1
|
Abrar MM, Waqas MA, Mehmood K, Fan R, Zhou B, Ma X, Nan S, Du J, Xu M. Organic carbon and nitrogen accrual evidenced by the underpinning protection mechanisms in soil profile following contrasting 35-year fertilization regimes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124482. [PMID: 39929123 DOI: 10.1016/j.jenvman.2025.124482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Soil organic matter (SOM) is a highly complex variable and needs fractionation into distinct pools based on their differing behaviour to better elucidate and predict its dynamics. The present study aimed to quantify the soil organic carbon (SOC) and total nitrogen (TN) stocks and assess their sensitivity indices in fractions with contrasting functionality. Furthermore, the correlations were also evaluated between SOC and TN stocks of pools, system grain yield (SGY), soil physico-chemical properties, and climatic variables. The results demonstrated that C and N stocks in the combined application of organic manure (M), and nitrogen, phosphorus, and potassium (NPK) i.e., MNPK and sole application of M treatments significantly augmented at 0-40 cm and 40-100 cm soil layers, respectively. Also, the SGY was significantly higher under all fertilization treatments than control (no fertilization). Furthermore, SOC and TN stocks of major soil fractions were positively correlated with soil nutrients and mean annual precipitation. Thus, long-term manure application integrated with mineral fertilization (MNPK) in Black soil or Mollisol leads to enhanced crop yields and pool-associated SOC and TN stocks up to 40 cm depth. Whereas the manure-alone (M) is critical for enhancing pool-associated SOC and TN stocks at 40 to 100 cm soil profile. This study implicated how the SOC and TN stocks in different fractions respond to manure and mineral fertilization (35 years) which is pivotal for improving SOC and TN sequestration by modulating the response of SOM pools. The results provide insights into the accrual of C and N stocks underpinned by the stabilization mechanisms specifically implying the significance of microaggregation across the soil profile of cropland.
Collapse
Affiliation(s)
- Muhammad Mohsin Abrar
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Muhammad Ahmed Waqas
- Aarhus University, Faculty of Agricultural Sciences, Department of Agroecology and Environment, Blichers Alle 20, P.O. Box 50, DK-8830, Tjele, Denmark
| | - Khalid Mehmood
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ruqin Fan
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Baoku Zhou
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Xingzhu Ma
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, 150086, China
| | - Sun Nan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianjun Du
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Minggang Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Eco-Environment and Industrial Technology, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
2
|
Ninkuu V, Liu Z, Qin A, Xie Y, Song X, Sun X. Impact of straw returning on soil ecology and crop yield: A review. Heliyon 2025; 11:e41651. [PMID: 39882467 PMCID: PMC11774808 DOI: 10.1016/j.heliyon.2025.e41651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/18/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
Several studies have demonstrated the effect of straw return on enhancing soil ecology, promoting sustainable agricultural practices, and cumulative effects on plant yield. Recent studies have focused on straw return methods and their impact on soil nutrient cycling and the overall physicochemical composition of the soil. Despite the substantial progress and successes, several research gaps in these studies require further investigations to harness the full potential of straw return. This review provides a thorough examination of straw diversity and decomposition mechanisms, the effects of straw on soil microorganisms, the interactions between cellulolytic nitrogen-fixing microbes and lignocellulose biomass, as well as nutrient mineralization, organic matter content, and their influence on plant growth and yield. This review also examined the effects of straw return on plant pathogens and its allelopathic impact on plant growth, highlighting research gaps to encourage further studies that could fully realize the potential benefits of straw return in agricultural fields for optimal plant growth.
