1
|
Zhao Y, Wang L, Jiang Q, Wang Z. Resilience response of China's terrestrial ecosystem gross primary productivity under environmental stress. ENVIRONMENTAL RESEARCH 2025; 276:121540. [PMID: 40187394 DOI: 10.1016/j.envres.2025.121540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Climate change perturbations contribute to the alteration of ecosystem functions and the reduction of their resilience. Understanding this reduction in resilience is fundamental for formulating strategies for sustainable ecosystem management. Consequently, a systematic evaluation of factors influencing ecosystem resilience is imperative. This involves elucidating the resilience trends and stress conditions within Chinese ecosystems spatially, thereby enabling a holistic assessment of their health status. This study assesses resilience across China by analyzing the one-month lagged time autocorrelation of terrestrial Gross Primary Production (GPP) across China. It differentiates between various stress states within the study region and employs interpretable machine learning methods to examine the relationship between terrestrial ecosystem resilience and environmental changes under different stress conditions. The findings reveal that approximately 20 % of Chinese regions are undergoing a decrease in ecosystem resilience, with over half experiencing stressed conditions. This is particularly pronounced in the northeastern and central regions of China, where a more significant and widespread decrease in resilience is observed. In the stressed areas of China, the effect of each environmental factor on the decrease in resilience is greater, where attention needs to be paid to areas with higher maximum temperature, precipitation, vapor pressure deficit, and radiation. The study highlights the variability in ecosystem resilience under different environmental conditions and their varied responses to environmental changes. This provides a scientific basis for protecting ecological balance and promoting the sustainable development of ecosystems.
Collapse
Affiliation(s)
- Youzhu Zhao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Luchen Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Qiuxiang Jiang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Zilong Wang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Wang M, Masoudi A, Wang C, Feng J, Yu Z, Liu J. Urban afforestation converges soil resistome and mitigates the abundance of human pathogenic bacteria. ENVIRONMENTAL RESEARCH 2025; 278:121693. [PMID: 40288735 DOI: 10.1016/j.envres.2025.121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Afforestation has emerged as a nature-based strategy for climate mitigation and urban sustainability, yet its effects on antibiotic resistance genes (ARGs) in soils remain underexplored. This study investigates how the conversion of croplands into plantation forests affects the soil resistome, bacterial communities, and physicochemical properties in an urban environment. Using high-throughput metagenomic and 16S rRNA amplicon sequencing, we analyzed soil samples from croplands and afforested plots with Chinese pine (Pinus tabulaeformis) and Chinese scholar (Sophora japonica) trees, across two-time points post-afforestation. Our results show that afforestation promotes the convergence of both bacterial and ARG communities over time, accompanied by a significant reduction in the relative abundance of human pathogenic bacteria. Afforested soils exhibited a lower prevalence of high-risk ARGs (e.g., qnrA, qnrB from the quinolone class) and reduced co-occurrence between ARGs and mobile genetic elements (MGEs), particularly transposases and recombinases, suggesting diminished horizontal gene transfer. Additionally, afforestation-induced changes in soil pH and nutrient dynamics emerged as key ecological factors shaping ARG profiles. Differences between afforestation types were also observed, with Pinus plantations presenting lower ARG-derived risks than Sophora forests. This study supports afforestation as a nature-based solution for enhancing urban sustainability, reducing public health risks, and achieving resilient ecosystems under anthropogenic influence.
Collapse
Affiliation(s)
- Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cellular Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 20 Nanerhuan East Road, Shijiazhuang, 050024, Hebei, China; College of Biology and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Abolfazl Masoudi
- Department of Biological Sciences, University of Illinois, Chicago, IL, United States of America
| | - Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cellular Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 20 Nanerhuan East Road, Shijiazhuang, 050024, Hebei, China
| | - Jian Feng
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cellular Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 20 Nanerhuan East Road, Shijiazhuang, 050024, Hebei, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cellular Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 20 Nanerhuan East Road, Shijiazhuang, 050024, Hebei, China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cellular Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 20 Nanerhuan East Road, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
3
|
Hu G, Feng H, Otuka A, Reynolds DR, Drake VA, Chapman JW. The East Asian Insect Flyway: Geographical and Climatic Factors Driving Migration Among Diverse Crop Pests. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:1-22. [PMID: 39499909 DOI: 10.1146/annurev-ento-012524-124018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The East Asian Insect Flyway is a globally important migration route stretching from the Indochina Peninsula and the Philippines through East China to Northeast China and northern Japan, although most migrants utilize only part of the flyway. In this review, we focus on long-range windborne migrations of lepidopteran and planthopper pests. We outline the environment in which migrations occur, with emphasis on the seasonal atmospheric circulations that influence the transporting wind systems. Northward movement in spring is facilitated by favorable prevailing winds, allowing migrants to colonize vast areas of East Asia. Migrants may be subject to contemporary natural selection for long flights as succeeding generations progressively advance northward. Overshooting into far northern areas from which there is little chance of return seems common in planthoppers. Moths are less profligate and have evolved complex flight behaviors that can facilitate southward transport in autumn, although timely spells of favorable winds may not occur in some years.
Collapse
Affiliation(s)
- Gao Hu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China;
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Integrated Pest Management on Crops in the Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, People's Republic of China;
| | - Akira Otuka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Koshi, Japan;
| | - Don R Reynolds
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham, Kent, United Kingdom;
| | - V Alistair Drake
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
- School of Science, The University of New South Wales, Canberra, Australian Capital Territory, Australia;
| | - Jason W Chapman
- Centre for Ecology and Conservation and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, United Kingdom;
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China;
| |
Collapse
|
4
|
Alam N, Ullah Z, Ahmad B, Ali A, Syed K. Population growth poses a significant threat to forest ecosystems: A case study from the Hindukush-Himalayas of Pakistan. PLoS One 2024; 19:e0302192. [PMID: 39585845 PMCID: PMC11588280 DOI: 10.1371/journal.pone.0302192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024] Open
Abstract
Human population growth and the accompanying increase in anthropogenic activities pose a significant threat to forest ecosystems by reducing the natural services these ecosystems provide. Malam Jabba, located in the District Swat of Pakistan's Hindukush-Himalayan temperate zone, is known for its ecotourism, skiing, timber-producing tree species, medicinal plants, and unique biodiversity. However, a large portion of Swat Valley's population depends on the Malam Jabba forests for timber and fuelwood. This study investigates how deforestation rates have increased in response to the growing human population in Malam Jabba, District Swat. To monitor forest cover changes, we used remote sensing (RS) and geographic information systems (GIS) tools. Vegetation analysis was conducted using the Normalized Difference Vegetation Index (NDVI) based on multi-temporal satellite imagery from 1980, 2000, and 2020. Using a decay model, we calculated the deforestation rate from 1980 to 2020 and projected future rates using MATLAB, based on anticipated population growth. Our results show that over the last two decades, the average annual deforestation rate rose from 0.7% to 1.93%, coinciding with a population increase from 1.2 million to 2.3 million at a growth rate of 9% per year. Projections indicate that the deforestation rate will increase to 2.5% annually over the next 20 years, given the predicted 11.6% yearly population growth. Population growth in District Swat has severely endangered nearby forest ecosystems, and further increases in human activity, such as unsustainable tourism, fuel and timber collection, and urbanization, will likely exacerbate this trend. Based on our findings, we recommend: (i) the implementation of reforestation programs and sustainable forest resource use; (ii) the development of a long-term forest management plan that maintains equilibrium between forest density and population pressure; and (iii) prioritizing areas with extreme human impact for in-situ conservation efforts.
