1
|
Holland MM, Atkinson A, Best M, Bresnan E, Devlin M, Goberville E, Hélaouët P, Machairopoulou M, Faith M, Thompson MSA, McQuatters-Gollop A. Predictors of long-term variability in NE Atlantic plankton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175793. [PMID: 39191329 DOI: 10.1016/j.scitotenv.2024.175793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Anthropogenic pressures such as climate change and nutrient pollution are causing rapid changes in the marine environment. The relative influence of drivers of change on the plankton community remains uncertain, and this uncertainty is limiting our understanding of sustainable levels of human pressures. Plankton are the primary energy resource in marine food webs and respond rapidly to environmental changes, representing useful indicators of shifts in ecosystem structure and function. Categorising plankton into broad groups with similar characteristics, known as "lifeforms", can be useful for understanding ecological patterns related to environmental change and for assessing the state of pelagic habitats in accordance with the EU Marine Strategy Framework Directive and the OSPAR Commission, which mandates protection of the North-East Atlantic. We analysed 29 years of Continuous Plankton Recorder data (1993-2021) from the North-East Atlantic to examine how trends in plankton lifeform abundance changed in relation to one another and across gradients of environmental change associated with human pressures. Random forest models predicted between 57 % and 80 % of the variability in lifeform abundance, based on data not used to train the models. Observed variability was mainly explained by trends in other lifeforms, with mainly positively correlated trends, indicating bottom-up control and/or shared responses to environmental variability were prevalent. Longitude, bathymetry, mixed layer depth, the nitrogen-to‑phosphorus ratio, and temperature were also significant predictors. However, contrasting influences of environmental drivers were detected. For example, small copepod abundance increased in warmer conditions whereas meroplankton, large copepods and fish larvae either decreased or were unchanged. Our findings highlight recent changes in stratification, reflected by variation in mixed layer depth, and imbalanced nutrient ratios are affecting multiple lifeforms, impacting the North-East Atlantic plankton community. To achieve environmental improvements in North-East Atlantic pelagic habitats, it is crucial that we continue to address climate change and reduce nutrient pollution.
Collapse
Affiliation(s)
- Matthew M Holland
- Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK
| | - Mike Best
- Environment Agency, Quay House, Floor 6, 2 East Station Road, Fletton Quays, Peterborough PE2 8YY, UK
| | - Eileen Bresnan
- Marine Directorate of the Scottish Government, 375 Victoria Road, AB11 9DB Aberdeen, Scotland, UK
| | - Michelle Devlin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, UK
| | - Eric Goberville
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Pierre Hélaouët
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Margarita Machairopoulou
- Marine Directorate of the Scottish Government, 375 Victoria Road, AB11 9DB Aberdeen, Scotland, UK
| | - Matthew Faith
- Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Murray S A Thompson
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, UK
| | | |
Collapse
|
2
|
Chen W, Wang X, Wells ML, Gao K. The copepod Acartia spinicauda feeds less and dies more under the influences of solar ultraviolet radiation and elevated pCO 2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113020. [PMID: 39244873 DOI: 10.1016/j.jphotobiol.2024.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
While solar ultraviolet radiation (UVR) is known to impact zooplankton, little has been documented on its impacts under elevated pCO2. Here, we show that exposure to UVR decreased the feeding and survival rates of the copepod Acartia spinicauda, that artificial UV-B of 2.25 W·m-2 for 4 h resulted in a 52 % inhibition of its grazing rates and a 45 % reduction in survival rates compared to visible light alone. On the other hand, an increase in pCO2 to 1000 μatm (pH drop of 0.4) immediately and significantly increased the UVR-induced inhibition of feeding. Subsequently, the combination of the high pCO2 (1000 μatm) and UVR resulted in about 65 % lethal impact, with UV-A contributing 21 % and UV-B 44 % compared to the visible light alone and ambient pCO2 conditions. While the copepod was shown to be able to sense and escape from UV-exposed areas, these findings suggest that UVR impacts on the copepod can be exacerbated with progressive ocean acidification or in high CO2 waters, including upwelled regions.
Collapse
Affiliation(s)
- Weijia Chen
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xuyang Wang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Mark L Wells
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China.
| |
Collapse
|
3
|
Vannoni M, Grant A, Sheahan D, Créach V. Evaluating the impact of residual low chlorine concentration on phytoplankton communities by flow cytometry. CHEMOSPHERE 2024; 367:143634. [PMID: 39481485 DOI: 10.1016/j.chemosphere.2024.143634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Chlorination is widely used to prevent biological fouling in power station cooling water systems. It may impact non-target organisms both within the cooling system and after discharge (primary and secondary entrainment). However, there is a lack of data on the impacts of the low chlorine concentrations that occur in the discharged plume on marine phytoplankton community structure and function. We examine the impacts on natural phytoplankton communities of single and multiple exposures to chlorination at concentrations between 0.02 and 0.1 mg/L total residual oxidants (TRO). Low-level chlorination causes limited changes in diversity and has no impact on total biomass. However, changes in size structure and functional diversity quantified using flow cytometry do show a reduction in smaller cells, particularly eukaryote picophytoplankton. These impacts are not detectable using chlorophyll a concentration alone, so flow cytometry provides important additional information over more standard ecotoxicological methods. The effects are likely to be localised in the vicinity of the discharges (mixing zone) where the environmental quality standard (EQS) of 10 μg/L for chlorine is exceeded, but impacts on coastal food webs and biogeochemical cycles should be further evaluated.
Collapse
Affiliation(s)
- Marta Vannoni
- CEFAS, Pakefield Road, Lowestoft, NR33 0HT, Suffolk, UK.
