1
|
Zheng W, Lin X, Chen H, Yang Z, Zhao H, Li S, Song T, Sun Y. Gut microbiota and endometrial cancer: research progress on the pathogenesis and application. Ann Med 2025; 57:2451766. [PMID: 39810645 PMCID: PMC11737052 DOI: 10.1080/07853890.2025.2451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
As one of the three major malignant tumors in women, the morbidity of endometrial cancer is second only to that of cervical cancer and is increasing yearly. Its etiological mechanism is not clear, and the risk factors are numerous and common and are closely related to obesity, hypertension, diabetes, etc. The gut microbiota has many strains, which play a considerable part in normal digestion and absorption in the human body and the regulation of the immune response. In the last few years, research on the gut microbiota has been unprecedentedly popular, and it has been confirmed that the gut microbiota closely correlates with the occurrence and development of all kinds of benign and malignant diseases. In this article, the effects of the gut microbiota and its metabolites on the occurrence and development of endometrial cancer is reviewed, and its application in the prevention, diagnosis and treatment of endometrial cancer is explored.
Collapse
Affiliation(s)
- Weiqin Zheng
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaowen Lin
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixin Chen
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziling Yang
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Zhao
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Li
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuhui Sun
- Department of Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Ma Y, Jiang J, Yang Z, Li Y, Bai H, Liu Z, Zhang S, Zhi Z, Yang Q. Changes of gastric microflora and metabolites in patients with chronic atrophic gastritis. J Transl Med 2025; 23:537. [PMID: 40361215 PMCID: PMC12070603 DOI: 10.1186/s12967-025-06458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/06/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is related to the body's microbial and metabolic systems. Combined studies of microbiome and metabolomics can clarify the mechanisms of disease occurrence and progression. We used 16S rRNA sequencing, metagenomics sequencing and metabolomics sequencing to depict the landscapes of bacterium and metabolites, construct correlation networks of different bacterium and metabolites describe potential pathogenic mechanisms of chronic atrophic gastritis. METHODS The gastric juices of 30 non-atrophic gastritis (NAG) patients and 30 CAG patients were collected. Gastric microflora was analyzed by 16S rRNA sequencing and metagenomics sequencing. Gastric metabolites were analyzed by LC-MS analysis. Different bioinformatics methods were used to analyze the data of microbiome and metabolome, and to analyze the relationship between them. RESULTS In atrophic gastritis, bacteria diversity decreased. The genera with a mean decrease in Gini greater than 1.5 included peptostreptococcus, fusobacterium, prevotella, sphingomonas and bacteroides. KEGG pathway included renal cell carcinoma, proximal tubule bicarbonate reclamation, citrate cycle and aldosterone synthesis and secretion with significant enrichment of differential metabolites. Peptostreptococcus, fusobacterium, prevotella and sphingomonas were in pivot positions of the correlation network of differential metabolites and differential bacterium. Viral carcinogenesis, glycine serine and threonine metabolism, RNA polymerase, galactose metabolism and retinol metabolism were enriched in chronic atrophic gastritis based on the metagenomic sequencing data. CONCLUSION Peptostreptococcus, fusobacterium, prevotella, sphingomonas and bacteroides were the essential features that distinguish atrophic gastritis from non-atrophic gastritis, and caused disease by altering various metabolic pathways. Viral carcinogenesis, glycine serine and threonine metabolism, RNA polymerase, galactose metabolism and retinol metabolism may be related to the occurrence and progression of CAG.
Collapse
Affiliation(s)
- Yumei Ma
- Department of Reserch Center, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Jianming Jiang
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Reserch Center of Turbidity Toxin Theory, Hebei University of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Zhufeng Yang
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Department of Gastroscopy Room, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Yongzhang Li
- Department of Reserch Center, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Hebei Technology Innovation Center of TCM Spleen and Kidney Diseases, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Haiyan Bai
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Zongxiu Liu
- Department of Reserch Center, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Shuo Zhang
- Department of Reserch Center, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Zheng Zhi
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
| | - Qian Yang
- Hebei Key Laboratory of Turbidity Toxin Syndrome, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, 389 Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
3
|
Dinis-Ribeiro M, Libânio D, Uchima H, Spaander MCW, Bornschein J, Matysiak-Budnik T, Tziatzios G, Santos-Antunes J, Areia M, Chapelle N, Esposito G, Fernandez-Esparrach G, Kunovsky L, Garrido M, Tacheci I, Link A, Marcos P, Marcos-Pinto R, Moreira L, Pereira AC, Pimentel-Nunes P, Romanczyk M, Fontes F, Hassan C, Bisschops R, Feakins R, Schulz C, Triantafyllou K, Carneiro F, Kuipers EJ. Management of epithelial precancerous conditions and early neoplasia of the stomach (MAPS III): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG) and European Society of Pathology (ESP) Guideline update 2025. Endoscopy 2025; 57:504-554. [PMID: 40112834 DOI: 10.1055/a-2529-5025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
At a population level, the European Society of Gastrointestinal Endoscopy (ESGE), the European Helicobacter and Microbiota Study Group (EHMSG), and the European Society of Pathology (ESP) suggest endoscopic screening for gastric cancer (and precancerous conditions) in high-risk regions (age-standardized rate [ASR] > 20 per 100 000 person-years) every 2 to 3 years or, if cost-effectiveness has been proven, in intermediate risk regions (ASR 10-20 per 100 000 person-years) every 5 years, but not in low-risk regions (ASR < 10).ESGE/EHMSG/ESP recommend that irrespective of country of origin, individual gastric risk assessment and stratification of precancerous conditions is recommended for first-time gastroscopy. ESGE/EHMSG/ESP suggest that gastric cancer screening or surveillance in asymptomatic individuals over 80 should be discontinued or not started, and that patients' comorbidities should be considered when treatment of superficial lesions is planned.ESGE/EHMSG/ESP recommend that a high quality endoscopy including the use of virtual chromoendoscopy (VCE), after proper training, is performed for screening, diagnosis, and staging of precancerous conditions (atrophy and intestinal metaplasia) and lesions (dysplasia or cancer), as well as after endoscopic therapy. VCE should be used to guide the sampling site for biopsies in the case of suspected neoplastic lesions as well as to guide biopsies for diagnosis and staging of gastric precancerous conditions, with random biopsies to be taken in the absence of endoscopically suspected changes. When there is a suspected early gastric neoplastic lesion, it should be properly described (location, size, Paris classification, vascular and mucosal pattern), photodocumented, and two targeted biopsies taken.ESGE/EHMSG/ESP do not recommend routine performance of endoscopic ultrasonography (EUS), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET)-CT prior to endoscopic resection unless there are signs of deep submucosal invasion or if the lesion is not considered suitable for endoscopic resection.ESGE/EHMSG/ESP recommend endoscopic submucosal dissection (ESD) for differentiated gastric lesions clinically staged as dysplastic (low grade and high grade) or as intramucosal carcinoma (of any size if not ulcerated or ≤ 30 mm if ulcerated), with EMR being an alternative for Paris 0-IIa lesions of size ≤ 10 mm with low likelihood of malignancy.ESGE/EHMSG/ESP suggest that a decision about ESD can be considered for malignant lesions clinically staged as having minimal submucosal invasion if differentiated and ≤ 30 mm; or for malignant lesions clinically staged as intramucosal, undifferentiated and ≤ 20 mm; and in both cases with no ulcerative findings.ESGE/EHMSG/ESP recommends patient management based on the following histological risk after endoscopic resection: Curative/very low-risk resection (lymph node metastasis [LNM] risk < 0.5 %-1 %): en bloc R0 resection; dysplastic/pT1a, differentiated lesion, no lymphovascular invasion, independent of size if no ulceration and ≤ 30 mm if ulcerated. No further staging procedure or treatment is recommended.Curative/low-risk resection (LNM risk < 3 %): en bloc R0 resection; lesion with no lymphovascular invasion and: a) pT1b, invasion ≤ 500 µm, differentiated, size ≤ 30 mm; or b) pT1a, undifferentiated, size ≤ 20 mm and no ulceration. Staging should be completed, and further treatment is generally not necessary, but a multidisciplinary discussion is required. Local-risk resection (very low risk of LNM but increased risk of local persistence/recurrence): Piecemeal resection or tumor-positive horizontal margin of a lesion otherwise meeting curative/very low-risk criteria (or meeting low-risk criteria provided that there is no submucosal invasive tumor at the resection margin in the case of piecemeal resection or tumor-positive horizontal margin for pT1b lesions [invasion ≤ 500 µm; well-differentiated; size ≤ 30 mm, and VM0]). Endoscopic surveillance/re-treatment is recommended rather than other additional treatment. High-risk resection (noncurative): Any lesion with any of the following: (a) a positive vertical margin (if carcinoma) or lymphovascular invasion or deep submucosal invasion (> 500 µm from the muscularis mucosae); (b) poorly differentiated lesions if ulceration or size > 20 mm; (c) pT1b differentiated lesions with submucosal invasion ≤ 500 µm with size > 30 mm; or (d) intramucosal ulcerative lesion with size > 30 mm. Complete staging and strong consideration for additional treatments (surgery) in multidisciplinary discussion.ESGE/EHMSG/ESP suggest the use of validated endoscopic classifications of atrophy (e. g. Kimura-Takemoto) or intestinal metaplasia (e. g. endoscopic grading of gastric intestinal metaplasia [EGGIM]) to endoscopically stage precancerous conditions and stratify the risk for gastric cancer.ESGE/EHMSG/ESP recommend that biopsies should be taken from at least two topographic sites (2 biopsies from the antrum/incisura and 2 from the corpus, guided by VCE) in two separate, clearly labeled vials. Additional biopsy from the incisura is optional.ESGE/EHMSG/ESP recommend that patients with extensive endoscopic changes (Kimura C3 + or EGGIM 5 +) or advanced histological stages of atrophic gastritis (severe atrophic changes or intestinal metaplasia, or changes in both antrum and corpus, operative link on gastritis assessment/operative link on gastric intestinal metaplasia [OLGA/OLGIM] III/IV) should be followed up with high quality endoscopy every 3 years, irrespective of the individual's country of origin.ESGE/EHMSG/ESP recommend that no surveillance is proposed for patients with mild to moderate atrophy or intestinal metaplasia restricted to the antrum, in the absence of endoscopic signs of extensive lesions or other risk factors (family history, incomplete intestinal metaplasia, persistent H. pylori infection). This group constitutes most individuals found in clinical practice.ESGE/EHMSG/ESP recommend H. pylori eradication for patients with precancerous conditions and after endoscopic or surgical therapy.ESGE/EHMSG/ESP recommend that patients should be advised to stop smoking and low-dose daily aspirin use may be considered for the prevention of gastric cancer in selected individuals with high risk for cardiovascular events.