Collapse
Affiliation(s)
- Naveed Alam
- Institute of Forest Sciences, University of Swat, Charbagh, Pakistan
| | - Zahid Ullah
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Bilal Ahmad
- Institute of Forest Sciences, University of Swat, Charbagh, Pakistan
| | - Ahmad Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Kashmala Syed
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh, Pakistan
| |
Collapse
|
5
|
Yao L, Liu T, Qin J, Jiang H, Yang L, Smith P, Chen X, Zhou C, Piao S. Carbon sequestration potential of tree planting in China. Nat Commun 2024; 15:8398. [PMID: 39333536 PMCID: PMC11437143 DOI: 10.1038/s41467-024-52785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
China's large-scale tree planting programs are critical for achieving its carbon neutrality by 2060, but determining where and how to plant trees for maximum carbon sequestration has not been rigorously assessed. Here, we developed a comprehensive machine learning framework that integrates diverse environmental variables to quantify tree growth suitability and its relationship with tree numbers. Then, their correlations with biomass carbon stocks were robustly established. Carbon sink potentials were mapped in distinct tree-planting scenarios. Under one of them aligned with China's ecosystem management policy, 44.7 billion trees could be planted, increasing forest stock by 9.6 ± 0.8 billion m³ and sequestering 5.9 ± 0.5 PgC equivalent to double China's 2020 industrial CO2 emissions. We found that tree densification within existing forests is an economically viable and effective strategy and so it should be a priority in future large-scale planting programs.
Collapse
Affiliation(s)
- Ling Yao
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Tang Liu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Jun Qin
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China.
- Faculty of Geography, Yunnan Normal University, Kunming, PR China.
| | - Hou Jiang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
| | - Lin Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, PR China
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Xi Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China.
| | - Chenghu Zhou
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, PR China
- Center for Ocean Remote Sensing of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, PR China
| | - Shilong Piao
- College of Urban and Environmental Sciences, Peking University, Beijing, PR China.
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
6
|
Wang K, Wang C, Fu B, Huang J, Wei F, Leng X, Feng X, Li Z, Jiang W. Divergent driving mechanisms of community temporal stability in China's drylands. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100404. [PMID: 38585198 PMCID: PMC10997951 DOI: 10.1016/j.ese.2024.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024]
Abstract
Climate change and anthropogenic activities are reshaping dryland ecosystems globally at an unprecedented pace, jeopardizing their stability. The stability of these ecosystems is crucial for maintaining ecological balance and supporting local communities. Yet, the mechanisms governing their stability are poorly understood, largely due to the scarcity of comprehensive field data. Here we show the patterns of community temporal stability and its determinants across an aridity spectrum by integrating a transect survey across China's drylands with remote sensing. Our results revealed a U-shaped relationship between community temporal stability and aridity, with a pivotal shift occurring around an aridity level of 0.88. In less arid areas (aridity level below 0.88), enhanced precipitation and biodiversity were associated with increased community productivity and stability. Conversely, in more arid zones (aridity level above 0.88), elevated soil organic carbon and biodiversity were linked to greater fluctuations in community productivity and reduced stability. Our study identifies a critical aridity threshold that precipitates significant changes in community stability in China's drylands, underscoring the importance of distinct mechanisms driving ecosystem stability in varying aridity contexts. These insights are pivotal for developing informed ecosystem management and policy strategies tailored to the unique challenges of dryland conservation.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Shaanxi Yan'an Forest Ecosystem National Observation and Research Station, Beijing, 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi'an, 710061, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shaanxi Yan'an Forest Ecosystem National Observation and Research Station, Beijing, 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi'an, 710061, China
| | - Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Fangli Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejing Leng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Shaanxi Yan'an Forest Ecosystem National Observation and Research Station, Beijing, 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi'an, 710061, China
| | - Wei Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
7
|
Cheng K, Yang H, Tao S, Su Y, Guan H, Ren Y, Hu T, Li W, Xu G, Chen M, Lu X, Yang Z, Tang Y, Ma K, Fang J, Guo Q. Carbon storage through China's planted forest expansion. Nat Commun 2024; 15:4106. [PMID: 38750031 PMCID: PMC11096308 DOI: 10.1038/s41467-024-48546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
China's extensive planted forests play a crucial role in carbon storage, vital for climate change mitigation. However, the complex spatiotemporal dynamics of China's planted forest area and its carbon storage remain uncaptured. Here we reveal such changes in China's planted forests from 1990 to 2020 using satellite and field data. Results show a doubling of planted forest area, a trend that intensified post-2000. These changes lead to China's planted forest carbon storage increasing from 675.6 ± 12.5 Tg C in 1990 to 1,873.1 ± 16.2 Tg C in 2020, with an average rate of ~ 40 Tg C yr-1. The area expansion of planted forests contributed ~ 53% (637.2 ± 5.4 Tg C) of the total above increased carbon storage in planted forests compared with planted forest growth. This proactive policy-driven expansion of planted forests has catalyzed a swift increase in carbon storage, aligning with China's Carbon Neutrality Target for 2060.
Collapse
Affiliation(s)
- Kai Cheng
- Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Haitao Yang
- Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Shengli Tao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongcan Guan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 571737, China
| | - Yu Ren
- Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Tianyu Hu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Li
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guangcai Xu
- Beijing GreenValleyTechnology Co. Ltd, Beijing, 100091, China
| | - Mengxi Chen
- Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Xiancheng Lu
- Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Zekun Yang
- Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yanhong Tang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Qinghua Guo
- Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Zuo Z, Qiao L, Zhang R, Chen D, Piao S, Xiao D, Zhang K. Importance of soil moisture conservation in mitigating climate change. Sci Bull (Beijing) 2024; 69:1332-1341. [PMID: 38485623 DOI: 10.1016/j.scib.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 05/06/2024]
Abstract
A troubling feedback loop, where drier soil contributes to hotter climates, has been widely recognized. This study, drawing on climate model simulations, reveals that maintaining current global soil moisture levels could significantly alleviate 32.9% of land warming under low-emission scenarios. This action could also postpone reaching critical warming thresholds of 1.5 °C and 2.0 °C by at least a decade. Crucially, preserving soil moisture at current levels could prevent noticeable climate change impacts across 42% of the Earth's land, a stark deviation from projections suggesting widespread impacts before the 2060s. To combat soil drying, afforestation in mid-to-low latitude regions within the next three decades is proposed as an effective strategy to increase surface water availability. This underscores the substantial potential of nature-based solutions for managing soil moisture, benefiting both climate change mitigation and ecological enhancement.