| | - Alastair Grant
- School of Environmental Studies, University of East Anglia, Research Park, Norwich, NR4 7TJ, UK
| | - Dave Sheahan
- CEFAS, Pakefield Road, Lowestoft, NR33 0HT, Suffolk, UK
| | | |
Collapse
|
4
|
Xu M, Zhao Q, Wang S, Wang Y, Shen J, Zhang Y, Yang L, Xu K, Hou X, Zhang Y, Zhang H, Otaki T, Komatsu T, Xu Y. Spatiotemporal variations of zooplankton community structure in the oyster (Crassostrea gigas)-macroalgae reef dual ecosystems adjacent to Luanhe River Estuary. PLoS One 2024; 19:e0308337. [PMID: 39116072 PMCID: PMC11309474 DOI: 10.1371/journal.pone.0308337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Majority of macrozooplankton have a wider dietary niche breadth and utilize small invertebrates, microzooplankton and mesozooplankton, so effect on primary production might be through trophic cascading effect. To better understand the ecosystem structure of benthic oyster-macroalgae reefs, we analyzed zooplankton community structure before (July 2016) and after (from September 2016 to October 2017) the construction of benthic reefs in the 2 km2 sea ranch area in Xiangyun Cove, Tangshan, China. We identified 57 zooplankton species, including the 12 cnidarian (e.g., Clytia hemisphaerica Linnaeus and Eirene ceylonensis Browne), 1 ctenopharyngodon (Pleurobrachia globosa Moser), 24 crustacean (e.g., Calanus sinicus Brodsky, Paracalanus parvus Claus, Labibocera euchaeta Glesbrecht, Labibocera bipinnata Tanaka, Calanopia thompsoni Scott, and Centropages dorsispinatus Thompson), 1 chaetognath (Sagitta crassa Tokioka), 1 urochordate species (Oikopleura dioica Fol), and 18 species of planktonic polychaete and gastropod larvae. The zooplankton density and biomass values before reef construction were 266.14 ind/m3 and 2.72 mg/m3, respectively, and those after reef construction were 138.06 ind/m3 and 32.91 mg/m3, respectively. The biomass trend was as follow: October 2017 (89.08 mg/m3) > August 2017 (70.97) > September 2016 (3.17) > July 2016 (2.72) > June 2017 (0.86) > May 2017 (0.44). The common dominant organisms were crustaceans and chaetognaths. According to the RDA ranking results, water temperature was positively correlated with the Shannon-Wiener diversity index and Margalef's richness indexes. With the increasement of Margalef's richness index, the value of dissolved oxygen content showed a significant negative correlation with zooplankton abundance. The results of this study are applicable to sustainable development and management strategies of coastal reef ecosystems and provide a basis for further surveys of secondary productivity in the sea ranch area.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Qi Zhao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Shenzhi Wang
- Marine Living Resources and Environment Key Laboratory of Hebei Province, Ocean and Fisheries Science Research Institute of Hebei Province (Marine Fishery Ecological Environment Monitoring Station of Hebei Province), Qinghuangdao, China
| | - Yun Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Jiabin Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yi Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Linlin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Kaida Xu
- Marine Fisheries Research Institute of Zhejiang, Zhoushan, China
| | - Xiaolong Hou
- Marine Living Resources and Environment Key Laboratory of Hebei Province, Ocean and Fisheries Science Research Institute of Hebei Province (Marine Fishery Ecological Environment Monitoring Station of Hebei Province), Qinghuangdao, China
| | - Yunling Zhang
- Hebei Provincial Technology Innovation Center for Coastal Ecology Rehabilitation, Tangshan Marine Ranching Co. Ltd., Tangshan, China
| | - Haipeng Zhang
- Marine Living Resources and Environment Key Laboratory of Hebei Province, Ocean and Fisheries Science Research Institute of Hebei Province (Marine Fishery Ecological Environment Monitoring Station of Hebei Province), Qinghuangdao, China
| | | | | | - Yufu Xu
- Marine Living Resources and Environment Key Laboratory of Hebei Province, Ocean and Fisheries Science Research Institute of Hebei Province (Marine Fishery Ecological Environment Monitoring Station of Hebei Province), Qinghuangdao, China
| |
Collapse
|
5
|
Stevens BLF, Peacock EE, Crockford ET, Shalapyonok A, Neubert MG, Sosik HM. Distinct responses to warming within picoplankton communities across an environmental gradient. GLOBAL CHANGE BIOLOGY 2024; 30:e17316. [PMID: 38767231 DOI: 10.1111/gcb.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Picophytoplankton are a ubiquitous component of marine plankton communities and are expected to be favored by global increases in seawater temperature and stratification associated with climate change. Eukaryotic and prokaryotic picophytoplankton have distinct ecology, and global models predict that the two groups will respond differently to future climate scenarios. At a nearshore observatory on the Northeast US Shelf, however, decades of year-round monitoring have shown these two groups to be highly synchronized in their responses to environmental variability. To reconcile the differences between regional and global predictions for picophytoplankton dynamics, we here investigate the picophytoplankton community across the continental shelf gradient from the nearshore observatory to the continental slope. We analyze flow cytometry data from 22 research cruises, comparing the response of picoeukaryote and Synechococcus communities to environmental variability across time and space. We find that the mechanisms controlling picophytoplankton abundance differ across taxa, season, and distance from shore. Like the prokaryote, Synechococcus, picoeukaryote division rates are limited nearshore by low temperatures in winter and spring, and higher temperatures offshore lead to an earlier spring bloom. Unlike Synechococcus, picoeukaryote concentration in summer decreases dramatically in offshore surface waters and exhibits deeper subsurface maxima. The offshore picoeukaryote community appears to be nutrient limited in the summer and subject to much greater loss rates than Synechococcus. This work both produces and demonstrates the necessity of taxon- and site-specific knowledge for accurately predicting the responses of picophytoplankton to ongoing environmental change.
Collapse
Affiliation(s)
- Bethany L F Stevens
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Emily E Peacock
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - E Taylor Crockford
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Alexi Shalapyonok
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Michael G Neubert
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Heidi M Sosik
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
6
|
Atkinson A, Rossberg AG, Gaedke U, Sprules G, Heneghan RF, Batziakas S, Grigoratou M, Fileman E, Schmidt K, Frangoulis C. Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines. Nat Commun 2024; 15:381. [PMID: 38195697 PMCID: PMC10776571 DOI: 10.1038/s41467-023-44406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Under climate change, model ensembles suggest that declines in phytoplankton biomass amplify into greater reductions at higher trophic levels, with serious implications for fisheries and carbon storage. However, the extent and mechanisms of this trophic amplification vary greatly among models, and validation is problematic. In situ size spectra offer a novel alternative, comparing biomass of small and larger organisms to quantify the net efficiency of energy transfer through natural food webs that are already challenged with multiple climate change stressors. Our global compilation of pelagic size spectrum slopes supports trophic amplification empirically, independently from model simulations. Thus, even a modest (16%) decline in phytoplankton this century would magnify into a 38% decline in supportable biomass of fish within the intensively-fished mid-latitude ocean. We also show that this amplification stems not from thermal controls on consumers, but mainly from temperature or nutrient controls that structure the phytoplankton baseline of the food web. The lack of evidence for direct thermal effects on size structure contrasts with most current thinking, based often on more acute stress experiments or shorter-timescale responses. Our synthesis of size spectra integrates these short-term dynamics, revealing the net efficiency of food webs acclimating and adapting to climatic stressors.
Collapse
Affiliation(s)
- Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK.
| | - Axel G Rossberg
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Ursula Gaedke
- Institute of Biochemistry and Biology, University of Potsdam, 14469, Potsdam, Germany
| | - Gary Sprules
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6, Canada
| | - Ryan F Heneghan
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Stratos Batziakas
- Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214, Heraklion GR-71003, Crete, Greece
| | | | - Elaine Fileman
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL13DH, UK
| | - Katrin Schmidt
- University of Plymouth, School of Geography, Earth and Environmental Sciences, Plymouth, PL4 8AA, UK
| | - Constantin Frangoulis
- Hellenic Centre for Marine Research, Former U.S. Base at Gournes, P.O. Box 2214, Heraklion GR-71003, Crete, Greece
| |
Collapse
|
7
|
Russo L, Bellardini D, Steinberg DK, Congestri R, Lomas MW, D'Alelio D. Long-term oscillations in the normalized biomass-size spectrum reveal the impact of oligotrophication on zooplankton trophic structure in the North Atlantic Subtropical Gyre. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106295. [PMID: 38118377 DOI: 10.1016/j.marenvres.2023.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Ocean warming of the North Atlantic Subtropical Gyre (NASG) induced oligotrophication and a decrease in integrated net primary production during the 2010s, potentially affecting higher trophic levels. We analyzed long-term records (1994-2019) of daytime and nighttime zooplankton biomass in five size classes from the NASG. Daytime biomass decreased in the three largest size classes during the 2010s, while decrease in nighttime biomass was less evident due to the relative stability in diel vertical migrator biomass. We used the normalized biomass size spectrum (NBSS) to estimate the relative transfer efficiency between trophic levels. The steepness of the NBSS slope at the end of the time series increased by 14% (daytime) and 24% (nighttime) from the maximum observed annual average values (2011 and 2009, respectively). This suggests oligotrophication during the 2010s led to a significant reduction in the transfer of biomass across trophic levels, with negative impacts on the NASG planktonic food web.
