1
|
Nickel AK, Campana SE, Ólafsdóttir GÁ. Temperature and body size affect movement of juvenile Atlantic cod (Gadus morhua) and saithe (Pollachius virens) at nearshore nurseries. JOURNAL OF FISH BIOLOGY 2025; 106:1554-1569. [PMID: 38924061 PMCID: PMC12120334 DOI: 10.1111/jfb.15850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Seasonal migrations of marine fish between shallow summer feeding habitats and deep overwintering grounds are driven by fluctuations in the biotic and abiotic environment as well as by changes in the internal state. Ontogenetic shifts in physiology and metabolism affect the response to environmental drivers and may lead to changes in migration timing and propensity. In this study, we investigated the effect of temperature and body size on migration timing and depth distribution in acoustically tagged Atlantic cod, Gadus morhua, and saithe, Pollachius virens, during the period of seasonal migration from shallow summer habitats. The results from our study revealed a wide range of horizontal and vertical distribution of age 1 and 2 G. morhua within the fjord. Larger G. morhua inhabited deeper, cooler waters than smaller juveniles, likely reflecting size-dependent thermal preferences and predation pressure. Conversely, juvenile P. virens occupied primarily shallow waters close to land. The variation in depth distribution of G. morhua was mainly explained by body size and not, against our predictions, by water temperature. Conversely, the dispersal from the in-fjord habitats occurred when water temperatures were high, suggesting that seasonal temperature fluctuations can trigger the migration timing of P. virens and larger G. morhua from summer habitats. Partial migration of small juvenile G. morhua from in-fjord foraging grounds, likely influenced by individual body condition, suggested seasonal migration as a flexible strategy that individuals may use to reduce predation and energetic expenditure. Predation mortality rates of tagged juveniles were higher than previously suggested and are the first robust predation mortality rates for juvenile G. morhua and P. virens estimated based on acoustic transmitters with acidity sensors. The results have relevance for climate-informed marine spatial planning as under the scenario of increasing ocean temperatures, increasing summer temperatures may reduce the juveniles' resource utilization in the shallow summer nurseries, resulting in lower growth rates, increased predation pressure, and lower chances of juvenile winter survival.
Collapse
Affiliation(s)
- Anja K. Nickel
- University of IcelandResearch Centre of the WestfjordsBolungarvíkIceland
| | - Steven E. Campana
- University of IcelandFaculty of Life and Environmental SciencesReykjavíkIceland
| | | |
Collapse
|
2
|
Costa-Pereira R, Shaner PJL. The spatiotemporal context of individual specialization in resource use and environmental associations. J Anim Ecol 2025; 94:268-275. [PMID: 38706400 DOI: 10.1111/1365-2656.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
1. Individual niche specialization is widespread in natural populations and has key implications for higher levels of biological organization. This phenomenon, however, has been primarily quantified in resource niche axes, overlooking individual variation in environmental associations (i.e. abiotic conditions organisms experience). 2. Here, we explore what we can learn from a multidimensional perspective of individual niche specialization that integrates resource use and environmental associations into a common framework. 3. By combining predictions from theory and simple simulations, we illustrate how (i) multidimensional intraspecific niche variation and (ii) the spatiotemporal context of interactions between conspecifics scale up to shape emergent patterns of the population niche. 4. Contemplating individual specialization as a multidimensional, unifying concept across biotic and abiotic niche axes is a fundamental step towards bringing this concept closer to the n-dimensional niche envisioned by Hutchinson.
Collapse
Affiliation(s)
- Raul Costa-Pereira
- Department of Animal Biology, Institute of Biology, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Pei-Jen Lee Shaner
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
3
|
Qian G, Wu D, Zhang L, Kortsch S. Temperature variability regulates the interactive effects of warming and pharmaceutical on aquatic ecosystem dynamics. J Theor Biol 2024; 595:111948. [PMID: 39299680 DOI: 10.1016/j.jtbi.2024.111948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/21/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Climate warming and pharmaceutical contaminants have profound impacts on population dynamics and ecological community structure, yet the consequences of their interactive effects remain poorly understood. Here, we explore how climate warming interacts with pharmaceutical-induced boldness change to affect aquatic ecosystems, built on an empirically well-informed food-chain model, consisting of a size-structured fish consumer, a zooplankton prey, and a fish predator. Climate warming is characterized by both daily mean temperature (DMT) and diurnal temperature range (DTR) in our model. Results show that DMT and high levels of species' boldness are the primary drivers of community instability. However, their interactive effects can lead to diverse outcomes: from predator collapse to coexistence with seasonality-driven cycles and coexistence with population interaction-driven cycles. The interactive effects are significantly modulated by daily temperature variability, where moderate DTR counteracts the destabilizing interactive effects by increasing consumer reproduction, while large temperature variability considerably reduces consumer biomass, destabilizing the community at high mean temperatures. Our analyses disentangle the respective roles of DMT, DTR and boldness in mediating the response of aquatic ecosystems to the impacts from pharmaceutical contaminants in the context of climate warming. The interactive effects of the environmental stressors reported here underscore the pressing need for studies aimed at quantifying the cumulative impacts of multiple environmental stressors on aquatic ecosystems.
Collapse
Affiliation(s)
- Guangjing Qian
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| | - Dan Wu
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China
| | - Lai Zhang
- School of Mathematical Science, Yangzhou University, Yangzhou 225002, China.
| | - Susanne Kortsch
- Tväminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, J.A. Palménin tie 260, 10900 Hanko, Finland
| |
Collapse
|
4
|
Rittweg TD, Trueman C, Wiedenbeck M, Fietzke J, Wolter C, Talluto L, Dennenmoser S, Nolte A, Arlinghaus R. Variable habitat use supports fine-scale population differentiation of a freshwater piscivore (northern pike, Esox lucius) along salinity gradients in brackish lagoons. Oecologia 2024; 206:275-292. [PMID: 39424687 PMCID: PMC11599437 DOI: 10.1007/s00442-024-05627-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
In mobile animals, selection pressures resulting from spatio-temporally varying ecological factors often drive adaptations in migration behavior and associated physiological phenotypes. These adaptations may manifest in ecologically and genetically distinct ecotypes within populations. We studied a meta-population of northern pike (Esox lucius) in brackish environments and examined intrapopulation divergence along environmental gradients. Behavioral phenotypes in habitat use were characterized via otolith microchemistry in 120 individuals sampled from brackish lagoons and adjacent freshwater tributaries. We genotyped 1514 individual pike at 33 highly informative genetic markers. The relationship between behavioral phenotype and genotype was examined in a subset of 101 pikes for which both phenotypic and genomic data were available. Thermosaline differences between juvenile and adult life stages indicated ontogenetic shifts from warm, low-saline early habitats towards colder, higher-saline adult habitats. Four behavioral phenotypes were found: Freshwater residents, anadromous, brackish residents, and cross-habitat individuals, the latter showing intermediary habitat use between brackish and freshwater areas. Underlying the behavioral phenotypes were four genotypes, putative freshwater, putative anadromous, and two putatively brackish genotypes. Through phenotype-genotype matching, three ecotypes were identified: (i) a brackish resident ecotype, (ii) a freshwater ecotype expressing freshwater residency or anadromy, and (iii) a previously undescribed intermediary cross-habitat ecotype adapted to intermediate salinities, showing limited reliance on freshwater. Life-time growth of all ecotypes was similar, suggesting comparable fitness. By combining genetic data with lifelong habitat use and growth as a fitness surrogate, our study revealed strong differentiation in response to abiotic environmental gradients, primarily salinity, indicating ecotype diversity in coastal northern pike is higher than previously believed.