Collapse
Affiliation(s)
- Zhiyan Zuo
- Key Laboratory of Polar Atmosphere-ocean-ice System for Weather and Climate of Ministry of Education/Shanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Liang Qiao
- Key Laboratory of Polar Atmosphere-ocean-ice System for Weather and Climate of Ministry of Education/Shanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Renhe Zhang
- Key Laboratory of Polar Atmosphere-ocean-ice System for Weather and Climate of Ministry of Education/Shanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China.
| | - Deliang Chen
- Department of Earth Sciences, University of Gothenburg, Gothenburg 40530, Sweden.
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China
| | - Dong Xiao
- Key Laboratory of Cites' Mitigation and Adaptation to Climate Change in Shanghai, China Meteorological Administration, Shanghai 200030, China
| | - Kaiwen Zhang
- Key Laboratory of Polar Atmosphere-ocean-ice System for Weather and Climate of Ministry of Education/Shanghai Key Laboratory of Ocean-Land-Atmosphere Boundary Dynamics and Climate Change, Department of Atmospheric and Oceanic Sciences/Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Yu Z, Liu S, Li H, Liang J, Liu W, Piao S, Tian H, Zhou G, Lu C, You W, Sun P, Dong Y, Sitch S, Agathokleous E. Maximizing carbon sequestration potential in Chinese forests through optimal management. Nat Commun 2024; 15:3154. [PMID: 38605043 PMCID: PMC11009231 DOI: 10.1038/s41467-024-47143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Forest carbon sequestration capacity in China remains uncertain due to underrepresented tree demographic dynamics and overlooked of harvest impacts. In this study, we employ a process-based biogeochemical model to make projections by using national forest inventories, covering approximately 415,000 permanent plots, revealing an expansion in biomass carbon stock by 13.6 ± 1.5 Pg C from 2020 to 2100, with additional sink through augmentation of wood product pool (0.6-2.0 Pg C) and spatiotemporal optimization of forest management (2.3 ± 0.03 Pg C). We find that statistical model might cause large bias in long-term projection due to underrepresentation or neglect of wood harvest and forest demographic changes. Remarkably, disregarding the repercussions of harvesting on forest age can result in a premature shift in the timing of the carbon sink peak by 1-3 decades. Our findings emphasize the pressing necessity for the swift implementation of optimal forest management strategies for carbon sequestration enhancement.
Collapse
Affiliation(s)
- Zhen Yu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- Key Laboratory of Forest Ecology and Environment, China's National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China.
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment, China's National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China.
| | - Haikui Li
- Key Laboratory of Forest Management and Growth Modelling, China's National Forestry and Grassland Administration, Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, 100091, Beijing, China
| | - Jingjing Liang
- Forest Advanced Computing and Artificial Intelligence Laboratory (FACAI), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA
| | - Weiguo Liu
- College of Forestry, Northwest agriculture and Forestry University, Yangling, 712100, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, 100871, Beijing, China
| | - Hanqin Tian
- Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts, MA, 02467, USA
| | - Guoyi Zhou
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chaoqun Lu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Weibin You
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengsen Sun
- Key Laboratory of Forest Ecology and Environment, China's National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Yanli Dong
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Stephen Sitch
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
10
|
Che C, Zhang M, Yang W, Wang S, Zhang Y, Liu L. Dissimilarity in radial growth and response to drought of Korshinsk peashrub ( Caragana korshinskii Kom.) under different management practices in the western Loess Plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1357472. [PMID: 38650699 PMCID: PMC11033483 DOI: 10.3389/fpls.2024.1357472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Quantitative assessment of tree responses to the local environment can help provide scientific guidance for planted forest management. However, research on the climate-growth relationship of Korshinsk peashrub (Caragana korshinskii Kom.) under different land preparation and post-management (irrigation) conditions is still insufficient. In this study, we collected 223 tree-ring samples from Korshinsk peashrubs using dendroecological methods and systematically quantified the relationships between shrub growth and climatic factors under different management practices in the western Loess Plateau of China. Our findings demonstrated that drought stress caused by scarce precipitation from April to August was the primary factor limiting the growth of Korshinsk peashrubs in the northern and southern mountains of Lanzhou. The "climwin" climate model results showed a weak correlation between natural Korshinsk peashrub growth and drought stress, whereas planted Korshinsk peashrub under rain-fed conditions in the southern mountain was significantly (p<0.05) limited by drought stress from April to August. Moreover, planted Korshinsk peashrub growth under irrigated conditions in the northern mountain was limited only by drought stress in January. Drought model explained 28.9%, 38.3%, and 9.80% of the radial growth variation in Xiguoyuan (XGY), Shuibaozhan (SBZ), and Zhichagou (ZCG) sites, respectively. Artificial supplementary irrigation alleviated the limitation of drought on planted forest growth, which may be implemented for Korshinsk peashrubs planted on sunny slopes, while planted Korshinsk peashrubs under natural rain-fed conditions can be planted on shady slopes through rainwater harvesting and conservation measures such as horizontal ditches and planting holes.
Collapse
Affiliation(s)
- Cunwei Che
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, Gansu, China
| | - Mingjun Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, Gansu, China
| | - Wanmin Yang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, Gansu, China
| | - Shengjie Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, Gansu, China
| | - Yu Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, Gansu, China
| | - Lingling Liu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Laffitte B, Seyler BC, Yang X, Tang Y. Transplanted Ginkgo growth rates indicate common Chinese nursery techniques may severely limit urban ecosystem services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168977. [PMID: 38036147 DOI: 10.1016/j.scitotenv.2023.168977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
China has experienced history's largest rural-to-urban migration. The social, economic, and environmental challenges brought about by urbanization are diverse and complex. Given China's national goal to achieve carbon neutrality by 2060 and commitment to urban sustainability, large cities have focused on urban greening initiatives. Yet, studies seeking to quantify ecosystem services and disservices only assess healthy, mature trees, rather than those with severe damage, declining health, or lack of vitality due to poor management. In this short communication, we conducted a case-study in one of China's major nursery stock-producing cities, Chengdu, on a common street tree, Ginkgo biloba, to assess the long-term impact of one of the most common yet extreme nursery transplant practices on tree growth (traumatic root-cutting of 'super-large' nursery stock). We used tree-ring data collected in a typical urban greenspace from 23 Ginkgo trees, including 18 trees transplanted as 'super-large' nursery stock and a control group (5 trees) transplanted as small-caliper trees. We found the trees transplanted as 'super-large' nursery stock experienced declining tree growth with decades of lost landscape potential likely due to traumatic root-cutting at the time of transplant from nursery to landscape. The control group allowed contrast between the growth patterns of 'super-large' transplanted trees with those that remained healthy, being transplanted as smaller-caliper trees. For the 'super-large' trees, we found a decrease in carbon sequestration from 7.6 kg C yr-1 on average per tree in 2001 to about 1.5 kg C yr-1 on average per tree in 2021, while no decreasing trends were observed among the control trees. This implies a negative impact on multiple expected ecosystem services including carbon sequestration, shade, canopy coverage, and pollutant mitigation. These results highlight the unrecognized costs of common Chinese nursery and transplant techniques on urban landscape trees, necessitating more research, science-based policies, and better management techniques.