Collapse
Affiliation(s)
- Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Diogo Libânio
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Hugo Uchima
- Endoscopy Unit Gastroenterology Department Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Endoscopy Unit, Teknon Medical Center, Barcelona, Spain
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Bornschein
- Medical Research Council Translational Immune Discovery Unit (MRC TIDU), Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Tamara Matysiak-Budnik
- Department of Hepato-Gastroenterology & Digestive Oncology, Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Nantes Nantes, France
- INSERM, Center for Research in Transplantation and Translational Immunology, University of Nantes, Nantes, France
| | - Georgios Tziatzios
- Agia Olga General Hospital of Nea Ionia Konstantopouleio, Athens, Greece
| | - João Santos-Antunes
- Gastroenterology Department, Centro Hospitalar S. João, Porto, Portugal
- Faculty of Medicine, University of Porto, Portugal
- University of Porto, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Instituto de Investigação e Inovação na Saúde (I3S), Porto, Portugal
| | - Miguel Areia
- Gastroenterology Department, Portuguese Oncology Institute of Coimbra (IPO Coimbra), Coimbra, Portugal
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
| | - Nicolas Chapelle
- Department of Hepato-Gastroenterology & Digestive Oncology, Institut des Maladies de l'Appareil Digestif, Centre Hospitalier Universitaire de Nantes Nantes, France
- INSERM, Center for Research in Transplantation and Translational Immunology, University of Nantes, Nantes, France
| | - Gianluca Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Italy
| | - Gloria Fernandez-Esparrach
- Gastroenterology Department, ICMDM, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Lumir Kunovsky
- 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Mónica Garrido
- Gastroenterology Department, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Ilja Tacheci
- Gastroenterology, Second Department of Internal Medicine, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University of Prague, Czech Republic
| | | | - Pedro Marcos
- Department of Gastroenterology, Pêro da Covilhã Hospital, Covilhã, Portugal
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ricardo Marcos-Pinto
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
- Gastroenterology Department, Centro Hospitalar do Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Leticia Moreira
- Gastroenterology Department, ICMDM, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain
| | - Ana Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), RISE@CI-IPO, (Health Research Network), Portuguese Institute of Oncology of Porto (IPO Porto), Porto, Portugal
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Portugal
- Gastroenterology and Clinical Research, Unilabs Portugal
| | - Marcin Romanczyk
- Department of Gastroenterology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
- Endoterapia, H-T. Centrum Medyczne, Tychy, Poland
| | - Filipa Fontes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Public Health and Forensic Sciences, and Medical Education Department, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, UZ Leuven, Leuven, Belgium
- Department of Translational Research in Gastrointestinal Diseases (TARGID), KU Leuven, Leuven, Belgium
| | - Roger Feakins
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, United Kingdom
- University College London, London, United Kingdom
| | - Christian Schulz
- Department of Medicine II, University Hospital, LMU Munich, Germany
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine-Propaedeutic, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Fatima Carneiro
- Institute of Molecular Pathology and Immunology at the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Pathology Department, Centro Hospitalar de São João and Faculty of Medicine, Porto, Portugal
| | - Ernst J Kuipers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
4
|
Ye Y, Bin B, Chen P, Chen J, Meng A, Yu L, Yang F, Cui H. Advances in the study of the role of gastric microbiota in the progression of gastric cancer. Microb Pathog 2025; 199:107240. [PMID: 39708981 DOI: 10.1016/j.micpath.2024.107240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Gastric cancer (GC) is a common malignant tumor and the third most common cancer in China in terms of mortality. Stomach microorganisms play complex roles in the development of GC. The carcinogenic mechanism of Helicobacter pylori has been elucidated, and there is much evidence that other microorganisms in the gastric mucosa are also heavily involved in the disease progression of this cancer. However, their carcinogenic mechanisms have not yet been fully elucidated. The microbial compositions associated with the normal stomach, precancerous lesions, and GC are distinctly different and have a complex evolutionary mechanism. The dysregulation of gastric microbiota may play a key role in the oncogenic process from precancerous lesions to malignant gastric tumors. In this review, we explore the potential translational and clinical implications of intragastric microbes in the diagnosis, prognosis, and treatment of GC. Finally, we summarize the research dilemmas and solutions concerning intragastric microbes, emphasizing that they should be at the forefront of strategies for GC prevention and treatment.
Collapse
Affiliation(s)
- Yu Ye
- Inner Mongolia Medical University, No 60, Xi Lin Guo Le South Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China
| | - Ba Bin
- Department of Oncology, Ordos Hospital of Traditional Chinese Medicine, No 5, Yongning Street, Kangbashi District, Ordos City, Inner Mongolia Autonomous Region, PR China
| | - Pengfei Chen
- The Affiliated Hospital of Inner Mongolia Medical University, PR China
| | - Jing Chen
- Medical Department of Ordos College of Applied Technology, PR China
| | - Aruna Meng
- Inner Mongolia Medical University, No 60, Xi Lin Guo Le South Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China
| | - Lei Yu
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region, 010020, PR China
| | - Fan Yang
- Inner Mongolia Autonomous Region Blood Central, PR China.
| | - Hongwei Cui
- Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, No 42, Zhao Wu Da Road, Hohhot, 010020, Inner Mongolia Autonomous Region, PR China.
| |
Collapse
|
5
|
Kim HN, Kim MJ, Jacobs JP, Yang HJ. Gastric Microbiota Associated with Gastric Precancerous Lesions in Helicobacter pylori-Negative Patients. Microorganisms 2025; 13:81. [PMID: 39858849 PMCID: PMC11767925 DOI: 10.3390/microorganisms13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Studies on the gastric microbiota associated with gastric precancerous lesions remain limited. This study aimed to profile the gastric mucosal microbiota in patients with Helicobacter pylori-negative precancerous lesions. Gastric mucosal samples were obtained from 67 H. pylori-negative patients, including those with chronic gastritis (CG), intestinal metaplasia (IM), and dysplasia. The V3-V4 region of the 16S rRNA gene was sequenced and analyzed. No significant difference was observed in the alpha or beta diversity of the gastric microbiota among the groups. However, a taxonomic analysis revealed a significant enrichment of Lautropia mirabilis and the depletion of Limosilactobacillus reuteri, Solobacxterium moorei, Haemophilus haemolyticus, and Duncaniella dubosii in the IM and dysplasia groups compared to those in the CG group. Prevotella jejuni and the genus Parvimonas were enriched in the IM group. A predictive functional analysis revealed enrichment of the ornithine degradation pathway in the IM and dysplasia groups, suggesting its role in persistent gastric mucosal inflammation associated with gastric precancerous lesions. The gastric microbiota associated with H. pylori-negative gastric precancerous lesions showed an increased abundance of oral microbes linked to gastric cancer and a reduction in anti-inflammatory bacteria. These alterations might contribute to chronic gastric mucosal inflammation, promoting carcinogenesis in the absence of H. pylori infection.
