were identified using scanning electron microscopy. These structures became defragmented and detached due to mechanical action, increasing micro- and nanoplastics in the environment. Due to their size, the release of plastic nanostructures after digestion can become an "accidental food source" for a wider group of aquatic organisms and ultimately for humans as the last link in the food chain. This, combined with improved adsorption capacity of digested plastics to hydrophobic ionic pollutants, can pose a serious threat to the environment including human health and safety.
Collapse
Affiliation(s)
- Patrycja Krasucka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, ul. Krucza 5/11D, 00-548 Warszawa, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, ul. Skromna 8, 20-704 Lublin, Poland
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, ul. Skromna 8, 20-704 Lublin, Poland
| | - Monika Rek
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
46
|
Tursi A, Baratta M, Easton T, Chatzisymeon E, Chidichimo F, De Biase M, De Filpo G. Microplastics in aquatic systems, a comprehensive review: origination, accumulation, impact, and removal technologies. RSC Adv 2022; 12:28318-28340. [PMID: 36320515 PMCID: PMC9531539 DOI: 10.1039/d2ra04713f] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Although the discovery of plastic in the last century has brought enormous benefits to daily activities, it must be said that its use produces countless environmental problems that are difficult to solve. The indiscriminate use and the increase in industrial production of cleaning, cosmetic, packaging, fertilizer, automotive, construction and pharmaceutical products have introduced tons of plastics and microplastics into the environment. The latter are of greatest concern due to their size and their omnipresence in the various environmental sectors. Today, they represent a contaminant of increasing ecotoxicological interest especially in aquatic environments due to their high stability and diffusion. In this regard, this critical review aims to describe the different sources of microplastics, emphasizing their effects in aquatic ecosystems and the danger to the health of living beings, while examining, at the same time, those few modelling studies conducted to estimate the future impact of plastic towards the marine ecosystem. Furthermore, this review summarizes the latest scientific advances related to removal techniques, evaluating their advantages and disadvantages. The final purpose is to highlight the great environmental problem that we are going to face in the coming decades, and the need to develop appropriate strategies to invert the current scenario as well as better performing removal techniques to minimize the environmental impacts of microplastics.
Collapse
Affiliation(s)
- Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| | - Thomas Easton
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh The King's Buildings Edinburgh EH9 3JL UK
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, University of Edinburgh The King's Buildings Edinburgh EH9 3JL UK
| | - Francesco Chidichimo
- Department of Environmental Engineering, University of Calabria Via P. Bucci, Cubo 42B, 87036 Arcavacata di Rende (CS) Italy
| | - Michele De Biase
- Department of Environmental Engineering, University of Calabria Via P. Bucci, Cubo 42B, 87036 Arcavacata di Rende (CS) Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria Via P. Bucci, Cubo 15D, 87036 Arcavacata di Rende (CS) Italy
| |
Collapse
|
47
|
Huang D, Chen H, Shen M, Tao J, Chen S, Yin L, Zhou W, Wang X, Xiao R, Li R. Recent advances on the transport of microplastics/nanoplastics in abiotic and biotic compartments. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129515. [PMID: 35816806 DOI: 10.1016/j.jhazmat.2022.129515] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 05/14/2023]
Abstract
Plastics enter the environment and break up into microplastics (MPs) and even nanoplastics (NPs) by biotic and abiotic weathering. These small particles are widely distributed in the environmental media and extremely mobile and reactive, easily suspending in the air, infiltrating into the soil, and interacting with biota. Current research on MPs/NPs is either in the abiotic or biotic compartments, with little attention paid to the fact that the biosphere as a whole. To better understand the complex and continuous movement of plastics from biological to planetary scales, this review firstly discusses the transport processes and drivers of microplastics in the macroscopic compartment. We then summarize insightfully the uptake pathways of MPs/NPs by different species in the ecological compartment and analyze the internalization mechanisms of NPs in the organism. Finally, we highlight the bioaccumulation potential, biomagnification effects and trophic transfer of MPs/NPs in the food chain. This work is expected to provide a meaningful theoretical body of knowledge for understanding the biogeochemical cycles of plastics.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xinya Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
48
|
Lincoln S, Andrews B, Birchenough SNR, Chowdhury P, Engelhard GH, Harrod O, Pinnegar JK, Townhill BL. Marine litter and climate change: Inextricably connected threats to the world's oceans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155709. [PMID: 35525371 DOI: 10.1016/j.scitotenv.2022.155709] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The global issues of climate change and marine litter are interlinked and understanding these connections is key to managing their combined risks to marine biodiversity and ultimately society. For example, fossil fuel-based plastics cause direct emissions of greenhouse gases and therefore are an important contributing factor to climate change, while other impacts of plastics can manifest as alterations in key species and habitats in coastal and marine environments. Marine litter is acknowledged as a threat multiplier that acts with other stressors such as climate change to cause far greater damage than if they occurred in isolation. On the other hand, while climate change can lead to increased inputs of litter into the marine environment, the presence of marine litter can also undermine the climate resilience of marine ecosystems. There is increasing evidence that that climate change and marine litter are inextricably linked, although these interactions and the resulting effects vary widely across oceanic regions and depend on the particular characteristics of specific marine environments. Ecosystem resilience approaches, that integrate climate change with other local stressors, offer a suitable framework to incorporate the consideration of marine litter where that is deemed to be a risk, and to steer, coordinate and prioritise research and monitoring, as well as management, policy, planning and action to effectively tackle the combined risks and impacts from climate change and marine litter.