Collapse
Affiliation(s)
- Benjamin Laffitte
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; Department of Environment, Sichuan University, Chengdu 610065, China
| | - Barnabas C Seyler
- Shude International, Chengdu Shude High School, Chengdu 610000, China; Department of Environment, Sichuan University, Chengdu 610065, China.
| | - Xuexin Yang
- Department of Environment, Sichuan University, Chengdu 610065, China
| | - Ya Tang
- Department of Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Jianfeng S, Li G, Zhang Y, Qin W, Chai G. Assessment of suitable areas for afforestation and its carbon sink value in fragile ecological areas of northern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119401. [PMID: 37931435 DOI: 10.1016/j.jenvman.2023.119401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Afforestation and reforestation are pivotal in mitigating land degradation and bolstering the carbon sink capacity of terrestrial ecosystems. However, the potential economic ramifications of afforestation and reforestation in the context of climate change remain largely unexplored. In this study, we employed an interdisciplinary methodology to establish a framework for assessing future forest potential and carbon sequestration in the Eastern Loess Plateau region of China. Our findings indicate that an estimated 17,392.99 km2 of land suitable for afforestation still existed within the region, exhibiting a propensity to aggregate around existing forests rather than being dispersed randomly. Notably, 4385.36 km2 was prioritized for afforestation initiatives. Projections suggest a significant enhancement of the forest carbon sink within the study area by 2050, ranging from 36.93 Mt to 105.38 Mt. The corresponding economic value for this enhancement is estimated to vary between US$3.25 billion and US$17.68 billion. Of significance is the observed polarization of the region's carbon sink capacity over time, with half of the total carbon sinks concentrated within 10% of the districts. Additionally, approximately 26% of the counties are expected to transition from carbon sinks to carbon sources. These findings underscore the substantial impact of climate change on forest distribution and suggest a targeted approach to combat forest degradation by circumventing ineffective afforestation activities.
Collapse
Affiliation(s)
- Sun Jianfeng
- School of Economics and Management, Beijing Forestry University, Beijing, 100083, China
| | - Guangdong Li
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), 11A Datun Road, Chaoyang District, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Zhang
- School of Economics and Management, Beijing Forestry University, Beijing, 100083, China.
| | - Weishan Qin
- College of Resource and Environment Engineering, Ludong University, Yantai, 264025, China
| | - Guoqi Chai
- College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
13
|
Kong Z, Ling H, Deng M, Han F, Yan J, Deng X, Wang Z, Ma Y, Wang W. Past and projected future patterns of fractional vegetation coverage in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166133. [PMID: 37567294 DOI: 10.1016/j.scitotenv.2023.166133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
With the intensifying climate change and the strengthening ecosystem management, quantifying the past and predicting the future influence of these two factors on vegetation change patterns in China need to be analyzed urgently. By constructing a framework model to accurately identify fractional vegetation coverage (FVC) change patterns, we found that FVC in China from 1982 to 2018 mainly showed linear increase (29.5 %) or Gaussian decrease (27.4 %). FVC variation was mainly affected by soil moisture in the Qi-North region and by vapor pressure deficit in other regions. The influence of environmental change on FVC, except for Yang-Qi region in the southwest (-2.0 %), played a positive role, and weakened from the middle (Hu-Yang region: 2.7 %) to the northwest (Qi-North region: 2.4 %) to the east (Hu-East region: 0.8 %). Based on five machine learning algorithms, it was predicted that under four Shared Socioeconomic Pathways (SSPs, including SSP126、SSP245、SSP370、SSP585) from 2019 to 2060, FVC would maintain an upward trend, except for the east, where FVC would rapidly decline after 2039. FVC in the eastern region experienced a transition from past growth to future decline, suggesting that the focus of future ecosystem management should be on this region.
Collapse
Affiliation(s)
- Zijie Kong
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China; School of Civil Engineering, Tianjin University, Tianjin 300072, China
| | - Hongbo Ling
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China.
| | - Mingjiang Deng
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China; School of Civil Engineering, Tianjin University, Tianjin 300072, China
| | - Feifei Han
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Junjie Yan
- Institute of Resources and Ecology, Yili Normal University, Yining 835000, China
| | - Xiaoya Deng
- Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Zikang Wang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China
| | - Yuanzhi Ma
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China
| | - Wenqi Wang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China
| |
Collapse
|
14
|
Yu T, Han T, Feng Q, Chen W, Zhao C, Li H, Liu J. Divergent response to abiotic factor determines the decoupling of water and carbon fluxes over an artificial C4 shrub in desert. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118416. [PMID: 37331315 DOI: 10.1016/j.jenvman.2023.118416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Knowledge on relationship and determinants of water and carbon dioxide (CO2) exchange is crucial to land managers and policy makers especially for the desertified land restoration. However, there remains highly uncertain in terms of water use and carbon sequestration for artificial plantation in desert. Here, continuous water and carbon fluxes were measured using eddy covariance (EC) in conjunction with hydrometeorological measurements over an artificial C4 shrub, Haloxylon ammodendron (C. A. Mey.) Bunge, from July 2020 to 2021 in Tengger Desert, China. Throughout 2021, evapotranspiration (ET) was 189.5 mm, of which 85% (150 mm) occurred during growing season, that was comparable with the summation of precipitation (132.2 mm), dew (33.5 mm) and potential other sources (e.g. deep subsoil water). This ecosystem was a strong carbon sink with net ecosystem production (NEP) up to 446.4 g C m-2 yr-1, much higher than surrounding sites. Gross primary production (GPP, 598.7 g C m-2 yr-1) in this shrubland was comparable with that of other shrublands, whereas ecosystem respiration (Re, 152.3 g C m-2 yr-1) was lower. Random Forest showed that environmental factors can explain 71.56% and 80.07% variation of GPP and ET, respectively. Interestingly, environmental factors have divergent effect on water and carbon exchange, i.e., soil hydrothermic factors (soil moisture content and soil temperature) determine the magnitude and seasonal pattern of ET and Re, while aerodynamics factors (net radiation, atmospheric temperature and wind speed) determine GPP and NEP. As such, divergent response of abiotic factors resulted in the decoupling of water and carbon exchange. Our results suggest that H. ammodendron is a suitable species for large-scale afforestation in dryland given its low water use but high carbon sequestration. Therefore, we infer that artificial planting H. ammodendron in dryland could provide an opportunity for climate change mitigation, and the long-term time series data is needed to confirm its sustainable role of carbon sequestration in the future.