Collapse
Affiliation(s)
- Han-Na Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea;
- Center for Clinical Epidemiology, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Min-Jeong Kim
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06355, Republic of Korea;
- Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Goodman-Luskin Microbiome Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Hyo-Joon Yang
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| |
Collapse
|
6
|
Zaramella A, Arcidiacono D, Duci M, Benna C, Pucciarelli S, Fantin A, Rosato A, De Re V, Cannizzaro R, Fassan M, Realdon S. Predictive Value of a Gastric Microbiota Dysbiosis Test for Stratifying Cancer Risk in Atrophic Gastritis Patients. Nutrients 2024; 17:142. [PMID: 39796578 PMCID: PMC11722812 DOI: 10.3390/nu17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Gastric cancer (GC) incidence remains high worldwide, and the survival rate is poor. GC develops from atrophic gastritis (AG), associated with Helicobacter pylori (Hp) infection, passing through intestinal metaplasia and dysplasia steps. Since Hp eradication does not exclude GC development, further investigations are needed. New data suggest the possible role of unexplored gastric microbiota beyond Hp in the progression from AG to GC. Aimed to develop a score that could be used in clinical practice to stratify GC progression risk, here was investigate gastric microbiota in AG Hp-negative patients with or without high-grade dysplasia (HGD) or GC. METHODS Consecutive patients undergoing upper endoscopy within an endoscopic follow-up for AG were considered. The antrum and corpus biopsies were used to assess the microbiota composition along the disease progression by sequencing the 16S ribosomal RNA gene. Statistical differences between HGD/GC and AG patients were included in a multivariate analysis. RESULTS HGD/GC patients had a higher percentage of Bacillus in the antrum and a low abundance of Rhizobiales, Weeksellaceae and Veillonella in the corpus. These data were used to calculate a multiparametric score (Resident Gastric Microbiota Dysbiosis Test, RGM-DT) to predict the risk of progression toward HGD/GC. The performance of RGM-DT in discriminating patients with HGD/GC showed a specificity of 88.9%. CONCLUSIONS The microbiome-based risk prediction model for GC could clarify the role of gastric microbiota as a cancer risk biomarker to be used in clinical practice. The proposed test might be used to personalize follow-up program thanks to a better cancer risk stratification.
Collapse
Affiliation(s)
- Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Miriam Duci
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Pediatric Surgery Unit, Division of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- UOC Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Fassan
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy;
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Via Gabelli 61, 35121 Padua, Italy
| | - Stefano Realdon
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
7
|
Marashi A, Hasany S, Moghimi S, Kiani R, Mehran Asl S, Dareghlou YA, Lorestani P, Varmazyar S, Jafari F, Ataeian S, Naghavi K, Sajjadi SM, Haratian N, Alinezhad A, Azhdarimoghaddam A, Sadat Rafiei SK, Anar MA. Targeting gut-microbiota for gastric cancer treatment: a systematic review. Front Med (Lausanne) 2024; 11:1412709. [PMID: 39170038 PMCID: PMC11337614 DOI: 10.3389/fmed.2024.1412709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Preclinical research has identified the mechanisms via which bacteria influence cancer treatment outcomes. Clinical studies have demonstrated the potential to modify the microbiome in cancer treatment. Herein, we systematically analyze how gut microorganisms interact with chemotherapy and immune checkpoint inhibitors, specifically focusing on how gut bacteria affect the pharmacokinetics and pharmacodynamics of cancer treatment. Method This study searched Web of Science, Scopus, and PubMed until August 2023. Studies were screened by their title and abstract using the Rayyan intelligent tool for systematic reviews. Quality assessment of studies was done using the JBI critical appraisal tool. Result Alterations in the gut microbiome are associated with gastric cancer and precancerous lesions. These alterations include reduced microbial alpha diversity, increased bacterial overgrowth, and decreased richness and evenness of gastric bacteria. Helicobacter pylori infection is associated with reduced richness and evenness of gastric bacteria, while eradication only partially restores microbial diversity. The gut microbiome also affects the response to cancer treatments, with higher abundances of Lactobacillus associated with better response to anti-PD-1/PD-L1 immunotherapy and more prolonged progression-free survival. Antibiotic-induced gut microbiota dysbiosis can reduce the anti-tumor efficacy of 5-Fluorouracil treatment, while probiotics did not significantly enhance it. A probiotic combination containing Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, and Bacillus cereus can reduce inflammation, enhance immunity, and restore a healthier gut microbial balance in gastric cancer patients after partial gastrectomy. Conclusion Probiotics and targeted interventions to modulate the gut microbiome have shown promising results in cancer prevention and treatment efficacy.Systematic review registration: https://osf.io/6vcjp.
Collapse
Affiliation(s)
- Amir Marashi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saina Hasany
- Student Research Committee, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Sadra Moghimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Kiani
- Student Research Committee, Islamic Azad University Tehran Medical Sciences, Mashhad, Iran
| | - Sina Mehran Asl
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | | | - Parsa Lorestani
- School of Medicine, Shahroud Azad University of Medical Sciences, Shahroud, Iran
| | - Shirin Varmazyar
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Fatemeh Jafari
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shakiba Ataeian
- School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kiana Naghavi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Negar Haratian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Alinezhad
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kim MJ, Kim HN, Jacobs JP, Yang HJ. Combined DNA Methylation and Gastric Microbiome Marker Predicts Helicobacter pylori-Negative Gastric Cancer. Gut Liver 2024; 18:611-620. [PMID: 38509701 PMCID: PMC11249944 DOI: 10.5009/gnl230348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 03/22/2024] Open
Abstract
Background/Aims While DNA methylation and gastric microbiome are each associated with gastric cancer (GC), their combined role in predicting GC remains unclear. This study investigated the potential of a combined DNA methylation and gastric microbiome signature to predict Helicobacter pylori-negative GC. Methods In this case-control study, we conducted quantitative methylation-specific polymerase chain reaction to measure the methylation levels of DKK3, SFRP1, EMX1, NKX6-1, MIR124-3, and TWIST1 in the gastric mucosa from 75 H. pylori-negative patients, including chronic gastritis (CG), intestinal metaplasia (IM), and GC. A combined analysis of DNA methylation and gastric microbiome, using 16S rRNA gene sequencing, was performed in 30 of 75 patients. Results The methylation levels of DKK3, SFRP1, EMX1, MIR124-3, and TWIST1 were significantly higher in patients with GC than in controls (all q<0.05). MIR124-3 and TWIST1 methylation levels were higher in patients with IM than those with CG and also in those with GC than in those with IM (all q<0.05). A higher methylation level of TWIST1 was an independent predictor for H. pylori-negative GC after adjusting for age, sex, and atrophy (odds ratio [OR], 15.15; 95% confidence interval [CI], 1.58 to 145.46; p=0.018). The combination of TWIST1 methylation and GC microbiome index (a microbiome marker) was significantly associated with H. pylori-negative GC after adjusting for age, sex, and atrophy (OR, 50.00; 95% CI, 1.69 to 1,476; p=0.024). Conclusions The combination of TWIST1 methylation and GC microbiome index may offer potential as a biomarker for predicting H. pylori-negative GC.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea;
| | - Han-Na Kim
- Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Hyo-Joon Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea;
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
9
|
Huang X, Zhang DY, Li D, Lv Y, Chen S, Bai F. Human gastric microbiota analysis of refractory H. pylori infection. Sci Rep 2024; 14:15619. [PMID: 38972876 PMCID: PMC11228035 DOI: 10.1038/s41598-024-66339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
H. pylori infection is gaining increasing attention, but detailed investigations into its impact on gastric microbiota remain limited. We collected gastric mucosa samples from 47 individuals divided into three groups: 1. Group HP: patients with initial positive H. pylori infection (25 cases); 2. Group ck: H. pylori-negative patients (14 cases); 3. Group DiffHP: patients with refractory H. pylori infection (8 cases). The samples were analyzed using 16S rDNA sequencing and functional prediction with PICRUSt. Group HP showed differences in flora distribution and function compared to Group ck, while Group DiffHP overlapped with Group HP. The abundances of Aeromonas piscicola, Shewanella algae, Vibrio plantisponsor, Aeromonas caviae, Serratia marcescens, Vibrio parahaemolyticus, Microbacterium lacticum, and Prevotella nigrescens were significantly reduced in both Group DiffHP and Group HP compared to Group ck. Vibrio shilonii was reduced only in Group DiffHP compared to Group ck, while Clostridium perfringens and Paracoccus marinus were increased only in Group DiffHP. LEfSe analysis revealed that Clostridium perfringens and Paracoccus marinus were enriched, whereas Vibrio shilonii was reduced in Group DiffHP compared to Group ck at the species level. In individuals with refractory H. pylori infection, the gastric microbiota exhibited enrichment in various human diseases, organic systems, and metabolic pathways (amino acid metabolism, carbohydrate metabolism, transcription, replication and repair, cell cycle pathways, and apoptosis). Patients with multiple failed H. pylori eradication exhibited significant changes in the gastric microbiota. An increase in Clostridium perfringens and Paracoccus marinus and a decrease in Vibrio shilonii appears to be characteristic of refractory H. pylori infection.
Collapse
Affiliation(s)
- Xianfeng Huang
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Da-Ya Zhang
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Da Li
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Yanting Lv
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Shiju Chen
- Graduate School, Hainan Medical University, Haikou, 571199, China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Yehai Avenue, #368, Longhua District, Haikou, 570216, Hainan Province, China.