Collapse
Affiliation(s)
| | | | - Aizhi Qin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yajie Xie
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xiao Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| |
Collapse
|
3
|
Lianfen W, Shuhe Z, Liangjian W, Xie X. Spatiotemporal coupling dynamics and factors influencing soil organic carbon and crop yield in Chinese farmlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176588. [PMID: 39368501 DOI: 10.1016/j.scitotenv.2024.176588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Clarifying the correlation between soil organic carbon (SOC) and crop yield is key to achieving carbon neutrality and ensuring food security. However, owing to the lack of analysis based on large-scale farmland monitoring data and research on deep soil, relevant research has not yet reached a consensus. Here, we based on the monitoring data of 118 sample plots from 21 typical farmland and farmland compound ecosystem stations of the China Ecosystem Research Network (CERN) between 2004 and 2020, the temporal and spatial coupling associations between SOC content and crop yield in 0-20 cm and 0-100 cm soil layers and its factors influencing were determined. The findings revealed that between 2004 and 2020, SOC content in 0-20 cm soil layer, SOC content in 0-100 cm soil layer, and crop yield in typical farmland in China showed a fluctuating upward trend, the average annual growth rates were 0.59 %, 0.27 % and 1.07 %, respectively. The coupling relationship between SOC content and crop yield was not always good in different periods, which varies largely in different geographical divisions. Among the anthropogenic factors, exogenous carbon input can improve the coupling relationship between them by increasing the soil organic carbon content and crop yield, while the effect of less tillage and no tillage is limited. Among the natural factors, temperature, soil bulk density, and farmland type all have an impact on farmland SOC content and crop yield at different significance levels. Each variable had different effects on SOC content and crop yield in typical farmlands in different geographical regions. With deepening soil layer, influence of anthropogenic factors such as exogenous carbon input on SOC content decreases, but it still cannot be ignored. Based on these findings, the study recommends that exogenous carbon input play an important role in soil carbon sequestration and improving crop yield.
Collapse
Affiliation(s)
- Wang Lianfen
- College of Economics and Trade, Hunan University, Changsha 410079, China
| | - Zhang Shuhe
- College of Economics and Trade, Hunan University, Changsha 410079, China.
| | - Wang Liangjian
- College of Economics and Trade, Hunan University, Changsha 410079, China
| | - Xi Xie
- University of Sydney Business School, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Niu W, Ding J, Fu B, Zhao W, Han Y, Zhou A, Liu Y, Eldridge D. Ecosystem multifunctionality is more related to the indirect effects than to the direct effects of human management in China's drylands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122259. [PMID: 39180826 DOI: 10.1016/j.jenvman.2024.122259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Drylands provide a wide range of important ecosystem functions but are sensitive to environmental changes, especially human management. Two major land use types of drylands are grasslands and croplands, which are influenced by intensive grazing activities and agricultural management, respectively. However, little is known about whether the ecosystem functioning of these two land use types is predominated affected by human management, or environmental factors (intrinsic environmental factors and factors modified by human management). This limits our understanding of the ecosystem functions under intensive human management in drylands. Here we reported a study where we collected data from 40 grassland and 30 cropland sites along an extensive aridity gradient in China's drylands to quantify the effects of human management intensity, intrinsic environmental factors (i.e., aridity), and environmental factors modified by human management (i.e., soil bulk density and plant density) on specific ecosystem functions (ecosystem multifunctionality, productivity, carbon storage, soil water, and soil nutrients). We found that the relative importance of each function differed between croplands and grasslands. Ecosystem functions varied with human management intensity, with lower productivity and plant carbon storage in grasslands under high grazing intensity than un-grazed, while multifunctionality and carbon storage increased with greater fertilization only in arid croplands. Furthermore, among environmental factors, soil bulk density had the greatest negative effects, which directly reduced multifunctionality in grasslands and indirectly reduced multifunctionality in croplands via suppressing crop density. Crop density was the major environmental factor that positively related to multifunctionality in croplands. However, these effects would be exacerbated with increasing aridity. Our study demonstrated that compared with the direct impacts of human management, environmental factors modified by human management (e.g., soil bulk density) are the major drivers of ecosystem functions, indicating that improving soil structure by alleviating human interferences (e.g., reducing livestock trampling) would be an effective way to restore ecosystem functions in drylands under global warming and drying.