Collapse
Affiliation(s)
- Tengfei Yu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Alxa Desert Eco-hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Tuo Han
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Alxa Desert Eco-hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qi Feng
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Alxa Desert Eco-hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weiyu Chen
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Alxa Desert Eco-hydrology Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chenguang Zhao
- Alxa Institute of Forestry and Grassland, Inner Mongolia, Alxa, 750306, China
| | - Huiying Li
- Alxa Institute of Forestry and Grassland, Inner Mongolia, Alxa, 750306, China
| | - Junliang Liu
- Alxa Forestry and Grassland Protection Station, Inner Mongolia, Alxa, 750306, China
| |
Collapse
|
15
|
Xu H, Yue C, Zhang Y, Liu D, Piao S. Forestation at the right time with the right species can generate persistent carbon benefits in China. Proc Natl Acad Sci U S A 2023; 120:e2304988120. [PMID: 37782782 PMCID: PMC10576152 DOI: 10.1073/pnas.2304988120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/10/2023] [Indexed: 10/04/2023] Open
Abstract
Previous evaluations on the biophysical potential of forest carbon sink have focused on forestation area distribution and the associated carbon stock for equilibrium-state forests after centuries-long growth. These approaches, however, have limited relevance for climate policies because they ignore the near-term and mid-term decadal carbon uptake dynamics and suitable forest species for forestation. This study developed a forestation roadmap to support China's "carbon neutrality" objective in 2060 by addressing three key questions of forestation: where, with what forest species, and when to afforest. The results yielded a high-confidence potential forestation map for China at a resolution of 1 km with the identified optimal native forest type or species. Our analysis revealed an additional 78 Mha suitable for forestation up to the 2060s, a 43% increase on the current forest area. Selecting forest species for maximal carbon stock in addition to maximizing local environmental suitability enabled almost a doubling in forest carbon sink potential. Progressive forestation of this area can fix a considerable amount of CO2 and compensate for the carbon sink decline in existing forests. Altogether, the entire forest ecosystem can support a persistent biophysical carbon sink potential of 0.4 Pg C y-1 by 2060 and 0.2 Pg C y-1 by 2100, offsetting 7 to 14% of the current national fossil CO2 emissions. Our research provides an example of building a forestation roadmap toward a sustained forest carbon sink, which creates a critical time window for the emission cuts required by the goal of carbon neutrality.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Chao Yue
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, Shaanxi712100, China
| | - Yao Zhang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Dan Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100085, China
| | - Shilong Piao
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing100871, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing100085, China
| |
Collapse
|
16
|
Gong H, Song W, Wang J, Wang X, Ji Y, Zhang X, Gao J. Climate factors affect forest biomass allocation by altering soil nutrient availability and leaf traits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2292-2303. [PMID: 37470341 DOI: 10.1111/jipb.13545] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Biomass in forests sequesters substantial amounts of carbon; although the contribution of aboveground biomass has been extensively studied, the contribution of belowground biomass remains understudied. Investigating the forest biomass allocation is crucial for understanding the impacts of global change on carbon allocation and cycling. Moreover, the question of how climate factors affect biomass allocation in natural and planted forests remains unresolved. Here, we addressed this question by collecting data from 384 planted forests and 541 natural forests in China. We evaluated the direct and indirect effects of climate factors on the belowground biomass proportion (BGBP). The average BGBP was 31.09% in natural forests and was significantly higher (38.75%) in planted forests. Furthermore, we observed a significant decrease in BGBP with increasing temperature and precipitation. Climate factors, particularly those affecting soil factors, such as pH, strongly affected the BGBP in natural and planted forests. Based on our results, we propose that future studies should consider the effects of forest type (natural or planted) and soil factors on BGBP.
Collapse
Affiliation(s)
- Hede Gong
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, 650224, China
| | - Wenchen Song
- College of Life Sciences, Minzu University of China, Beijing, 100081, China
| | - Jiangfeng Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, China
| | - Xianxian Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, China
| | - Yuhui Ji
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, China
| | - Xinyu Zhang
- College of Biological Sciences, University of California Davis, Davis, 95616, California, USA
| | - Jie Gao
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, China
- Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100091, China
| |
Collapse
|
17
|
Huang B, Lu F, Wang X, Wu X, Zheng H, Su Y, Yuan Y, Ouyang Z. The impact of ecological restoration on ecosystem services change modulated by drought and rising CO 2. GLOBAL CHANGE BIOLOGY 2023; 29:5304-5320. [PMID: 37376714 DOI: 10.1111/gcb.16825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Ecological restoration projects (ERPs) are an indispensable component of natural climate solutions and have proven to be very important for reversing environmental degradation in vulnerable regions and enhancing ecosystem services. However, the level of enhancement would be inevitably influenced by global drought and rising CO2 , which remain less investigated. In this study, we took the Beijing-Tianjin sand source region (which has experienced long-term ERPs), China, as an example and combined the process-based Biome-BGCMuSo model to set multiple scenarios to address this issue. We found ERP-induced carbon sequestration (CS), water retention (WR), soil retention (SR), and sandstorm prevention (SP) increased by 22.21%, 2.87%, 2.35%, and 28.77%, respectively. Moreover, the ecosystem services promotion from afforestation was greater than that from grassland planting. Approximately 91.41%, 98.13%, and 64.51% of the increased CS, SR, and SP were contributed by afforestation. However, afforestation also caused the WR to decline. Although rising CO2 amplified ecosystem services contributed by ERPs, it was almost totally offset by drought. The contribution of ERPs to CS, WR, SR, and SP was reduced by 5.74%, 32.62%, 11.74%, and 14.86%, respectively, under combined drought and rising CO2 . Our results confirmed the importance of ERPs in strengthening ecosystem services provision. Furthermore, we provide a quantitative way to understand the influence rate of drought and rising CO2 on ERP-induced ecosystem service dynamics. In addition, the considerable negative climate change impact implied that restoration strategies should be optimized to improve ecosystem resilience to better combat negative climate change impacts.
Collapse
Affiliation(s)
- Binbin Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing-Tianjin-Hebei Urban Megaregion National Observation and Research Station for Eco-Environmental Change, Beijing, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hua Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuebo Su
- Shenzhen Academy of Environmental Sciences, Shenzhen, China
| | - Yafei Yuan
- North China Power Engineering Co, Ltd. of China Power Engineering Consulting Group, Beijing, China
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Zhang S, Li T, Hu J, Li K, Liu D, Li H, Wang F, Chen D, Zhang Z, Fan Q, Cui X, Che R. Reforestation substantially changed the soil antibiotic resistome and its relationships with metal resistance genes, mobile genetic elements, and pathogens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118037. [PMID: 37178462 DOI: 10.1016/j.jenvman.2023.118037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Revealing the effects of reforestation on soil antibiotic resistome is essential for assessing ecosystem health, yet related studies remain scarce. Here, to determine the responses of the soil antibiotic resistome to reforestation, 30 pairs of cropland and forest soil samples were collected from southwestern China, a region with high environmental heterogeneity. All the forests had been derived from croplands more than one decade ago. The diversity and abundance of soil antibiotic resistance genes (ARGs), metal resistance genes (MRGs), mobile genetic elements (MGEs), and pathogens were determined by metagenomic sequencing and real-time PCR. The results showed that reforestation significantly increased soil microbial abundance and the contents of Cu, total carbon, total nitrogen, total organic carbon, and ammonium nitrogen. Nevertheless, it decreased the contents of soil Zn, Ba, nitrate nitrogen, and available phosphorus. The main soil ARGs identified in this region were vancomycin, multidrug, and bacitracin resistance genes. Reforestation significantly increased the soil ARG abundance by 62.58%, while it decreased the ARG richness by 16.50%. Reforestation exerted no significant effects on the abundance of heavy metal resistance genes and pathogens, but it doubled the abundance of MGEs. Additionally, reforestation substantially decreased the co-occurrence frequencies of ARGs with MRGs and pathogens. In contrast, the correlation between ARGs and MGEs was greatly enhanced by reforestation. Similarly, the correlations between soil ARG abundance and environmental factors were also strengthened by reforestation. These findings suggest that reforestation can substantially affect the soil antibiotic resistome and exerts overall positive effects on soil health by decreasing ARG richness, providing critical information for assessing the effects of "grain for green" project on soil health.