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, 570216, China.
| |
Collapse
|
10
|
Park CH. Unveiling the Gastrointestinal Microbiome Symphony: Insights Into Post-Gastric Cancer Treatment Microbial Patterns and Potential Therapeutic Avenues. J Gastric Cancer 2024; 24:89-98. [PMID: 38225768 PMCID: PMC10774752 DOI: 10.5230/jgc.2024.24.e4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
This review delved into the intricate relationship between the gastrointestinal microbiome and gastric cancer, particularly focusing on post-treatment alterations, notably following gastrectomy, and the effects of anticancer therapies. Following gastrectomy, analysis of fecal samples revealed an increased presence of oral cavity aerotolerant and bile acid-transforming bacteria in the intestine. Similar changes were observed in the gastric microbiome, highlighting significant alterations in taxon abundance and emphasizing the reciprocal interaction between the oral and gastric microbiomes. In contrast, the impact of chemotherapy and immunotherapy on the gut microbiome was subtle, although discernible differences were noted between treatment responders and non-responders. Certain bacterial taxa showed promise as potential prognostic markers. Notably, probiotics emerged as a promising approach for postgastrectomy recovery, displaying the capacity to alleviate inflammation, bolster immune responses, and maintain a healthy gut microbiome. Several strains, including Bifidobacterium, Lactobacillus, and Clostridium butyricum, exhibited favorable outcomes in postoperative patients, suggesting their potential roles in comprehensive patient care. In conclusion, understanding the intricate interplay between the gastrointestinal microbiome and gastric cancer treatment offers prospects for predicting responses and enhancing postoperative recovery. Probiotics, with their positive impact on inflammation and immunity, have emerged as potential adjuncts in patient care. Continued research is imperative to fully harness the potential of microbiome-based interventions in the management of gastric cancer.
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea.
| |
Collapse
|
11
|
Gao X, Yin P, Ren Y, Yu L, Tian F, Zhao J, Chen W, Xue Y, Zhai Q. Predicting Personalized Diets Based on Microbial Characteristics between Patients with Superficial Gastritis and Atrophic Gastritis. Nutrients 2023; 15:4738. [PMID: 38004131 PMCID: PMC10675729 DOI: 10.3390/nu15224738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND gastritis is a common stomach disease with a high global incidence and can potentially develop into gastric cancer. The treatment of gastritis focuses on medication or diets based on national guidelines. However, the specific diet that can alleviate gastritis remains largely unknown. METHODS we propose a microbiota-directed dietary strategy that investigates potential food factors using microbial exogenous metabolites. Given the current lack of understanding of the repeatable characteristics of gastric microbiota, we conducted a meta-analysis to identify the features of gastric bacteria. Local samples were collected as validation cohorts. Furthermore, RevEcoR was employed to identify bacteria's exogenous metabolites, and FooDB was used to retrieve foods that can target specific bacteria. RESULTS Bacteroides, Weissella, Actinomyces, Atopobium, Oribacterium, Peptostreptococcus, and Rothia were biomarkers between superficial gastritis (SG) and atrophic gastritis (AG) (AG_N) without H. pylori infection, whereas Bacillus, Actinomyces, Cutibacterium, Helicobacter, Novosphingobium, Pseudomonas, and Streptococcus were signatures between SG and AG (AG_P) with H. pylori infection. According to the exogenous metabolites, adenosyloobalamin, soybean, common wheat, dates, and barley were regarded as potential candidates for AG_N treatment, while gallate was regarded as a candidate for AG_P treatment. CONCLUSIONS this study firstly profiled the gastric microbiota of AG and SG with or without H. pylori and provided a recommended diet for global AG according to exogenous metabolites.
Collapse
Affiliation(s)
- Xiaoxiang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Pingping Yin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Shirani M, Pakzad R, Haddadi MH, Akrami S, Asadi A, Kazemian H, Moradi M, Kaviar VH, Zomorodi AR, Khoshnood S, Shafieian M, Tavasolian R, Heidary M, Saki M. The global prevalence of gastric cancer in Helicobacter pylori-infected individuals: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:543. [PMID: 37598157 PMCID: PMC10439572 DOI: 10.1186/s12879-023-08504-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Helicobacter pylori is a gastrointestinal pathogen that infects around half of the world's population. H. pylori infection is the most severe known risk factor for gastric cancer (GC), which is the second highest cause of cancer-related deaths globally. We conducted a systematic review and meta-analysis to assess the global prevalence of GC in H. pylori-infected individuals. METHODS We performed a systematic search of the PubMed, Web of Science, and Embase databases for studies of the prevalence of GC in H. pylori-infected individuals published from 1 January 2011 to 20 April 2021. Metaprop package were used to calculate the pooled prevalence with 95% confidence interval. Random-effects model was applied to estimate the pooled prevalence. We also quantified it with the I2 index. Based on the Higgins classification approach, I2 values above 0.7 were determined as high heterogeneity. RESULTS Among 17,438 reports screened, we assessed 1053 full-text articles for eligibility; 149 were included in the final analysis, comprising data from 32 countries. The highest and lowest prevalence was observed in America (pooled prevalence: 18.06%; 95% CI: 16.48 - 19.63; I2: 98.84%) and Africa (pooled prevalence: 9.52%; 95% CI: 5.92 - 13.12; I2: 88.39%). Among individual countries, Japan had the highest pooled prevalence of GC in H. pylori positive patients (Prevalence: 90.90%:95% CI: 83.61-95.14), whereas Sweden had the lowest prevalence (Prevalence: 0.07%; 95% CI: 0.06-0.09). The highest and lowest prevalence was observed in prospective case series (pooled prevalence: 23.13%; 95% CI: 20.41 - 25.85; I2: 97.70%) and retrospective cohort (pooled prevalence: 1.17%; 95% CI: 0.55 - 1.78; I 2: 0.10%). CONCLUSIONS H. pylori infection in GC patients varied between regions in this systematic review and meta-analysis. We observed that large amounts of GCs in developed countries are associated with H. pylori. Using these data, regional initiatives can be taken to prevent and eradicate H. pylori worldwide, thus reducing its complications.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Pakzad
- Department of Epidemiology, Faculty of Health, Ilam University Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arezoo Asadi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahab Hassan Kaviar
- Department of Medical Microbiology, Faculty of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Khoshnood
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahnaz Shafieian
- Department of Midwifery, Faculty of Nursing and Midwifery, Ilam University of Medical Sciences, Ilam, Iran
| | - Ronia Tavasolian
- Department of Medicine, Faculty of Nutrition Science, University of Cheste, Chester, UK
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran.
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
13
|
Yang HJ. [Gastric Cancer and Gastric Microbiome]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 81:235-242. [PMID: 37350518 DOI: 10.4166/kjg.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Gastric cancer remains a significant disease burden in Korea, with Helicobacter pylori infections being the most crucial risk factor. With the advent of next-generation sequencing, the role of gastric microbiota in gastric cancer has attracted increasing attention. Studies have shown that the gastric microbiota of patients with gastric cancer differs in composition from that of the controls, with reduced microbial diversity. Lactic acid bacteria and oral microflora are often enriched in gastric cancer and are believed to induce chronic inflammation or promote the production of nitroso compounds. This review focuses on recent studies comparing the gastric microbiome in gastric cancer patients and controls.
Collapse
Affiliation(s)
- Hyo-Joon Yang
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Xi J, Li Y, Zhang H, Bai Z. Dynamic variations of the gastric microbiota: Key therapeutic points in the reversal of Correa's cascade. Int J Cancer 2023; 152:1069-1084. [PMID: 36029278 DOI: 10.1002/ijc.34264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Correa's cascade is a dynamic process in the development of intestinal-type gastric cancer (GC), and its pathological features, gastric microbiota and interactions between microorganisms and their hosts vary at different developmental stages. The characteristics of cells, tissues and gastric microbiota before or after key therapeutic points are critical for monitoring malignant transformation and early tumour reversal. This review summarises the pathological features of gastric mucosa, characteristics of gastric microbiota, specific microbial markers, microbe-microbe interactions and microbe-host interactions at different stages in Correa's cascade. The markers related to each Correa's cascade point were analysed in detail. We attempted to identify key therapeutic points for early cancer reversal and provide a novel approach to reduce the incidence of GC and improve precise treatment.
Collapse
Affiliation(s)
- Jiahui Xi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China
| | - Yonghong Li
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumour, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhongtian Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine, Gansu Province, Lanzhou, China.,General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Gai X, Qian P, Guo B, Zheng Y, Fu Z, Yang D, Zhu C, Cao Y, Niu J, Ling J, Zhao J, Shi H, Liu G. Heptadecanoic acid and pentadecanoic acid crosstalk with fecal-derived gut microbiota are potential non-invasive biomarkers for chronic atrophic gastritis. Front Cell Infect Microbiol 2023; 12:1064737. [PMID: 36699724 PMCID: PMC9868245 DOI: 10.3389/fcimb.2022.1064737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/05/2022] [Indexed: 01/11/2023] Open
Abstract
Background Chronic atrophic gastritis (CAG), premalignant lesions of gastric cancer (GC), greatly increases the risk of GC. Gastroscopy with tissue biopsy is the most commonly used technology for CAG diagnosis. However, due to the invasive nature, both ordinary gastroscope and painless gastroscope result in a certain degree of injury to the esophagus as well as inducing psychological pressure on patients. In addition, patients need fast for at least half a day and take laxatives. Methods In this study, fecal metabolites and microbiota profiles were detected by metabolomics and 16S rRNA V4-V5 region sequencing. Results Alteration of fecal metabolites and microbiota profiles was found in CAG patients, compared with healthy volunteers. To identify the most relevant features, 7 fecal metabolites and 4 microbiota were selected by random forest (RF), from A and B sample sets, respectively. Furthermore, we constructed support vector machines (SVM) classifification model using 7 fecal metabolites or 4 gut microbes, or 7 fecal metabolites with 4 gut microbes, respectively, on C sample set. The accuracy of classifification model was 0.714, 0.857, 0.857, respectively, and the AUC was 0.71, 0.88, 0.9, respectively. In C sample set, Spearman's rank correlation analysis demonstrated heptadecanoic acid and pentadecanoic acid were signifificantly negatively correlated to Erysipelotrichaceae_UCG-003 and Haemophilus, respectively. We constructed SVM classifification model using 2 correlated fecal metabolites and 2 correlated gut microbes on C sample set. The accuracy of classification model was 0.857, and the AUC was 0.88. Conclusion Therefore, heptadecanoic acid and pentadecanoic acid, crosstalk with fecal-derived gut microbiota namely Erysipelotrichaceae_UCG-003 and Haemophilus, are potential non-invasive biomarkers for CAG diagnosis.