Collapse
Affiliation(s)
- Weiling Niu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jingyi Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Bojie Fu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yi Han
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Ao Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yue Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - David Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2125, Australia
| |
Collapse
|
5
|
Yang J, Li L, Xu Y, Yu Y, Virk AL, Li FM, Yang H, Kan ZR. Effects of straw biochar on microbial-derived carbon: A global meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122233. [PMID: 39168008 DOI: 10.1016/j.jenvman.2024.122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Pyrolyzing biomass (e.g., crop straw) to produce biochar is a sustainable strategy in agricultural farmlands. Straw-derived biochar could increase soil organic carbon (SOC) and microbial-derived carbon (C) compared to no addition, while it is imperative to understand the effects of straw-derived biochar compared to its feedstock (e.g., straw). We retrieved 321 and 387 observations to investigate the effects of straw-derived biochar on microbial-derived C (e.g., microbial biomass C (MBC) and microbial necromass C (MNC)) taking no addition and straw as control, respectively. Notably, straw-derived biochar significantly increased dissolved organic C (DOC) by 24.9% and provided available substrates for microbial utilization, thus improving MBC by 16.7% and MNC by 19.7% compared to no addition. Nevertheless, compared to its feedstock (crop straw), straw-derived biochar significantly decreased MBC by 26.1% and MNC by 18.0% attributed to lower DOC, supported by a positive correlation between MBC and DOC (R2 = 0.53). A negative correlation between changes in MBC and SOC indicated the adverse of microbial activity for C accrual under conversion from straw to biochar. Moreover, soil layer, experiment duration, and initial C/N ratio are the crucial factors affecting MBC under the conversion from straw to biochar. Specifically, with significant variations among subgroups, when compared to straw addition, straw-derived biochar had lower reduction in MBC observed on 0-5 cm layers, mean annual precipitation ≥550 mm, mean annual temperature ≥10 °C, clay loam soil, experiment duration≥1 yr, initial SOC≥14 g kg-1, pH≥8, and bulk density ≥1.28 g cm-3. Straw-derived biochar even increased MBC by 32.8% in an anaerobic environment, associated with biochar produced under limited oxygen and anaerobic microorganisms dominating the microbial community. This study concludes that the conversion from crop straw to biochar increases SOC but constrains microbial-derived C, which may disturb the microbial-mediated C-cycling process.
Collapse
Affiliation(s)
- Jinkang Yang
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinan Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yalin Yu
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad Latif Virk
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Feng-Min Li
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haishui Yang
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng-Rong Kan
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Yu L, Zhang W, Liu J, Sun W, Zhang Q. Potential for soil carbon sequestration under conservation agriculture in a warming climate. Sci Bull (Beijing) 2024; 69:2030-2033. [PMID: 38555260 DOI: 10.1016/j.scib.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Lijun Yu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Liu
- Anyang Meteorological Service, Anyang 455000, China
| | - Wenjuan Sun
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
7
|
Zhao J, Hu Y, Wang J, Gao W, Liu D, Yang M, Chen X, Xie H, He H, Zhang X, Lu C. Greenhouse gas emissions from the growing season are regulated by precipitation events in conservation tillage farmland ecosystems of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174716. [PMID: 39004355 DOI: 10.1016/j.scitotenv.2024.174716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Reducing greenhouse gas (GHG) emissions from agricultural ecosystems is vital to mitigate global warming. Conservation tillage is widely used in farmland management to improve soil quality; however, its effects on soil GHG emissions remain poorly understood, particularly in high-yield areas. Therefore, our study aimed to evaluate the effects of no-tillage (NT) combined with four straw-mulching levels (0 %, 33 %, 67 %, and 100 %) on GHG emission risk and the main influencing factors. We conducted in-situ observations of GHG emissions from soils under different management practices during the maize-growing season in Northeastern China. The results showed that NT0 (705.94 g m-2) reduced CO2 emissions by 18 % compared to ridge tillage (RT, 837.04 g m-2). Different straw mulching levels stimulated N2O emissions after rainfall, particularly under NT combined with 100 % straw mulching (2.89 kg ha-1), which was 45 % higher than that in any other treatments. The CH4 emissions flux among different treatments was nearly zero. Overall, straw mulching levels had no significant effect on the GHG emissions. During the growing season, soil NH4+-N (< 20 mg kg-1) remained low and decreased with the extension of growth stage, whereas soil NO3--N initially increased and then decreased. More importantly, the results of structural equation modeling indicate that: a) organic material input and soil moisture are key factors affecting CO2 emissions, b) nitrogen fertilizer and soil moisture promote N2O emissions, and c) climatic factors exert an inexorable influence on the GHG emissions process. Our conclusions emphasize the necessity of incorporating precipitation-response measures into farmland management to reduce the risk of GHG emissions.