Collapse
Affiliation(s)
- Song Zhang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ting Li
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinming Hu
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Kexin Li
- Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Dong Liu
- School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Haixia Li
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danhong Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Zejin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuping Fan
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongxiao Che
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
19
|
Cai W, He N, Xu L, Li M, Wen D, Liu S, Sun OJ. Spatial-temporal variation of the carbon sequestration rate of afforestation in China: Implications for carbon trade and planning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163792. [PMID: 37127160 DOI: 10.1016/j.scitotenv.2023.163792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Afforestation and reforestation (A&R) are nature-based and cost-effective solutions for enhancing terrestrial carbon sinks and facilitating faster carbon neutrality. However, the lack of hierarchical spatial-temporal maps for the carbon sequestration rate (CSR) from A&R at the national scale impedes the scientific implementation of forest management planning to a large extent. Here, we assessed the spatial-temporal CSR per area for A&R at the provincial, prefectural, and county levels in China using a forest carbon sequestration model under three climate scenarios. Results showed that the CSR of vegetation (CSRVeg), soil (CSRSoil), and the ecosystem (CSREco) significantly varied across space and time. In China, the CSRVeg, CSRSoil, and CSREco were primarily regulated by the spatial variations in temperature and precipitation. Additionally, CSRVeg was found to be positively influenced by precipitation and temperature, whereas temperature had a negative influence on CSRSoil. Therefore, the differences between the CSRVeg and CSRSoil should be emphasized in the future. These information on the spatiotemporal variation of CSR of A&R (vegetation, soil, and ecosystem) on unit area basis and at levels of province, prefecture, and county in China, can be used as a comparable protocol to estimate the carbon sinks of A&R at different scales. Overall, these hierarchical spatiotemporal maps for CSR on A&R may help to identify priority areas of forest management planning and carbon trade policy to achieve faster carbon neutrality for China in the future.
Collapse
Affiliation(s)
- Weixiang Cai
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ecological Research, Northeast Forestry University, Harbin 150040, China.
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of Sciences, Daxing'anling 165200, China
| | - Ding Wen
- GeoScene Information Technology Co., Ltd, Beijing 100028, China
| | - Shirong Liu
- Key Laboratory of Forest Ecology and Environment, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Osbert Jianxin Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
20
|
Alikhanova S, Bull JW. Review of Nature-based Solutions in Dryland Ecosystems: the Aral Sea Case Study. ENVIRONMENTAL MANAGEMENT 2023:10.1007/s00267-023-01822-z. [PMID: 37115238 PMCID: PMC10372098 DOI: 10.1007/s00267-023-01822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
NbS have gained substantial attention in the academic literature recently as a potential approach for simultaneously tackling environmental issues and addressing societal challenges. Drylands, which are among the world's most vulnerable areas to the impacts of climate change and cover a little less than the half of the global terrestrial surface, were the focus of this study. We conducted a systematic literature review to explore the potential opportunities for the application of NbS in rural drylands across the globe. We go on to specifically consider the possibility of applying selected NbS approaches in the Aral Sea region of Uzbekistan, as a case study of a dryland ecosystem illustrating major environmental and social challenges. We highlight which NbS show the most promise in the Aral Sea region and conclude with a discussion of existing gaps in the literature on NbS in drylands, and opportunities for further research.
Collapse
Affiliation(s)
- Shahzoda Alikhanova
- Department of Biology, University of Oxford, 11a Mansfield Road, OX1 3SZ, Oxford, UK.
| | - Joseph William Bull
- Department of Biology, University of Oxford, 11a Mansfield Road, OX1 3SZ, Oxford, UK
| |
Collapse
|
21
|
Guo Y, Zhao Z, Zhu F, Gao B. The impact of global warming on the potential suitable planting area of Pistacia chinensis is limited. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161007. [PMID: 36549530 DOI: 10.1016/j.scitotenv.2022.161007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Pistacia chinensis Bunge. is one of the main woody oil crops with a large artificial planting area in China and has important economic and ecological value. Here, based on 237 occurrence data and 22 environmental variables, we explored the potential planting area of P. chinensis in China in the present and future climate change scenarios by using a comprehensive model method. To fully consider the potential planting area of P. chinensis under specific climate change conditions and the limitations of soil conditions, we separately built two niche models to simulate the climate niche and soil demand niche, and then used the intersection of the two models as the result of the comprehensive habitat suitability model, finally, we used land-use data to filter the CHS model result. Our results showed, that under the baseline condition, the potential planting area of P. chinensis covers approximately 0.74 × 106 km2 in China. The future projection showed that the impact of global warming on the potentially suitable planting area of P. chinensis is limited, and most of the existing suitable habitats are not affected by climate change. With increasing temperature, the potential planting area will expand northward and slightly contract in the south margin, and its area will be slightly increased. Therefore, this species has great planting potential in China and should be given priority in the future afforestation plan.
Collapse
Affiliation(s)
- Yanlong Guo
- National Tibetan Plateau Data Center, Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefang Zhao
- Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Fuxin Zhu
- National Tibetan Plateau Data Center, Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Bei Gao
- Shaanxi Meteorological Service Center of Agricultural Remote Sensing and Economic Crops, Xi'an 710014, China
| |
Collapse
|
22
|
Lian X, Jiao L, Liu Z. Saturation response of enhanced vegetation productivity attributes to intricate interactions. GLOBAL CHANGE BIOLOGY 2023; 29:1080-1095. [PMID: 36367336 DOI: 10.1111/gcb.16522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Evidence for the multifaceted responses of terrestrial ecosystems has been shown by the weakening of CO2 fertilization-induced and warming-controlled productivity gains. The intricate relationship between vegetation productivity and various environmental controls still remains elusive spatially. Here several inherent preponderances make China a natural experimental setting to investigate the interaction and relative contributions of five drivers to gross primary productivity for the period from 1982 to 2018 (i.e., elevated atmospheric CO2 concentrations, climate change, nutrient availability, anthropogenic land use change, and soil moisture) by coupling multiple long-term datasets. Despite a strikingly prominent enhancement of vegetation productivity in China, it exhibits similar saturation responses to the aforementioned environmental drivers (elevated CO2 , climatic factors, and soil moisture). The CO2 fertilization-dominated network explains the long-term variations in vegetation productivity in humid regions, but its effect is clearly attenuated or even absent in arid and alpine environments controlled by climate and soil moisture. Divergence in interactions also provides distinct evidence that water availability plays an essential role in limiting the potential effects of climate change and elevated CO2 concentrations on vegetation productivity. Unprecedented industrialization and dramatic surface changes may have breached critical thresholds of terrestrial ecosystems under the diverse natural environment and thus forced a shift from a period dominated by CO2 fertilization to a period with nonlinear interactions. These findings suggest that future benefits in terrestrial ecosystems are likely to be counteracted by uncertainties in the complicated network, implying an increasing reliance on human societies to combat potential risks. Our results therefore highlight the need to account for the intricate interactions globally and thus incorporate them into mitigation and adaptation policies.