Collapse
Affiliation(s)
- Timo D Rittweg
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany.
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
| | - Clive Trueman
- School of Ocean and Earth Science, University of Southampton Waterfront Campus, European Way, Southampton, SO143ZH, UK
| | - Michael Wiedenbeck
- German Research Center for Geosciences (GFZ) Potsdam, Telegrafenberg, 14473, Potsdam, Brandenburg, Germany
| | - Jan Fietzke
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Schleswig-Holstein, Germany
| | - Christian Wolter
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany
| | - Lauren Talluto
- Research Group Fluvial Ecosystem Ecology, Department of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Stefan Dennenmoser
- Working Group Ecological Genomics, Institute of Biology and Environmental Sciences, Carl Von Ossietzky Universität Oldenburg, Carl Von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Arne Nolte
- Working Group Ecological Genomics, Institute of Biology and Environmental Sciences, Carl Von Ossietzky Universität Oldenburg, Carl Von Ossietzky-Str. 9-11, 26111, Oldenburg, Germany
| | - Robert Arlinghaus
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Berlin, Germany
- Division of Integrative Fisheries Management, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany
| |
Collapse
|
5
|
Cherif M, Brose U, Hirt MR, Ryser R, Silve V, Albert G, Arnott R, Berti E, Cirtwill A, Dyer A, Gauzens B, Gupta A, Ho HC, Portalier SMJ, Wain D, Wootton K. The environment to the rescue: can physics help predict predator-prey interactions? Biol Rev Camb Philos Soc 2024; 99:1927-1947. [PMID: 38855988 DOI: 10.1111/brv.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity. Hence, they cannot yet predict accurately how local food webs will respond to anthropogenic pressures, notably to climate change and species invasions. Herein, we propose a framework that synthesises recent developments in food-web theory, integrating body size and metabolism with the physical properties of ecosystems. We advocate for combination of the movement paradigm with a modular definition of the predation sequence, because movement is central to predator-prey interactions, and a generic, modular model is needed to describe all the possible variation in predator-prey interactions. Pending sufficient empirical and theoretical knowledge, our framework will help predict the food-web impacts of well-studied physical factors, such as temperature and oxygen availability, as well as less commonly considered variables such as wind, turbidity or electrical conductivity. An improved predictive capability will facilitate a better understanding of ecosystem responses to a changing world.
Collapse
Affiliation(s)
- Mehdi Cherif
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Violette Silve
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Georg Albert
- Department of Forest Nature Conservation, Georg-August-Universität, Büsgenweg 3, Göttingen, 37077, Germany
| | - Russell Arnott
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, Cambridgeshire, CB2 1LR, UK
| | - Emilio Berti
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Alyssa Cirtwill
- Spatial Foodweb Ecology Group, Research Centre for Ecological Change (REC), Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 4 (Yliopistonkatu 3), Helsinki, 00014, Finland
| | - Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Anhubav Gupta
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Hsi-Cheng Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan
| | - Sébastien M J Portalier
- Department of Mathematics and Statistics, University of Ottawa, STEM Complex, room 342, 150 Louis-Pasteur Pvt, Ottawa, Ontario, K1N 6N5, Canada
| | - Danielle Wain
- 7 Lakes Alliance, Belgrade Lakes, 137 Main St, Belgrade Lakes, ME, 04918, USA
| | - Kate Wootton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
6
|
Ventura M, Cittadino S, Calizza E, Careddu G, Caputi SS, Rossi L, Costantini ML. Intraspecific variation in the functional responses of an invasive tropical freshwater fish under increasing temperature regimes. Sci Rep 2024; 14:28424. [PMID: 39558026 PMCID: PMC11574059 DOI: 10.1038/s41598-024-79957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Global warming and the introduction of non-native fish represent major threats to freshwater biodiversity worldwide, but their effects have usually been investigated separately. Since most fish are ectotherms, their metabolism and feeding behaviour are highly influenced by temperature. Increasing water temperatures may thus exacerbate the impact of non-native fish, particularly those adapted to warmer conditions, on prey populations. Increasing temperature can also result in divergences between the impacts of females and males, especially in sexually dimorphic species.The globally invasive tropical guppy Poecilia reticulata Peters, a popular aquarium fish also used for control of mosquito-borne diseases and as a model species in ecological and evolutionary studies, exhibits strong sexual dimorphism and larvivory. This laboratory study examined prey consumption and prey size selection by guppies fed with chironomid larvae under varying temperature conditions. The effect of sex, pregnancy and prey body size on the guppy's predatory response was also assessed by comparing Functional Responses.The results highlighted four key points: (1) increased temperature led to increased prey consumption in both females and males by decreasing handling time; (2) prey consumption was disproportionately higher in females than males, regardless of temperature; (3) temperature influenced females' prey size selection; and (4) pregnancy reduced prey handling time among females.These findings show that temperature and intraspecific differences influence the feeding response of invasive fish, and they should both be taken into account when investigating and predicting the ecological impact of invasive species on invaded food webs.
Collapse
Affiliation(s)
- Matteo Ventura
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
| | - Simone Cittadino
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
| | - Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, 00196, Italy
| | - Giulio Careddu
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, 00196, Italy
| | - Simona Sporta Caputi
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy.
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, 00196, Italy.
| | - Loreto Rossi
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, 00196, Italy
| | - Maria Letizia Costantini
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, 00196, Italy
| |
Collapse
|
7
|
Tovar-Bohórquez O, McKenzie D, Crestel D, Vandeputte M, Geffroy B. Thermal modulation of energy allocation during sex determination in the European sea bass (Dicentrarchus labrax). Gene 2024; 927:148721. [PMID: 38925525 DOI: 10.1016/j.gene.2024.148721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Water temperature governs physiological functions such as growth, energy allocation, and sex determination in ectothermic species. The European sea bass (Dicentrarchus labrax) is a major species in European aquaculture, exhibiting early dimorphic growth favoring females. The species has a polygenic sex determination system that interacts with water temperature to determine an individual's sex, with two periods during development that are sensitive to temperature. The current study investigated the influence of water temperature on energy allocation and sex-biased genes during sex determination and differentiation periods. RNA-Sequencing and qPCR analyses were conducted in two separate experiments, of either constant water temperatures typical of aquaculture conditions or natural seasonal thermal regimes, respectively. We focused on eight key genes associated with energy allocation, growth regulation, and sex determination and differentiation. In Experiment 1, cold and warm temperature treatments favored female and male proportions, respectively. The RNA-seq analysis highlighted sex-dependent energy allocation transcripts, with higher levels of nucb1 and pomc1 in future females, and increased levels of egfra and spry1 in future males. In Experiment 2, a warm thermal regime favored females, while a cold regime favored males. qPCR analysis in Experiment 2 revealed that ghrelin and nucb1 were down-regulated by warm temperatures. A significant sex-temperature interaction was observed for pank1a with higher and lower expression for males in the cold and warm regimes respectively, compared to females. Notably, spry1 displayed increased expression in future males at the all-fins stage and in males undergoing molecular sex differentiation in both experimental conditions, indicating that it provides a novel, robust, and consistent marker for masculinization. Overall, our findings emphasize the complex interplay of genes involved in feeding, energy allocation, growth, and sex determination in response to temperature variations in the European sea bass.
