1
|
Liang J, Himes A, Siegert C. A meta-analysis of afforestation impacts on soil greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125709. [PMID: 40367804 DOI: 10.1016/j.jenvman.2025.125709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Afforestation is a natural climate solution and a key strategy to mitigate climate change. While tree planting primarily achieves this mitigation via above-ground carbon sequestration, soils also play a dual role as sources and sinks of greenhouse gases (GHG). Understanding afforestation impacts on soil GHG flux is essential for leveraging afforestation to combat global warming. In this research, we conducted a global meta-analysis of 157 studies to assess the effects of afforestation on soil GHG emissions across different prior land uses and to identify key emission drivers. Our results indicated that afforestation significantly reduced CO2 emissions in former grasslands and deforested land and decreased CH4 emissions across most prior land uses. However, soil N2O flux was mostly unaffected by afforestation. The type of forest planted also influenced soil GHG emissions. Hardwood planting reduced CH4 emissions, but no clear trends emerged for N2O emissions from either softwood or hardwood forests. Tree planting density had no significant effect on GHG fluxes. GHG responses to afforestation also changed over time and were influenced by environmental factors. CO2 emissions correlated positively with soil organic carbon, mean annual precipitation, C:N ratio, and soil temperature. N2O flux increased with soil NO3- and microbial nitrogen and decreased with soil organic carbon and moisture. Additionally, soil microbial biomass carbon and soil organic carbon were positively correlated with CH4 emissions. These findings highlight the importance of selecting tree species, site conditions, and environmental factors to optimize afforestation's GHG mitigation potential.
Collapse
Affiliation(s)
- Jianing Liang
- Department of Forestry, College of Forest Resources, Mississippi State University, Starkville, MS, USA.
| | - Austin Himes
- School of the Environment, College of Agricultural, Human and Natural Resources Sciences, Washington State University, Pullman, WA, USA
| | - Courtney Siegert
- Department of Forestry, College of Forest Resources, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
2
|
Liu H, Miao Y, Chen Y, Shen Y, You Y, Wang Z, Gang C. Responses of soil greenhouse gas fluxes to land management in forests and grasslands: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178773. [PMID: 39952212 DOI: 10.1016/j.scitotenv.2025.178773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Land management practices significantly influence soil greenhouse gas (GHG) emissions. Despite individual measurements of the impacts of forest and grassland ecosystem management practices (FGEM) on GHG emissions, a comprehensive global-scale synthesis and comparison remain absent. In this study, a global meta-analysis was conducted to analyze the responses of three key soil GHGs, including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), to various FGEM, including forest burning (FB) and thinning (FT), grassland grazing (GG), fencing (GF), and mowing (GM) based on 1643 observations from 317 individual studies. Moderator factors and the underlying mechanisms driving these responses were also explored. Results revealed that in managed forests, FB significantly reduced soil CO2 and N2O emissions, while FT decreased soil CH4 uptake capacity without affecting CO2 and N2O emissions. In managed grasslands, GG reduced soil CO2 emission, while GF increased it; both had neutral impacts on soil CH4 and N2O fluxes. GM did not affect GHG fluxes. Overall, forest management decreased soil CO2 emission and CH4 uptake capacity, whereas grassland management had a neutral effect on soil GHG fluxes. Temporal analysis revealed diminishing effects of FGEM on CO2 emissions over the long term. Soil CH4 uptake exhibited divergent responses over time, and soil N2O emissions remained relatively constant. Compared to managed grassland, soil GHG fluxes in managed forests were more sensitive to aridity conditions, with forest management generally restraining soil CO2 and N2O emissions and CH4 uptake in humid regions. Meta-regression analysis highlighted carbon content, soil temperature, and soil moisture as primary drives of changes in soil CO2 and CH4 fluxes, while soil N2O fluxes were more susceptible to soil organic carbon and microbial biomass nitrogen. The dependence of soil GHG fluxes on climate zones and management duration should be integrated into Earth system models for more accurate predictions of the impact of human interference.
Collapse
Affiliation(s)
- Huanhuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yuqi Miao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yu Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yifan Shen
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yongfa You
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA
| | - Zhuonan Wang
- Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Chengcheng Gang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China; School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Wang X, Wu W, Ao G, Han M, Liu M, Yin R, Feng J, Zhu B. Minor Effects of Warming on Soil Microbial Diversity, Richness and Community Structure. GLOBAL CHANGE BIOLOGY 2025; 31:e70104. [PMID: 40035386 DOI: 10.1111/gcb.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Climate warming has caused widespread global concern. However, how warming affects soil microbial diversity, richness, and community structure on a global scale remains poorly understood. Here we conduct a meta-analysis of 945 observations from 100 publications by collecting relevant data. The results show that field warming experiments significantly modify soil temperature (+1.8°C), soil water content (-3.2%), and soil pH (-0.04). However, field warming does not significantly alter the diversity, richness, and community structure of soil bacteria and fungi. Warming-induced changes in soil variables (i.e., ΔSoil water content, ΔpH), ΔTemperature and experimental duration are important factors influencing the microbial responses to warming. In addition, soil bacterial α-diversity (Shannon index) decreases significantly (-3.4%) when the warming duration is 3-6 years, and bacterial β-diversity increases significantly (35.2%) when warming exceeds 6 years. Meta-regression analysis reveals a positive correlation between the change of bacterial Shannon index and ΔpH. Moreover, warming produces more pronounced effects on fungal Shannon index and β-diversity in experimental sites with moderate mean annual temperature (MAT, 0°C-10°C) than in higher (> 10°C) or lower (< 0°C) MAT. Overall, this study provides a global perspective on the response of soil microorganisms to climate warming and improves our knowledge of the factors influencing the response of soil microorganisms to warming.
Collapse
Affiliation(s)
- Xudong Wang
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Wenao Wu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Gukailin Ao
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mengguang Han
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Mengli Liu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Rui Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Jiguang Feng
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
- National Key Laboratory of Water Disaster Prevention, Key Laboratory of Soil and Water Processes in Watershed, College of Geography and Remote Sensing, Hohai University, Nanjing, China
| | - Biao Zhu
- State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
4
|
Midot F, Goh KM, Liew KJ, Lau SYL, Espenberg M, Mander Ü, Melling L. Temporal dynamics of soil microbial C and N cycles with GHG fluxes in the transition from tropical peatland forest to oil palm plantation. Appl Environ Microbiol 2025; 91:e0198624. [PMID: 39714193 PMCID: PMC11784229 DOI: 10.1128/aem.01986-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
Tropical peatlands significantly influence local and global carbon and nitrogen cycles, yet they face growing pressure from anthropogenic activities. Land use changes, such as peatland forests conversion to oil palm plantations, affect the soil microbiome and greenhouse gas (GHG) emissions. However, the temporal dynamics of microbial community changes and their role as GHG indicators are not well understood. This study examines the dynamics of peat chemistry, soil microbial communities, and GHG emissions from 2016 to 2020 in a logged-over secondary peat swamp forest in Sarawak, Malaysia, which transitioned to an oil palm plantation. This study focuses on changes in genetic composition governing plant litter degradation, methane (CH4), and nitrous oxide (N2O) fluxes. Soil CO2 emission increased (doubling from approximately 200 mg C m-2 h-1), while CH4 emissions decreased (from 200 µg C m-2 h-1 to slightly negative) following land use changes. The N2O emissions in the oil palm plantation reached approximately 1,510 µg N m-2 h-1, significantly higher than previous land uses. The CH4 fluxes were driven by groundwater table, humification levels, and C:N ratio, with Methanomicrobia populations dominating methanogenesis and Methylocystis as the main CH4 oxidizer. The N2O fluxes correlated with groundwater table, total nitrogen, and C:N ratio with dominant nirK-type denitrifiers (13-fold nir to nosZ) and a minor role by nitrification (a threefold increase in amoA) in the plantation. Proteobacteria and Acidobacteria encoding incomplete denitrification genes potentially impact N2O emissions. These findings highlighted complex interactions between microbial communities and environmental factors influencing GHG fluxes in altered tropical peatland ecosystems.IMPORTANCETropical peatlands are carbon-rich environments that release significant amounts of greenhouse gases when drained or disturbed. This study assesses the impact of land use change on a secondary tropical peat swamp forest site converted into an oil palm plantation. The transformation lowered groundwater levels and changed soil properties. Consequently, the oil palm plantation site released higher carbon dioxide and nitrous oxide compared to previous land uses. As microbial communities play crucial roles in carbon and nitrogen cycles, this study identified environmental factors associated with microbial diversity, including genes and specific microbial groups related to nitrous oxide and methane emissions. Understanding the factors driving microbial composition shifts and greenhouse gas emissions in tropical peatlands provides baseline information to potentially mitigate environmental consequences of land use change, leading to a broader impact on climate change mitigation efforts and proper land management practices.
Collapse
Affiliation(s)
- Frazer Midot
- Sarawak Tropical Peat Research Institute, Kota Samarahan, Sarawak, Malaysia
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Kok Jun Liew
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Sharon Yu Ling Lau
- Sarawak Tropical Peat Research Institute, Kota Samarahan, Sarawak, Malaysia
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Lulie Melling
- Sarawak Tropical Peat Research Institute, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
5
|
Pan Z, Cai X, Bo Y, Guan C, Cai L, Haider FU, Li X, Yu H. Response of soil organic carbon and soil aggregate stability to changes in land use patterns on the Loess Plateau. Sci Rep 2024; 14:31775. [PMID: 39738268 PMCID: PMC11685569 DOI: 10.1038/s41598-024-82300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast. (PA), Platycladus orientalis (L.) Franco (PO)) on the Loess Plateau in China and collect undisturbed soil samples. These six land use patterns have similar geographical characteristics. The distribution of aggregates and the aggregate-associated SOC contents under the six land use patterns were measured at the 0-10 cm, 10-30 cm and 30-50 cm depths. The results showed that forestland and grasslands converted from FL significantly increased the aggregates (> 5 mm) content, mean weight diameter (MWD), and geometric mean diameter (GMD) but decreased the aggregates (< 0.25 mm) content. Compared with FL, the values at the 0-50 cm depth under PA, NG, MS, PO and ACL increased by 473.71-732.55%, 283.98-724.60%, 179.06-634.12%, 142.31-413.50% and 110.25-213.34%, respectively, for MWD and by 244.04-607.77%, 141.68-666.67%, 52.39-483.33%, 50.49-214.43%, and 35.23-64.29%, respectively, for GMD. Land use patterns and soil aggregate size had obvious influences on SOC content, SOC content in soil and aggregates decreased under ACL. In other forestland and grasslands, The SOC content in bulk soil, > 5 mm, 2-5 mm, 1-2 mm, 0.5-1 mm, 0.25-0.5 mm, and < 0.25 mm aggregates at the 0-50 cm depth after afforestation increased by 20.75-125.87%, 14.50-163.64%, - 11.86-118.18%, 9.65-150.95%, 38.28-126.49%, 51.26-165.87% and - 15.59-163.37%, respectively, Compared to FL. The contributions of different aggregates particle sizes to the increase in SOC content in bulk soil were 104.74%, 7.86%, 4.76%, 6.23%, 5.37%, and - 21.97%, respectively. MWD and GMD were positively correlated with SOC content in aggregates (1 mm), SOC content in bulk soil and aggregates. Although SOC content in bulk soil and different aggregates particle sizes under NG and PA were significantly higher that than under MS and PO, the soil macroaggregate content, MWD, and GMD under PO and NG were higher than that under PA and MS. These findings suggest that converted FL into PO and NG significantly improved soil structure and also increased SOC content. Therefore, in the process of transforming land use patterns on the Loess Plateau, the proportion of forest land and grassland should be appropriately increased to improve soil carbon storage and quality. The results of this study provides a theoretical basis and scientific basis for the scientific evaluation and understanding of soil organic carbon accumulation and distribution under different land use patterns in the Loess Plateau region of China.