Collapse
Affiliation(s)
- Xihong Lian
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, Wuhan, China
| | - Limin Jiao
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, Wuhan, China
| | - Zejin Liu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Che C, Xiao S, Peng X, Ding A, Su J. Radial growth of Korshinsk peashrub and its response to drought in different sub-arid climate regions of northwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116708. [PMID: 36356535 DOI: 10.1016/j.jenvman.2022.116708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The increased frequency and intensity of droughts have seriously affected the stability of plantation ecosystems in the Chinese Loess Plateau. Caragana korshinskii Kom. was the dominant afforested shrub species in this region. Evaluating the radial growth of C. korshinskii and its response to drought can provide valuable information for sustainable management of plantations in the context of climate change. In this study, based on 237 shrub C. korshinskii annual ring samples from nine sites in different climate regions, we investigated the response of C. korshinskii radial growth to climate (temperature, precipitation, and monthly resolved standardized precipitation evapotranspiration index (SPEI_01)), and evaluated the differences between them using calculated indices of drought resistance, recovery, and resilience. The results demonstrate that the radial growth of C. korshinskii was mainly limited by drought stress in the previous September in arid regions and in March and June in semi-arid regions, whereas C. korshinskii in semi-humid regions was less influenced by drought stress. Recovery after drought decreased with increasing resistance, and resilience increased significantly with increasing resistance and recovery. Differences in precipitation were found to be the main factor generating variations in shrub resilience; with an increase in precipitation, the recovery and resilience after drought gradually increased. For plantation management, this study suggests that efficient utilization of precipitation resources and site-specific afforestation in different climate and site conditions may help to enhance resilience and improve the ecological service function of plantation forests in the Loess Plateau.
Collapse
Affiliation(s)
- Cunwei Che
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengchun Xiao
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xiaomei Peng
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Aijun Ding
- Gansu Agricultural University, Lanzhou, 730070, China
| | - Jingrong Su
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Fu J, Li P, Lin Y, Du H, Liu H, Zhu W, Ren H. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. ECO-ENVIRONMENT & HEALTH 2022; 1:259-279. [PMID: 38077253 PMCID: PMC10702919 DOI: 10.1016/j.eehl.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 06/22/2024]
Abstract
After the Industrial Revolution, the ever-increasing atmospheric CO2 concentration has resulted in significant problems for human beings. Nearly all countries in the world are actively taking measures to fight for carbon neutrality. In recent years, negative carbon emission technologies have attracted much attention due to their ability to reduce or recycle excess CO2 in the atmosphere. This review summarizes the state-of-the-art negative carbon emission technologies, from the artificial enhancement of natural carbon sink technology to the physical, chemical, or biological methods for carbon capture, as well as CO2 utilization and conversion. Finally, we expound on the challenges and outlook for improving negative carbon emission technology to accelerate the pace of achieving carbon neutrality.
Collapse
Affiliation(s)
- Jiaju Fu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pan Li
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huitong Du
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongzhi Liu
- Chinese Society for Environmental Sciences, Beijing 100082, China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Selection of Elms Tolerant to Dutch Elm Disease in South-West Romania. DIVERSITY 2022. [DOI: 10.3390/d14110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ophoiostoma novo- ulmi continues to be one of the most dangerous invasive fungi, destroying many autochthonous elm forests and cultures throughout the world. Searching for natural genotypes tolerant to Dutch Elm Disease (DED) is one of the main objectives of silviculturists all over the northern hemisphere in order to save the susceptible elms and to restore their ecosystem biodiversity. In this regard, the first trial was established between 1991 and 1994, in south-west Romania (Pădurea Verde, Timișoara), using three elm species (Ulmus minor, U. glabra, and U. laevis) with 38 provenances. A local strain of Ophiostoma novo-ulmi was used to artificially inoculate all elm variants and the DED evolution was observed. Furthermore, in 2018–2021 the trial was inventoried to understand the local genotype reaction to DED in the local environmental conditions after almost 30 years. The outcomes of the present study proved the continuous presence of the infections in the comparative culture and its proximity, but the identified pathogen had a new hybrid form (found for the first time in Romania) between O. novo-ulmi ssp. Americana x O. novo-ulmi ssp. novo-ulmi. Wych elm (U. glabra) was extremely sensitive to DED: only 12 trees (out of 69 found in 2018) survived in 2021, and only one tree could be selected according to the adopted health criteria (resistance and vigour). The field elm (U. minor) was sensitive to the pathogen, but there were still individuals that showed good health status and growth. In contrast, the European white elm (U. laevis) proved constant tolerance to DED: only 15% had been found dead or presented severe symptoms of dieback. Overall, the results of this study report the diverse reactions of the Romanian regional elm genotypes to DED over the last three decades, providing promising perspectives for improving the presence of elms in the forest ecosystems of the Carpathian basin.
Collapse
|
26
|
Boulanger-Lapointe N, Ágústsdóttir K, Barrio IC, Defourneaux M, Finnsdóttir R, Jónsdóttir IS, Marteinsdóttir B, Mitchell C, Möller M, Nielsen ÓK, Sigfússon AÞ, Þórisson SG, Huettmann F. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157140. [PMID: 35803416 DOI: 10.1016/j.scitotenv.2022.157140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Rangeland ecosystems are changing worldwide with the abandonment of extensive pastoralism practices and greater interest for species coexistence. However, the lack of compiled data on current changes in the abundance and distribution of herbivores challenges rangeland management decisions. Here we gathered and made available for the first time the most extensive set of occurrence data for rangeland herbivores in Iceland in an Open Access framework for transparent and repeatable science-based decisions. We mapped fine scale species distribution overlap to identify areas at risk for wildlife-livestock conflict and overgrazing. Nationwide and long term (1861-2021) occurrence data from 8 independent datasets were used alongside 11 predictor raster layers ("Big Data") to data mine and map the distribution of the domestic sheep (Ovis aries), feral reindeer (Rangifer tarandus tarandus), pink-footed geese (Anser brachyrhynchus), and rock ptarmigan (Lagopus muta islandorum) over the country during the summer. Using algorithms of Maxent in R, RandomForest, TreeNet (stochastic gradient boosting) and MARS (Splines) in Minitab-SPM 8.3, we computed 1 km pixel predictions from machine learning-based ensemble models. Our high-resolution models were tested with alternative datasets, and Area Under the Curve (AUC) values that indicated good (reindeer: 0.8817 and rock ptarmigan: 0.8844) to high model accuracy (sheep: 0.9708 and pink-footed goose: 0.9143). Whenever possible, source data and models are made available online and described with ISO-compliant metadata. Our results illustrate that sheep and pink-footed geese have the greatest overlap in distribution with potential implication for wildlife-livestock conflicts and continued ecosystem degradation even under diminishing livestock abundance at higher elevation. These nationwide models and data are a global asset and a first step in making available the best data for science-based sustainable decision-making about national herbivores affecting species coexistence and environmental management.