Collapse
Affiliation(s)
| | - David McKenzie
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France
| | - Damien Crestel
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Benjamin Geffroy
- MARBEC, Ifremer, IRD, Univ Montpellier, CNRS, Palavas-Les-Flots, France.
| |
Collapse
|
8
|
Nepal V, Dillon M, Fabrizio MC, Tuckey TD. Physiologically-informed predictions of climate warming effects on native and non-native populations of blue catfish. J Therm Biol 2024; 124:103951. [PMID: 39182420 DOI: 10.1016/j.jtherbio.2024.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Blue catfish Ictalurus furcatus has been widely introduced throughout the United States to enhance recreational fisheries. Its success in both its native and non-native range, especially in the context of climate change, will be influenced by its thermal performance. We conducted a laboratory experiment to investigate the responses of wild-captured, subadult blue catfish to temperatures ranging from 7 °C to 38 °C. Blue catfish had relatively low standard metabolic rates, indicating low energetic demands, and hence an ability to survive well even during low-food conditions. Metabolic scope and food consumption rate increased with temperature, with metabolic scope peaking at 29.1 °C, and consumption rate peaking at 32 °C. Body condition remained high up to 32 °C, but decreased drastically thereafter, suggesting limitations in maintaining metabolism through food consumption at temperatures >32 °C; blue catfish cannot survive in such habitats indefinitely. Yet, many fish were able to survive temperatures as high as 38 °C for 5 days, suggesting that acute and occasionally chronic heat waves will not limit this species. Using these results, we also predicted the performance of blue catfish under prevailing conditions and under climate warming at seven locations throughout their current range in the U.S. We found that some blue catfish populations in southern and southeastern areas will likely experience temperatures above the optimal temperature for extended periods due to climate change, thus limiting potential habitat availability for this species. But, many non-native populations, especially those in northern areas such as Idaho, North Dakota, and northern California, may benefit from the expected warmer temperatures during spring and fall.
Collapse
Affiliation(s)
- Vaskar Nepal
- Virginia Institute of Marine Science, William & Mary, 1370 Greate Rd, Gloucester Point, VA 23062, USA; Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA.
| | - Maggie Dillon
- Virginia Institute of Marine Science, William & Mary, 1370 Greate Rd, Gloucester Point, VA 23062, USA
| | - Mary C Fabrizio
- Virginia Institute of Marine Science, William & Mary, 1370 Greate Rd, Gloucester Point, VA 23062, USA
| | - Troy D Tuckey
- Virginia Institute of Marine Science, William & Mary, 1370 Greate Rd, Gloucester Point, VA 23062, USA
| |
Collapse
|
9
|
Niu J, Huss M, Garnier A, Vasemägi A, Gårdmark A. Multi-decadal warming alters predator's effect on prey community composition. Proc Biol Sci 2024; 291:20240511. [PMID: 39110169 PMCID: PMC11305412 DOI: 10.1098/rspb.2024.0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Predator responses to warming can occur via phenotypic plasticity, evolutionary adaptation or a combination of both, changing their top-down effects on prey communities. However, we lack evidence of how warming-induced evolutionary changes in predators may influence natural food webs. Here, we ask whether wild fish subject to warming across multiple generations differ in their impacts on prey communities compared with their nearby conspecifics experiencing a natural thermal regime. We carried out a common garden mesocosm experiment with larval perch (Perca fluviatilis), originating from a heated or reference coastal environment, feeding on zooplankton communities under a gradient of experimental temperatures. Overall, in the presence of fish of heated origin, zooplankton abundance was higher and did not change with experimental warming, whereas in the presence of fish of unheated origin, it declined with experimental temperature. Responses in zooplankton taxonomic and size composition suggest that larvae of heated origin consume more large-sized taxa as the temperature increases. Our findings show that differences between fish populations, potentially representing adaptation to their long-term thermal environments, can affect the abundance, biomass, size and species composition of their prey communities. This suggests that rapid microevolution in predators to ongoing climate warming might have indirect cross-generational ecological consequences propagating through food webs.
Collapse
Affiliation(s)
- Jingyao Niu
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala75007, Sweden
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala75007, Sweden
| | - Aurélie Garnier
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala75007, Sweden
- Université de Rennes, UMR 6553 CNRS ECOBIO, 263 Avenue du Général Leclerc, Rennes35042, France
| | - Anti Vasemägi
- Institute of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, Drottningholm17893, Sweden
- Department of Aquaculture, Estonian University of Life Sciences, Institute of Veterinary Medicine and Animal Sciences, 46A Kreutzwaldi Street, Tartu51006, Estonia
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Box 7018, Uppsala75007, Sweden
| |
Collapse
|
10
|
Pauly D, Chu E, Müller J. Brobdingnagians and Goliaths: two forms of gigantism in fish. JOURNAL OF FISH BIOLOGY 2024; 104:1709-1717. [PMID: 38423514 DOI: 10.1111/jfb.15694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 11/27/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Two forms of gigantism are differentiated in fish, Brobdingnagian and Goliathan gigantism, the former applying to populations whose individuals are all larger than is typical for the taxon, the latter to single individuals within a population. While Brobdingnagian gigantism is largely explained by various ecological and evolutionary rules, Goliathan gigantism is not. A mechanistic hypothesis is proposed which explains Goliathan gigantism in terms of the reduction of oxygen requirements of individual fish via moving to cooler temperatures and/or acquiring larger, more energy-dense prey, which enable them to get bigger, and, in the process, sometimes generate bimodal size distributions that may qualify as gradual forms between Goliathan and Brobdingnagian gigantism. This mechanism, which relies on the manner in which their gill surface area grows, is more likely to operate in fish that can get big in the first place than in fish that remain small.
Collapse
Affiliation(s)
- Daniel Pauly
- Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elaine Chu
- Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Johannes Müller
- Leiden University Centre for the Arts in Society, Leiden, The Netherlands
| |
Collapse
|
11
|
Beaudry-Sylvestre M, Benoît HP, Hutchings JA. Coherent long-term body-size responses across all Northwest Atlantic herring populations to warming and environmental change despite contrasting harvest and ecological factors. GLOBAL CHANGE BIOLOGY 2024; 30:e17187. [PMID: 38456203 DOI: 10.1111/gcb.17187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
Body size is a key component of individual fitness and an important factor in the structure and functioning of populations and ecosystems. Disentangling the effects of environmental change, harvest and intra- and inter-specific trophic effects on body size remains challenging for populations in the wild. Herring in the Northwest Atlantic provide a strong basis for evaluating hypotheses related to these drivers given that they have experienced significant warming and harvest over the past century, while also having been exposed to a wide range of other selective constraints across their range. Using data on mean length-at-age 4 for the sixteen principal populations over a period of 53 cohorts (1962-2014), we fitted a series of empirical models for temporal and between-population variation in the response to changes in sea surface temperature. We find evidence for a unified cross-population response in the form of a parabolic function according to which populations in naturally warmer environments have responded more negatively to increasing temperature compared with those in colder locations. Temporal variation in residuals from this function was highly coherent among populations, further suggesting a common response to a large-scale environmental driver. The synchrony observed in this study system, despite strong differences in harvest and ecological histories among populations and over time, clearly indicates a dominant role of environmental change on size-at-age in wild populations, in contrast to commonly reported effects of fishing. This finding has important implications for the management of fisheries as it indicates that a key trait associated with population productivity may be under considerably less short-term management control than currently assumed. Our study, overall, illustrates the need for a comparative approach within species for inferences concerning the many possible effects on body size of natural and anthropogenic drivers in the wild.