Collapse
Affiliation(s)
- Zhandong Pan
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuemei Cai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongming Bo
- Dingxi Institute of Soil and Water Conservation Science Research, Dingxi, 743000, China
| | - Changsheng Guan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Resources and Environment Sciences, Gansu Agricultural University, Lanzhou, 730070, China
| | - Liqun Cai
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China.
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
- College of Resources and Environment Sciences, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Fasih Ullah Haider
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
- College of Resources and Environment Sciences, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuchun Li
- Dingxi Institute of Soil and Water Conservation Science Research, Dingxi, 743000, China
| | - Haixia Yu
- Dingxi Institute of Soil and Water Conservation Science Research, Dingxi, 743000, China
| |
Collapse
|
6
|
Zhou J, Liu D, Xu S, Li X, Zheng J, Han F, Zhou S, Na M. Effects of Vegetation Restoration Type on Soil Greenhouse Gas Emissions and Associated Microbial Regulation on the Loess Plateau. Ecol Evol 2024; 14:e70688. [PMID: 39717645 PMCID: PMC11664210 DOI: 10.1002/ece3.70688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
Investigating responses of soil greenhouse gas (GHG) emissions to vegetation restoration is important for global warming mitigation. On the Loess Plateau, a wide range of vegetation restoration strategies have been implemented to control land degradation. However, the thorough quantification of soil GHG emissions triggered by different modes of vegetation restoration is insufficient. There is still a knowledge gap regarding the regulation of soil biochemical and microbial processing on soil GHG emissions. To do so, we compared responses of soil GHG emissions to various types of vegetation restoration on the Loess Plateau, and investigated the changes in soil properties as well as microbial composition and activities. We found that artificial plantation of Caragana korshinskii had low soil carbon dioxide (CO2) emission, while natural grassland had high CO2 emission. The possible explanations could be related to higher moisture and microbial biomass carbon, and greater nitrogen limitation in natural grassland, which was controlled by actinomycetes and gram-negative bacteria. Natural grassland had low soil nitrous oxide (N2O) emission and high methane (CH4) uptake, whereas Prunus mume had high N2O emission and Medicago sativa had low CH4 uptake, respectively. Soil N2O emission could be driven by fungi and gram-positive bacteria which were affected by N availability and dissolved organic carbon. Soil CH4 consumption was associated with anaerobic bacteria and gram-negative bacteria which were affected by N availability and moisture. These different emissions of CO2, N2O and CH4 generated the largest total GHG emissions for plantation of Prunus mume, but the smallest total GHG emissions for natural grassland and plantation of leguminous Caragana korshinskii. Overall, our findings suggested that the restoration of natural grassland and artificial N-fixing shrubland like Caragana korshinskii should be encouraged to alleviate GHG emissions, with the practical implications for selecting suitable modes and species to improve ecological sustainability in degraded lands.
Collapse
Affiliation(s)
- Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co‐Founded by Anhui Province and Ministry of Education, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
- Collaborative Innovation Center of Southern Modern ForestryNanjing Forestry UniversityNanjingChina
| | - Daokun Liu
- Forestry Technology Center of Wuhu CityWuhuChina
| | - Shangqi Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co‐Founded by Anhui Province and Ministry of Education, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Xiaoping Li
- Collaborative Innovation Center of Southern Modern ForestryNanjing Forestry UniversityNanjingChina
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water ConservationNorthwest A&F UniversityYanglingShaanxiChina
| | - Shoubiao Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co‐Founded by Anhui Province and Ministry of Education, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| | - Meng Na
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin co‐Founded by Anhui Province and Ministry of Education, School of Ecology and EnvironmentAnhui Normal UniversityWuhuChina
| |
Collapse
|
7
|
Zhang J. Spatial variability of CH 4 uptake in aerated soils of Yellow River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175596. [PMID: 39155000 DOI: 10.1016/j.scitotenv.2024.175596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
The widespread occurrence of aerated plain soils underscores their significant role in the global soil methane (CH4) sink budget. However, plain soils are poorly characterized in terms of spatial variability of CH4 uptake and the relevant control. We investigated the intra- and inter-site spatial variability of CH4 uptake through flux measurements in intact soil cores from five non-wetland sites within the Yellow River Delta, each representing a distinct land use/cover type. Methane uptake rates were highest in undisturbed forest cores. The rates were very low, often falling below the detection limit, in cores from the other four sites. The significant correlation between CH4 uptake and bulk density across sites suggests the integrative role of bulk density for the effects of different disturbances (including salt stress and succession) on CH4 uptake. Methane uptake was heterogeneous at the within-site scale as indicated by large coefficients of variations (CVs). Soil texture variation manipulated the within-site pattern of CH4 uptake in the low-salinity sites. Salt affected the spatial variation of CH4 uptake only at high level of salinity. Neither Potter's nor Ridgwell's models effectively captured the within-site variation of CH4 uptake due to a texture-associated bias in the models. Establishing a quantitative relationship between CH4 uptake and clay content at the field scale in alluvial plain soils will facilitate the refinement of model parameters linked to texture and rectify biases in CH4 estimation. These results provide an insight for the biogeochemical control of CH4 uptake in alluvial plain soils and have important application for improving CH4 models.
Collapse
Affiliation(s)
- Jinfeng Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China.
| |
Collapse
|
8
|
Lv Y, Jin Y, Tang C, Wang Y. Strip clear-cutting transformations increase soil N 2O emissions in abandoned Moso bamboo forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122700. [PMID: 39357445 DOI: 10.1016/j.jenvman.2024.122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Forest transformation can markedly impact soil greenhouse gas emissions and soil environmental factors. Due to increasing labor costs and declining bamboo prices, the abandonment of Moso bamboo forests is sharply escalating in recent years, which weakens the carbon sequestration capacity and decreases the ecological function of forests. To improve the ecological quality of abandoned Moso bamboo forests, transformations of abandoned bamboo forests have occurred. However, the impact of such transformations on N2O emissions remains elusive. To bridge the knowledge gap, we conducted a 23-month field experiment to compare the effects of various forest management practices on soil N2O emissions and soil environmental factors in abandoned Moso bamboo forests in subtropical China. These practices included uncut abandonment as a control, intensive management, three intensities (light, moderate, and heavy) of strip clear-cutting with replanting local tree species, and clear-cutting with replanting transformation. During the experimental period, the mean soil N2O flux in abandoned Moso bamboo forests was 13.2 ± 0.1 μg m-2 h-1, representing a 44% reduction compared to intensive management forests. In comparison to the uncut control, light, moderate, and heavy strip clear-cutting and clear-cutting transformations increased soil N2O emission rates by 20%, 43%, 64%, and 94%, respectively. Soil temperature (69-71%), labile C (2-6%) and N (3-8%) were the main factors that explain N2O emissions following the transformation of abandoned Moso bamboo forests. Additionally, replanting could decrease soil N2O emissions by increasing the contribution of soil moisture. Overall, the light strip clear-cutting transformation is suggested to convert abandoned Moso bamboo forests to mitigate N2O emissions.
Collapse
Affiliation(s)
- Yang Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Yan Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Yixiang Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China.
| |
Collapse
|
9
|
Uwiragiye Y, Wang J, Huang Y, Wu L, Zhou J, Zhang Y, Chen M, Jing H, Qian Y, Elrys AS, Cheng Y, Cai Z, Xu M, Chang SX, Müller C. Global Ecosystem Nitrogen Cycling Reciprocates Between Land-Use Conversion and Its Reversal. GLOBAL CHANGE BIOLOGY 2024; 30:e17537. [PMID: 39425618 DOI: 10.1111/gcb.17537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/22/2024] [Indexed: 10/21/2024]
Abstract
Anthropogenic land-use practices influence ecosystem functions and the environment. Yet, the effect of global land-use change on ecosystem nitrogen (N) cycling remains unquantified despite that ecosystem N cycling plays a critical role in maintaining food security. Here, we analysed 2430 paired observations globally to show that converting natural to managed ecosystems increases ratios of autotrophic nitrification to ammonium immobilisation and nitrate to ammonium, but decreases soil immobilisation of mineral N, causing increased N losses via leaching and gaseous N emissions, such as nitrous oxide (e.g., via denitrification), resulting in a leaky N cycle. Changing land use from intensively managed to one that resembles natural ecosystems reversed N losses by 108% on average, resulting in a more conservative N cycle. Structural equation modelling revealed that changes in soil organic carbon, pH and carbon to N ratio were more important than changes in soil moisture content and temperature in predicting ecosystem N retention capacities following land-use conversion and its reversion. The hotspots of leaky N cycles were mostly in equatorial and tropical regions, as well as in Western Europe, the United States and China. Our results suggest that whether an ecosystem exhibits a conservative N cycle after land-use reversion depends on management practices.
Collapse
Affiliation(s)
- Yves Uwiragiye
- School of Geography, Nanjing Normal University, Nanjing, China
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, Byumba, Rwanda
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yuanyuan Huang
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Liangping Wu
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Jiake Zhou
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yanhui Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Meiqi Chen
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Hang Jing
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yinfei Qian
- Soil and Fertilizer & Resources and Environmental Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou, China
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yi Cheng
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Minggang Xu
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Engineer and Technology Academy of Ecology and Environment, Shanxi Agricultural University, Taiyuan, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Christoph Müller
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Xing P, Wang Y, Lu X, Li H, Guo J, Li Y, Li FY. Climate, litter quality and radiation duration jointly regulate the net effect of UV radiation on litter decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172122. [PMID: 38569973 DOI: 10.1016/j.scitotenv.2024.172122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Photodegradation via ultraviolet (UV) radiation is an important factor driving plant litter decomposition. Despite increasing attention to the role of UV photodegradation in litter decomposition, the specific impact of UV radiation on the plant litter decomposition stage within biogeochemical cycles remains unclear at regional and global scales. To clarify the variation rules of magnitude of UV effect on plant litter decomposition and their regulatory factors, we conducted a meta-analysis based on 54 published papers. Our results indicated that UV significantly promoted the mass loss of litter by facilitating decay of carbonaceous fractions and release of nitrogen and phosphorus. The promotion effect varied linearly or non-linearly with the time that litter exposed to UV, and with climatic factors. The UV effect on litter decomposition decreased first than increased on precipitation and temperature gradients, reaching its minimum in the area with a precipitation of 400-600 mm, and a temperature of 15-20 °C. This trend might be attributed to a potential equilibrium between the photofacilitation and photo-inhibition effects of UV under this condition. This variation in UV effect on precipitation gradient was in agreement with the fact that UV photodegradation effect was weakest in grassland ecosystems compared to that in forest and desert ecosystems. In addition, initial litter quality significantly influenced the magnitude of UV effect, but had no influence on the correlation between UV effect and climate gradient. Litter with lower initial nitrogen and lignin content shown a greater photodegradation effect, whereas those with higher hemicellulose and cellulose content had a greater photodegradation effect. Our study provides a comprehensive understanding of photodegradation effect on plant litter decomposition, indicates potentially substantial impacts of global enhancements of litter decomposition by UV, and highlights the necessity to quantify the contribution of photochemical minerallization pathway and microbial degradation pathway in litter decomposition.