Collapse
Affiliation(s)
- Xiao Gai
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Qian
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Benqiong Guo
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhihao Fu
- School of Computer Science, Fudan University, Shanghai, China
| | - Decai Yang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunmei Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Cao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingbin Niu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianghong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Zhao
- School of Computer Science, Fudan University, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoping Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Shi Y, Zhang L, Do KA, Jenq R, Peterson CB. Sparse tree-based clustering of microbiome data to characterize microbiome heterogeneity in pancreatic cancer. J R Stat Soc Ser C Appl Stat 2023; 72:20-36. [PMID: 37034187 PMCID: PMC10077950 DOI: 10.1093/jrsssc/qlac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
There is a keen interest in characterizing variation in the microbiome across cancer patients, given increasing evidence of its important role in determining treatment outcomes. Here our goal is to discover subgroups of patients with similar microbiome profiles. We propose a novel unsupervised clustering approach in the Bayesian framework that innovates over existing model-based clustering approaches, such as the Dirichlet multinomial mixture model, in three key respects: we incorporate feature selection, learn the appropriate number of clusters from the data, and integrate information on the tree structure relating the observed features. We compare the performance of our proposed method to existing methods on simulated data designed to mimic real microbiome data. We then illustrate results obtained for our motivating data set, a clinical study aimed at characterizing the tumor microbiome of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yushu Shi
- Department of Statistics, University of Missouri, Columbia, Columbia, MO, USA
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Xu Z, Xiao L, Wang S, Cheng Y, Wu J, Meng Y, Bao K, Zhang J, Cheng C. Alteration of gastric microbiota and transcriptome in a rat with gastric intestinal metaplasia induced by deoxycholic acid. Front Microbiol 2023; 14:1160821. [PMID: 37206332 PMCID: PMC10188980 DOI: 10.3389/fmicb.2023.1160821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
Objective Bile reflux plays a key role in the development of gastric intestinal metaplasia (GIM), an independent risk factor of gastric cancer. Here, we aimed to explore the biological mechanism of GIM induced by bile reflux in a rat model. Methods Rats were treated with 2% sodium salicylate and allowed to freely drink 20 mmol/L sodium deoxycholate for 12 weeks, and GIM was confirmed by histopathological analysis. Gastric microbiota was profiled according to the 16S rDNA V3-V4 region, gastric transcriptome was sequenced, and serum bile acids (BAs) were analyzed by targeted metabolomics. Spearman's correlation analysis was used in constructing the network among gastric microbiota, serum BAs, and gene profiles. Real-time polymerase chain reaction (RT-PCR) measured the expression levels of nine genes in the gastric transcriptome. Results In the stomach, deoxycholic acid (DCA) decreased the microbial diversity but promoted the abundances of several bacterial genera, such as Limosilactobacillus, Burkholderia-Caballeronia-Paraburkholderia, and Rikenellaceae RC9 gut group. Gastric transcriptome showed that the genes enriched in gastric acid secretion were significantly downregulated, whereas the genes enriched in fat digestion and absorption were obviously upregulated in GIM rats. The GIM rats had four promoted serum BAs, namely cholic acid (CA), DCA, taurocholic acid, and taurodeoxycholic acid. Further correlation analysis showed that the Rikenellaceae RC9 gut group was significantly positively correlated with DCA and RGD1311575 (capping protein-inhibiting regulator of actin dynamics), and RGD1311575 was positively correlated with Fabp1 (fatty acid-binding protein, liver), a key gene involved in fat digestion and absorption. Finally, the upregulated expression of Dgat1 (diacylglycerol acyltransferase 1) and Fabp1 related to fat digestion and absorption was identified by RT-PCR and IHC. Conclusion DCA-induced GIM enhanced gastric fat digestion and absorption function and impaired gastric acid secretion function. The DCA-Rikenellaceae RC9 gut group-RGD1311575/Fabp1 axis might play a key role in the mechanism of bile reflux-related GIM.
Collapse
Affiliation(s)
- Zijing Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling Xiao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shuaishuai Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuqin Cheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianping Wu
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yufen Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kaifan Bao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Junfeng Zhang
| | - Chun Cheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Chun Cheng
| |
Collapse
|
19
|
Kim HN, Kim MJ, Jacobs JP, Yang HJ. Altered Gastric Microbiota and Inflammatory Cytokine Responses in Patients with Helicobacter pylori-Negative Gastric Cancer. Nutrients 2022; 14:nu14234981. [PMID: 36501012 PMCID: PMC9740132 DOI: 10.3390/nu14234981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The role of the gastric mucosal microbiome in Helicobacter pylori-negative gastric cancer (GC) remains unclear. Therefore, we aimed to characterize the microbial alterations and host inflammatory cytokine responses in H. pylori-negative GC. Gastric mucosal samples were obtained from 137 H. pylori-negative patients with GC (n = 45) and controls (chronic gastritis or intestinal metaplasia, n = 92). We performed 16S rRNA gene sequencing (n = 67), a quantitative reverse transcription-polymerase chain reaction to determine the relative mRNA expression levels of TNF (tumor necrosis factor), IL1B (interleukin 1 beta), IL6 (interleukin 6), CXCL8 (C-X-C motif chemokine ligand 8), IL10 (interleukin 10), IL17A (interleukin 17A), TGFB1 (transforming growth factor beta 1) (n = 113), and the correlation analysis between sequencing and expression data (n = 47). Gastric mucosal microbiota in patients with GC showed reduced diversity and a significantly different composition compared to that of the controls. Lacticaseibacillus was significantly enriched, while Haemophilus and Campylobacter were depleted in the cancer group compared to the control group. These taxa could distinguish the two groups in a random forest algorithm. Moreover, the combined relative abundance of these taxa, a GC microbiome index, significantly correlated with gastric mucosal IL1B expression, which was elevated in the cancer group. Overall, altered gastric mucosal microbiota was found to be associated with increased mucosal IL1B expression in H. pylori-negative GC.
Collapse
Affiliation(s)
- Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Min-Jeong Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Jonathan P. Jacobs
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Hyo-Joon Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine and Gastrointestinal Cancer Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
- Correspondence:
| |
Collapse
|
20
|
Hua Z, Shen R, Lu B, Li M, Zhou P, Wu J, Dong W, Zhou Q, Zhang J. Weifuchun alters tongue flora and decreases serum trefoil factor I levels in gastric intestinal metaplasia: A CONSORT-compliant article. Medicine (Baltimore) 2022; 101:e31407. [PMID: 36397419 PMCID: PMC9666156 DOI: 10.1097/md.0000000000031407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To explore the molecular mechanisms of Weifuchun in the treatment of gastric intestinal metaplasia (GIM), we designed a preclinical pilot study to examine potential markers of disease progression based on alterations in the tongue flora. METHODS Total 27 patients with GIM were treated with Weifuchun for 4 weeks and 26 volunteers as controls. Tongue coating bacteria were profiled using 16S rDNA high-throughput sequencing. Serum pepsinogen I and II levels were detected using the latex immunoturbidimetric assay. The levels of serum trefoil factor I was detected by ELISA. Microplate-based quantification was used to detect serum total bile acid (TBA). RESULTS After treatment, the relative abundance of 4 dominant tongue coating genera (Granulicatella, Gemella, Lachnoanaerobaculum, and Neisseria) increased significantly wheras Alloprevotella, [Eubacterium] nodatum group, Prevotell, and Ruminococcaceae UCG-014 decreased (P < .05). The results showed that Alloprevotella and 3 rare tongue coating genera (Lautropia, Treponema 2, and Aliihoeflea) might be potential markers or target flora for the treatment of GIM. Kyoto encyclopedia of genes and genomes (KEGG) function prediction analysis showed that Weifuchun may regulate bile secretion and folate biosynthesis in patients with GIM. The level of serum trefoil factor I decreased significantly in response to Weifuchun treatment, which was consistent with the decrease in folate biosynthesis predicted by KEGG. CONCLUSION Weifuchun may restore the balance of tongue flora by decreasing the levels of serum trefoil factor I, thereby providing a new way to measuring the underlying effectiveness and potential mechanisms of action of this traditional Chinese medicinal compound in the treatment of GIM.