Collapse
Affiliation(s)
- Manuelle Beaudry-Sylvestre
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont Joli, Quebec, Canada
| | - Hugues P Benoît
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont Joli, Quebec, Canada
| | - Jeffrey A Hutchings
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Institute of Marine Research, Flødevigen Marine Research Station, Bergen, Norway
- Centre for Coastal Research, University of Agder, Kristiansand, Norway
| |
Collapse
|
12
|
Gauzens B, Rosenbaum B, Kalinkat G, Boy T, Jochum M, Kortsch S, O’Gorman EJ, Brose U. Flexible foraging behaviour increases predator vulnerability to climate change. NATURE CLIMATE CHANGE 2024; 14:387-392. [PMID: 38617202 PMCID: PMC11006620 DOI: 10.1038/s41558-024-01946-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea). Our results show that foraging shifts from trait- to density-dependent prey selectivity in warmer and more productive environments. This behavioural change leads to lower consumption efficiency at higher temperature as fish select more abundant but less energetically rewarding prey, thereby undermining species persistence and biodiversity. By integrating this behaviour into dynamic food web models, our study reveals that flexible foraging leads to lower species coexistence and biodiversity in communities under global warming.
Collapse
Affiliation(s)
- Benoit Gauzens
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Gregor Kalinkat
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Thomas Boy
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Malte Jochum
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Department of Global Change Ecology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Susanne Kortsch
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Eoin J. O’Gorman
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
13
|
Kindsvater HK, Juan‐Jordá M, Dulvy NK, Horswill C, Matthiopoulos J, Mangel M. Size-dependence of food intake and mortality interact with temperature and seasonality to drive diversity in fish life histories. Evol Appl 2024; 17:e13646. [PMID: 38333556 PMCID: PMC10848883 DOI: 10.1111/eva.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Understanding how growth and reproduction will adapt to changing environmental conditions is a fundamental question in evolutionary ecology, but predicting the responses of specific taxa is challenging. Analyses of the physiological effects of climate change upon life history evolution rarely consider alternative hypothesized mechanisms, such as size-dependent foraging and the risk of predation, simultaneously shaping optimal growth patterns. To test for interactions between these mechanisms, we embedded a state-dependent energetic model in an ecosystem size-spectrum to ask whether prey availability (foraging) and risk of predation experienced by individual fish can explain observed diversity in life histories of fishes. We found that asymptotic growth emerged from size-based foraging and reproductive and mortality patterns in the context of ecosystem food web interactions. While more productive ecosystems led to larger body sizes, the effects of temperature on metabolic costs had only small effects on size. To validate our model, we ran it for abiotic scenarios corresponding to the ecological lifestyles of three tuna species, considering environments that included seasonal variation in temperature. We successfully predicted realistic patterns of growth, reproduction, and mortality of all three tuna species. We found that individuals grew larger when environmental conditions varied seasonally, and spawning was restricted to part of the year (corresponding to their migration from temperate to tropical waters). Growing larger was advantageous because foraging and spawning opportunities were seasonally constrained. This mechanism could explain the evolution of gigantism in temperate tunas. Our approach addresses variation in food availability and individual risk as well as metabolic processes and offers a promising approach to understand fish life-history responses to changing ocean conditions.
Collapse
Affiliation(s)
- Holly K. Kindsvater
- Department of Fish and Wildlife ConservationVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Maria‐José Juan‐Jordá
- Earth to Ocean Research Group, Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA)GipuzkoaSpain
- Instituto Español de Oceanografía (IEO‐CSIC), Centro Oceanográfico de MadridMadridSpain
| | - Nicholas K. Dulvy
- Earth to Ocean Research Group, Department of Biological SciencesSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Cat Horswill
- ZSL Institute of ZoologyLondonUK
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Jason Matthiopoulos
- Institute of Biodiversity, One Health and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Marc Mangel
- Theoretical Ecology Group, Department of BiologyUniversity of BergenBergenNorway
- Institute of Marine Sciences and Department of Applied Mathematics and StatisticsUniversity of CaliforniaSanta CruzCaliforniaUSA
| |
Collapse
|
14
|
Price MHH, Moore JW, McKinnell S, Connors BM, Reynolds JD. Habitat modulates population-level responses of freshwater salmon growth to a century of change in climate and competition. GLOBAL CHANGE BIOLOGY 2024; 30:e17095. [PMID: 38273478 DOI: 10.1111/gcb.17095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 01/27/2024]
Abstract
The impacts of climate change are widespread and threaten natural systems globally. Yet, within regions, heterogeneous physical landscapes can differentially filter climate, leading to local response diversity. For example, it is possible that while freshwater lakes are sensitive to climate change, they may exhibit a diversity of thermal responses owing to their unique morphology, which in turn can differentially affect the growth and survival of vulnerable biota such as fishes. In particular, salmonids are cold-water fishes with complex life histories shaped by diverse freshwater habitats that are sensitive to warming temperatures. Here we examine the influence of habitat on the growth of sockeye salmon (Oncorhynchus nerka) in nursery lakes of Canada's Skeena River watershed over a century of change in regional temperature and intraspecific competition. We found that freshwater growth has generally increased over the last century. While growth tended to be higher in years with relatively higher summer air temperatures (a proxy for lake temperature), long-term increases in growth appear largely influenced by reduced competition. However, habitat played an important role in modulating the effect of high temperature. Specifically, growth was positively associated with rising temperatures in relatively deep (>50 m) nursery lakes, whereas warmer temperatures were not associated with a change in growth for fish among shallow lakes. The influence of temperature on growth also was modulated by glacier extent whereby the growth of fish from lakes situated in watersheds with little (i.e., <5%) glacier cover increased with rising temperatures, but decreased with rising temperatures for fish in lakes within more glaciated watersheds. Maintaining the integrity of an array of freshwater habitats-and the processes that generate and maintain them-will help foster a diverse climate-response portfolio for important fish species, which in turn can ensure that salmon watersheds are resilient to future environmental change.
Collapse
Affiliation(s)
- Michael H H Price
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jonathan W Moore
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Skip McKinnell
- Salmoforsk International Environmental Consulting, Victoria, British Columbia, Canada
| | - Brendan M Connors
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Fisheries and Oceans Canada, Institute of Oceans Sciences, Sidney, British Columbia, Canada
| | - John D Reynolds
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
15
|
Friedland KD, Ganley LC, Dimarchopoulou D, Gaichas S, Morse RE, Jordaan A. Change in body size in a rapidly warming marine ecosystem: Consequences of tropicalization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166117. [PMID: 37572904 DOI: 10.1016/j.scitotenv.2023.166117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Climate change is profoundly affecting the physical environment and biota of the Northeast U.S. Continental Shelf ecosystem. To understand adaptations to climate change, in particular warming temperatures, we used bottom trawl survey data to describe the size of individual fish and macroinvertebrates. Using species distribution models to estimate abundance and biomass, we determined body size in weight for all modeled species. We demonstrate a tendency for increased abundance and biomass and a concomitant decline in body size over time. An analysis of length frequency data supports this assertion. There was no trend in the combined anthropogenic removals from the ecosystem, i.e. catches, suggesting a limited role of fisheries in influencing these changes. The changes in the fish and macroinvertebrate communities are consistent with the hypothesis of a tropicalization of this ecosystem, where the ecosystem experiences a change in diversity, abundance, biomass, and the size of individuals consistent with lower latitudes. The changes in how productivity is expressed in the ecosystem factors into how human populations relate to it; in a practical sense, change in body size will likely influence the strategies and efficiencies of harvest procedures and the industries built to support them.