Collapse
Affiliation(s)
- Pengfei Xing
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 235 West University Road, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China
| | - Yanan Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 235 West University Road, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China
| | - Xueyan Lu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 235 West University Road, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China
| | - Haoxin Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 235 West University Road, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China
| | - Jingpeng Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 235 West University Road, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China
| | - Yanlong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 235 West University Road, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China
| | - Frank Yonghong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 235 West University Road, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China and Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
11
|
Gui D, Zhang Y, Lv J, Guo J, Sha Z. Effects of intercropping on soil greenhouse gas emissions - A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170632. [PMID: 38309333 DOI: 10.1016/j.scitotenv.2024.170632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Diversified cropping systems, such as intercropping, have shown multifunctionality in agronomic productivity promotion, pest control, and soil health improvement. However, the intense interaction between crop species stimulates soil carbon and nitrogen turnover, and intercropping systems cause inexplicit effects on soil greenhouse gas emissions (GHG). Therefore, a comprehensive meta-analysis using 52 published articles (531 paired observations) was conducted to elucidate the effects of intercropping on soil N2O, CO2, and CH4 emissions under different environmental conditions and field practices to identify the primary driving factors, such as climate, soil and field practices. The results showed that intercropping treatment had a non-significant impact on the three GHG emissions on average. However, using a cereal-legume intercropping regime, adopting moderate N application rate or intercropping in alkaline soils could significantly mitigate soil N2O emission. Additionally, intercropping in soils with high soil organic carbon reduce soil CH4 emission. On the contrary, increasing intercropping duration, or adopted in soils with moderate soil total N tended to stimulate CO2 emission. The mixed-effect model selection indicated that initial soil pH, MAP, MAT, tillage regime, and intercropping duration and type were significant moderators in regulating soil GHG emissions. Our findings explicitly elucidated soil GHG responses to intercropping practice. Further studies are warranted on the evaluation of long-term intercropping effects to improve the comprehensive understanding of C and N balance and global warming potential under intercropping.
Collapse
Affiliation(s)
- Dongyang Gui
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuyang Zhang
- The National-Local Joint Engineering Laboratory of High Efficiency and Superior-Quality Cultivation and Fruit Deep Processing Technology on Characteristic Fruit Trees, College of Horticulture and Forestry Sciences, Tarim University, Alar 843300, China.
| | - Jiyang Lv
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiayi Guo
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhipeng Sha
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
12
|
Thakur TK, Swamy SL, Thakur A, Mishra A, Bakshi S, Kumar A, Altaf MM, Kumar R. Land cover changes and carbon dynamics in Central India's dry tropical forests: A 25-year assessment and nature-based eco-restoration approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119809. [PMID: 38113791 DOI: 10.1016/j.jenvman.2023.119809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Anthropogenic land use and land cover changes are major drivers of environmental degradation and declining soil health across heterogeneous landscapes in Central India. To examines the land cover changes and spatio-temporal variations in forest carbon stock and soil organic carbon (SOC) over the past 25 years in central India. Geospatial techniques, coupled with ground measurements were employed to detect changes in land cover, carbon stocks in vegetation, and soil carbon in various vegetation types. The results indicate that forested areas have decreased, while agriculture and habitation have expanded between 1997 and 2022. Vegetation C stocks varied significantly (P < 0.05) from 39.42 to 139.95 Mg ha-1 and the SOC varied from 7.02 to 17.98 Mg ha-1 under different soil profiles across vegetation types, which decreased with soil depth, while the pH and bulk density increased. The maximum bulk density in the soil was found at a depth of 40-60 cm (lower profile) in Bamboo Brake, while the minimum was observed under Dense Mixed Forest at a depth of 0-20 cm (top profile). The topsoil profile contributed 33.6%-39%, the middle profile (20-40 cm) was 33.6%-34.4%, and the lower profile was 26.5%-30.8% of soil organic carbon. The study site has experienced rapid carbon losses due to changes in land cover, such as illegal expansion of agriculture, encroachments into forest fringes, and activities like selective logging and overgrazing, which have degraded dense forests. The ecological engineering of degraded ecosystems poses a great challenge and application of complex biological, mechanical and engineering measures is highly cumbersome, expensive, uneconomical and practically not feasible for upscaling. Nevertheless, proposed nature-based solutions mimic natural reparation and processes provide sustainable interventions for the reclamation of ruined landscapes besides improving ecological integrity and rendering many co-benefits to ecosystems and human societies.
Collapse
Affiliation(s)
- Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University (IGNTU), Amarkantak, MP, 484887, India.
| | - S L Swamy
- Indira Gandhi Agricultural University, Raipur, CG, 492012, India.
| | - Anita Thakur
- Krishi Vigyan Kendra, Indira Gandhi National Tribal University (IGNTU), Amarkantak, MP, 484887, India.
| | - Alka Mishra
- Guru Ghasidas University, Bilaspur, CG, 495001, India.
| | - Sanjeev Bakshi
- Department of Statistics, Indira Gandhi National Tribal University (IGNTU), Amarkantak, MP, 484887, India.
| | - Amit Kumar
- Nanjing University of Information Science and Technology, School of Hydrology and Water Resources, Nanjing, 210044, China.
| | - Muhammad Mohsin Altaf
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| | - Rupesh Kumar
- Jindal Global Business School (JGBS), O.P. Jindal Global University, Sonipat, 131001, Haryana, India.
| |
Collapse
|
13
|
He Z, Ding B, Pei S, Cao H, Liang J, Li Z. The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166917. [PMID: 37704128 DOI: 10.1016/j.scitotenv.2023.166917] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Although organic fertilizers played an important role in enhancing crop yield and soil quality, the effects of organic fertilizers replacing chemical fertilizers on greenhouse gas (GHG) emissions remained inconsistent, and further impeding the widespread adoption of organic fertilizers. Therefore, a global meta-analysis used 568 comparisons from 137 publications was conducted to evaluate the responses of GHG emissions to organic fertilizers replacing chemical fertilizers. The results indicated that organic fertilizers replacing chemical fertilizers significantly decreased N2O emissions, but increasing global warming potential (GWP) by enhancing CH4 and CO2 emissions. When replacing chemical fertilizers with organic fertilizers, a variety of factors such as climate conditions, soil conditions, crop types and agricultural practices influenced the GHG emissions and GWP. Among these factors, fertilizer organic C and available N level were the main factors affecting GHG and GWP. However, considering the feasibility and ease of optimizing these factors, fertilizer organic C, C/N and N substitution rate showed a more favorable choice for GWP reduction, and their interactions significantly affecting GWP. Moreover, considering the distinct GHG emissions patterns in dryland and paddy field, the analysis of optimizing GWP based on fertilizer organic C, C/N and N substitution rate was separately conducted. According to the simulation optimization, the optimal combination of fertilizer organic C (137.2-228.8 g·kg-1), C/N (6.9-52.0) and N substitution rate (20.0-22.5 %) effectively suppressed the extent of increase in GWP in paddy field compared with chemical fertilizers. In dryland, optimizing fertilizer organic C (100-278 g·kg-1), C/N (70.7-76.6) and N substitution rate (10.2-16.0 %) led to a reduction in GWP compared with chemical fertilizers, indicating that dryland are more suitable for promoting organic fertilizer application. In conclusion, this meta-analysis study quantitatively assessed the GHG emissions when organic fertilizers replacing chemical fertilizers, and also provided a scientific basis for the mitigation of GHG emissions by organic fertilizers management.
Collapse
Affiliation(s)
- Zijian He
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bangxin Ding
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuyao Pei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongxia Cao
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jiaping Liang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhijun Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Sun H, Zhang F, Raza ST, Zhu Y, Ye T, Rong L, Chen Z. Three decades of shade trees improve soil organic carbon pools but not methane uptake in coffee systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119166. [PMID: 37797515 DOI: 10.1016/j.jenvman.2023.119166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/03/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
The rapid expansion of coffee plantations in tropical area at the cost of natural forest may suppress the methane (CH4) uptake and change the soil fertility. However, observations on soil CH4 uptake rates and the ecological consequence studies on coffee-based plantations are sparse. The objectives of this study were to characterize the dynamics of CH4 uptake among natural forest, coffee monoculture (CM), and coffee intercropping with shade tree (CI), and to evaluate the key drivers of soil CH4 uptake. Results showed that the conversion of forest into 25-year and 34-year CM plantations significantly reduced the soil organic carbon (SOC) content by 57% and 76%, respectively, whereas CI plantation profoundly increased the SOC by 20%-76% compared with CM plantation. Although soils of forest, CM and CI functioned exclusively as CH4 sinks, the CM and CI plantations significantly decreased the ambient CH4 uptake rates by 64%-83% due to soil moisture shift and soil nitrate availability by using chemical fertilizer. Interestingly, the potential CH4 uptake of CM and CI plantations did not decrease and in some treatments, was even higher than that of the natural forest. Potential CH4 uptake showed a negative correlation with soil pH and SOC content, but a positive correlation with soil available phosphorus (AP). Collectively, although the SOC and soil pH were increased through intercropping with shade trees for decades, the inhibition of atmospheric CH4 uptake was still difficult to alleviate.
Collapse
Affiliation(s)
- Hao Sun
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
| | - Fulan Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, 650500, China
| | - Syed Turab Raza
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, 650500, China; Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China.
| | - Yingmo Zhu
- Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tao Ye
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Li Rong
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China
| | - Zhe Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China; Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
15
|
Wu Z, Zhang F, Ding W, Wang K, Peng J, Cao N, He C. Native forests transformed into cash crops reduced soil multi-functionality by modifying the microbial community composition and keystone species' abundance in the Jianghuai Hilly Region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113747-113757. [PMID: 37851254 DOI: 10.1007/s11356-023-30196-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Conversion of native forest to cash crops is the predominant form of land use change in the Jianghuai Hilly Region. However, how plantations with different cash crops affect the soil multi-functionality is not well documented. In this study, we collected three kinds of cash crops soils (vegetable, orchard, and tea) and forest soil, to systematically review the relationship between soil microbial communities and soil multi-functionality. Soil multi-functionality had decreased in vegetable and orchard as compared to native forest, whereas tea plantation had no significant effects on soil multi-functionality. The results also showed that cash crop plantations decreased soil multi-functionality by shifting keystone species' abundance, for forest, vegetable, and orchard, the keystone species that were classified as module hubs in the bacterial co-occurrence network significantly negatively contributed to soil multi-functionality, but the keystone species categorized as module hubs in fungal co-occurrence network positively affected soil multi-functionality. Multiple soil properties were the drivers of the soil microbial community; thus, indicating that the altered soil properties under cash crop plantations were vital in determining microbial composition and biological processes. These results identified that sustainable management strategy in cash crop plantation needed to be developed for improving soil multi-functionality.