Collapse
Affiliation(s)
- Zhaolai Hua
- Institute of Tumor Prevention and Control, People’s Hospital of Yangzhong City, Yangzhong, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Rui Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Bin Lu
- Department of Oncology, People’s Hospital of Yangzhong City, Yangzhong, China
| | - Meifeng Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Ping Zhou
- Institute of Tumor Prevention and Control, People’s Hospital of Yangzhong City, Yangzhong, China
| | - Juan Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Wei Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Qihai Zhou
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| |
Collapse
|
21
|
Microbiota and gastric cancer. Semin Cancer Biol 2022; 86:11-17. [PMID: 35533800 DOI: 10.1016/j.semcancer.2022.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023]
Abstract
The discovery of Helicobacter pylori in 1982 drew to an end the stomach being considered as a sterile organ. Later, the progress in molecular methods, especially Next Generation Sequencing and metagenomics, has highlighted the fact that a diverse microbiota including five major phyla could also be present in the stomach. However, when present, H. pylori is the essential species and it influences the other bacterial communities in terms of richness and evenness. It is now well accepted that H. pylori is the main risk factor for gastric cancer, especially the strains harboring the cag pathogenicity island and the CagA oncoprotein, but the need for other factors from the host and the environment can explain the important difference between those infected and those developing gastric cancer. Several studies showed a difference between the gastric microbiota of patients at various stages of development of gastric premalignant and malignant lesions, showing globally a reduced microbial diversity and an increase in the presence of intestinal commensals, especially with nitrosative functions. Other studies showed an increase in oral microbiota. These data suggest that the gastric microbiota other than H. pylori may play a role in the last steps of gastric carcinogenesis. It must also be noted that in a limited number of cases, a virus: the Epstein Barr Virus is responsible for the evolution toward gastric cancer, while in others the mycobiota also needs to be explored. Finally, the use of mice models allowed an exploration of the role of different gastric microbiota in addition to H. pylori.
Collapse
|
22
|
Liu D, Wang J, Xie Y. Refractory Helicobacter pylori infection and the gastric microbiota. Front Cell Infect Microbiol 2022; 12:976710. [PMID: 36237432 PMCID: PMC9552320 DOI: 10.3389/fcimb.2022.976710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Curing refractory Helicobacter pylori infection is difficult. In addition, there is currently no research on the gastric microbiota of refractory H. pylori infection. Methods We designed a clinical retrospective study involving 32 subjects divided into three groups: 1. nAGHp.a, treatment-naïve patients with H. pylori infection; 2. nAGHp.b, H. pylori-negative patients; and 3. EFHp.a, patients with refractory H. pylori infection. Gastric mucosal samples from the biobank of our research center were collected for 16S rRNA sequencing analysis and bacterial functions were predicted via PICRUSt. Results There were significant differences between the H. pylori- positive group and the H. pylori-negative group in species diversity, gastric microbiota structure, and bacterial function. The beneficial Lactobacillus in the H. pylori-positive group were significantly enriched compared with those in the refractory H. pylori infection group. The bacterial interaction network diagram suggested that the microbiota interactions in the refractory H. pylori infection group decreased. The gastric microbiota of the refractory H. pylori infection group was enriched in the pathways of metabolism and infectious diseases (energy metabolism, bacterial secretion system, glutathione metabolism, protein folding and associated processing, sulphur metabolism, membrane and intracellular structural molecules, lipopolysaccharide biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, inorganic ion transport and metabolism, and metabolism of cofactors and vitamins) when compared with the H. pylori-positive group without treatment based on PICRUSt analysis. Conclusion Significant alterations occurred in the gastric microbiota when eradication of H. pylori failed multiple times. A history of eradication of multiple H. pylori infections leads to an imbalance in the gastric mucosal microbiota to a certain extent, which was mainly reflected in the inhibition of the growth of beneficial Lactobacillus in the stomach. Patients with refractory H. pylori infection may be at a higher risk of developing gastric cancer than other H. pylori-positive patients.
Collapse
Affiliation(s)
- Dongsheng Liu
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinyun Wang
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Xie
- Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- JiangXi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yong Xie,
| |
Collapse
|
23
|
The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci 2022; 23:ijms23179664. [PMID: 36077063 PMCID: PMC9456244 DOI: 10.3390/ijms23179664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Early evidence suggests a strong association of microorganisms with several human cancers, and great efforts have been made to understand the pathophysiology underlying microbial carcinogenesis. Bacterial dysbiosis causes epithelial barrier failure, immune dysregulation and/or genotoxicity and, consequently, creates a tumor-permissive microenvironment. The majority of the bacteria in our body reside in the gastrointestinal tract, known as gut microbiota, which represents a complex and delicate ecosystem. Gut microbes can reach the pancreas, stomach and colon via the bloodstream. Oral bacterial translocations can also occur. In the stomach, pancreas and colon, low microbial diversity is associated with cancer, in particular with a bad prognosis. The urogenital tract also harbors unique microbiota, distinct from the gut microbiota, which might have a role in the urinary and female/male reproductive cancers’ pathogenesis. In healthy women, the majority of bacteria reside in the vagina and cervix and unlike other mucosal sites, the vaginal microbiota exhibits low microbial diversity. Genital dysbiosis might have an active role in the development and/or progression of gynecological malignancies through mechanisms including modulation of oestrogen metabolism. Urinary dysbiosis may influence the pathogenesis of bladder cancer and prostate cancer in males. Modulation of the microbiome via pre, pro and postbiotics, fecal or vaginal microbiota transplantation and engineering bacteria might prove useful in improving cancer treatment response and quality of life. Elucidating the complex host-microbiome interactions will result in prevention and therapeutic efficacy interventions.
Collapse
|
24
|
Fakharian F, Asgari B, Nabavi-Rad A, Sadeghi A, Soleimani N, Yadegar A, Zali MR. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front Cell Infect Microbiol 2022; 12:953718. [PMID: 36046747 PMCID: PMC9423097 DOI: 10.3389/fcimb.2022.953718] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
The human gut microbiota are critical for preserving the health status because they are required for digestion and nutrient acquisition, the development of the immune system, and energy metabolism. The gut microbial composition is greatly influenced by the colonization of the recalcitrant pathogen Helicobacter pylori (H. pylori) and the conventional antibiotic regimens that follow. H. pylori is considered to be the main microorganism in gastric carcinogenesis, and it appears to be required for the early stages of the process. However, a non-H. pylori microbiota profile is also suggested, primarily in the later stages of tumorigenesis. On the other hand, specific groups of gut microbes may produce beneficial byproducts such as short-chain fatty acids (acetate, butyrate, and propionate) that can modulate inflammation and tumorigenesis pathways. In this review, we aim to present how H. pylori influences the population of the gut microbiota to modify the host immunity and trigger the development of gastric carcinogenesis. We will also highlight the effect of the gut microbiota on immunotherapeutic approaches such as immune checkpoint blockade in cancer treatment to present a perspective for further development of innovative therapeutic paradigms to prevent the progression of H. pylori-induced stomach cancer.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Asgari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Malfertheiner P, Megraud F, Rokkas T, Gisbert JP, Liou JM, Schulz C, Gasbarrini A, Hunt RH, Leja M, O'Morain C, Rugge M, Suerbaum S, Tilg H, Sugano K, El-Omar EM. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report. Gut 2022; 71:gutjnl-2022-327745. [PMID: 35944925 DOI: 10.1136/gutjnl-2022-327745] [Citation(s) in RCA: 594] [Impact Index Per Article: 198.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023]
Abstract
Helicobacter pyloriInfection is formally recognised as an infectious disease, an entity that is now included in the International Classification of Diseases 11th Revision. This in principle leads to the recommendation that all infected patients should receive treatment. In the context of the wide clinical spectrum associated with Helicobacter pylori gastritis, specific issues persist and require regular updates for optimised management.The identification of distinct clinical scenarios, proper testing and adoption of effective strategies for prevention of gastric cancer and other complications are addressed. H. pylori treatment is challenged by the continuously rising antibiotic resistance and demands for susceptibility testing with consideration of novel molecular technologies and careful selection of first line and rescue therapies. The role of H. pylori and antibiotic therapies and their impact on the gut microbiota are also considered.Progress made in the management of H. pylori infection is covered in the present sixth edition of the Maastricht/Florence 2021 Consensus Report, key aspects related to the clinical role of H. pylori infection were re-evaluated and updated. Forty-one experts from 29 countries representing a global community, examined the new data related to H. pylori infection in five working groups: (1) indications/associations, (2) diagnosis, (3) treatment, (4) prevention/gastric cancer and (5) H. pylori and the gut microbiota. The results of the individual working groups were presented for a final consensus voting that included all participants. Recommendations are provided on the basis of the best available evidence and relevance to the management of H. pylori infection in various clinical fields.