Collapse
Affiliation(s)
- Jinxi Zhao
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanyu Hu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Wanjing Gao
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Deyao Liu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Miaoyin Yang
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hongtu Xie
- Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning 110016, China
| | - Hongbo He
- Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning 110016, China
| | - Xudong Zhang
- Key Laboratory of Conservation Tillage and Ecological Agriculture, Liaoning 110016, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning 110016, China.
| |
Collapse
|
8
|
Gao Y, Shao Y, Wang J, Hu B, Feng H, Qu Z, Liu Z, Zhang M, Li C, Liu Y. Effects of straw returning combined with blended controlled-release urea fertilizer on crop yields, greenhouse gas emissions, and net ecosystem economic benefits: A nine-year field trial. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120633. [PMID: 38513579 DOI: 10.1016/j.jenvman.2024.120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Although straw returning combined with blended controlled-release urea fertilizer (BUFS) has been shown to improve wheat-maize rotation system productivity, their effects on greenhouse gas (GHG) emissions, carbon footprints (CF), and net ecosystem economic benefits (NEEB) are still unknown. Life cycle assessment was used to investigate a long-term (2013-2022) wheat-maize rotation experiment that included straw combined with two N fertilizer types [BUFS and (conventional urea fertilizer) CUFS] and straw-free treatments (BUF and CUF). The results showed that BUFS and CUFS treatments increased the annual yield by 13.8% and 11.5%, respectively, compared to BUF and CUF treatments. The BUFS treatment increased the yearly yield by 13.8% compared to the CUFS treatment. Since BUFS and CUFS treatments increased soil organic carbon (SOC) sink sequestration by 25.0% and 27.0% compared to BUF and CUF treatments, they reduced annual GHG emissions by 7.1% and 4.7% and CF per unit of yield (CFY) by 13.7% and 9.6%, respectively. BUFS treatment also increased SOC sink sequestration by 20.3%, reduced GHG emissions by 10.7% and CFY by 23.0% compared to CUFS treatment. It is worth noting that the BUFS and CUFS treatments increased the annual ecological costs by 41.6%, 26.9%, and health costs by 70.1% and 46.7% compared to the BUF and CUF treatments, but also increased the net yield benefits by 9.8%, 6.8%, and the soil nutrient cycling values by 29.2%, 27.3%, and finally improved the NEEB by 10.1%, 7.3%, respectively. Similar results were obtained for the BUFS treatment compared to the CUFS treatment, ultimately improving the NEEB by 23.1%. Based on assessing yield, GHG emissions, CF, and NEEB indicators, the BUFS treatment is recommended as an ideal agricultural fertilization model to promote sustainable and clean production in the wheat-maize rotation system and to protect the agroecological environment.
Collapse
Affiliation(s)
- Yongxiang Gao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yuqing Shao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jiaqi Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Bin Hu
- Agricultural Technology Promotion Center of Shandong Province, Jinan, Shandong, 270001, China
| | - Haojie Feng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoming Qu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhiguang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chengliang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Yanli Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
9
|
Wei K, Zhao J, Sun Y, López IF, Ma C, Zhang Q. Optimizing nitrogen and phosphorus application to improve soil organic carbon and alfalfa hay yield in alfalfa fields. FRONTIERS IN PLANT SCIENCE 2024; 14:1276580. [PMID: 38312359 PMCID: PMC10835404 DOI: 10.3389/fpls.2023.1276580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Soil organic carbon (SOC) is the principal factor contributing to enhanced soil fertility and also functions as the major carbon sink within terrestrial ecosystems. Applying fertilizer is a crucial agricultural practice that enhances SOC and promotes crop yields. Nevertheless, the response of SOC, active organic carbon fraction and hay yield to nitrogen and phosphorus application is still unclear. The objective of this study was to investigate the impact of nitrogen-phosphorus interactions on SOC, active organic carbon fractions and hay yield in alfalfa fields. A two-factor randomized group design was employed in this study, with two nitrogen levels of 0 kg·ha-1 (N0) and 120 kg·ha-1 (N1) and four phosphorus levels of 0 kg·ha-1 (P0), 50 kg·ha-1 (P1), 100 kg·ha-1 (P2) and 150 kg·ha-1 (P3). The results showed that the nitrogen and phosphorus treatments increased SOC, easily oxidized organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC), microbial biomass carbon (MBC) and hay yield in alfalfa fields, and increased with the duration of fertilizer application, reaching