Collapse
Affiliation(s)
- Zhen Wu
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Futian Zhang
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Wen Ding
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Kai Wang
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Jun Peng
- School of Geographic Information and Tourism, Chuzhou University, Chuzhou, 239000, China
| | - Ni Cao
- Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Chenggang He
- College of Tobacco Science, Yunnan Agricultural University, Kunming, 650000, China.
| |
Collapse
|
16
|
Zhu Q, Liu L, Wang C, Wan Y, Yang R, Mou J, Liu J, Wu Y, Tang S, Zhu T, Meng L, Zhang J, Elrys AS. Carbon and nitrogen fractions control soil N 2O emissions and related functional genes under land-use change in the tropics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122370. [PMID: 37586684 DOI: 10.1016/j.envpol.2023.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Converting natural forests to managed ecosystems generally increases soil nitrous oxide (N2O) emission. However, the pattern and underlying mechanisms of N2O emissions after converting tropical forests to managed plantations remain elusive. Hence, a laboratory incubation study was investigated to determine soil N2O emissions of four land uses including forest, eucalyptus, rubber, and paddy field plantations in a tropical region of China. The effect of soil carbon (C) and nitrogen (N) fractions on soil N2O emissions and related functional genes was also estimated. We found that the conversion of natural forests to managed forests significantly decreased soil N2O emissions, but the conversion to paddy field had no effect. Soil N2O emissions were controlled by both nitrifying and denitrifying genes in tropical natural forest, but only by nitrifying genes in managed forests and by denitrifying genes in paddy field. Soil total N, extractable nitrate, particulate organic C (POC), and hydrolyzable ammonium N showed positive relationship with soil N2O emission. The easily oxidizable organic C (EOC), POC, and light fraction organic C (LFOC) had positive linear correlation with the abundance of AOA-amoA, AOB-amoA, nirK, and nirS genes. The ratios of dissolved organic C, EOC, POC, and LFOC to total N rather than soil C/N ratio control soil N2O emissions with a quadratic function relationship, and the local maximum values were 0.16, 0.22, 1.5, and 0.55, respectively. Our results provided a new evidence of the role of soil C and N fractions and their ratios in controlling soil N2O emissions and nitrifying and denitrifying genes in tropical soils.
Collapse
Affiliation(s)
- Qilin Zhu
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lijun Liu
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chengzhi Wang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yunxing Wan
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Ruoyan Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jinxia Mou
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Juan Liu
- College of Resource and Environment Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanzheng Wu
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Shuirong Tang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Tongbin Zhu
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Karst Dynamics Laboratory, MLR and Guangxi, Guilin, 541004, China
| | - Lei Meng
- College of Tropical Crops, Hainan University, Haikou, 570228, China.
| | - Jinbo Zhang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Ahmed S Elrys
- College of Tropical Crops, Hainan University, Haikou, 570228, China; Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt; Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Giessen, Germany
| |
Collapse
|
17
|
Bieluczyk W, Asselta FO, Navroski D, Gontijo JB, Venturini AM, Mendes LW, Simon CP, Camargo PBD, Tadini AM, Martin-Neto L, Bendassolli JA, Rodrigues RR, van der Putten WH, Tsai SM. Linking above and belowground carbon sequestration, soil organic matter properties, and soil health in Brazilian Atlantic Forest restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118573. [PMID: 37459811 DOI: 10.1016/j.jenvman.2023.118573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/17/2023]
Abstract
Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration'): an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 μg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.
Collapse
Affiliation(s)
- Wanderlei Bieluczyk
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil; University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Fernanda Ometto Asselta
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Deisi Navroski
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Júlia Brandão Gontijo
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Andressa Monteiro Venturini
- Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, USA; Department of Biology, Stanford University, Stanford, CA, USA.
| | - Lucas William Mendes
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Carla Penha Simon
- University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Plínio Barbosa de Camargo
- University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Amanda Maria Tadini
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos, SP, 13560-970, Brazil.
| | - Ladislau Martin-Neto
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos, SP, 13560-970, Brazil.
| | - José Albertino Bendassolli
- University of São Paulo, Center for Nuclear Energy in Agriculture, Stable Isotope Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| | - Ricardo Ribeiro Rodrigues
- University of São Paulo, "Luiz de Queiroz" College of Agriculture, Laboratory of Ecology and Forest Restoration, 11 Pádua Dias Avenue, Piracicaba, SP, 13418-900, Brazil.
| | - Wim H van der Putten
- Netherlands Institute of Ecology, NIOO-KNAW, Department of Terrestrial Ecology, 6708, PB, Wageningen, Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700, ES, Wageningen, the Netherlands.
| | - Siu Mui Tsai
- University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil.
| |
Collapse
|
18
|
Zheng J, Sakata T, Fujii K. Deciphering nitrous oxide emissions from tropical soils of different land uses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160916. [PMID: 36526175 DOI: 10.1016/j.scitotenv.2022.160916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Tropical regions are hotspots of increasing greenhouse gas emissions associated with land-use change. Although many field studies have quantified soil fluxes of nitrous oxide (N2O; a potent greenhouse gas) from various land uses, the driving mechanisms remain uncertain. Here, we used tropical soils of diverse land uses and actively manipulated the soil moisture (35%, 60%, and 95% water-filled pore space [WFPS]) and substrate supply (control, nitrate, and nitrate plus glucose) to investigate the responses of N2O emissions with short-term incubations. We then identified key factors regulating N2O emissions out of a series of soil physicochemical and biological factors and explored how these factors interacted to drive N2O emissions. Land-use changes from primary forest to oil palm or Acacia plantation risks emitting more N2O, whereas low emissions could be maintained by conversion to Macaranga forest or Imperata grassland; these laboratory observations were corroborated by a literature synthesis of field N2O measurements across tropical regions. Soil redox potential (Eh) and labile organic nitrogen (LON; amino acid mixture, arginine, and urea) mineralization were among the factors with greatest influence on N2O emissions. In contrast to common understandings, the control of WFPS over N2O emissions was largely indirect, and acted through Eh. The mineralization of LON, particularly arginine, potentially played multiple roles in N2O production (e.g., bottlenecks of nitrifier-denitrification or simultaneous nitrification-denitrification versus substrate competition for co-denitrification). Structural equation models suggest that soil-environmental factors of different levels (from distal including land use, soil moisture, and pH to proximal such as LON mineralization) drive N2O emissions through cascading interactions. Overall, we show that, despite identical initial soil conditions, land conversion can substantially alter the N2O emission potential. Also, collectively considering soil-environmental regulators and their interactions associated with land conversion is crucial to predict and design mitigation strategies for N2O emissions from land-use change.
Collapse
Affiliation(s)
- Jinsen Zheng
- Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan.
| | - Tadashi Sakata
- Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Kazumichi Fujii
- Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan.
| |
Collapse
|
19
|
Duan B, Xiao R, Cai T, Man X, Ge Z, Gao M, Mencuccini M. Understory species composition mediates soil greenhouse gas fluxes by affecting bacterial community diversity in boreal forests. Front Microbiol 2023; 13:1090169. [PMID: 36741883 PMCID: PMC9894877 DOI: 10.3389/fmicb.2022.1090169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/05/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Plant species composition in forest ecosystems can alter soil greenhouse gas (GHG) budgets by affecting soil properties and microbial communities. However, little attention has been paid to the forest types characterized by understory vegetation, especially in boreal forests where understory species contribute significantly to carbon and nitrogen cycling. Method In the present study, soil GHG fluxes, soil properties and bacterial community, and soil environmental conditions were investigated among three types of larch forest [Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL), and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL)] in the typical boreal region of northeast China to explore whether the forest types characterized by different understory species can affect soil GHG fluxes. Results The results showed that differences in understory species significantly affected soil GHG fluxes, properties, and bacterial composition among types of larch forest. Soil CO2 and N2O fluxes were significantly higher in LL (347.12 mg m-2 h-1 and 20.71 μg m-2 h-1) and RL (335.54 mg m-2 h-1 and 20.73 μg m-2 h-1) than that in SLL (295.58 mg m-2 h-1 and 17.65 μg m-2 h-1), while lower soil CH4 uptake (-21.07 μg m-2 h-1) were found in SLL than in RL (-35.21 μg m-2 h-1) and LL (-35.85 μg m-2 h-1). No significant differences between LL and RL were found in soil CO2, CH4, and N2O fluxes. Soil bacterial composition was mainly dominated by Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi among the three types of larch forest, while their abundances differed significantly. Soil environmental variables, soil properties, bacterial composition, and their interactions significantly affected the variations in GHG fluxes with understory species. Specifically, structural equation modeling suggested that soil bacterial composition and temperature had direct close links with variations in soil GHG fluxes among types of larch forest. Moreover, soil NO3 --N and NH4 + - N content also affected soil CO2, CH4, and N2O fluxes indirectly, via their effects on soil bacterial composition. Discussion Our study highlights the importance of understory species in regulating soil GHG fluxes in boreal forests, which furthers our understanding of the role of boreal forests in sustainable development and climate change mitigation.
Collapse
Affiliation(s)
- Beixing Duan
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China,CREAF, Barcelona, Spain
| | - Ruihan Xiao
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Tijiu Cai
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China,*Correspondence: Tijiu Cai,
| | - Xiuling Man
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Zhaoxin Ge
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | - Minglei Gao
- School of Forestry, Northeast Forestry University, Harbin, China,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, China
| | | |
Collapse
|
20
|
Jiang BN, Lu MB, Zhang ZY, Xie BL, Song HL. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158688. [PMID: 36108836 DOI: 10.1016/j.scitotenv.2022.158688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Zero-waste biochar is an emerging tool for carbon neutralization, but the role of biochar in reducing greenhouse gases (GHGs) emissions from CWs were controversy and uncertainty. Yet, no previous study has integrated multiple research systems to quantitatively examine biochar-mediated GHGs emission reduction potential in CWs. Here we synthesized 114 studies to quantify biochar-induced declines ability of GHGs in the CWs by using the multi-level meta-analysis, reveal the variation of GHGs emission effect in different biochar-CWs and its response relationship with biochar, and identify the moderating variables that had a strong explanatory effect on the emission reduction effect of biochar. We showed that biochar remarkably affect CO2 mitigation (p < 0.05), but has insignificant and heterogeneous effects on CH4 and N2O. Pyrolysis time, influent dissolved oxygen (DO), influent NO3--N concentration, hydraulic retention time (HRT) and wetland type can significantly affect the effect of biochar on CH4 emission reduction. Particularly, the importance of HRT and wetland type was 0.89 and 0.85, respectively. Specially, the surface batch CWs modified by biochar could significantly promote the emission of CH4 (p < 0.001), and the effect size was up to 89.59. For N2O, biochar diameter, biochar addition ratio, influent COD/TN ratio, plant name, and removal efficiency of NO3--N/TN/COD were significant moderators. Among them, influent COD/TN ratio and plant name showed a stronger explanation. Planting Cyperus alternifolius L. significantly enhanced the N2O emission reduction capacity by biochar (p < 0.001), and effect size was as low as -24.32. 700-900 °C biochar can promote CH4 flux but inhibit N2O flux. This study provides an important theoretical basis and valuable strategic guidance for more accurate estimation and improvement of synergistic emission reduction benefits between CH4 and N2O of biochar in CWs.