Collapse
Affiliation(s)
- Noémie Boulanger-Lapointe
- Faculty of Life and Environmental Sciences, University of Iceland, 7 Sturlugötu, 101 Reykjavik, Iceland.
| | | | - Isabel C Barrio
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, 22 Árleyni, 112 Reykjavík, Iceland
| | - Mathilde Defourneaux
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, 22 Árleyni, 112 Reykjavík, Iceland
| | - Rán Finnsdóttir
- Soil Conservation Service of Iceland, Gunnarsholti, 851 Hella, Iceland
| | | | | | - Carl Mitchell
- The Wildfowl & Wetlands Trust, Slimbridge, Gloucester GL2 7BT, United Kingdom
| | - Marteinn Möller
- Faculty of Life and Environmental Sciences, University of Iceland, 7 Sturlugötu, 101 Reykjavik, Iceland
| | - Ólafur Karl Nielsen
- Icelandic Institute of Natural History, 6-8 Urriðaholtsstræti, 210 Garðabær, Iceland
| | | | | | - Falk Huettmann
- EWHALE lab- Institute of Arctic Biology, Biology & Wildlife Department, University of Alaska Fairbanks (UAF), 2140 Koyukuk Dr, Fairbanks, AK 99775, United States
| |
Collapse
|
27
|
The Grain for Green Project in Contiguous Poverty-Stricken Regions of China: A Nature-Based Solution. SUSTAINABILITY 2022. [DOI: 10.3390/su14137755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Grain for Green Project (GGP) is one of many Nature-based Solutions (NbS), which aims to address the challenge of ecological restoration while providing livelihood security for farmers in poverty-dominated regions. Evaluating the success of such a project can prove difficult. Here, we choose the contiguous poverty-stricken regions (CPSR) of China to study the multiple benefits of the GGP in the context of NbS. We collect ecological-monitoring data, forest-resources data, and socioeconomic data and use them in a distributed method with relevant indicators, to evaluate the ecological benefits of the GGP. Additionally, the socioeconomic benefits are evaluated using questionnaire-based surveys. Our results showed that the ecological benefits of the GGP in the CPSR were 5.6 × 1011 RMB/a in 2017, with the proportion of each ecosystem’s services being 27.1% (water conservation), 21.1% (biodiversity conservation), 18.4% (purification of the atmospheric environment), 13.1% (soil conservation), 12.9% (carbon sequestration and oxygen release), 5.4% (forest protection), and 1.6% (nutrient accumulation). In terms of socioeconomic benefit, the GGP changed the production methods of farmers, which resulted in income growth, with an average increase of 5100 RMB/a per household. In the context of NbS, ecological conservation, and restoration, the accurate and systematic monitoring of the socioeconomic and ecological benefits will become more important for government decisions.
Collapse
|
28
|
Key Strategies Underlying the Adaptation of Mongolian Scots Pine (Pinussylvestris var. mongolica) in Sandy Land under Climate Change: A Review. FORESTS 2022. [DOI: 10.3390/f13060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Forest degradation and mortality have been widely reported in the context of increasingly significant global climate change. As the country with the largest total tree plantation area globally, China has a great responsibility in forestry management to cope with climate change effectively. Mongolian Scots pine (Pinus sylvestris var. mongolica) was widely introduced from its natural sites in China into several other sandy land areas for establishing shelterbelt in the Three-North Shelter Forest Program, scoring outstanding achievements in terms of wind-breaking and sand-fixing. Mongolian Scots pine plantations in China cover a total area of ~800,000 hectares, with the eldest trees having >60 years. However, plantation trees have been affected by premature senescence in their middle-age stages (i.e., dieback, growth decline, and death) since the 1990s. This phenomenon has raised concerns about the suitability of Mongolian Scots pine to sandy habitats and the rationality for further afforestation, especially under the global climate change scenario. Fortunately, dieback has occurred only sporadically at specific sites and in certain years and has not spread to other regions in northern China; nevertheless, global climate change has become increasingly significant in that region. These observations reflect the strong drought resistance and adaptability of Mongolian Scots pines. In this review, we summarized the most recent findings on the ecohydrological attributes of Mongolian Scots pine during its adaptation to both fragile habitats and climate change. Five main species-specific strategies (i.e., opportunistic water absorb strategy, hydraulic failure risk avoidance strategy, water conservation strategy, functional traits adjustment strategy, rapid regeneration strategy) were summarized, providing deep insights into the tree–water relationship. Overall, the findings of this study can be applied to improve plantation management and better cope with climate-change-related drought stress.
Collapse
|
29
|
The Relative Roles of Climate Variation and Human Activities in Vegetation Dynamics in Coastal China from 2000 to 2019. REMOTE SENSING 2022. [DOI: 10.3390/rs14102485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vegetation in the terrestrial ecosystem, sensitive to climate change and human activities, exerts a crucial influence on the carbon cycles in land, ocean, and atmosphere. Discrimination between climate and human-induced vegetation dynamics is advocated but still limited, especially in coastal China, which is characterized by a developed economy, a large population, and high food production, but also by unprecedented climate change and warming. Taking coastal China as the research area, our study used the normalized difference vegetation index (NDVI) in growing seasons, as well as precipitation, temperature, and sunlight hours datasets, adopted residual trend analysis at pixel and regional scales in coastal China from 2000–2019 and aims to (1) delineate the patterns and processes of vegetation changes, and (2) separate the relative contributions of climate and human activities by adopting residual trend analysis. The results indicated that (1) coastal China experienced the most vegetation greening (83.04% of the whole region) and partial degradation (16.86% of the whole region) with significant spatial heterogeneity; (2) compared with climate change, human activities have a greater positive impact on NDVI, and the regions were mainly located in the north of the North China Plain and the south of southern China; (3) the relative contribution rates of climate change and human activities were detected to be 0–60% and 60–100%, respectively; (4) in the northern coastal areas, the improvement of cultivated land management greatly promoted the greening of vegetation and thus the increase of grain yield, while in southern coastal areas, afforestation and the restoration of degraded forest were responsible for vegetation restoration; and (5) similar results obtained by partial correlation between nighttime lights and NDVI indicated the reliability of the residual trend analysis. The linear relationships of precipitation, temperature, and radiation on NDVI may limit the accurate estimation of climate drivers on vegetation, and further ecosystem process-modeling approaches can be used to estimate the relative contribution of climate change and human activities. The findings in our research emphasized that the attribution for vegetation dynamics with heterogeneity can provide evidence for the designation of rational ecological conservation policies.
Collapse
|
30
|
Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. WATER 2022. [DOI: 10.3390/w14091502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Basin ecohydrological processes are essential for informing policymaking and social development in response to growing environmental problems. In this paper, we review watershed ecohydrology, focusing on the interaction between watershed ecological and hydrological processes. Climate change and human activities are the most important factors influencing water quantity and quality, and there is a need to integrate watershed socioeconomic activities into the paradigm of watershed ecohydrological process studies. Then, we propose a new framework for integrated watershed management. It includes (1) data collection: building an integrated observation network; (2) theoretical basis: attribution analysis; (3) integrated modeling: medium- and long-term prediction of ecohydrological processes by human–nature interactions; and (4) policy orientation. The paper was a potential solution to overcome challenges in the context of frequent climate extremes and rapid land-use change.
Collapse
|