Collapse
Affiliation(s)
- Susana Lincoln
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom.
| | - Barnaby Andrews
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Silvana N R Birchenough
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Piyali Chowdhury
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Georg H Engelhard
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Olivia Harrod
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - John K Pinnegar
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Bryony L Townhill
- International Marine Climate Change Centre (iMC3), The Centre for Environment, Fisheries and Aquaculture Sciences (Cefas), Lowestoft, Suffolk NR33 0HT, United Kingdom
| |
Collapse
|
49
|
Lombardo J, Solomando A, Cohen-Sánchez A, Pinya S, Tejada S, Ferriol P, Mateu-Vicens G, Box A, Faggio C, Sureda A. Effects of Human Activity on Markers of Oxidative Stress in the Intestine of Holothuria tubulosa, with Special Reference to the Presence of Microplastics. Int J Mol Sci 2022; 23:ijms23169018. [PMID: 36012278 PMCID: PMC9409208 DOI: 10.3390/ijms23169018] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/23/2022] Open
Abstract
Pollution in the seas and oceans is a global problem, which highlights emerging pollutants and plastics, specifically microplastics (MPs), which are tiny (1 μm to 5 mm) ubiquitous plastic particles present in marine environments that can be ingested by a wide range of organisms. Holothurians are benthic organisms that feed on sediment; therefore, they can be exposed to contaminants present in the particles they ingest. The objective was to evaluate the effects of human activity on Holothuria tubulosa through the study of biomarkers. Specimens were collected in three different areas throughout the island of Eivissa, Spain: (1) a highly urbanized area, with tourist uses and a marina; (2) an urbanized area close to the mouth of a torrent; (3) an area devoid of human activity and considered clean. The results showed a higher presence of microplastics (MPs) in the sediments from the highly urbanized area in relation to the other two areas studied. Similarly, a higher number of MPs were observed in the digestive tract of H. tubulosa from the most affected area, decreasing with the degree of anthropic influence. Both in the sediment and in the holothurians, fibers predominated with more than 75% of the items. In the three areas, mesoplastics were analyzed by means of FTIR, showing that the main polymer was polypropylene (27%) followed by low-density polyethylene (17%) and polystyrene (16%). Regarding the biomarkers of oxidative stress, the intestine of H. tubulosa from the most impacted areas showed higher catalase, superoxide dismutase (SOD), glutathione reductase (GRd), and glutathione S-transferase (GST) activities and reduced glutathione (GSH) levels compared to the control area. The intermediate area only presented significant differences in GRd and GST with respect to the clean area. The activities of acetylcholinesterase and the levels and malondialdehyde presented similar values in all areas. In conclusion, human activity evaluated with the presence of MPs induced an antioxidant response in H. tubulosa, although without evidence of oxidative damage or neurotoxicity. H. tubulosa, due to its benthic animal characteristics and easy handling, can be a useful species for monitoring purposes.
Collapse
Affiliation(s)
- Jessica Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Pere Ferriol
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Guillem Mateu-Vicens
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d’Eivissa, 07800 Eivissa, Spain
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (C.F.); (A.S.); Tel.: +39-090-676-5213 (C.F.); +34-971-172-820 (A.S.)
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Correspondence: (C.F.); (A.S.); Tel.: +39-090-676-5213 (C.F.); +34-971-172-820 (A.S.)
| |
Collapse
|
50
|
Capó X, Alomar C, Compa M, Sole M, Sanahuja I, Soliz Rojas DL, González GP, Garcinuño Martínez RM, Deudero S. Quantification of differential tissue biomarker responses to microplastic ingestion and plasticizer bioaccumulation in aquaculture reared sea bream Sparus aurata. ENVIRONMENTAL RESEARCH 2022; 211:113063. [PMID: 35271834 DOI: 10.1016/j.envres.2022.113063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Marine aquaculture is considered a potential source of microplastics (MPs). MPs can induce oxidative stress and damage in marine species. In this study we evaluated the impact of MPs intake in the commercial fish, Sparus aurata, from aquaculture facilities and the antioxidant response associated to this MPs ingestion in caged specimens for 120 days. Sampling was carried out at the beginning of the study (T0), at 60 days (T60) and at 120 days (T120). At each sampling stage, gastrointestinal tract, blood, plasma, liver and muscle samples were obtained to analyse MPs intake (gastrointestinal tract), oxidative stress markers (blood, plasma and liver) and plasticizers bioaccumulation (muscle). Fish sampled at T60 presented the highest MPs intake and plasticizers accumulated in muscle over time, but with a different pattern according to type: bisphenols and phthalates. This indicates MPs ingestion induces a differential tissue response in S. aurata. Similarly, stress biomarkers presented a differential response throughout the study, depending on the analysed tissue. In the case of oxidative damage markers, for malondialdehyde (MDA) an increase throughout the study was observed both in liver and blood cells but with a progressive decrease in plasma. In the case of phase I detoxifying enzyme activities in liver, 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) and carboxylesterases (CE), showed a comparable decrease at T60 with a slight recovery at T120. In contrast, glutathione-S-transferase (GST) activity was significantly enhanced at T60 compared to the other sampling stages. In conclusion, MPs ingestion occurs in aquaculture reared seabream where potentially associated plasticizers accumulate in the muscle and both could be responsible for plasma and liver oxidative stress damage and alterations on detoxifying biomarkers responses.
Collapse
Affiliation(s)
- Xavier Capó
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Monserrat Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Montserrat Sole
- Institut de Ciències del Mar, ICM-CSIC, E-08003, Barcelona, Spain
| | - Ignasi Sanahuja
- Institut de Ciències del Mar, ICM-CSIC, E-08003, Barcelona, Spain
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Rosa Maria Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| |
Collapse
|