Collapse
Affiliation(s)
- Bi-Ni Jiang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing 210014, PR China
| | - Min-Bo Lu
- CCDI(Suzhou) Exploration & Design Consultant Co., Ltd., Suzhou 215123, PR China
| | - Zhi-Yong Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Liuhe Observation and Experimental Station of National Agro-Environment, Nanjing 210014, PR China
| | - Bo-Lun Xie
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Wenyuan Road 1, Nanjing 210023, PR China.
| |
Collapse
|
21
|
Zhang H, Fang Y, Chen Y, Li Y, Lin Y, Wu J, Cai Y, Chang SX. Enhanced soil potential N 2O emissions by land-use change are linked to AOB-amoA and nirK gene abundances and denitrifying enzyme activity in subtropics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158032. [PMID: 35970464 DOI: 10.1016/j.scitotenv.2022.158032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Conversion of forestland to intensively managed agricultural land occurs worldwide and can increase soil nitrous oxide (N2O) emissions by altering the transformation processes of nitrogen (N) cycling related microbes and environmental conditions. However, little research has been conducted to assess the relationships between nitrifying and denitrifying functional genes and enzyme activities, the altered soil environment and N2O emissions under forest conversion in subtropical China. Here, we investigated the long-term (two decades) effect of converting natural forests to intensively managed tea (Camellia sinensis L.) plantations on soil potential N2O emissions, inorganic N concentrations, functional gene abundances of nitrifying and denitrifying bacteria, as well as nitrifying and denitrifying enzyme activities in subtropical China. The conversion significantly increased soil potential N2O emissions, which were regulated directly by increased denitrifying enzyme activity (52 %) and nirS + nirK gene abundance (38 %) as shown by structural equation modeling, and indirectly by AOB-amoA gene abundance and inorganic N concentration. Our results indicate that converting natural forests to tea plantations directly increases soil inorganic N concentration, resulting in increases in the abundance of soil nitrifying and denitrifying microorganisms and the associated N2O emissions. These findings are crucial for disentangling the factors that directly and indirectly affect soil potential N2O emissions respond to the conversion of forest to tea plantation.
Collapse
Affiliation(s)
- Haikuo Zhang
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunying Fang
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Youchao Chen
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yongxin Lin
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jiasen Wu
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| |
Collapse
|
22
|
Feng Z, Wang L, Wan X, Yang J, Peng Q, Liang T, Wang Y, Zhong B, Rinklebe J. Responses of soil greenhouse gas emissions to land use conversion and reversion-A global meta-analysis. GLOBAL CHANGE BIOLOGY 2022; 28:6665-6678. [PMID: 35989422 DOI: 10.1111/gcb.16370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Exploring the responses of greenhouse gas (GHG) emissions to land use conversion or reversion is significant for taking effective land use measures to alleviate global warming. A global meta-analysis was conducted to analyze the responses of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) emissions to land use conversion or reversion, and determine their temporal evolution, driving factors, and potential mechanisms. Our results showed that CH4 and N2 O responded positively to land use conversion while CO2 responded negatively to the changes from natural herb and secondary forest to plantation. By comparison, CH4 responded negatively to land use reversion and N2 O also showed negative response to the reversion from agricultural land to forest. The conversion of land use weakened the function of natural forest and grassland as CH4 sink and the artificial nitrogen (N) addition for plantation increased N source for N2 O release from soil, while the reversion of land use could alleviate them to some degree. Besides, soil carbon would impact CO2 emission for a long time after land use conversion, and secondary forest reached the CH4 uptake level similar to that of primary forest after over 40 years. N2 O responses had negative relationships with time interval under the conversions from forest to plantation, secondary forest, and pasture. In addition, meta-regression indicated that CH4 had correlations with several environmental variables, and carbon-nitrogen ratio had contrary relationships with N2 O emission responses to land use conversion and reversion. And the importance of driving factors displayed that CO2 , CH4 , and N2 O response to land use conversion and reversion was easily affected by NH4 + and soil moisture, mean annual temperature and NO3 - , total nitrogen and mean annual temperature, respectively. This study would provide enlightenments for scientific land management and reduction of GHG emissions.
Collapse
Affiliation(s)
- Zhaohui Feng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Wan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jun Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qin Peng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yazhu Wang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Buqing Zhong
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, University of Wuppertal, Wuppertal, Germany
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
23
|
Yao X, Song C. Effect of different factors dominated by water level environment on wetland carbon emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74150-74162. [PMID: 35633453 DOI: 10.1007/s11356-022-20289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The exacerbation of global warming has led to changes in wetland carbon emissions worldwide. Therefore, we conducted a meta-analysis of methane (CH4) and carbon dioxide (CO2) emissions in wetland ecosystem and explored the underlying mechanisms. Our finding indicated that (1) water level of -50 to 30 cm (the negative value represents the depth of the groundwater table, whereas the positive value represents the height of the above-ground water table) and -10 cm will result in a large CH4 and CO2 emissions, respectively; (2) CO2 and CH4 massive emissions occurred at the temperature range of 15-20 °C and > 20 °C, respectively; (3) CH4 and CO2 emissions were higher when the mean annual precipitation (MAP) was between 400 and 800 mm, but lower at an range of 800-1200 mm; (4) there was no significant difference in CH4 and CO2 emissions in marsh over time; however, CO2 emissions in fen were relatively high; (5) there was no significant difference in CO2 emissions between the forest, grass, and shrub groups; there was also no significant difference in CH4 emission within the forest group; and (6) MAP has a low impact (0.577) on the CO2 emissions of wetlands. Collectively, our findings highlight the characteristics of wetland CH4 and CO2 emissions under different conditions dominated by water level, enhance our understanding of the potential mechanisms that govern these effects, and provide basis for future wetland management and restoration in the future.
Collapse
Affiliation(s)
- Xiaochen Yao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- School of Hydraulic Engineering, Dalian University of Technology, Dalian, 116023, China.
| |
Collapse
|
24
|
An Improved Gray Neural Network Method to Optimize Spatial and Temporal Characteristics Analysis of Land-Use Change. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2699031. [PMID: 35990148 PMCID: PMC9388289 DOI: 10.1155/2022/2699031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
In this article, the principles of the gray model and BP neural network model are analyzed, and the characteristics of land-use change and spatial and temporal distribution are studied in-depth, and at the same time, to explore the influence of land-use change on ESV, the relationship between the two is analyzed using gray correlation degree, and a mathematical model is constructed to maximize the benefits of the regional system, coupling economic and ecological benefits, combined with Geo SOS-FLUS model to achieve the optimization of land use. This article constructs a combined prediction model of a gray neural network. The gray differential equation parameters correspond to the weights and thresholds of the neural network, and the optimized parameters are determined by training the neural network to make it stable. Then the training results of the BP neural network are fitted with the results obtained from the gray GM (1.1) model. Finally, the prediction results of the three models, gray GM (1.1), BP God Meridian, and gray neural network model, are compared and analyzed. The global spatial autocorrelation and local spatial aggregation patterns of regional soil erosion and its erosion factors are analyzed using the Exploratory Spatial Data Analysis (ESDA) method in spatial measurement theory.
Collapse
|
25
|
Responses of Soil N2O Emission and CH4 Uptake to N Input in Chinese Forests across Climatic Zones: A Meta-Study. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enhanced nitrogen (N) deposition has shown significant impacts on forest greenhouse gas emissions. Previous studies have suggested that Chinese forests may exhibit stronger N2O sources and dampened CH4 sinks under aggravated N saturation. To gain a common understanding of the N effects on forest N2O and CH4 fluxes, many have conducted global-scale meta-analyses. However, such effects have not been quantified particularly for China. Here, we present a meta-study of the N input effects on soil N2O emission and CH4 uptake in Chinese forests across climatic zones. The results suggest that enhanced N inputs significantly increase soil N2O emission (+115.8%) and decrease CH4 uptake (−13.4%). The mean effects were stronger for N2O emission and weaker for CH4 uptake in China compared with other global sites, despite being statistically insignificant. Subtropical forest soils have the highest emission factor (2.5%) and may respond rapidly to N inputs; in relatively N-limited temperate forests, N2O and CH4 fluxes are less sensitive to N inputs. Factors including forest type, N form and rate, as well as soil pH, may also govern the responses of N2O and CH4 fluxes. Our findings pinpoint the important role of Southern Chinese forests in the regional N2O and CH4 budgets.
Collapse
|
26
|
Shen Y, Zhu B. Effects of nitrogen and phosphorus enrichment on soil N 2O emission from natural ecosystems: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118993. [PMID: 35183669 DOI: 10.1016/j.envpol.2022.118993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/15/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) and phosphorous (P) enrichment play an important role in regulating soil N2O emission, but their interactive effect remains elusive (i.e. whether the effect of P or N enrichment on soil N2O emission varies between ambient and elevated soil N or P conditions). Here, we conducted a Bayesian meta-analysis across the global natural ecosystems to determine this effect. Our results showed that P enrichment significantly decreased soil N2O emission by 13.9% at ambient soil N condition. This N2O mitigation is likely due to the decreased soil NO3--N content (-17.6%) derived by the enhanced plant uptake when the P limitation was alleviated by P enrichment. However, this P-induced N2O (and NO3--N) mitigation was not found at elevated soil N condition. Additionally, N enrichment significantly increased soil N2O emission by 101.4%, which was associated with the increased soil NH4+-N (+41.0%) and NO3--N (+82.3%). However, the effect of N enrichment on soil N2O emission did not differ between ambient and elevated soil P subgroups, indicating that the P-derived N2O mitigation could be masked by N enrichment. Further analysis showed that manipulated N rate, soil texture, soil dissolved organic nitrogen, soil total nitrogen, soil organic carbon, soil pH, aboveground plant biomass, belowground plant biomass, and plant biomass nitrogen were the main factors affecting soil N2O emission under N enrichment. Taken together, our study provides evidence that P enrichment has the potential to reduce soil N2O emission from natural ecosystems, but this mitigation effect could be masked by N enrichment.
Collapse
Affiliation(s)
- Yawen Shen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Ma S, Zhu B, Chen G, Ni X, Zhou L, Su H, Cai Q, Chen X, Zhu J, Ji C, Li Y, Fang J. Loss of soil microbial residue carbon by converting a tropical forest to tea plantation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151742. [PMID: 34808187 DOI: 10.1016/j.scitotenv.2021.151742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Land-use change can lead to profound changes in the storage of soil organic carbon (SOC) in the tropics. Soil microbial residues make up the majority of persistent SOC pools, yet the impact of land-use change on microbial residue C accumulation in the tropics is not well understood. Here, we investigated how the conversion of tropical primary montane rainforest to secondary forest and the conversions of secondary forest to Prunus salicina plantation and tea plantation, influence the accumulation of soil microbial residue C (indicated by amino sugars). Our results showed that the secondary forest had a higher SOC than that of the primary forest (+63%), while they had no difference in microbial residue C concentration, indicating a relatively slow microbial-derived C accrual during secondary succession. Moreover, the P. salicina plantation and tea plantation had lower SOC than the secondary forest (-53% and -57%, respectively). A decrease in fungal biomass (-51%) resulted in less fungal and total residue C concentrations in the tea plantation than in the secondary forest (-38% and -35%, respectively), indicating microbial-derived C loss following the forest conversion. The change in microbial residue C depended on litter standing crop rather than soil nutrient and root biomass. Litter standing crop affected microbial residue C concentration by regulating fungal biomass and hydrolytic enzyme activities. Taken together, our results highlight that litter-microbe interactions drive microbial residue C accumulation following forest conversions in the tropics.