Collapse
Affiliation(s)
| | - Laura C Ganley
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA, 02110, USA
| | - Donna Dimarchopoulou
- Biology Department, Dalhousie University, 1355 Oxford St, PO Box 15000, Halifax, NS, B3H4R2, Canada; Biology Department, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA, 02540, USA
| | - Sarah Gaichas
- Northeast Fisheries Science Center, 166 Water St, Woods Hole, MA, 02543, USA
| | - Ryan E Morse
- Northeast Fisheries Science Center, Narragansett, RI, 02882, USA; CASE Consultants International, 1 Haywood St Suite 451, Asheville, NC, 28801, USA
| | - Adrian Jordaan
- Gloucester Marine Station and Department of Environmental Conservation, University of Massachusetts Amherst, Holdsworth Hall, 160 Holdsworth Way, Amherst, MA, 01003, USA
| |
Collapse
|
16
|
Audzijonyte A, Delius GW, Stuart-Smith RD, Novaglio C, Edgar GJ, Barrett NS, Blanchard JL. Changes in sea floor productivity are crucial to understanding the impact of climate change in temperate coastal ecosystems according to a new size-based model. PLoS Biol 2023; 21:e3002392. [PMID: 38079442 PMCID: PMC10712853 DOI: 10.1371/journal.pbio.3002392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/19/2023] [Indexed: 12/18/2023] Open
Abstract
The multifaceted effects of climate change on physical and biogeochemical processes are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species' biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems.
Collapse
Affiliation(s)
- Asta Audzijonyte
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| | - Gustav W. Delius
- Department of Mathematics, University of York, York, United Kingdom
| | - Rick D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Camilla Novaglio
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Neville S. Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Centre for Marine Socioecology, University of Tasmania, Hobart, Australia
| |
Collapse
|
17
|
Tang B, Roberts SM, Clark JS, Gelfand AE. Mechanistic modeling of climate effects on redistribution and population growth in a community of fish species. GLOBAL CHANGE BIOLOGY 2023; 29:6399-6414. [PMID: 37789712 DOI: 10.1111/gcb.16963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Understanding community responses to climate is critical for anticipating the future impacts of global change. However, despite increased research efforts in this field, models that explicitly include important biological mechanisms are lacking. Quantifying the potential impacts of climate change on species is complicated by the fact that the effects of climate variation may manifest at several points in the biological process. To this end, we extend a dynamic mechanistic model that combines population dynamics, such as species interactions, with species redistribution by allowing climate to affect both processes. We examine their relative contributions in an application to the changing biomass of a community of eight species in the Gulf of Maine using over 30 years of fisheries data from the Northeast Fishery Science Center. Our model suggests that the mechanisms driving biomass trends vary across space, time, and species. Phase space plots demonstrate that failing to account for the dynamic nature of the environmental and biologic system can yield theoretical estimates of population abundances that are not observed in empirical data. The stock assessments used by fisheries managers to set fishing targets and allocate quotas often ignore environmental effects. At the same time, research examining the effects of climate change on fish has largely focused on redistribution. Frameworks that combine multiple biological reactions to climate change are particularly necessary for marine researchers. This work is just one approach to modeling the complexity of natural systems and highlights the need to incorporate multiple and possibly interacting biological processes in future models.
Collapse
Affiliation(s)
- Becky Tang
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, USA
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| | - Sarah M Roberts
- Department of Earth, Marine, and Environmental Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James S Clark
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Alan E Gelfand
- Department of Statistical Science, Duke University, Durham, North Carolina, USA
| |
Collapse
|
18
|
Johne AS, Carter CG, Wotherspoon S, Hadley S, Symonds JE, Walker SP, Blanchard JL. Modeling the effects of ration on individual growth of Oncorhynchus tshawytscha under controlled conditions. JOURNAL OF FISH BIOLOGY 2023; 103:1003-1014. [PMID: 37410553 DOI: 10.1111/jfb.15499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023]
Abstract
Fed aquaculture is one of the fastest-growing and most valuable food production industries in the world. The efficiency with which farmed fish convert feed into biomass influences both environmental impact and economic revenue. Salmonid species, such as king salmon (Oncorhynchus tshawytscha), exhibit high levels of plasticity in vital rates such as feed intake and growth rates. Accurate estimations of individual variability in vital rates are important for production management. The use of mean trait values to evaluate feeding and growth performance can mask individual-level differences that potentially contribute to inefficiencies. Here, the authors apply a cohort integral projection model (IPM) framework to investigate individual variation in growth performance of 1625 individually tagged king salmon fed one of three distinct rations of 60%, 80%, and 100% satiation and tracked over a duration of 276 days. To capture the observed sigmoidal growth of individuals, they compared a nonlinear mixed-effects (logistic) model to a linear model used within the IPM framework. Ration significantly influenced several aspects of growth, both at the individual and at the cohort level. Mean final body mass and mean growth rate increased with ration; however, variance in body mass and feed intake also increased significantly over time. Trends in mean body mass and individual body mass variation were captured by both logistic and linear models, suggesting the linear model to be suitable for use in the IPM. The authors also observed that higher rations resulted in a decreasing proportion of individuals reaching the cohort's mean body mass or larger by the end of the experiment. This suggests that, in the present experiment, feeding to satiation did not produce the desired effects of efficient, fast, and uniform growth in juvenile king salmon. Although monitoring individuals through time is challenging in commercial aquaculture settings, recent technological advances combined with an IPM approach could provide new scope for tracking growth performance in experimental and farmed populations. Using the IPM framework might allow the exploration of other size-dependent processes affecting vital rate functions, such as competition and mortality.
Collapse
Affiliation(s)
- Alexandra S Johne
- Ecology & Biodiversity, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Chris G Carter
- Fisheries & Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | | | - Scott Hadley
- Fisheries & Aquaculture, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Jane E Symonds
- Ecology & Biodiversity, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
- Cawthron Institute, Nelson, New Zealand
| | | | - Julia L Blanchard
- Ecology & Biodiversity, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| |
Collapse
|
19
|
Kraskura K, Hardison EA, Eliason EJ. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci Rep 2023; 13:17900. [PMID: 37857749 PMCID: PMC10587238 DOI: 10.1038/s41598-023-44574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5-700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish's cardiac thermal tolerance by measuring their maximum heart rates (fHmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling of fHmax (exponent - 0.05) across all test temperatures. In contrast to our predictions, the fish's aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
20
|
Richard R, Zhang YK, Hung KW. Thermal dependence of Daphnia life history reveals asymmetries between key vital rates. J Therm Biol 2023; 115:103653. [PMID: 37453218 DOI: 10.1016/j.jtherbio.2023.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Temperature variation affects virtually every aspect of ectotherms' ecological performance, such as their foraging rate, reproduction, and survival. Although these changes influence what happens at higher levels of organizations, such as populations and communities, qualitative changes in dynamics usually require some degree of asymmetry between key vital rates, i.e. that different vital rates, such as growth, development, fecundity and mortality rates, respond differently to temperature. In order to identify possible asymmetries among vital rates and/or life stages, we characterized the thermal response of individuals a clone of Daphnia sinensis, drawn from a high-mountain environment in Taiwan, and examined the temperature dependence of growth, maturation, reproduction, and mortality rates, as well as fitness measures (r and R0) at eight temperatures. Daphnia sinensis was able to maintain reproductive success over a broad range of temperatures, much wider than the one experienced in its environment. However, negative effects of temperature were perceptible at temperatures much lower than the highest one at which they can achieve reproductive success. Adult mortality greatly increased for temperatures above 23 °C, and other vital rates started to decelerate, resulting in a large drop in lifetime reproductive success. This finding implies that D. sinensis may be able to persist over a wide range of temperatures, but also that it may become more sensitive to the detrimental effect of species interactions at increased temperatures. Different vital rates responded relatively similarly at low temperatures, but the degree of asymmetry among these rates was much more pronounced at higher temperatures. In particular, rates associated with adult performance decelerated more strongly than juveniles' rates. These findings indicate that elevated temperatures affect the balance between juvenile and adult performance, which is known to have a crucial role in Daphnia population dynamics. We discuss the implications of these results for the dynamics of structured populations.