Collapse
Affiliation(s)
- Peter Malfertheiner
- Medical Department 2, LMU, Munchen, Germany
- Department of Radiology, LMU, Munchen, Germany
| | - Francis Megraud
- INSERM U853 UMR BaRITOn, University of Bordeaux, Bordeaux, France
| | - Theodore Rokkas
- Gastroenterology, Henry Dunant Hospital Center, Athens, Greece
- Medical School, European University, Nicosia, Cyprus
| | - Javier P Gisbert
- Gastroenterology, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Jyh-Ming Liou
- Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Christian Schulz
- Medical Department 2, LMU, Munchen, Germany
- Partner Site Munich, DZIF, Braunschweig, Germany
| | - Antonio Gasbarrini
- Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Richard H Hunt
- Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| | - Marcis Leja
- Faculty of Medicine, University of Latvia, Riga, Latvia
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Colm O'Morain
- Faculty of Health Sciences, Trinity College Dublin, Dublin, Ireland
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
- Veneto Tumor Registry (RTV), Padova, Italy
| | - Sebastian Suerbaum
- Partner Site Munich, DZIF, Braunschweig, Germany
- Max von Pettenkofer Institute, LMU, Munchen, Germany
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | - Kentaro Sugano
- Department of Medicine, Jichi Medical School, Tochigi, Japan
| | - Emad M El-Omar
- Department of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
26
|
Xiao W, Ma ZS. Influences of Helicobacter pylori infection on diversity, heterogeneity, and composition of human gastric microbiomes across stages of gastric cancer development. Helicobacter 2022; 27:e12899. [PMID: 35678078 DOI: 10.1111/hel.12899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND About a half of the world's population is infected with Helicobacter pylori (H. pylori), but only 1%-3% of them develop gastric cancer. As a primary risk factor for gastric cancer, the relationship between H. pylori infection and gastric microbiome has been a focus in recent years. MATERIALS AND METHODS We reanalyze 11 human gastric microbiome datasets with or without H. pylori, covering the healthy control (HC) and four disease stages (chronic gastritis (CG), atrophic gastritis (AG), intestinal metaplasia (IM), and gastric cancer (GC)) of gastric cancer development to quantitatively compare the influences of the H. pylori infection and disease stages on the diversity, heterogeneity, and composition of gastric microbiome. Four medical ecology approaches including (i) diversity analysis with Hill numbers, (ii) heterogeneity analysis with Taylor's power law extensions (TPLE), (iii) diversity scaling analysis with diversity-area relationship (DAR) model, and (iv) shared species analysis were applied to fulfill the data reanalysis. RESULTS (i) The influences of H. pylori infection on the species diversity, spatial heterogeneity, and potential diversity of gastric microbiome seem to be more prevalent than the influences of disease stages during gastric cancer development. (ii) The influences of H. pyloriinfection on diversity, heterogeneity, and composition of gastric microbiomes in HC, CG, IM, and GC stages appear more prevalent than those in AG stage. CONCLUSION Our study confirmed the impact of H. pylori infection on human gastric microbiomes: The influences of H. pylori infection on the diversity, heterogeneity, and composition of gastric microbiomes appear to be disease-stage dependent.
Collapse
Affiliation(s)
- Wanmeng Xiao
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
27
|
Liu D, Zhang R, Chen S, Sun B, Zhang K. Analysis of gastric microbiome reveals three distinctive microbial communities associated with the occurrence of gastric cancer. BMC Microbiol 2022; 22:184. [PMID: 35870901 PMCID: PMC9308235 DOI: 10.1186/s12866-022-02594-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gastric microbial dysbiosis were reported to be associated with gastric cancer (GC). This study aimed to explore the variation, diversity, and composition patterns of gastric bacteria in stages of gastric carcinogenesis based on the published datasets. METHODS We conducted a gastric microbial analysis using 10 public datasets based on 16S rRNA sequencing, including 1270 gastric biopsies of 109 health control, 183 superficial gastritis (SG), 135 atrophic gastritis (AG), 124 intestinal metaplasia (IM), 94 intraepithelial neoplasia (IN), 344 GC, and 281 adjacent normal tissues. And QIIME2-pipeline, DESeq2, NetMoss2, vegan, igraph, and RandomForest were used for the data processing and analysis. RESULTS We identified three gastric microbial communities among all the gastric tissues. The first community (designate as GT-H) was featured by the high abundance of Helicobacter. The other two microbial communities, namely GT-F, and GT-P, were featured by the enrichment of phylum Firmicutes and Proteobacteria, respectively. The distribution of GC-associated bacteria, such as Fusobacterium, Peptostreptococcus, Streptococcus, and Veillonella were enriched in tumor tissues, and mainly distributed in GT-F type microbial communities. Compared with SG, AG, and IM, the bacterial diversity in GC was significantly reduced. And the strength of microbial interaction networks was initially increased in IM but gradually decreased from IN to GC. In addition, Randomforest models constructed in in GT-H and GT-F microbial communities showed excellent performance in distinguishing GC from SG and precancerous stages, with varied donated bacteria. CONCLUSIONS This study identified three types of gastric microbiome with different patterns of composition which helps to clarify the potential key bacteria in the development of gastric carcinogenesis.
Collapse
Affiliation(s)
- Dehua Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rutong Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Si Chen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
28
|
The role of non-Helicobacter pylori bacteria in the pathogenesis of gastroduodenal diseases. Gut Pathog 2022; 14:19. [PMID: 35606878 PMCID: PMC9125830 DOI: 10.1186/s13099-022-00494-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the development of next-generation sequencing for human microbiota has led to remarkable discoveries. The characterization of gastric microbiota has enabled the examination of genera associated with several diseases, including gastritis, precancerous lesions, and gastric cancer. Helicobacter pylori (H. pylori) is well known to cause gastric dysbiosis by reducing diversity, because this bacterium is the predominant bacterium. However, as the diseases developed into more severe stages, such as atrophic gastritis, premalignant lesion, and gastric adenocarcinoma, the dominance of H. pylori began to be displaced by other bacteria, including Streptococcus, Prevotella, Achromobacter, Citrobacter, Clostridium, Rhodococcus, Lactobacillus, and Phyllobacterium. Moreover, a massive reduction in H. pylori in cancer sites was observed as compared with noncancer tissue in the same individual. In addition, several cases of H. pylori-negative gastritis were found. Among these individuals, there was an enrichment of Paludibacter, Dialister, Streptococcus, Haemophilus parainfluenzae, and Treponema. These remarkable findings suggest the major role of gastric microbiota in the development of gastroduodenal diseases and led us to the hypothesis that H. pylori might not be the only gastric pathogen. The gastric microbiota point of view of disease development should lead to a more comprehensive consideration of this relationship.
Collapse
|
29
|
Anisi Stellati Fructus, a Significant Traditional Chinese Medicine (TCM) Herb and Its Bioactivity against Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4071489. [PMID: 35586683 PMCID: PMC9110155 DOI: 10.1155/2022/4071489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Anisi stellati fructus (ASF) is the fruit of Illicium verum Hook F. (Chinese star anise), which is native to many countries, and is a significant Chinese medicinal herb. Gastric cancer (GC) is one of the major fatal types of cancers with multiple stages and a poor prognosis. The present review aims to discuss the bioactive properties of ASF and its phytocompounds against GC, with a particular insight into the molecular mechanisms and signaling pathways involved in its anti-GC mechanism. Furthermore, it highlights the potential mechanism of action of major phytocompounds of ASF against GC. Clinical studies (in vitro and in vivo) regarding the action of ASF and its major bioactive compounds such as quercetin, luteolin, kaempferol, d-limonene, and honokiol against GC were reviewed. For this review, search of literature was performed in Science, PubMed, Google Scholar, Web of Science, and Scopus related to ASF and its phytocompounds, from which only relevant studies were chosen. Major bioactive compounds of ASF and their extracts have proven to be effective against GC due to the mechanistic action of these compounds involving signaling pathways that target cancer cell apoptosis, proliferation, and tumor metastasis in GC cells. Existing reports of these compounds and their combinatory effects with other modern anticancer agents have also been reviewed. From its traditional use to its role as an anticancer agent, ASF and its bioactive phytocompounds have been observed to be effective in modern research, specifically against GC. However, further studies are required for the identification of molecular targets and pharmacokinetic potential and for the formulation of anti-GC drugs.
Collapse
|
30
|
Park JY, Seo H, Kang CS, Shin TS, Kim JW, Park JM, Kim JG, Kim YK. Dysbiotic change in gastric microbiome and its functional implication in gastric carcinogenesis. Sci Rep 2022; 12:4285. [PMID: 35277583 PMCID: PMC8917121 DOI: 10.1038/s41598-022-08288-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Although there is a growing interest in the role of gastric microbiome on the development of gastric cancer, the exact mechanism is largely unknown. We aimed to investigate the changes of gastric microbiome during gastric carcinogenesis, and to predict the functional potentials of the microbiome involved in the cancer development. The gastric microbiome was analyzed using gastric juice samples from 88 prospectively enrolled patients, who were classified into gastritis, gastric adenoma, or early/advanced gastric cancer group. Differences in microbial diversity and composition were analyzed with 16S rRNA gene profiling, using next-generation sequencing method. Metagenomic biomarkers were selected using logistic regression models, based on relative abundances at genus level. We used Tax4Fun to predict possible functional pathways of gastric microbiome involved in the carcinogenesis. The microbial diversity continuously decreased in its sequential process of gastric carcinogenesis, from gastritis to gastric cancer. The microbial composition was significantly different among the four groups of each disease status, as well as between the cancer group and non-cancer group. Gastritis group was differently enriched with genera Akkermansia and Lachnospiraceae NK4A136 Group, whereas the cancer group was enriched with Lactobacillus and Veillonella. Predictive analysis of the functional capacity of the microbiome suggested enrichment or depletion of several functional pathways related to carcinogenesis in the cancer group. There are significant changes in the diversity and composition of gastric microbiome during the gastric carcinogenesis process. Gastric cancer was characterized with microbial dysbiosis, along with functional changes potentially favoring carcinogenesis.