Collapse
Affiliation(s)
- Suhui Ma
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| | - Guoping Chen
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Xiaofeng Ni
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Luhong Zhou
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Haojie Su
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Qiong Cai
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Xiao Chen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jiangling Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Yide Li
- Jianfengling National Key Field Observation and Research Station for Forest Ecosystem, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Zhang P, Guan P, Hao C, Yang J, Xie Z, Wu D. Changes in assembly processes of soil microbial communities in forest-to-cropland conversion in Changbai Mountains, northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151738. [PMID: 34808170 DOI: 10.1016/j.scitotenv.2021.151738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
In response to human-induced changes in the environment, it is crucial to assess the underlying factors of the impacts of forest conversion on ecosystem function. However, research is limited on bacteria and fungi diversity, functional properties, and community assembly mechanisms in response to forest-to-cropland conversion. We categorized soil bacterial and fungal communities from primary forest, secondary forest, and cropland in Changbai Mountains, China. We found that forest-to-cropland conversion altered the structure and composition of bacterial and fungal communities and might be associated with potential changes in function. The null models indicated that the conversion from forest to cropland enhanced the bacterial dispersal limitation process and weakened the fungal dispersal limitation processes. Furthermore, ecological drift dominates the ecological processes of cropland fungi. Both edaphic properties (the content of C: N ratio, available phosphorus, nitrate) significantly impacted on soil bacterial and fungal community structures. In addition, there were significant functional variations in the fungal community between forest-to-cropland. The ectomycorrhizal and saprotrophic fungi showed increased abundance in the forest microbial communities, whereas the endophytic and pathogenic fungal abundance was increased in cropland soil. Taken together, our data illustrate the differences in the response of bacteria and fungi to forest-to-cropland conversion in temperate forest areas and deepen our understanding of the effects of forest conversion on microbial functions and community assembly processes.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingting Guan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Cao Hao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jingjing Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Zhijing Xie
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghui Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
29
|
Understanding Socio-Economic and Environmental Impacts of Agroforestry on Rural Communities. FORESTS 2022. [DOI: 10.3390/f13040556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several studies have highlighted the benefit of implementing agroforestry for rural communities. From the perspective of socio-economic, agroforestry can potentially improve smallholders’ income, increase food security, promote gender equality and stimulate cultural activities in rural areas. Furthermore, agroforestry can enhance ecosystem service through improved soil structure, increased carbon sequestration and higher water retention. Despite having many advantages, the adoption of agroforestry among rural communities, particularly among smallholder farmers in developing countries remains limited. The absence of agroforestry in public policy causes little recognition of this system to tackle the climate crisis as well as to improve rural livelihood. This may be due to, among others, a less comprehensive evidence on impacts that simultaneously touch upon social, economic as well as environmental aspects of agroforestry on the community. This review gives a special emphasis on the current evidence depicting the characteristics of agroforestry adoption, its benefits and potential drawbacks, as well as challenges for the adoption in some developing countries. The outcomes might help related stakeholders to make appropriate decisions to improve rural livelihood.
Collapse
|
30
|
Zhang H, Zheng X, Cai Y, Chang SX. Land-Use Change Enhanced SOC Mineralization but Did Not Significantly Affect Its Storage in the Surface Layer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053020. [PMID: 35270711 PMCID: PMC8910613 DOI: 10.3390/ijerph19053020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022]
Abstract
To achieve carbon (C) neutrality and mitigate climate change, it is crucial to understand how converting natural forests to agricultural plantations influences soil organic C (SOC) mineralization. In this study, we investigated the impact of converting evergreen broadleaf forests (EBF) to extensively managed Moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) plantations (MBP) in subtropical China on SOC mineralization rate; the concentrations of labile SOC fractions such as dissolved organic C (DOC), microbial biomass C (MBC), and readily oxidizable C (ROC); the activities of C-degrading enzymes (cellobiohydrolase and phenol oxidase); and the abundance of C-degrading enzyme-encoding genes (cbhI and lcc). Three paired soil samples were taken from the surface layer (0–20 cm) of adjacent EBF-MBP sites in Anji County, Zhejiang province. Results showed that converting EBF to MBP significantly increased the SOC mineralization rate as well as soil pH, MBC, cellobiohydrolase, and phenol oxidase activities, and cbhI gene abundance, but did not change other soil properties described above. In addition, structural equation modelling (SEM) showed that the conversion increased SOC mineralization rate through increasing soil pH, cbhI gene abundance, MBC, and cellobiohydrolase and phenol oxidase activities. Our novel finding that converting EBF to extensively managed MBP enhanced SOC mineralization via increasing the activities of C-degrading enzymes suggests that C-degrading enzymes were a key factor regulating SOC mineralization in the extensively managed subtropical bamboo plantations.
Collapse
Affiliation(s)
- Haikuo Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (H.Z.); (S.X.C.)
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuli Zheng
- Anji County Lingfeng Temple Forest Farm, Huzhou 313302, China;
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (H.Z.); (S.X.C.)
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: ; Tel.: +86-6370-5212
| | - Scott X. Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (H.Z.); (S.X.C.)
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
31
|
Mander Ü, Krasnova A, Schindler T, Megonigal JP, Escuer-Gatius J, Espenberg M, Machacova K, Maddison M, Pärn J, Ranniku R, Pihlatie M, Kasak K, Niinemets Ü, Soosaar K. Long-term dynamics of soil, tree stem and ecosystem methane fluxes in a riparian forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151723. [PMID: 34801507 DOI: 10.1016/j.scitotenv.2021.151723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
The carbon (C) budgets of riparian forests are sensitive to climatic variability. Therefore, riparian forests are hot spots of C cycling in landscapes. Only a limited number of studies on continuous measurements of methane (CH4) fluxes from riparian forests is available. Here, we report continuous high-frequency soil and ecosystem (eddy-covariance; EC) measurements of CH4 fluxes with a quantum cascade laser absorption spectrometer for a 2.5-year period and measurements of CH4 fluxes from tree stems using manual chambers for a 1.5 year period from a temperate riparian Alnus incana forest. The results demonstrate that the riparian forest is a minor net annual sink of CH4 consuming 0.24 kg CH4-C ha-1 y-1. Soil water content is the most important determinant of soil, stem, and EC fluxes, followed by soil temperature. There were significant differences in CH4 fluxes between the wet and dry periods. During the wet period, 83% of CH4 was emitted from the tree stems while the ecosystem-level emission was equal to the sum of soil and stem emissions. During the dry period, CH4 was substantially consumed in the soil whereas stem emissions were very low. A significant difference between the EC fluxes and the sum of soil and stem fluxes during the dry period is most likely caused by emission from the canopy whereas at the ecosystem level the forest was a clear CH4 sink. Our results together with past measurements of CH4 fluxes in other riparian forests suggest that temperate riparian forests can be long-term CH4 sinks.
Collapse
Affiliation(s)
- Ülo Mander
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; Global Change Research Institute of the Czech Academy of Sciences, Department of Ecosystem Trace Gas Exchange, Belidla 986/4a, 603 00 Brno, Czech Republic.
| | - Alisa Krasnova
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| | - Thomas Schindler
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; Global Change Research Institute of the Czech Academy of Sciences, Department of Ecosystem Trace Gas Exchange, Belidla 986/4a, 603 00 Brno, Czech Republic
| | - J Patrick Megonigal
- Smithsonian Environmental Institute, 647 Contees Wharf Road Edgewater, MD 21037-0028, USA
| | - Jordi Escuer-Gatius
- Institute of Agricultural & Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Mikk Espenberg
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Katerina Machacova
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; Global Change Research Institute of the Czech Academy of Sciences, Department of Ecosystem Trace Gas Exchange, Belidla 986/4a, 603 00 Brno, Czech Republic
| | - Martin Maddison
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Jaan Pärn
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Reti Ranniku
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Mari Pihlatie
- Department of Agricultural Sciences, Environmental Soil Sciences, University of Helsinki, Latokartanonkaari 7, 00014 Helsinki, Finland; Institute for Atmospheric and Earth System Research (INAR) / Forest Science, University of Helsinki, Physicum, Kumpula campus, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland; Department of Agricultural Sciences, Viikki Plant Science Centre (ViPS), University of Helsinki, Viikinkaari 2a, 00014 Helsinki, Finland
| | - Kuno Kasak
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural & Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Kaido Soosaar
- Department of Geography, Institute of Ecology & Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia; Global Change Research Institute of the Czech Academy of Sciences, Department of Ecosystem Trace Gas Exchange, Belidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
32
|
Yang L, Niu S, Tian D, Zhang C, Liu W, Yu Z, Yan T, Yang W, Zhao X, Wang J. A global synthesis reveals increases in soil greenhouse gas emissions under forest thinning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150225. [PMID: 34798746 DOI: 10.1016/j.scitotenv.2021.150225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Forest thinning is a major forest management practice worldwide and may lead to profound alterations in the fluxes of soil greenhouse gases (GHGs). However, the global patterns and underlying mechanisms of soil GHG fluxes in response to forest thinning remain poorly understood. Here, we conducted a global meta-analysis of 106 studies to assess the effects of forest thinning on soil GHG fluxes and the underpinning mechanisms. The results showed that forest thinning significantly increased soil CO2 emission (mean lnRR: 0.07, 95% CI: 0.03-0.11), N2O emission (mean lnRR: 0.39, 95% CI: 0.16-0.61) and decreased CH4 uptake (mean Hedges' d: 0.98, 95% CI: 0.32-1.64). Furthermore, the negative response of soil CH4 uptake was amplified by thinning intensity, and the positive response of soil N2O emission decreased with recovery time after thinning. The response of soil CO2 emission was mainly correlated with changes in fine root biomass and soil nitrogen content, and the response of soil CH4 uptake was related to the changes in soil moisture and litterfall. Moreover, the response of soil N2O emission was associated with changes in soil temperature and soil nitrate nitrogen content. Thinning also increased the total balance of the three greenhouse gas fluxes in combination, which decreased with recovery time. Our findings highlight that thinning significantly increases soil GHG emissions, which is crucial to understanding and predicting ecosystem-climate feedbacks in managed forests.
Collapse
Affiliation(s)
- Lu Yang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China
| | - Weiguo Liu
- Center for Ecological Forecasting and Global Change, College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Zhen Yu
- Institute of Ecology, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Yan
- Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wen Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China.