Collapse
Affiliation(s)
- Luca Russo
- Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca scientifica 1, 00133, Rome, Italy.
| | - Daniele Bellardini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy.
| | - Deborah K Steinberg
- Coastal & Ocean Processes Section, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA.
| | - Roberta Congestri
- Laboratory of Biology of Algae, Department of Biology, University of Rome 'Tor Vergata', Via Cracovia 1, 00133, Rome, Italy.
| | - Michael W Lomas
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA.
| | - Domenico D'Alelio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| |
Collapse
|
8
|
Schmidt K, Graeve M, Hoppe CJM, Torres-Valdes S, Welteke N, Whitmore LM, Anhaus P, Atkinson A, Belt ST, Brenneis T, Campbell RG, Castellani G, Copeman LA, Flores H, Fong AA, Hildebrandt N, Kohlbach D, Nielsen JM, Parrish CC, Rad-Menéndez C, Rokitta SD, Tippenhauer S, Zhuang Y. Essential omega-3 fatty acids are depleted in sea ice and pelagic algae of the Central Arctic Ocean. GLOBAL CHANGE BIOLOGY 2024; 30:e17090. [PMID: 38273483 DOI: 10.1111/gcb.17090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 01/27/2024]
Abstract
Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most marine and terrestrial fauna including humans. Inverse correlations of algal EPA and DHA proportions (% of total fatty acids) with temperature have led to suggestions of a warming-induced decline in the global production of these biomolecules and an enhanced importance of high latitude organisms for their provision. The cold Arctic Ocean is a potential hotspot of EPA and DHA production, but consequences of global warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 cultured algal strains to examine five potential climate change effects; ice algae loss, community shifts, increase in light, nutrients, and temperature. The algal EPA and DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf seas, which indicates that the paradigm of an inverse correlation of EPA and DHA proportions with temperature may not hold in the Arctic. We found no systematic differences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and DHA proportions are likely to increase alongside increasing primary production, with nutritional benefits for a non-ice-associated food web.
Collapse
Affiliation(s)
- Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Martin Graeve
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Clara J M Hoppe
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Sinhué Torres-Valdes
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Nahid Welteke
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Laura M Whitmore
- International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Philipp Anhaus
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | | | - Simon T Belt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Tina Brenneis
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Robert G Campbell
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Giulia Castellani
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Louise A Copeman
- NOAA Alaska Fisheries Science Center, Hatfield Marine Science Center, Newport, Oregon, USA
| | - Hauke Flores
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Allison A Fong
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Nicole Hildebrandt
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Doreen Kohlbach
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
- Department of Arctic and Marine Biology, The Arctic University of Tromsø, Tromsø, Norway
| | - Jens M Nielsen
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, Washington, USA
- NOAA Alaska Fisheries Science Center, Seattle, Washington, USA
| | - Christopher C Parrish
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Cecilia Rad-Menéndez
- Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban, UK
| | - Sebastian D Rokitta
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Sandra Tippenhauer
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Yanpei Zhuang
- Polar and Marine Research Institute, Jimei University, Xiamen, China
| |
Collapse
|
9
|
Holland MM, Louchart A, Artigas LF, Ostle C, Atkinson A, Rombouts I, Graves CA, Devlin M, Heyden B, Machairopoulou M, Bresnan E, Schilder J, Jakobsen HH, Lloyd-Hartley H, Tett P, Best M, Goberville E, McQuatters-Gollop A. Major declines in NE Atlantic plankton contrast with more stable populations in the rapidly warming North Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165505. [PMID: 37451457 DOI: 10.1016/j.scitotenv.2023.165505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Plankton form the base of marine food webs, making them important indicators of ecosystem status. Changes in the abundance of plankton functional groups, or lifeforms, can affect higher trophic levels and can indicate important shifts in ecosystem functioning. Here, we extend this knowledge by combining data from Continuous Plankton Recorder and fixed-point stations to provide the most comprehensive analysis of plankton time-series for the North-East Atlantic and North-West European shelf to date. We analysed 24 phytoplankton and zooplankton datasets from 15 research institutions to map 60-year abundance trends for 8 planktonic lifeforms. Most lifeforms decreased in abundance (e.g. dinoflagellates: -5 %, holoplankton: -7 % decade-1), except for meroplankton, which increased 12 % decade-1, reflecting widespread changes in large-scale and localised processes. K-means clustering of assessment units according to abundance trends revealed largely opposing trend direction between shelf and oceanic regions for most lifeforms, with North Sea areas characterised by increasing coastal abundance, while abundance decreased in North-East Atlantic areas. Individual taxa comprising each phytoplankton lifeform exhibited similar abundance trends, whereas taxa grouped within zooplankton lifeforms were more variable. These regional contrasts are counterintuitive, since the North Sea which has undergone major warming, changes in nutrients, and past fisheries perturbation has changed far less, from phytoplankton to fish larvae, as compared to the more slowly warming North-East Atlantic with lower nutrient supply and fishing pressure. This more remote oceanic region has shown a major and worrying decline in the traditional food web. Although the causal mechanisms remain unclear, declining abundance of key planktonic lifeforms in the North-East Atlantic, including diatoms and copepods, are a cause of major concern for the future of food webs and should provide a red flag to politicians and policymakers about the prioritisation of future management and adaptation measures required to ensure future sustainable use of the marine ecosystem.
Collapse
Affiliation(s)
- Matthew M Holland
- Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom.
| | - Arnaud Louchart
- Laboratoire d'Océanologie et Geosciences, UMR 8187 LOG, Centre National de la Recherche Scientifique, Université du Littoral Côte d'Opale, Université de Lille, IRD, Wimereux, France
| | - Luis Felipe Artigas
- Laboratoire d'Océanologie et Geosciences, UMR 8187 LOG, Centre National de la Recherche Scientifique, Université du Littoral Côte d'Opale, Université de Lille, IRD, Wimereux, France
| | - Clare Ostle
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Angus Atkinson
- Plymouth Marine Laboratory (PML), Prospect Place, The Hoe, PL1 3DH, Plymouth, United Kingdom
| | - Isabelle Rombouts
- Flanders Marine Institute (VLIZ), Marine Observation Centre (MOC), InnovOcean Campus, Jacobsenstraat 1, 8400 Oostende, Belgium
| | - Carolyn A Graves
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Rd, Weymouth DT4 8UB, United Kingdom
| | - Michelle Devlin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Rd, Weymouth DT4 8UB, United Kingdom
| | - Birgit Heyden
- AquaEcology GmbH & Co. KG, Steinkamp 19, 26125 Oldenburg, Germany
| | | | - Eileen Bresnan
- Marine Scotland Science, 375 Victoria Road, AB11 9DB Aberdeen, Scotland, United Kingdom
| | - Jos Schilder
- Waterkwaliteit en Natuurbeheer, Rijkswaterstaat, Postbus 2232, 3500 GE Utrecht, Netherlands
| | - Hans H Jakobsen
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Hannah Lloyd-Hartley
- Dove Marine Laboratory, Newcastle University, Front Street, Cullercoats, North Shields NE30 4PZ, United Kingdom
| | - Paul Tett
- Scottish Association for Marine Science, Oban, PA37 1QA, Scotland, United Kingdom
| | - Mike Best
- Environment Agency, Kingfisher House, Goldhay Way, Peterborough PE2 5ZR, United Kingdom
| | - Eric Goberville
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Abigail McQuatters-Gollop
- Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
10
|
Benredjem L, Morais J, Hentschke GS, Abdi A, Berredjem H, Vasconcelos V. First Polyphasic Study of Cheffia Reservoir (Algeria) Cyanobacteria Isolates Reveals Toxic Picocyanobacteria Genotype. Microorganisms 2023; 11:2664. [PMID: 38004676 PMCID: PMC10673316 DOI: 10.3390/microorganisms11112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Monitoring water supply requires, among other quality indicators, the identification of the cyanobacteria community and taking into account their potential impact in terms of water quality. In this work, cyanobacteria strains were isolated from the Cheffia Reservoir and identified based on morphological features, the 16S rRNA gene, phylogenetic analysis, and toxin production by polymerase chain reaction PCR screening of the genes involved in the biosynthesis of cyanotoxins (mcyA, mcyE, sxtA, sxtG, sxtI, cyrJ, and anaC). Thirteen strains representing six different genera: Aphanothece, Microcystis, Geitlerinema, Lyngbya, Microcoleus, and Pseudanabaena were obtained. The results demonstrated the importance of morphological features in determining the genus or the species when incongruence between the morphological and phylogenetic analysis occurs and only the utility of the 16S rRNA gene in determining higher taxonomic levels. The phylogenetic analysis confirmed the polyphyly of cyanobacteria for the Microcystis and Oscillatoriales genera. Unexpectedly, Aphanothece sp. CR 11 had the genetic potential to produce microcystins. Our study gives new insight into species with picoplanktonic (or small) cell size and potentially toxic genotypes in this ecosystem. Thus, conventional water treatment methods in this ecosystem have to be adapted, indicating the requirement for pre-treatment methods that can effectively eliminate picocyanobacteria while preserving cell integrity to prevent toxin release.