Collapse
Affiliation(s)
- Romain Richard
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan.
| | - Yi-Kuan Zhang
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Kuan-Wei Hung
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| |
Collapse
|
21
|
Duncan MI, Micheli F, Boag TH, Marquez JA, Deres H, Deutsch CA, Sperling EA. Oxygen availability and body mass modulate ectotherm responses to ocean warming. Nat Commun 2023; 14:3811. [PMID: 37369654 PMCID: PMC10300008 DOI: 10.1038/s41467-023-39438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In an ocean that is rapidly warming and losing oxygen, accurate forecasting of species' responses must consider how this environmental change affects fundamental aspects of their physiology. Here, we develop an absolute metabolic index (ΦA) that quantifies how ocean temperature, dissolved oxygen and organismal mass interact to constrain the total oxygen budget an organism can use to fuel sustainable levels of aerobic metabolism. We calibrate species-specific parameters of ΦA with physiological measurements for red abalone (Haliotis rufescens) and purple urchin (Strongylocentrotus purpuratus). ΦA models highlight that the temperature where oxygen supply is greatest shifts cooler when water loses oxygen or organisms grow larger, providing a mechanistic explanation for observed thermal preference patterns. Viable habitat forecasts are disproportionally deleterious for red abalone, revealing how species-specific physiologies modulate the intensity of a common climate signal, captured in the newly developed ΦA framework.
Collapse
Affiliation(s)
- Murray I Duncan
- Earth and Planetary Science, Stanford University, Stanford, CA, USA.
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
- Department of Environment, University of Seychelles, Anse Royale, Seychelles.
- Blue Economy Research Institute, University of Seychelles, Anse Royale, Seychelles.
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa.
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
- Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA, USA
| | - Thomas H Boag
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, 06511, USA
| | - J Andres Marquez
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
| | - Hailey Deres
- Earth Systems, Stanford University, Stanford, CA, USA
| | - Curtis A Deutsch
- Department of Geosciences and the High Meadows Environmental Institute, Princeton, NJ, USA
| | - Erik A Sperling
- Earth and Planetary Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Lindmark M, Karlsson M, Gårdmark A. Larger but younger fish when growth outpaces mortality in heated ecosystem. eLife 2023; 12:82996. [PMID: 37157843 PMCID: PMC10168697 DOI: 10.7554/elife.82996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Ectotherms are predicted to 'shrink' with global warming, in line with general growth models and the temperature-size rule (TSR), both predicting smaller adult sizes with warming. However, they also predict faster juvenile growth rates and thus larger size-at-age of young organisms. Hence, the result of warming on the size-structure of a population depends on the interplay between how mortality rate, juvenile- and adult growth rates are affected by warming. Here, we use two-decade long time series of biological samples from a unique enclosed bay heated by cooling water from a nearby nuclear power plant to become 5-10 °C warmer than its reference area. We used growth-increment biochronologies (12,658 reconstructed length-at-age estimates from 2426 individuals) to quantify how >20 years of warming has affected body growth, size-at-age, and catch to quantify mortality rates and population size- and age structure of Eurasian perch (Perca fluviatilis). In the heated area, growth rates were faster for all sizes, and hence size-at-age was larger for all ages, compared to the reference area. While mortality rates were also higher (lowering mean age by 0.4 years), the faster growth rates lead to a 2 cm larger mean size in the heated area. Differences in the size-spectrum exponent (describing how the abundance declines with size) were less clear statistically. Our analyses reveal that mortality, in addition to plastic growth and size-responses, is a key factor determining the size structure of populations exposed to warming. Understanding the mechanisms by which warming affects the size- and the age structure of populations is critical for predicting the impacts of climate change on ecological functions, interactions, and dynamics.
Collapse
Affiliation(s)
- Max Lindmark
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Coastal Research, Öregrund, Sweden
| | - Malin Karlsson
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Coastal Research, Öregrund, Sweden
| | - Anna Gårdmark
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Uppsala, Sweden
| |
Collapse
|
23
|
Solokas MA, Feiner ZS, Al-Chokachy R, Budy P, DeWeber JT, Sarvala J, Sass GG, Tolentino SA, Walsworth TE, Jensen OP. Shrinking body size and climate warming: Many freshwater salmonids do not follow the rule. GLOBAL CHANGE BIOLOGY 2023; 29:2478-2492. [PMID: 36734695 DOI: 10.1111/gcb.16626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 05/31/2023]
Abstract
Declining body size is believed to be a universal response to climate warming and has been documented in numerous studies of marine and anadromous fishes. The Salmonidae are a family of coldwater fishes considered to be among the most sensitive species to climate warming; however, whether the shrinking body size response holds true for freshwater salmonids has yet to be examined at a broad spatial scale. We compiled observations of individual fish lengths from long-term surveys across the Northern Hemisphere for 12 species of freshwater salmonids and used linear mixed models to test for spatial and temporal trends in body size (fish length) spanning recent decades. Contrary to expectations, we found a significant increase in length overall but with high variability in trends among populations and species. More than two-thirds of the populations we examined increased in length over time. Secondary regressions revealed larger-bodied populations are experiencing greater increases in length than smaller-bodied populations. Mean water temperature was weakly predictive of changes in body length but overall minimal influences of environmental variables suggest that it is difficult to predict an organism's response to changing temperatures by solely looking at climatic factors. Our results suggest that declining body size is not universal, and the response of fishes to climate change may be largely influenced by local factors. It is important to know that we cannot assume the effects of climate change are predictable and negative at a large spatial scale.