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
33
|
Wang Y, Chen L, Xiang W, Ouyang S, Zhang T, Zhang X, Zeng Y, Hu Y, Luo G, Kuzyakov Y. Forest conversion to plantations: A meta-analysis of consequences for soil and microbial properties and functions. GLOBAL CHANGE BIOLOGY 2021; 27:5643-5656. [PMID: 34431166 DOI: 10.1111/gcb.15835] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Primary or secondary forests around the world are increasingly being converted into plantations. Soil microorganisms are critical for all biogeochemical processes in ecosystems, but the effects of forest conversion on microbial communities and their functioning remain unclear. Here, we conducted a meta-analysis to quantify the impacts that converting forests to plantations has on soil microbial communities and functioning as well as on the associated plant and soil properties. We collected 524 paired observations from 138 studies globally. We found that conversion leads to broad range of adverse impacts on soils and microorganisms, including on soil organic carbon (-24%), total nitrogen (-29%), bacterial and fungal biomass (-36% and -42%, respectively), microbial biomass carbon (MBC, -31%) and nitrogen (-33%), and fungi to bacteria ratio (F:B, -16%). In addition, we found impacts on the ratio of MBC to soil organic C (qMBC, -20%), microbial respiration (-18%), N mineralization (-18%), and enzyme activities including β-1,4-glucosidase (-54%), β-1,4-N-acetylglucosaminidase (-39%), and acid phosphatase (ACP; -34%). In contrast, conversion to plantations increases bacterial richness (+21%) and microbial metabolic quotient (qCO2 , +21%). The effects of forest conversion were consistent across stand ages, stand types, and climate zone. Soil C and N contents as well as the C:N ratio were the main factors responsible for the changes of microbial C, F:B, and bacterial richness. The responses of qCO2 , N mineralization, and ACP activity were mainly driven by the reductions in F:B, MBC, and soil C:N. Applying macro-ecology theory on ecosystem disturbance in soil microbial ecology, we show that microbial groups shifted from K to r strategists after conversion to plantations. Our meta-analysis underlines the adverse effects of natural forests conversion to plantations on soil microbial communities and functioning, and suggests that the preservation of soil functions should be a consideration in forest management practices.
Collapse
Affiliation(s)
- Ying Wang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Wenhua Xiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Shuai Ouyang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Taidong Zhang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Xiulan Zhang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Yelin Zeng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Yanting Hu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, China
| | - Yakov Kuzyakov
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, Göttingen, Germany
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
- Agro-Technological Institute, RUDN University, Moscow, Russia
| |
Collapse
|
34
|
Chen Q, Long C, Chen J, Cheng X. Differential response of soil CO 2 , CH 4 , and N 2 O emissions to edaphic properties and microbial attributes following afforestation in central China. GLOBAL CHANGE BIOLOGY 2021; 27:5657-5669. [PMID: 34363712 DOI: 10.1111/gcb.15826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Land use change specially affects greenhouse gas (GHG) emissions, and it can act as a sink/source of GHGs. Alterations in edaphic properties and microbial attributes induced by land use change can individually/interactively contribute to GHG emissions, but how they predictably affect soil CO2 , CH4 , and N2 O emissions remain unclear. Here, we investigated the direct and indirect controls of edaphic properties (i.e., dissolved organic carbon [DOC], soil organic C, total nitrogen, C:N ratio, NH4+ -N, NO3- -N, soil temperature [ST], soil moisture [SM], pH, and bulk density [BD]) and microbial attributes (i.e., total phospholipid fatty acids [PLFAs], 18:1ω7c, nitrifying genes [ammonia-oxidizing archaea, ammonia-oxidizing bacteria], and denitrifying genes [nirS, nirK, and nosZ]) over the annual soil CO2 , CH4 , and N2 O emissions from the woodland, shrubland, and abandoned land in subtropical China. Soil CO2 and N2 O emissions were higher in the afforested lands (woodland and shrubland) than in the abandoned land, but the annual cumulative CH4 uptake did not significantly differ among all land use types. The CO2 emission was positively associated with microbial activities (e.g., total PLFAs), while the CH4 uptake was tightly correlated with soil environments (i.e., ST and SM) and chemical properties (i.e., DOC, C:N ratio, and NH4+ -N concentration), but not significantly related to the methanotrophic bacteria (i.e., 18:1ω7c). Whereas, soil N2 O emission was positively associated with nitrifying genes, but negatively correlated with denitrifying genes especially nosZ. Overall, our results suggested that soil CO2 and N2 O emissions were directly dependent on microbial attributes, and soil CH4 uptake was more directly related to edaphic properties rather than microbial attributes. Thus, different patterns of soil CO2 , CH4 , and N2 O emissions and associated controls following land use change provided novel insights into predicting the effects of afforestation on climate change mitigation outcomes.
Collapse
Affiliation(s)
- Qiong Chen
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
| | - Chunyan Long
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
| | - Jingwen Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, P.R. China
| |
Collapse
|
35
|
Identifying Carbon-Degrading Enzyme Activities in Association with Soil Organic Carbon Accumulation Under Land-Use Changes. Ecosystems 2021. [DOI: 10.1007/s10021-021-00711-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Land-Use Change Impacts from Sustainable Hydropower Production in EU28 Region: An Empirical Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su13094599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Under the current European Union (EU) constitution approved in May 2018, EU countries ought to guarantee that estimated greenhouse-gas releases from land use, land-use change, or forestry are entirely compensated by an equivalent accounted removal of carbon dioxide (CO2) from the air during the period between 2021 and 2030. This study investigates the effect of sustainable hydropower production on land-use change in the European Union (EU28) region countries during 1990–2018, using the fully modified ordinary least squares (FMOLS). The results revealed that land-use change incline with an increase in hydropower energy production. In addition, economic growth, carbon dioxide emissions, and population density are found to be increasing land-use changes, while institutional quality is found to be decreasing land-use change significantly. The finding implies that land-use change in EU28 region countries can be significantly increased by mounting the amount of hydropower energy production to achieve Energy Union aims by 2030. This will finally be spread to combat climate change and environmental pollution. The findings are considered robust as they were checked with DOLS and pooled OLS. The research suggests that the EU28 countries pay attention to the share of hydropower in their renewable energy combination to minimize carbon releases. Politicians and investors in the EU28 region ought to invest further in the efficiency and sustainability of hydropower generation to increase its production and accessibility without further degradation of forest and agricultural conditions. The authorities of the EU28 region should emphasize on efficiency and sustainability of hydropower energy with land-use management to achieve the international commitments for climate, biodiversity, and sustainable development, reduce dependence on fossil fuel, and energy insecurity.
Collapse
|
37
|
Howland Forest, ME, USA: Multi-Gas Flux (CO2, CH4, N2O) Social Cost Product Underscores Limited Carbon Proxies. LAND 2021. [DOI: 10.3390/land10040436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forest carbon sequestration is a widely accepted natural climate solution. However, methods to determine net carbon offsets are based on commercial carbon proxies or CO2 eddy covariance research with limited methodological comparisons. Non-CO2 greenhouse gases (GHG) (e.g., CH4, N2O) receive less attention in the context of forests, in part, due to carbon denominated proxies and to the cost for three-gas eddy covariance platforms. Here we describe and analyze results for direct measurement of CO2, CH4, and N2O by eddy covariance and forest carbon estimation protocols at the Howland Forest, ME, the only site where these methods overlap. Limitations of proxy-based protocols, including the exclusion of sink terms for non-CO2 GHGs, applied to the Howland project preclude multi-gas forest products. In contrast, commercial products based on direct measurement are established by applying molecule-specific social cost factors to emission reductions creating a new forest offset (GHG-SCF), integrating multiple gases into a single value of merit for forest management of global warming. Estimated annual revenue for GHG-SCF products, applicable to the realization of a Green New Deal, range from ~$120,000 USD covering the site area of ~557 acres in 2021 to ~$12,000,000 USD for extrapolation to 40,000 acres in 2040, assuming a 3% discount rate. In contrast, California Air Resources Board compliance carbon offsets determined by the Climate Action Reserve protocol show annual errors of up to 2256% relative to eddy covariance data from two adjacent towers across the project area. Incomplete carbon accounting, offset over-crediting and inadequate independent offset verification are consistent with error results. The GHG-SCF product contributes innovative science-to-commerce applications incentivizing restoration and conservation of forests worldwide to assist in the management of global warming.
Collapse
|
38
|
Koné AW, Yao MK. Soil microbial functioning and organic carbon storage: can complex timber tree stands mimic natural forests? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:112002. [PMID: 33516096 DOI: 10.1016/j.jenvman.2021.112002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Conversion of natural forest to anthropogenic land use systems (LUS) often leads to considerable loss of carbon, however, proper management of these LUS may reverse the trend. A study was conducted in a semi-deciduous forest zone of Côte d'Ivoire to assess soil microbial functioning and soil organic carbon (SOC) stocks in varying tree stands, and to determine whether complex tree stands can mimic the natural forest in terms of these soil attributes. Tree plantations studied were monocultures of teak (Tectona grandis) and full-sun cocoa (Theobroma cacao L.), and a mixture of four tree species (MTS) with Tectona grandis, Gmelina arborea, Terminalia ivoriensis and Terminalia superba. An adjacent natural forest was considered as the reference. Each of these LUS had five replicate stands where soil (0-10 cm depth) samples were taken for physico-chemical parameters and microbial biomass-C (MBC), microbial activities, MBC/SOC ratio and metabolic quotient (qCO2). SOC and total N stocks were also calculated. The C mineralization rate (mg C-CO2 kg-1) and mineral N concentration (mg kg-1) drastically declined in the monocultures of cocoa (154.9 ± 29.3 and 49.8 ± 9.8, respectively) and teak (179.6 ± 27.1 and 54.1 ± 7.3) compared to the natural forest (258.4 ± 21.9 and 108.7 ± 12). However, values in MTS (194.7 ± 24.6 and 105.4 ± 7.4) were not significantly different from those in the natural forest. Similarly, SOC stocks in MTS (28.8 ± 1.9 Mg ha-1) were not significantly different from those recorded in the natural forest (32.9 ± 1.7 Mg ha-1) whereas teak (25.4 ± 1.7 Mg ha-1) and cocoa (23.1 ± 3.4 Mg ha-1) exhibited significantly lower values. Despite the acidic soil and recalcitrant litter conditions, increased MBC/SOC ratio and decreased qCO2 were recorded in the monocrops, suggesting a probable increase in the fungi/bacteria ratio. The complex MTS stand was found to mimic the natural forest in terms of soil microbial activity and organic status, due to the provision of a diversity of litter quality, which may serve as a basis for developing a climate smart timber system in West and Central Africa.
Collapse
Affiliation(s)
- Armand W Koné
- UR Gestion Durable des Sols, Pôle de Recherche Environnement et Développement Durable, UFR Sciences de la Nature, Université Nangui Abrogoua, 02 BP 801, Abidjan 02, Cote d'Ivoire.
| | - Michel K Yao
- UR Gestion Durable des Sols, Pôle de Recherche Environnement et Développement Durable, UFR Sciences et Gestion de l'Environnement, Université Nangui Abrogoua, 02 BP 801, Cote d'Ivoire
| |
Collapse
|
39
|
Wang M, Liu Q, Pang X. Evaluating ecological effects of roadside slope restoration techniques: A global meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111867. [PMID: 33385908 DOI: 10.1016/j.jenvman.2020.111867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Given the increase in infrastructure construction, ecological restoration techniques need to be scientifically assessed so that appropriate measures can be taken. However, the specific effects of these techniques are often confounded by multiple ecological stressors, and robust evaluations of their effects are rare. Here, we conducted a global meta-analysis of 68 peer-reviewed publications to quantitatively evaluate the ecological impacts of roadside slope restoration techniques and explored potential mechanisms using linear regression and random-forest models. We found that roadside slope restoration techniques generally enhanced restoration effectiveness, but the recovery rate differed over space and time. Relative to the degraded reference group, the synthetic technique (63.10%) and species selection (62.09%) had more positive impacts on restoring slopes than erosion control (44.82%), seed spraying (43.55%), and substrate amelioration (12.96%). Additionally, we found that vegetation condition, soil quality, and species diversity were negatively correlated with restoration time, implying that recovery might not be stable during early restoration periods. Our findings highlighted the importance of biodiversity for restoration success, but the negative relationship between species diversity, precipitation, and age highlighted the potential risks of losing biodiversity during restoration. Finally, the importance of soil substrate but difficulty in restoring it suggested that restoration actions should stress soil substrate amelioration. Generally, this study provides evidence-based references to support decision making and ensure the effectiveness and sustainability of future slope restoration efforts.