Collapse
Affiliation(s)
- Lamia Benredjem
- Department of Molecular and Cellular Biology, Faculty of Natural and Life Sciences, Abbes Laghrour University of Khenchela, BP 1252 Road of Batna, Khenchela 40004, Algeria;
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Annaba 23000, Algeria; (A.A.); (H.B.)
| | - João Morais
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (G.S.H.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Guilherme Scotta Hentschke
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (G.S.H.)
| | - Akila Abdi
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Annaba 23000, Algeria; (A.A.); (H.B.)
| | - Hajira Berredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, BP 12, Annaba 23000, Algeria; (A.A.); (H.B.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal; (J.M.); (G.S.H.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Novotny A, Serandour B, Kortsch S, Gauzens B, Jan KMG, Winder M. DNA metabarcoding highlights cyanobacteria as the main source of primary production in a pelagic food web model. SCIENCE ADVANCES 2023; 9:eadg1096. [PMID: 37126549 PMCID: PMC10132751 DOI: 10.1126/sciadv.adg1096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Models that estimate rates of energy flow in complex food webs often fail to account for species-specific prey selectivity of diverse consumer guilds. While DNA metabarcoding is increasingly used for dietary studies, methodological biases have limited its application for food web modeling. Here, we used data from dietary metabarcoding studies of zooplankton to calculate prey selectivity indices and assess energy fluxes in a pelagic resource-consumer network. We show that food web dynamics are influenced by prey selectivity and temporal match-mismatch in growth cycles and that cyanobacteria are the main source of primary production in the investigated coastal pelagic food web. The latter challenges the common assumption that cyanobacteria are not supporting food web productivity, a result that is increasingly relevant as global warming promotes cyanobacteria dominance. While this study provides a method for how DNA metabarcoding can be used to quantify energy fluxes in a marine food web, the approach presented here can easily be extended to other ecosystems.
Collapse
Affiliation(s)
- Andreas Novotny
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Baptiste Serandour
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Susanne Kortsch
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Environmental and Marine Biology, Åbo Akademi University, Turku 20500, Finland
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Kinlan M G Jan
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
12
|
Ratnarajah L, Abu-Alhaija R, Atkinson A, Batten S, Bax NJ, Bernard KS, Canonico G, Cornils A, Everett JD, Grigoratou M, Ishak NHA, Johns D, Lombard F, Muxagata E, Ostle C, Pitois S, Richardson AJ, Schmidt K, Stemmann L, Swadling KM, Yang G, Yebra L. Monitoring and modelling marine zooplankton in a changing climate. Nat Commun 2023; 14:564. [PMID: 36732509 PMCID: PMC9895051 DOI: 10.1038/s41467-023-36241-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Zooplankton are major consumers of phytoplankton primary production in marine ecosystems. As such, they represent a critical link for energy and matter transfer between phytoplankton and bacterioplankton to higher trophic levels and play an important role in global biogeochemical cycles. In this Review, we discuss key responses of zooplankton to ocean warming, including shifts in phenology, range, and body size, and assess the implications to the biological carbon pump and interactions with higher trophic levels. Our synthesis highlights key knowledge gaps and geographic gaps in monitoring coverage that need to be urgently addressed. We also discuss an integrated sampling approach that combines traditional and novel techniques to improve zooplankton observation for the benefit of monitoring zooplankton populations and modelling future scenarios under global changes.
Collapse
Affiliation(s)
- Lavenia Ratnarajah
- Integrated Marine Observing System, Hobart, Tasmania, Australia. .,Global Ocean Observing System, International Oceanographic Commission, UNESCO, Paris, France.
| | - Rana Abu-Alhaija
- Cyprus Subsea Consulting and Services C.S.C.S. ltd, Lefkosia, Cyprus
| | - Angus Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, PL1 3DH, Plymouth, UK
| | - Sonia Batten
- North Pacific Marine Science Organization (PICES), 9860 West Saanich Road, V8L 4B2, Sidney, BC, Canada
| | | | - Kim S Bernard
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Admin Bldg., Corvallis, OR, 97330, USA
| | - Gabrielle Canonico
- US Integrated Ocean Observing System (US IOOS), NOAA, Silver Spring, MD, USA
| | - Astrid Cornils
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Polar Biological Oceanography, Am Handelshafen 12, Bremerhaven, Germany
| | - Jason D Everett
- School of Mathematics and Physics, University of Queensland, St. Lucia, QLD, Australia.,CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, 4067, Australia.,Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Maria Grigoratou
- Gulf of Maine Research Institute, 350 Commercial St, Portland, ME, 04101, USA.,Mercator Ocean International, 2 Av. de l'Aérodrome de Montaudran, 31400, Toulouse, France
| | - Nurul Huda Ahmad Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - David Johns
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Fabien Lombard
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016, Paris, France.,Institut Universitaire de France, 75231, Paris, France
| | - Erik Muxagata
- Universidade Federal de Rio Grande - FURG - Laboratório de Zooplâncton - Instituto de Oceanografia, Av. Itália, Km 8 - Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Clare Ostle
- The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Sophie Pitois
- Centre for Environment, Fisheries and Aquaculture Centre (Cefas), Pakefield Road, Lowestoft, NR330HT, UK
| | - Anthony J Richardson
- School of Mathematics and Physics, University of Queensland, St. Lucia, QLD, Australia.,CSIRO Oceans and Atmosphere, Queensland Biosciences Precinct, St Lucia, 4067, Australia
| | - Katrin Schmidt
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Lars Stemmann
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire d'Océanographie de Villefranche (LOV), Villefranche-sur-Mer, France
| | - Kerrie M Swadling
- Institute for Marine and Antarctic Studies & Australian Antarctic Program Partnership, University of Tasmania, Hobart, Tasmania, Australia
| | - Guang Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Lidia Yebra
- Centro Oceanográfico de Málaga (IEO, CSIC), Puerto Pesquero s/n, 29640, Fuengirola, Spain
| |
Collapse
|
13
|
Berthold M, Schumann R, Reiff V, Wulff R, Schubert H. Mesopredator‐mediated trophic cascade can break persistent phytoplankton blooms in coastal waters. OIKOS 2023. [DOI: 10.1111/oik.09469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Maximilian Berthold
- Biological Station Zingst, Univ. of Rostock Zingst Germany
- Phytoplankton Ecophysiology, Mount Allison Univ. Sackville Canada
| | - Rhena Schumann
- Biological Station Zingst, Univ. of Rostock Zingst Germany
| | - Volker Reiff
- Biological Station Zingst, Univ. of Rostock Zingst Germany
| | - Rita Wulff
- Biological Station Zingst, Univ. of Rostock Zingst Germany
| | | |
Collapse
|
14
|
Rubeena KA, Nefla A, Aarif KM, AlMaarofi SS, Gijjappu DR, Reshi OR. Alterations in hydrological variables and substrate qualities and its impacts on a critical conservation reserve in the southwest coast of India. MARINE POLLUTION BULLETIN 2023; 186:114463. [PMID: 36521360 DOI: 10.1016/j.marpolbul.2022.114463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The present study investigated the long-term fluctuation in the hydrological and substrate variables at different habitats of Kadalundi-Vallikkunnu Community Reserve (KVCR) over the last decade. We hypothesize that natural impact represented by climate change and long-term impact from anthropogenic activities including industrialization and intensified agricultural practices have a direct effect on the natural hydrological cycle and the quality of coastal shores and thus can be a reason for coastal habitat and wildlife degradation. Results indicate a significant degradation in nutrient and organic matter concentration in the sediment and dramatic increase in nutrient concentration, salinity, temperature, and pH in the water. Sediment and water degradation can be one of the important factors affecting the structural quality and biodiversity of the region. Therefore, having long-term monitoring data can be useful to plan and design management and conservation strategies to protect local biodiversity and ecosystem.