Collapse
Affiliation(s)
- Mary A Solokas
- Center for Limnology, University of Wisconsin, Madison, Wisconsin, USA
| | - Zachary S Feiner
- Center for Limnology, University of Wisconsin, Madison, Wisconsin, USA
- Office of Applied Science, Wisconsin Department of Natural Resources, Madison, Wisconsin, USA
| | - Robert Al-Chokachy
- United States Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, USA
| | - Phaedra Budy
- Utah Cooperative Fish and Wildlife Unit, United States Geological Survey, Logan, Utah, USA
- Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA
| | - J Tyrell DeWeber
- Fisheries Research Station of Baden-Württemberg, Langenargen, Germany
| | - Jouko Sarvala
- Department of Biology, University of Turku, Turku, Finland
| | - Greg G Sass
- Escanaba Lake Research Station, Office of Applied Science, Wisconsin Department of Natural Resources, Boulder Junction, Wisconsin, USA
| | | | - Timothy E Walsworth
- Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, Utah, USA
| | - Olaf P Jensen
- Center for Limnology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Ohlberger J, Cline TJ, Schindler DE, Lewis B. Declines in body size of sockeye salmon associated with increased competition in the ocean. Proc Biol Sci 2023; 290:20222248. [PMID: 36750195 PMCID: PMC9904942 DOI: 10.1098/rspb.2022.2248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Declining body sizes have been documented for several species of Pacific salmon; however, whether size declines are caused mainly by ocean warming or other ecological factors, and whether they result primarily from trends in age at maturation or changing growth rates remain poorly understood. We quantified changes in mean body size and contributions from shifting size-at-age and age structure of mature sockeye salmon returning to Bristol Bay, Alaska, over the past 60 years. Mean length declined by 3%, corresponding to a 10% decline in mean body mass, since the early 1960s, though much of this decline occurred since the early 2000s. Changes in size-at-age were the dominant cause of body size declines and were more consistent than trends in age structure among the major rivers that flow into Bristol Bay. Annual variation in size-at-age was largely explained by competition among Bristol Bay sockeye salmon and interspecific competition with other salmon in the North Pacific Ocean. Warm winters were associated with better growth of sockeye salmon, whereas warm summers were associated with reduced growth. Our findings point to competition at sea as the main driver of sockeye salmon size declines, and emphasize the trade-off between fish abundance and body size.
Collapse
Affiliation(s)
- Jan Ohlberger
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Timothy J. Cline
- Department of Ecology, Montana State University, Bozeman, MT, 59717, USA
| | - Daniel E. Schindler
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Bert Lewis
- Alaska Department of Fish and Game, Commercial Fisheries Division, Anchorage, AK 99518, USA
| |
Collapse
|
25
|
Wang B, Mao H, Zhao J, Liu Y, Wang Y, Du X. Influences of oxygen and temperature interaction on the antibacterial activity, antioxidant activity, serum biochemical indices, blood indices and growth performance of crucian carp. PeerJ 2023; 11:e14530. [PMID: 36620750 PMCID: PMC9817939 DOI: 10.7717/peerj.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/16/2022] [Indexed: 01/04/2023] Open
Abstract
The well-being of fish used in aquaculture is of great interest. Oxygen and temperature are the main factors affecting the welfare of the crucian carp (carassius); however, there are few studies on the combined effects of these on the species. Therefore, this study investigated the impact of different temperatures (18 °C, 24 °C, 30 °C) and oxygen concentrations (2.1 mgL-1, 5.4 mgL-1, 9.3 mgL-1) on serum antibacterial activity, antioxidant activity, hematological parameters and growth performance of the crucian carp. The results showed that there were greater antibacterial properties under conditions of hypoxia at 18 °C (L18) and hyperoxia at 24 °C (H24). The activities of catalase, glutathione peroxidase and total superoxide dismutase were the highest at 24 °C under hypoxia and hyperoxia. In addition, the contents of glucose and total protein first increased and then decreased with the change of temperature; triglycerides were the lowest at 30 °C. The blood parameters of the carp were within a normal range at 24 °C; however, the growth rate was at its lowest under hypoxia treatment at 30 °C (L30). This study showed that high temperature impairs the antibacterial ability, antioxidant capacity and growth performance of the crucian carp, and high oxygen levels can alleviate these adverse reactions. This research provides a theoretical basis for subsequent aquaculture studies.
Collapse
Affiliation(s)
- Bin Wang
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Jian Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yong Liu
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Yafei Wang
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Xiaoxue Du
- School of Agricultural Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| |
Collapse
|
26
|
Niu J, Huss M, Vasemägi A, Gårdmark A. Decades of warming alters maturation and reproductive investment in fish. Ecosphere 2023. [DOI: 10.1002/ecs2.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Jingyao Niu
- Department of Aquatic Resources Swedish University of Agricultural Sciences Uppsala Sweden
| | - Magnus Huss
- Department of Aquatic Resources Swedish University of Agricultural Sciences Uppsala Sweden
| | - Anti Vasemägi
- Department of Aquatic Resources Institute of Freshwater Research, Swedish University of Agricultural Sciences Drottningholm Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
27
|
Thunell V, Gårdmark A, Huss M, Vindenes Y. Optimal energy allocation trade-off driven by size-dependent physiological and demographic responses to warming. Ecology 2022; 104:e3967. [PMID: 36565169 DOI: 10.1002/ecy.3967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022]
Abstract
Body size-dependent physiological effects of temperature influence individual growth, reproduction, and survival, which govern animal population responses to global warming. Considerable knowledge has been established on how such effects can affect population growth and size structure, but less is known of their potential role in temperature-driven adaptation in life-history traits. In this study, we ask how warming affects the optimal allocation of energy between growth and reproduction and disentangle the underlying fitness trade-offs. To this end, we develop a novel dynamic energy budget integral projection model (DEB-IPM), linking individuals' size- and temperature-dependent consumption and maintenance via somatic growth, reproduction, and size-dependent energy allocation to emergent population responses. At the population level, we calculate the long-term population growth rate (fitness) and stable size structure emerging from demographic processes. Applying the model to an example of pike (Esox lucius), we find that optimal energy allocation to growth decreases with warming. Furthermore, we demonstrate how growth, fecundity, and survival contribute to this change in optimal allocation. Higher energy allocation to somatic growth at low temperatures increases fitness through survival of small individuals and through the reproduction of larger individuals. In contrast, at high temperatures, increased allocation to reproduction is favored because warming induces faster somatic growth of small individuals and increased fecundity but reduced growth and higher mortality of larger individuals. Reduced optimum allocation to growth leads to further reductions in body size and an increasingly truncated population size structure with warming. Our study demonstrates how, by incorporating general physiological mechanisms driving the temperature dependence of life-history traits, the DEB-IPM framework is useful for investigating the adaptation of size-structured organisms to warming.