Collapse
Affiliation(s)
- Min Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, China.
| |
Collapse
|
40
|
Han Y, Feng J, Han M, Zhu B. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. GLOBAL CHANGE BIOLOGY 2020; 26:7229-7241. [PMID: 32981218 DOI: 10.1111/gcb.15369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/11/2020] [Indexed: 05/02/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play important roles in carbon (C), nitrogen (N) and phosphorus (P) cycling of terrestrial ecosystems. The impact of increasing N deposition on AM fungi will inevitably affect ecosystem processes. However, generalizable patterns of how N deposition affects AM fungi remains poorly understood. Here we conducted a global-scale meta-analysis from 94 publications and 101 sites to investigate the responses of AM fungi to N addition, including abundance in both intra-radical (host roots) and extra-radical portion (soil), richness and diversity. We also explored the mechanisms of N addition affecting AM fungi by the trait-based guilds method. Results showed that N addition significantly decreased AM fungal overall abundance (-8.0%). However, the response of abundance in intra-radical portion was not consistent with that in extra-radical portion: root colonization decreased (-11.6%) significantly, whereas extra-radical hyphae length density did not change significantly. Different AM fungal guilds showed different responses to N addition: both the abundance (spore density) and relative abundance of the rhizophilic guild decreased significantly under N addition (-29.8% and -12.0%, respectively), while the abundance and relative abundance of the edaphophilic guild had insignificant response to N addition. Such inconsistent responses of rhizophilic and edaphophilic guilds were mainly moderated by the change of soil pH and the response of root biomass, respectively. Moreover, N addition had an insignificant negative effect on AM fungal richness and diversity, which was strongly related with the relative availability of soil P (i.e. soil available N/P ratio). Collectively, this meta-analysis highlights that considering trait-based AM fungal guilds, soil P availability and host plant C allocation can greatly improve our understanding of the nuanced dynamics of AM fungal communities under increasing N deposition.
Collapse
Affiliation(s)
- Yunfeng Han
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jiguang Feng
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Mengguang Han
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
41
|
Wu J, Chen Q, Jia W, Long C, Liu W, Liu G, Cheng X. Asymmetric response of soil methane uptake rate to land degradation and restoration: Data synthesis. GLOBAL CHANGE BIOLOGY 2020; 26:6581-6593. [PMID: 32798325 DOI: 10.1111/gcb.15315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Land degradation and restoration profoundly affect soil CH4 uptake capacity in terrestrial ecosystems. However, a comprehensive assessment of the response of soil CH4 uptake to land degradation and restoration at global scale is not available. Here, we present a global meta-analysis with a database of 228 observations from 83 studies to investigate the effects of land degradation and restoration on the capacity of soil CH4 uptake. We found that land degradation significantly decreased the capacity of soil CH4 uptake, except the conversion of pasture to cropland where the soil CH4 uptake rate showed no response. In contrast, all types of land restoration significantly increased the capacity of soil CH4 uptake. Interestingly, the response of soil CH4 uptake rate to land degradation and restoration was asymmetric: the increased soil CH4 uptake rate in response to the land restoration was smaller compared to the decrease in CH4 uptake rate induced by the land degradation. The effect of land degradation on soil CH4 uptake rate was not dependent on the time since land use change, but the CH4 sink strength increased with the time since land restoration. The response of soil CH4 uptake rate to both land degradation and restoration was predominantly regulated by changes in the soil water-filled pore space, soil bulk density, and pH, whereas alterations in the substrate quantity and quality had negligible effect. Additionally, the effects of land degradation and restoration on soil CH4 uptake were strongly related to the mean annual precipitation and soil texture. Overall, our results provide novel insights for understanding of how land degradation and restoration can affect the CH4 sink strength of upland soils, and more importantly, our findings are beneficial to take measures to enhance the potential of soil CH4 uptake in response to global land use change.
Collapse
Affiliation(s)
- Junjun Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, P. R. China
| | - Qiong Chen
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, P. R. China
| | - Wei Jia
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, P. R. China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Chunyan Long
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, P. R. China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, P. R. China
| | - Guihua Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, P. R. China
| | - Xiaoli Cheng
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, P. R. China
| |
Collapse
|
42
|
Gatica G, Fernández ME, Juliarena MP, Gyenge J. Environmental and anthropogenic drivers of soil methane fluxes in forests: Global patterns and among-biomes differences. GLOBAL CHANGE BIOLOGY 2020; 26:6604-6615. [PMID: 32881163 DOI: 10.1111/gcb.15331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Forest soils are the most important terrestrial sink of atmospheric methane (CH4 ). Climatic, soil and anthropogenic drivers affect CH4 fluxes, but it is poorly known the relative weight of each driver and whether all drivers have similar effects across forest biomes. We compiled a database of 478 in situ estimations of CH4 fluxes in forest soils from 191 peer-reviewed studies. All forest biomes (boreal, temperate, tropical and subtropical) but savannahs act on average as CH4 sinks, which presented positive fluxes in 65% of the sites. Mixed effects models showed that combined climatic and edaphic variables had the best support, but anthropogenic factors did not have a significant effect on CH4 fluxes at global scale. This model explained only 19% of the variance in soil CH4 flux which decreased with declines in precipitation and increases in temperature, and with increases in soil organic carbon, bulk density and soil acidification. The effects of these drivers were inconsistent across biomes, increasing the model explanation of observed variance to 34% when the drivers have a different slope for each biome. Despite this limited explanatory value which could be related to the use of soil variables calculated at coarse scale (~1 km), our study shows that soil CH4 fluxes in forests are determined by different environmental variables in different biomes. The most sensitive system to all studied drivers were the temperate forests, while boreal forests were insensitive to climatic variables, but highly sensitive to edaphic factors. Subtropical forests and savannahs responded similarly to climatic variables, but differed in their response to soil factors. Our results suggest that the increase in temperature predicted in the framework of climate change would promote CH4 emission (or reduce CH4 sink) in subtropical and savannah forests, have no influence in boreal and temperate forests and promote uptake in tropical forests.
Collapse
Affiliation(s)
- Gabriel Gatica
- CIFICEN (Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires) - Universidad Nacional del Centro de la Provincia de Buenos Aires, CONICET-CICPBA, Tandil, Argentina
| | - María E Fernández
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Tandil, Argentina
- UEDD Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS Balcarce, INTA - CONICET, Tandil, Argentina
- International Associated Laboratory FORESTIA, INTA (Argentina)-INRAE (France), Tandil, Argentina
| | - Maria P Juliarena
- CIFICEN (Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires) - Universidad Nacional del Centro de la Provincia de Buenos Aires, CONICET-CICPBA, Tandil, Argentina
- Facultad de Ciencias Exactas-Universidad Nacional del Centro de la Provincia de Buenos Aires (FCEx-UNCPBA), Tandil, Argentina
| | - Javier Gyenge
- CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Tandil, Argentina
- UEDD Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible, IPADS Balcarce, INTA - CONICET, Tandil, Argentina
- International Associated Laboratory FORESTIA, INTA (Argentina)-INRAE (France), Tandil, Argentina
| |
Collapse
|
43
|
Chen M, Chang L, Zhang J, Guo F, Vymazal J, He Q, Chen Y. Global nitrogen input on wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 4:100063. [PMID: 36157707 PMCID: PMC9488104 DOI: 10.1016/j.ese.2020.100063] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 05/19/2023]
Abstract
Greenhouse gas emissions from wetlands are significantly promoted by global nitrogen input for changing the rate of soil carbon and nitrogen cycling, and are substantially affected by soil labile carbon and nitrogen conversely. However, the driving mechanism by which soil labile carbon and nitrogen affect greenhouse gas emissions from wetland ecosystems under global nitrogen input is not well understood. Working out the driving factor of nitrogen input on greenhouse gas emissions from wetlands is critical to reducing global warming from nitrogen input. Thus, we synthesized 72 published studies (2144 paired observations) of greenhouse gas fluxes and soil labile compounds of carbon and nitrogen (ammonium, nitrate, dissolved organic carbon, soil microbial biomass nitrogen and carbon), to understand the effects of labile carbon and nitrogen on greenhouse gas emissions under global nitrogen input. Across the data set, nitrogen input significantly promoted carbon dioxide, methane and nitrous oxide emissions from wetlands. In particular, at lower nitrogen rates (<100 kg ha-1·yr-1) and with added ammonium compounds, freshwater wetland significantly promoted carbon dioxide and methane emissions. Peatland was the largest nitrous oxide source under these conditions. This meta-analysis also revealed that nitrogen input stimulated dissolved organic carbon, ammonium, nitrate, microbial biomass carbon and microbial biomass nitrogen accumulation in the wetland ecosystem. The variation-partitioning analysis and structural equation model were used to analyze the relationship between the greenhouse gas and labile carbon and nitrogen further. These results revealed that dissolved organic carbon (DOC) is the primary factor driving greenhouse gas emission from wetlands under global nitrogen input, whereas microbial biomass carbon (MBC) more directly affects greenhouse gas emission than other labile carbon and nitrogen.
Collapse
Affiliation(s)
- Mengli Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing, 400045, China
| | - Lian Chang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing, 400045, China
| | - Junmao Zhang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing, 400045, China
| | - Fucheng Guo
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing, 400045, China
| | - Jan Vymazal
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, 16521, Prague 6, Czech Republic
| | - Qiang He
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing, 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing, 400045, China
- Corresponding author. College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of education, Chongqing University, Chongqing, 400045, 174 Shazhengjie Street, Shapingba District, China.
| |
Collapse
|
44
|
Guo X, Dai1 L, Zhang F, Li Y, Lin L, Li Q, Dawen Q, Fan B, Ke X, Cao G, Zhou H, Du Y. Effects of Increased Precipitation and Nitrogen Deposition on Methane Uptake of Alpine Meadow in Qinghai-Tibet Plateau: in situ Experiments. POLISH JOURNAL OF ECOLOGY 2020. [DOI: 10.3161/15052249pje2020.68.2.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Xiaowei Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Licong Dai1
- College of Resource and Environment, University of the Chinese Academy of Sciences, Beijing, China
| | - Fawei Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Yikang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Li Lin
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Qian Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Qian Dawen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Bo Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Xun Ke
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Guangmin Cao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Huakun Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| | - Yangong Du
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China,
| |
Collapse
|