a maximum under N1P2 or N1P3 treatments. The increases in SOC, EOC, DOC, POC, MBC content and hay yield in the 0-60 cm soil layer of the alfalfa field were 9.11%-21.85%, 1.07%-25.01%, 6.94%-22.03%, 10.36%-44.15%, 26.46%-62.61% and 5.51%-23.25% for the nitrogen and phosphorus treatments, respectively. The vertical distribution of SOC, EOC, DOC and POC contents under all nitrogen and phosphorus treatments was highest in the 0-20 cm soil layer and tended to decrease with increasing depth of the soil layer. The MBC content was highest in the 10-30 cm soil layer. DOC/SOC, MBC/SOC (excluding N0P1 treatment) and POC/SOC were all higher in the 0-40 cm soil layer of the alfalfa field compared to the N0P0 treatment, indicating that the nitrogen and phosphorus treatments effectively improved soil fertility, while EOC/SOC and DOC/SOC were both lower in the 40-60 cm soil layer than in the N0P0 treatment, indicating that the nitrogen and phosphorus treatments improved soil carbon sequestration potential. The soil layer between 0-30 cm exhibited the highest sensitivity index for MBC, whereas the soil layer between 30-60 cm had the highest sensitivity index for POC. This suggests that the indication for changes in SOC due to nitrogen and phosphorus treatment shifted from MBC to POC as the soil depth increased. Meanwhile, except the 20-30 cm layer of soil in the N0P1 treatment and the 20-50 cm layer in the N1P0 treatment, all fertilizers enhanced the soil Carbon management index (CMI) to varying degrees. Structural equation modeling shows that nitrogen and phosphorus indirectly affect SOC content by changing the content of the active organic carbon fraction, and that SOC is primarily impacted by POC and MBC. The comprehensive assessment indicated that the N1P2 treatment was the optimal fertilizer application pattern. In summary, the nitrogen and phosphorus treatments improved soil fertility in the 0-40 cm soil layer and soil carbon sequestration potential in the 40-60 cm soil layer of alfalfa fields. In agroecosystems, a recommended application rate of 120 kg·ha-1 for nitrogen and 100 kg·ha-1 for phosphorus is the most effective in increasing SOC content, soil carbon pool potential and alfalfa hay yield.
Collapse
Affiliation(s)
- Kongqin Wei
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Junwei Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yanliang Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Ignacio F López
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Chunhui Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Qianbing Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
10
|
Liu R, Hu Y, Zhan X, Zhong J, Zhao P, Feng H, Dong Q, Siddique KHM. The response of crop yield, carbon sequestration, and global warming potential to straw and biochar applications: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167884. [PMID: 37858816 DOI: 10.1016/j.scitotenv.2023.167884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Organic materials play an important role in improving crop yield. However, due to variations in natural and field management practices, the impact of straw incorporation (NS) and biochar addition (NB) on soil organic carbon (SOC) sequestration and global warming potential (GWP) remains uncertain. This meta-analysis synthesizes the findings from 112 published studies, encompassing 897 samples, to assess the effects of NS and NB on crop yield, SOC, and GWP. The results reveal that Northeast China has the highest SOC stocks (40.80 Mg ha-1) and annual SOC sequestration (4.27 Mg ha-1 yr-1) compared to other regions. Notably, the NS and NB differ in their effect sizes on improving crop yield (7.68 % and 8.23 %, respectively) and SOC (6.92 % and 30.72 %, respectively), with opposing effects on GWP (increasing by 37.69 % in NS and decreasing by 23.94 % in NB). Following organic material application, climatic conditions, crop and field type, and soil properties affected SOC content and GWP. The main factors influencing variations in crop yield, SOC, and GWP were mean annual temperature and precipitation, initial SOC content, and soil pH, accounting for 57.46 %-60.29 %, 54.75 %-58.52 %, and 61.81 %-65.11 %, respectively. Considering the need to balance food demand, soil fertility and environmental benefits, biochar emerges as a recommended strategy for advancing future agriculture goals. In summary, this study quantitatively assessed the impact of organic material on crop yield, SOC, and greenhouse gas emissions, offering a scientific foundation for optimizing these factors under diverse regional conditions.
Collapse
Affiliation(s)
- Rong Liu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Yiyun Hu
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Xiangsheng Zhan
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Jiawang Zhong
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Peng Zhao
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Hao Feng
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin'ge Dong
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|