Collapse
Affiliation(s)
- Viktor Thunell
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Gårdmark
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Huss
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Shokri M, Cozzoli F, Vignes F, Bertoli M, Pizzul E, Basset A. Metabolic rate and climate change across latitudes: evidence of mass-dependent responses in aquatic amphipods. J Exp Biol 2022; 225:280993. [PMID: 36337048 PMCID: PMC9720750 DOI: 10.1242/jeb.244842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Predictions of individual responses to climate change are often based on the assumption that temperature affects the metabolism of individuals independently of their body mass. However, empirical evidence indicates that interactive effects exist. Here, we investigated the response of individual standard metabolic rate (SMR) to annual temperature range and forecasted temperature rises of 0.6-1.2°C above the current maxima, under the conservative climate change scenario IPCC RCP2.6. As a model organism, we used the amphipod Gammarus insensibilis, collected across latitudes along the western coast of the Adriatic Sea down to the southernmost limit of the species' distributional range, with individuals varying in body mass (0.4-13.57 mg). Overall, we found that the effect of temperature on SMR is mass dependent. Within the annual temperature range, the mass-specific SMR of small/young individuals increased with temperature at a greater rate (activation energy: E=0.48 eV) than large/old individuals (E=0.29 eV), with a higher metabolic level for high-latitude than low-latitude populations. However, under the forecasted climate conditions, the mass-specific SMR of large individuals responded differently across latitudes. Unlike the higher-latitude population, whose mass-specific SMR increased in response to the forecasted climate change across all size classes, in the lower-latitude populations, this increase was not seen in large individuals. The larger/older conspecifics at lower latitudes could therefore be the first to experience the negative impacts of warming on metabolism-related processes. Although the ecological collapse of such a basic trophic level (aquatic amphipods) owing to climate change would have profound consequences for population ecology, the risk is significantly mitigated by phenotypic and genotypic adaptation.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Research Institute on Terrestrial Ecosystems (IRET–URT Lecce), National Research Council of Italy (CNR), Campus Ecotekne, S.P. Lecce-Monteroni, 73100 Lecce, Italy,Authors for correspondence (; )
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy
| | - Marco Bertoli
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Science, University of Trieste, Via Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. Lecce-Monteroni, 73100 Lecce, Italy,National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
29
|
Lindmark M, Audzijonyte A, Blanchard JL, Gårdmark A. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. GLOBAL CHANGE BIOLOGY 2022; 28:6239-6253. [PMID: 35822557 PMCID: PMC9804230 DOI: 10.1111/gcb.16341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 05/29/2023]
Abstract
Resolving the combined effect of climate warming and exploitation in a food web context is key for predicting future biomass production, size-structure and potential yields of marine fishes. Previous studies based on mechanistic size-based food web models have found that bottom-up processes are important drivers of size-structure and fisheries yield in changing climates. However, we know less about the joint effects of 'bottom-up' and physiological effects of temperature; how do temperature effects propagate from individual-level physiology through food webs and alter the size-structure of exploited species in a community? Here, we assess how a species-resolved size-based food web is affected by warming through both these pathways and by exploitation. We parameterize a dynamic size spectrum food web model inspired by the offshore Baltic Sea food web, and investigate how individual growth rates, size-structure, and relative abundances of species and yields are affected by warming. The magnitude of warming is based on projections by the regional coupled model system RCA4-NEMO and the RCP 8.5 emission scenario, and we evaluate different scenarios of temperature dependence on fish physiology and resource productivity. When accounting for temperature-effects on physiology in addition to on basal productivity, projected size-at-age in 2050 increases on average for all fish species, mainly for young fish, compared to scenarios without warming. In contrast, size-at-age decreases when temperature affects resource dynamics only, and the decline is largest for young fish. Faster growth rates due to warming, however, do not always translate to larger yields, as lower resource carrying capacities with increasing temperature tend to result in decline in the abundance of larger fish and hence spawning stock biomass. These results suggest that to understand how global warming affects the size structure of fish communities, both direct metabolic effects and indirect effects of temperature via basal resources must be accounted for.
Collapse
Affiliation(s)
- Max Lindmark
- Department of Aquatic Resources, Institute of Coastal ResearchSwedish University of Agricultural SciencesÖregrundSweden
| | - Asta Audzijonyte
- Nature Research CentreVilniusLithuania
- Institute for Marine and Antarctic Studies and Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies and Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
30
|
Audzijonyte A, Jakubavičiūtė E, Lindmark M, Richards SA. Mechanistic Temperature-Size Rule Explanation Should Reconcile Physiological and Mortality Responses to Temperature. THE BIOLOGICAL BULLETIN 2022; 243:220-238. [PMID: 36548974 DOI: 10.1086/722027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractThe temperature-size rule is one of the universal rules in ecology and states that ectotherms in warmer waters will grow faster as juveniles, mature at smaller sizes and younger ages, and reach smaller maximum body sizes. Many models have unsuccessfully attempted to reproduce temperature-size rule-consistent life histories by using two-term (anabolism and catabolism) Pütter-type growth models, such as the von Bertalanffy. Here, we present a physiologically structured individual growth model, which incorporates an energy budget and optimizes energy allocation to growth, reproduction, and reserves. Growth, maturation, and reproductive output emerge as a result of life-history optimization to specific physiological rates and mortality conditions. To assess which processes can lead to temperature-size rule-type life histories, we simulate 42 scenarios that differ in temperature and body size dependencies of intake, metabolism, and mortality rates. Results show that the temperature-size rule can emerge in two ways. The first way requires both intake and metabolism to increase with temperature, but the temperature-body size interaction of the two rates must lead to relatively faster intake increase in small individuals and relatively larger metabolism increase in large ones. The second way requires only higher temperature-driven natural mortality and faster intake rates in early life (no change in metabolic rates is needed). This selects for faster life histories with earlier maturation and increased reproductive output. Our model provides a novel mechanistic and evolutionary framework for identifying the conditions necessary for the temperature-size rule. It shows that the temperature-size rule is likely to reflect both physiological changes and life-history optimization and that use of von Bertalanffy-type models, which do not include reproduction processes, can hinder our ability to understand and predict ectotherm responses to climate change.
Collapse
|
31
|
Verberk WCEP, Sandker JF, van de Pol ILE, Urbina MA, Wilson RW, McKenzie DJ, Leiva FP. Body mass and cell size shape the tolerance of fishes to low oxygen in a temperature-dependent manner. GLOBAL CHANGE BIOLOGY 2022; 28:5695-5707. [PMID: 35876025 PMCID: PMC9542040 DOI: 10.1111/gcb.16319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 05/22/2022] [Indexed: 05/04/2023]
Abstract
Aerobic metabolism generates 15-20 times more energy (ATP) than anaerobic metabolism, which is crucial in maintaining energy budgets in animals, fueling metabolism, activity, growth and reproduction. For ectothermic water-breathers such as fishes, low dissolved oxygen may limit oxygen uptake and hence aerobic metabolism. Here, we assess, within a phylogenetic context, how abiotic and biotic drivers explain the variation in hypoxia tolerance observed in fishes. To do so, we assembled a database of hypoxia tolerance, measured as critical oxygen tensions (Pcrit ) for 195 fish species. Overall, we found that hypoxia tolerance has a clear phylogenetic signal and is further modulated by temperature, body mass, cell size, salinity and metabolic rate. Marine fishes were more susceptible to hypoxia than freshwater fishes. This pattern is consistent with greater fluctuations in oxygen and temperature in freshwater habitats. Fishes with higher oxygen requirements (e.g. a high metabolic rate relative to body mass) also were more susceptible to hypoxia. We also found evidence that hypoxia and warming can act synergistically, as hypoxia tolerance was generally lower in warmer waters. However, we found significant interactions between temperature and the body and cell size of a fish. Constraints in oxygen uptake related to cellular surface area to volume ratios and effects of viscosity on the thickness of the boundary layers enveloping the gills could explain these thermal dependencies. The lower hypoxia tolerance in warmer waters was particularly pronounced for fishes with larger bodies and larger cell sizes. Previous studies have found a wide diversity in the direction and strength of relationships between Pcrit and body mass. By including interactions with temperature, our study may help resolve these divergent findings, explaining the size dependency of hypoxia tolerance in fish.
Collapse
Affiliation(s)
- Wilco C. E. P. Verberk
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Jeroen F. Sandker
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Iris L. E. van de Pol
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| | - Mauricio A. Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
- Instituto Milenio de Oceanografía (IMO)Universidad de ConcepciónConcepciónChile
| | | | - David J. McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRDMontpellierFrance
| | - Félix P. Leiva
- Department of Animal Ecology and PhysiologyRadboud Institute for Biological and Environmental SciencesRadboud University NijmegenNijmegenThe Netherlands
| |
Collapse
|