Collapse
Affiliation(s)
- K A Rubeena
- Department of Biosciences, MES College Marampally, Aluva 683107, Kerala, India..
| | - Aymen Nefla
- Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar II, 2092 Tunis, Tunisia
| | - K M Aarif
- Terrestrial Ecology, Centre for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Sama S AlMaarofi
- Department of Environmental Sustainability, Faculty of Science, Lakehead University, 500 University Avenue, Orillia, ON L3V 0B9, Canada
| | - Durga Rao Gijjappu
- Division of Chemistry, Centre for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Omer R Reshi
- Climate modelling and data analysis, Centre for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
15
|
Zufia JA, Legrand C, Farnelid H. Seasonal dynamics in picocyanobacterial abundance and clade composition at coastal and offshore stations in the Baltic Sea. Sci Rep 2022; 12:14330. [PMID: 35995823 PMCID: PMC9395346 DOI: 10.1038/s41598-022-18454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Picocyanobacteria (< 2 µm in diameter) are significant contributors to total phytoplankton biomass. Due to the high diversity within this group, their seasonal dynamics and relationship with environmental parameters, especially in brackish waters, are largely unknown. In this study, the abundance and community composition of phycoerythrin rich picocyanobacteria (PE-SYN) and phycocyanin rich picocyanobacteria (PC-SYN) were monitored at a coastal (K-station) and at an offshore station (LMO; ~ 10 km from land) in the Baltic Sea over three years (2018–2020). Cell abundances of picocyanobacteria correlated positively to temperature and negatively to nitrate (NO3) concentration. While PE-SYN abundance correlated to the presence of nitrogen fixers, PC-SYN abundance was linked to stratification/shallow waters. The picocyanobacterial targeted amplicon sequencing revealed an unprecedented diversity of 2169 picocyanobacterial amplicons sequence variants (ASVs). A unique assemblage of distinct picocyanobacterial clades across seasons was identified. Clade A/B dominated the picocyanobacterial community, except during summer when low NO3, high phosphate (PO4) concentrations and warm temperatures promoted S5.2 dominance. This study, providing multiyear data, links picocyanobacterial populations to environmental parameters. The difference in the response of the two functional groups and clades underscore the need for further high-resolution studies to understand their role in the ecosystem.
Collapse
Affiliation(s)
- Javier Alegria Zufia
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Hanna Farnelid
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
16
|
Ferrieux M, Dufour L, Doré H, Ratin M, Guéneuguès A, Chasselin L, Marie D, Rigaut-Jalabert F, Le Gall F, Sciandra T, Monier G, Hoebeke M, Corre E, Xia X, Liu H, Scanlan DJ, Partensky F, Garczarek L. Comparative Thermophysiology of Marine Synechococcus CRD1 Strains Isolated From Different Thermal Niches in Iron-Depleted Areas. Front Microbiol 2022; 13:893413. [PMID: 35615522 PMCID: PMC9124967 DOI: 10.3389/fmicb.2022.893413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Marine Synechococcus cyanobacteria are ubiquitous in the ocean, a feature likely related to their extensive genetic diversity. Amongst the major lineages, clades I and IV preferentially thrive in temperate and cold, nutrient-rich waters, whilst clades II and III prefer warm, nitrogen or phosphorus-depleted waters. The existence of such cold (I/IV) and warm (II/III) thermotypes is corroborated by physiological characterization of representative strains. A fifth clade, CRD1, was recently shown to dominate the Synechococcus community in iron-depleted areas of the world ocean and to encompass three distinct ecologically significant taxonomic units (ESTUs CRD1A-C) occupying different thermal niches, suggesting that distinct thermotypes could also occur within this clade. Here, using comparative thermophysiology of strains representative of these three CRD1 ESTUs we show that the CRD1A strain MITS9220 is a warm thermotype, the CRD1B strain BIOS-U3-1 a cold temperate thermotype, and the CRD1C strain BIOS-E4-1 a warm temperate stenotherm. Curiously, the CRD1B thermotype lacks traits and/or genomic features typical of cold thermotypes. In contrast, we found specific physiological traits of the CRD1 strains compared to their clade I, II, III, and IV counterparts, including a lower growth rate and photosystem II maximal quantum yield at most temperatures and a higher turnover rate of the D1 protein. Together, our data suggests that the CRD1 clade prioritizes adaptation to low-iron conditions over temperature adaptation, even though the occurrence of several CRD1 thermotypes likely explains why the CRD1 clade as a whole occupies most iron-limited waters.
Collapse
Affiliation(s)
- Mathilde Ferrieux
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Louison Dufour
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Hugo Doré
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Morgane Ratin
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Audrey Guéneuguès
- Sorbonne Université, CNRS, UMR 7621 Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls/mer, Banyuls, France
| | - Léo Chasselin
- Sorbonne Université, CNRS, UMR 7621 Laboratoire d’Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls/mer, Banyuls, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Fabienne Rigaut-Jalabert
- Sorbonne Université, CNRS, Fédération de Recherche FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Florence Le Gall
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Théo Sciandra
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Garance Monier
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mark Hoebeke
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Erwan Corre
- CNRS, FR 2424, ABiMS Platform, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - David J. Scanlan
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Frédéric Partensky
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
- CNRS Research Federation (FR2022) Tara Océans GO-SEE, Paris, France
| |
Collapse
|
17
|
Athira TR, Nefla A, Shifa CT, Shamna H, Aarif KM, AlMaarofi SS, Rashiba AP, Reshi OR, Jobiraj T, Thejass P, Muzaffar SB. The impact of long-term environmental change on zooplankton along the southwestern coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:316. [PMID: 35355144 DOI: 10.1007/s10661-022-09921-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Environmental pollution and climate change are causing major changes in the marine environment. Coastal zones around the world are experiencing changes such as nutrient influx, resulting in altered plankton communities. The aim of this study was to determine the response of zooplankton to the changes in the environmental variables in the coastal zone of the Arabian Sea, Southwest Coast of India, over 10 years. Zooplankton abundance, chlorophyll-a concentrations, and water quality variables (rainfall, nitrates, phosphates, pH, water temperature, and salinity) were quantified from January 2010 to December 2019. Water temperature, pH, salinity, and phosphates increased steadily across the sites during the study period whereas chlorophyll-a and nitrates decreased. Rainfall abundance was not exhibiting any patterns or trends. The effects of the sampled environmental variables on zooplankton abundance were tested using generalized linear mixed models. Salinity and phosphates negatively affected the zooplankton abundance whereas water temperature, pH, and chlorophyll-a concentration had a positive effect. Coastal zones in southwest India are experiencing declining phytoplankton abundance due to a number of environmental factors. Reduced phytoplankton combined with altered environmental variables are having declining effects on zooplankton. This decline in zooplankton population has far reaching effects on biota in higher trophic levels including economically important organisms such as fishes.
Collapse
Affiliation(s)
- T R Athira
- Department of Zoology, Govt College, Madappally, Kozhikode, 673102, Kerala, India
| | - Aymen Nefla
- Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar II, 2092, Tunis, Tunisia.
| | - C T Shifa
- Department of Zoology, Govt College, Madappally, Kozhikode, 673102, Kerala, India
| | - H Shamna
- Acarology Laboratory, Department of Zoology, University of Calicut, Thenhipalam P.O, Kozhikode, Kerala, India
| | - K M Aarif
- Terrestrial Ecology, Centre for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Sama S AlMaarofi
- Department of Environmental Sustainability, Faculty of Science, Lakehead University, 500 University Avenue, Orillia, ON, L3V 0B9, Canada
| | - A P Rashiba
- Department of Zoology, Wildlife Biology Division, Farook College PO, Farook College, Kozhikode, Kerala , India
| | - Omer R Reshi
- Climate Modelling and Data Analysis, Centre for Environment and Marine Studies, King Fahad University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - T Jobiraj
- Department of Zoology, Govt College, Kodanchery, Kozhikode, 673580, Kerala, India
| | - P Thejass
- Department of Zoology, Govt College, Madappally, Kozhikode, 673102, Kerala, India
| | - Sabir Bin Muzaffar
- Department of Biology, United Arab Emirates University, PO Box, 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
18
|
Wang T, Xia X, Chen J, Liu H, Jing H. Spatio-Temporal Variation of Synechococcus Assemblages at DNA and cDNA Levels in the Tropical Estuarine and Coastal Waters. Front Microbiol 2022; 13:837037. [PMID: 35308375 PMCID: PMC8928118 DOI: 10.3389/fmicb.2022.837037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Synechococcus is a major contributor to global marine primary production. Here, its spatio-temporal variations in abundance and phylogenetic structure were studied at three stations of the South China Sea at both DNA and cDNA levels. Synechococcus cell abundance was lowest in March, but highest in October at two coastal stations. Its abundance was higher at the estuarine station, which reached a peak value of 1.36 × 105 cells/ml in April, owing to the nitrogen nutrients discharged from the Sanya River. Gene and gene transcript abundances of four Synechococcus lineages, clades II, III, VIII, and S5.3, were studied by quantitative PCR, which showed that clade II was the most abundant lineage at both DNA and cDNA levels. High-throughput sequencing revealed that, at the DNA level, Synechococcus assemblage was dominated by clade SY4 (a novel clade defined in this study), S5.2, and clade II in the coastal waters and was dominated by freshwater/S5.2 Synechococcus, reaching a value up to 88.61% in June, in estuarine waters. Changes in salinity and nutrient concentration caused by seasonal monsoonal forcing and river discharge were the key determinants of the spatio-temporal variation in Synechococcus assemblages at the DNA level. In comparison, high dissimilation among samples at the same stations and in the same seasons leads to the imperceptible spatio-temporal variation pattern of Synechococcus assemblages at the cDNA level. Furthermore, co-occurrence networks disclosed that Synechococcus community had closer and more complex internal interactions at the cDNA level. These discrepancies highlighted the necessity to study Synechococcus assemblages at both DNA and cDNA levels.
Collapse
Affiliation(s)
- Ting Wang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
19
|
A bibliometric review on the implications of renewable offshore marine energy development on marine species. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Alegria Zufia J, Farnelid H, Legrand C. Seasonality of Coastal Picophytoplankton Growth, Nutrient Limitation, and Biomass Contribution. Front Microbiol 2021; 12:786590. [PMID: 34938282 PMCID: PMC8685431 DOI: 10.3389/fmicb.2021.786590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Picophytoplankton in the Baltic Sea includes the simplest unicellular cyanoprokaryotes (Synechococcus/Cyanobium) and photosynthetic picoeukaryotes (PPE). Picophytoplankton are thought to be a key component of the phytoplankton community, but their seasonal dynamics and relationships with nutrients and temperature are largely unknown. We monitored pico- and larger phytoplankton at a coastal site in Kalmar Sound (K-Station) weekly during 2018. Among the cyanoprokaryotes, phycoerythrin-rich picocyanobacteria (PE-rich) dominated in spring and summer while phycocyanin-rich picocyanobacteria (PC-rich) dominated during autumn. PE-rich and PC-rich abundances peaked during summer (1.1 × 105 and 2.0 × 105 cells mL–1) while PPE reached highest abundances in spring (1.1 × 105 cells mL–1). PPE was the main contributor to the total phytoplankton biomass (up to 73%). To assess nutrient limitation, bioassays with combinations of nitrogen (NO3 or NH4) and phosphorus additions were performed. PE-rich and PC-rich growth was mainly limited by nitrogen, with a preference for NH4 at >15°C. The three groups had distinct seasonal dynamics and different temperature ranges: 10°C and 17–19°C for PE-rich, 13–16°C for PC-rich and 11–15°C for PPE. We conclude that picophytoplankton contribute significantly to the carbon cycle in the coastal Baltic Sea and underscore the importance of investigating populations to assess the consequences of the combination of high temperature and NH4 in a future climate.
Collapse
Affiliation(s)
- Javier Alegria Zufia
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Hanna Farnelid
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Catherine Legrand
- Marine Phytoplankton Ecology and Applications Laboratory (MPEA), Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| |
Collapse
|
21
|
Vannoni M, Créach V, Lozach S, Barry J, Sheahan D. Chlorination in power station cooling water systems: Effect on biomass, abundance and physiology of natural phytoplankton communities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105954. [PMID: 34509925 DOI: 10.1016/j.aquatox.2021.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chlorination is a widely used method to prevent biofouling in power station cooling water systems in coastal and estuarine environments. This study evaluated the impact of chlorination together with temperature increase to simulate primary entrainment of a phytoplankton community. Biomass, diversity, and photosynthetic activity were monitored over 72 hours to establish impacts on the phytoplankton community. Biomass was significantly reduced after treatment. The mean cell size of the population significantly increased immediately after treatment highlighting an impact on the smaller cell size species of the community (picophytoplankton). Changes in accessory pigments composition suggest an effect on groups such as Prasinophyceae, Cyanobacteria and Chlorophycea. Species composition, dominated by diatoms, was also affected with Skeletonema marinoi and Asterionellopsis glacialis amongst the most sensitive species. Photosynthetic activity was affected in the short term but recovered after 48 hours. This study shows that by using a combination of measurements (e.g biomass, diversity, and physiology) the effects of entrainment in power station cooling water systems, that may be of longer-term significance for specific functional groups of phytoplankton communities, can be discerned. These changes would not necessarily be seen using individual techniques alone such as cell number counts or biomass assessment which may indicate apparent community recovery.
Collapse
Affiliation(s)
- Marta Vannoni
- CEFAS, Pakefield Road, Lowestoft NR33 0HT, Suffolk, UK.
| | | | - Sophie Lozach
- CEFAS, Pakefield Road, Lowestoft NR33 0HT, Suffolk, UK
| | - Jon Barry
- CEFAS, Pakefield Road, Lowestoft NR33 0HT, Suffolk, UK
| | - Dave Sheahan
- CEFAS, Pakefield Road, Lowestoft NR33 0HT, Suffolk, UK
| |
Collapse
|
22
|
Six C, Ratin M, Marie D, Corre E. Marine Synechococcus picocyanobacteria: Light utilization across latitudes. Proc Natl Acad Sci U S A 2021; 118:e2111300118. [PMID: 34518213 PMCID: PMC8463805 DOI: 10.1073/pnas.2111300118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The most ubiquitous cyanobacteria, Synechococcus, have colonized different marine thermal niches through the evolutionary specialization of lineages adapted to different ranges of temperature seawater. We used the strains of Synechococcus temperature ecotypes to study how light utilization has evolved in the function of temperature. The tropical Synechococcus (clade II) was unable to grow under 16 °C but, at temperatures >25 °C, induced very high growth rates that relied on a strong synthesis of the components of the photosynthetic machinery, leading to a large increase in photosystem cross-section and electron flux. By contrast, the Synechococcus adapted to subpolar habitats (clade I) grew more slowly but was able to cope with temperatures <10 °C. We show that growth at such temperatures was accompanied by a large increase of the photoprotection capacities using the orange carotenoid protein (OCP). Metagenomic analyzes revealed that Synechococcus natural communities show the highest prevalence of the ocp genes in low-temperature niches, whereas most tropical clade II Synechococcus have lost the gene. Moreover, bioinformatic analyzes suggested that the OCP variants of the two cold-adapted Synechococcus clades I and IV have undergone evolutionary convergence through the adaptation of the molecular flexibility. Our study points to an important role of temperature in the evolution of the OCP. We, furthermore, discuss the implications of the different metabolic cost of these physiological strategies on the competitiveness of Synechococcus in a warming ocean. This study can help improve the current hypotheses and models aimed at predicting the changes in ocean carbon fluxes in response to global warming.
Collapse
Affiliation(s)
- Christophe Six
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France;
| | - Morgane Ratin
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Dominique Marie
- Centre National de la Recherche Scientifique, Sorbonne Université, UMR 7144, Adaptation et Diversité en Milieu Marin, group Ecology of Marine Plankton, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Erwan Corre
- Department Analysis and Bioinformatics for Marine Science, Fédération de Recherche 2424, 29680 Roscoff, France
| |
Collapse
|
23
|
Berthold M, Campbell DA. Restoration, conservation and phytoplankton hysteresis. CONSERVATION PHYSIOLOGY 2021; 9:coab062. [PMID: 34394942 PMCID: PMC8361504 DOI: 10.1093/conphys/coab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.
Collapse
Affiliation(s)
- Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| |
Collapse
|
24
|
Novotny A, Zamora-Terol S, Winder M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc Biol Sci 2021; 288:20210908. [PMID: 34130506 PMCID: PMC8206686 DOI: 10.1098/rspb.2021.0908] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative pathways of energy transfer guarantee the functionality and productivity in marine food webs that experience strong seasonality. Nevertheless, the complexity of zooplankton interactions is rarely considered in trophic studies because of the lack of detailed information about feeding interactions in nature. In this study, we used DNA metabarcoding to highlight the diversity of trophic niches in a wide range of micro- and mesozooplankton, including ciliates, rotifers, cladocerans, copepods and their prey, by sequencing 16- and 18S rRNA genes. Our study demonstrates that the zooplankton trophic niche partitioning goes beyond both phylogeny and size and reinforces the importance of diversity in resource use for stabilizing food web efficiency by allowing for several different pathways of energy transfer. We further highlight that small, rarely studied zooplankton (rotifers and ciliates) fill an important role in the Baltic Sea pelagic primary production pathways and the potential of ciliates, rotifers and crustaceans in the utilization of filamentous and picocyanobacteria within the pelagic food web. The approach used in this study is a suitable entry point to ecosystem-wide food web modelling considering species-specific resource use of key consumers.
Collapse
Affiliation(s)
- Andreas Novotny
- Department of Ecology, Environment, and Plant Science, Stockholm University, Svante Arrhenius Väg 20A, 106 91 Stockholm, Sweden
| | - Sara Zamora-Terol
- Department of Ecology, Environment, and Plant Science, Stockholm University, Svante Arrhenius Väg 20A, 106 91 Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment, and Plant Science, Stockholm University, Svante Arrhenius Väg 20A, 106 91 Stockholm, Sweden
| |
Collapse
|
25
|
McGinty N, Barton AD, Record NR, Finkel ZV, Johns DG, Stock CA, Irwin AJ. Anthropogenic climate change impacts on copepod trait biogeography. GLOBAL CHANGE BIOLOGY 2021; 27:1431-1442. [PMID: 33347685 DOI: 10.1111/gcb.15499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Copepods are among the most abundant marine metazoans and form a key link between marine primary producers, higher trophic levels, and carbon sequestration pathways. Climate change is projected to change surface ocean temperature by up to 4°C in the North Atlantic with many associated changes including slowing of the overturning circulation, areas of regional freshening, and increased salinity and reductions in nutrients available in the euphotic zone over the next century. These changes will lead to a restructuring of phytoplankton and zooplankton communities with cascading effects throughout the food web. Here we employ observations of copepods, projected changes in ocean climate, and species distribution models to show how climate change may affect the distribution of copepod species in the North Atlantic. On average species move northeast at a rate of 14.1 km decade-1 . Species turnover in copepod communities will range from 5% to 75% with the highest turnover rates concentrated in regions of pronounced temperature increase and decrease. The changes in species range vary according to copepod traits with the largest effects found to occur in the cooling, freshening area in the subpolar North Atlantic south of Greenland and in an area of significant warming along the Scotian shelf. Large diapausing copepods (>2.5 mm) which are higher in lipids and a crucial food source for whales, may have an advantage in the cooling waters due to their life-history strategy that facilitates their survival in the arctic environment. Carnivorous copepods show a basin wide increase in species richness and show significant habitat area increases when their distribution moves poleward while herbivores see significant habitat area losses. The trait-specific effects highlight the complex consequences of climate change for the marine food web.
Collapse
Affiliation(s)
- Niall McGinty
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - Andrew D Barton
- Scripps Institution of Oceanography and Section of Ecology, Behavior and Evolution, University of California, San Diego, CA, USA
| | | | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| | - David G Johns
- CPR Survey, Marine Biological Association, Plymouth, UK
| | - Charles A Stock
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton University, Princeton, NJ, USA
| | - Andrew J Irwin
- Department of Oceanography, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
26
|
Fernández-González C, Marañón E. Effect of temperature on the unimodal size scaling of phytoplankton growth. Sci Rep 2021; 11:953. [PMID: 33441617 PMCID: PMC7806832 DOI: 10.1038/s41598-020-79616-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/10/2020] [Indexed: 11/30/2022] Open
Abstract
Contrary to predictions by the allometric theory, there is evidence that phytoplankton growth rates peak at intermediate cell sizes. However, it is still unknown if this pattern may result from the effect of experimental temperature. Here we test whether temperature affects the unimodal size scaling pattern of phytoplankton growth by (1) growing Synechococcus sp., Ostreococcus tauri, Micromonas commoda and Pavlova lutheri at 18 °C and 25 °C, and (2) using thermal response curves available in the literature to estimate the growth rate at 25 °C as well as the maximum growth rate at optimal temperature for 22 species assayed previously at 18 °C. We also assess the sensitivity of growth rate estimates to the metric employed for measuring standing stocks, by calculating growth rates based on in vivo fluorescence, chlorophyll a concentration, cell abundance and biomass (particulate organic carbon and nitrogen content). Our results show that the unimodal size scaling pattern of phytoplankton growth, with a peak at intermediate cell sizes, is observed at 18 °C, 25 °C and at the optimal temperature for growth, and that it prevails irrespective of the standing-stock metric used. The unimodal size scaling pattern of phytoplankton growth is supported by two independent field observations reported in the literature: (i) a positive relationship between cell size and metabolic rate in the picophytoplankton size range and (ii) the dominance of intermediate-size cells in nutrient-rich waters during blooms.
Collapse
Affiliation(s)
- Cristina Fernández-González
- Department of Ecology and Animal Biology, Universidade de Vigo, Vigo, Spain. .,Centro de Investigación Mariña (CIM-UVigo), Vigo, Spain.
| | - Emilio Marañón
- Department of Ecology and Animal Biology, Universidade de Vigo, Vigo, Spain.,Centro de Investigación Mariña (CIM-UVigo), Vigo, Spain
| |
Collapse
|
27
|
Samplonius JM, Atkinson A, Hassall C, Keogan K, Thackeray SJ, Assmann JJ, Burgess MD, Johansson J, Macphie KH, Pearce-Higgins JW, Simmonds EG, Varpe Ø, Weir JC, Childs DZ, Cole EF, Daunt F, Hart T, Lewis OT, Pettorelli N, Sheldon BC, Phillimore AB. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat Ecol Evol 2020; 5:155-164. [PMID: 33318690 DOI: 10.1038/s41559-020-01357-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony poses a growing risk to consumers. We conduct a literature review of 109 papers studying 129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa only having one or two criteria assessed. Crucially, nearly every study was conducted in Europe or North America, and most studies were on terrestrial secondary consumers. We thus lack a robust evidence base from which to draw general conclusions about the risk that climate-mediated trophic asynchrony may pose to populations worldwide.
Collapse
Affiliation(s)
- Jelmer M Samplonius
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.
| | | | - Christopher Hassall
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Katharine Keogan
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK.,Marine Scotland Science, Marine Laboratory, Aberdeen, UK
| | | | | | - Malcolm D Burgess
- RSPB Centre for Conservation Science, Sandy, UK.,Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | | | - Kirsty H Macphie
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - James W Pearce-Higgins
- British Trust for Ornithology, Thetford, UK.,Conservation Science Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Emily G Simmonds
- Department of Mathematical Sciences and Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Øystein Varpe
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Norwegian Institute for Nature Research, Bergen, Norway
| | - Jamie C Weir
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Ella F Cole
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Tom Hart
- Department of Zoology, University of Oxford, Oxford, UK
| | - Owen T Lewis
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Ben C Sheldon
- Department of Zoology, University of Oxford, Oxford, UK
| | - Albert B Phillimore
- Institute for Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
28
|
Brander K, Kiørboe T. Decreasing phytoplankton size adversely affects ocean food chains. GLOBAL CHANGE BIOLOGY 2020; 26:5356-5357. [PMID: 32524683 DOI: 10.1111/gcb.15216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Keith Brander
- DTU Aqua, National Institute of Aquatic Resources, Kgs. Lyngby, Denmark
| | - Thomas Kiørboe
- DTU Aqua, National Institute of Aquatic Resources, Kgs. Lyngby, Denmark
| |
Collapse
|
29
|
Guyet U, Nguyen NA, Doré H, Haguait J, Pittera J, Conan M, Ratin M, Corre E, Le Corguillé G, Brillet-Guéguen L, Hoebeke M, Six C, Steglich C, Siegel A, Eveillard D, Partensky F, Garczarek L. Synergic Effects of Temperature and Irradiance on the Physiology of the Marine Synechococcus Strain WH7803. Front Microbiol 2020; 11:1707. [PMID: 32793165 PMCID: PMC7393227 DOI: 10.3389/fmicb.2020.01707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Understanding how microorganisms adjust their metabolism to maintain their ability to cope with short-term environmental variations constitutes one of the major current challenges in microbial ecology. Here, the best physiologically characterized marine Synechococcus strain, WH7803, was exposed to modulated light/dark cycles or acclimated to continuous high-light (HL) or low-light (LL), then shifted to various stress conditions, including low (LT) or high temperature (HT), HL and ultraviolet (UV) radiations. Physiological responses were analyzed by measuring time courses of photosystem (PS) II quantum yield, PSII repair rate, pigment ratios and global changes in gene expression. Previously published membrane lipid composition were also used for correlation analyses. These data revealed that cells previously acclimated to HL are better prepared than LL-acclimated cells to sustain an additional light or UV stress, but not a LT stress. Indeed, LT seems to induce a synergic effect with the HL treatment, as previously observed with oxidative stress. While all tested shift conditions induced the downregulation of many photosynthetic genes, notably those encoding PSI, cytochrome b6/f and phycobilisomes, UV stress proved to be more deleterious for PSII than the other treatments, and full recovery of damaged PSII from UV stress seemed to involve the neo-synthesis of a fairly large number of PSII subunits and not just the reassembly of pre-existing subunits after D1 replacement. In contrast, genes involved in glycogen degradation and carotenoid biosynthesis pathways were more particularly upregulated in response to LT. Altogether, these experiments allowed us to identify responses common to all stresses and those more specific to a given stress, thus highlighting genes potentially involved in niche acclimation of a key member of marine ecosystems. Our data also revealed important specific features of the stress responses compared to model freshwater cyanobacteria.
Collapse
Affiliation(s)
- Ulysse Guyet
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Ngoc A Nguyen
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Hugo Doré
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Julie Haguait
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Justine Pittera
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Maël Conan
- DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France
| | - Morgane Ratin
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Erwan Corre
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Gildas Le Corguillé
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Loraine Brillet-Guéguen
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France.,CNRS, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Mark Hoebeke
- CNRS, FR2424, ABiMS, Station Biologique, Sorbonne Université, Roscoff, France
| | - Christophe Six
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | | | - Anne Siegel
- DYLISS (INRIA-IRISA)-INRIA, CNRS UMR 6074, Université de Rennes 1, Rennes, France
| | - Damien Eveillard
- LS2N, UMR CNRS 6004, IMT Atlantique, ECN, Université de Nantes, Nantes, France
| | - Frédéric Partensky
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Laurence Garczarek
- CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| |
Collapse
|