Collapse
Affiliation(s)
- Jae Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea
| | - Hochan Seo
- MD Healthcare R&D Institute, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Chil-Sung Kang
- MD Healthcare R&D Institute, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Tae-Seop Shin
- MD Healthcare R&D Institute, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Jong Won Kim
- Department of Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Joong-Min Park
- Department of Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jae Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea.
| | - Yoon-Keun Kim
- MD Healthcare R&D Institute, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Park CH, Hong C, Lee AR, Sung J, Hwang TH. Multi-omics reveals microbiome, host gene expression, and immune landscape in gastric carcinogenesis. iScience 2022; 25:103956. [PMID: 35265820 PMCID: PMC8898972 DOI: 10.1016/j.isci.2022.103956] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
To date, there has been no multi-omic analysis characterizing the intricate relationships between the intragastric microbiome and gastric mucosal gene expression in gastric carcinogenesis. Using multi-omic approaches, we provide a comprehensive view of the connections between the microbiome and host gene expression in distinct stages of gastric carcinogenesis (i.e., healthy, gastritis, cancer). Our integrative analysis uncovers various associations specific to disease states. For example, uniquely in gastritis, Helicobacteraceae is highly correlated with the expression of FAM3D, which has been previously implicated in gastrointestinal inflammation. In addition, in gastric cancer but not in adjacent gastritis, Lachnospiraceae is highly correlated with the expression of UBD, which regulates mitosis and cell cycle time. Furthermore, lower abundances of B cell signatures in gastric cancer compared to gastritis may suggest a previously unidentified immune evasion process in gastric carcinogenesis. Our study provides the most comprehensive description of microbial, host transcriptomic, and immune cell factors of the gastric carcinogenesis pathway. Multi-omics finds genetic, microbial, and immunological links in gastric cancer Helicobacteraceae was highly associated with the expression of inflammation genes Pasteurellaceae and Lachnospiraceae were associated with cancer-related genes B cell infiltration was prominent in gastritis tissues but not in gastric cancer
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggido 11923, Republic of Korea
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - A-reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggido 11923, Republic of Korea
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Corresponding author
| | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Immunology, Mayo Clinic, Jacksonville, FL 32224, USA
- Corresponding author
| |
Collapse
|
32
|
Sun QH, Zhang J, Shi YY, Zhang J, Fu WW, Ding SG. Microbiome changes in the gastric mucosa and gastric juice in different histological stages of Helicobacter pylori-negative gastric cancers. World J Gastroenterol 2022; 28:365-380. [PMID: 35110955 PMCID: PMC8771614 DOI: 10.3748/wjg.v28.i3.365] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The gastric microbiota in patients with gastric cancer (GC) has received increasing attention, but the profiling of the gastric microbiome through the histological stages of gastric tumorigenesis remains poorly understood, especially for patients with Helicobacter pylori-negative GC (HPNGC).
AIM To characterize microbial profiles of gastric mucosa and juice for HPNGC carcinogenesis and identify distinct taxa in precancerous lesions.
METHODS The 16S rRNA gene analysis was performed on gastric mucosa from 134 Helicobacter pylori-negative cases, including 56 superficial gastritis (SG), 9 atrophic gastritis (AG), 27 intestinal metaplasia (IM), 29 dysplasia (Dys), and 13 GC cases, to investigate differences in gastric microbial diversity and composition across the disease stages. In addition, paired gastric mucosa and juice samples from 18 SG, 18 IM, and 18 Dys samples were analyzed. α-Diversity was measured by Shannon and Chao1 indexes, and β-diversity was calculated using partial least squares discrimination analysis (PLS-DA). Differences in the microbial composition across disease stages in different sample types were assessed using the linear discriminant analysis effect size.
RESULTS The diversity and composition of the bacterial microbiota in the gastric mucosa changed progressively across stages of gastric carcinogenesis. The diversity of the gastric mucosa microbiota was found to be significantly lower in the IM and Dys groups than in the SG group, and the patients with GC had the lowest bacterial community richness (P < 0.05). Patients with IM and those with Dys had similar gastric mucosa microbiota profiles with Ralstonia and Rhodococcus as the predominant genera. Microbial network analysis showed that there was increasing correlation strength between IM and Dys (|correlation threshold|≥ 0.5, P < 0.05). GC and its precancerous lesions have distinguishable bacterial taxa; our results identified HPNGC-associated bacteria Streptococcaceae and Lactobacillaceae (P < 0.05). Additionally, across precancerous lesion stages from AG to Dys in Helicobacter pylori-negative patients, Burkholderiaceae abundance continuously increased, while Streptococcaceae and Prevotellaceae abundance presented a continuous downward trend. Furthermore, the microbial diversity was higher in gastric juice (P < 0.001) than in the mucosa, while PLS-DA revealed a statistically significant difference between the two groups (ANOSIM, P = 0.001). A significant difference in the microbial structure was identified, with Proteobacteria being more prevalent in the gastric mucosa and Firmicutes being more abundant in gastric juice.
CONCLUSION Our results provide insights into potential taxonomic biomarkers for HPNGC and its precancerous stages and assist in predicting the prognosis of IM and Dys based on the mucosal microbiota profile.
Collapse
Affiliation(s)
- Qing-Hua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Yan-Yan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 10019, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Wei-Wei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Shi-Gang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
33
|
Liu D, Chen S, Gou Y, Yu W, Zhou H, Zhang R, Wang J, Ye F, Liu Y, Sun B, Zhang K. Gastrointestinal Microbiota Changes in Patients With Gastric Precancerous Lesions. Front Cell Infect Microbiol 2021; 11:749207. [PMID: 34956928 PMCID: PMC8695999 DOI: 10.3389/fcimb.2021.749207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric microbiota may be involved in gastric cancer. The relationship between gastrointestinal microbes and the risk of gastric cancer is unclear. This study aimed to explore the gastric and intestinal bacteria associated with gastritis and gastric precancerous lesions. We conducted a case-control study by performing 16S rRNA gene analysis of gastric biopsies, juices, and stool samples from 148 cases with gastritis or gastric precancerous lesions from Anhui and neighboring provinces, China. And we validated our findings in public datasets. Results Analysis of microbial sequences revealed decreased bacterial alpha diversity in gastric bacteria during the progression of gastritis. Helicobacter pylori was the main contributor to the decreased microbial composition and diversity in the gastric mucosa and had little influence on the microbiota of gastric juice and feces. The gastric mucosal genera Gemella, Veillonella, Streptococcus, Actinobacillus, and Hemophilus had the higher degree of centrality across the progression of gastric precancerous lesions. And Acinetobacter may contribute to the occurrence of intraepithelial neoplasia. In addition, the microbial model of H. pylori-positive gastric biopsies and feces showed value in the prediction of gastric precancerous lesions. Conclusions This study identified associations between gastric precancerous lesions and gastric microbiota, as well as the changes in intestinal microbiota, and explored their values in the prediction of gastric precancerous lesions.
Collapse
Affiliation(s)
- Dehua Liu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Si Chen
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yawen Gou
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenyong Yu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hangcheng Zhou
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rutong Zhang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinghao Wang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fei Ye
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingling Liu
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baolin Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Kaiguang Zhang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
34
|
Yang Y, Ji R, Zhao X, Cao X, Wang Q, Jiang Q, Zhang Y, Zheng W, Wu X, Yang A. Alterations in Gastric Mucosal Microbiota in Gastric Carcinogenesis: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2021; 8:754959. [PMID: 34926502 PMCID: PMC8678046 DOI: 10.3389/fmed.2021.754959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Background: The gastric microbiota profile alters during gastric carcinogenesis. We aimed to identify the alterations in the alpha diversity and relative abundance of bacterial phyla and genera of gastric microbiota in the development of gastric cancer (GC). Methods: The systematic review was performed based on a published protocol with the registration number CRD42020206973. We searched through PubMed, EMBASE and Cochrane databases, as well as conference proceedings and references of review articles (May 2021) for observational studies reporting either the relative abundance of bacterial phyla or genera, or alpha diversity indexes in both GC and non-cancer groups. Selection of studies and data extraction were performed independently by two researchers, with disagreements resolved through discussion. Risk of bias was assessed using the self-modified Newcastle-Ottawa Scale. Results of random-effects meta-analyses were presented as mean differences (MD). Results: Our systematic review included 751 GC patients and 792 non-cancer patients from 14 case-control studies. Gastric cancer group had fewer operational taxonomic units (OTUs) (MD = -68.52, 95%CI: -126.65 to -10.39) and a lower Simpson index (MD = -0.13, 95%CI: -0.20 to -0.07) compared with non-cancer group. At the phylum level, gastric cancer group had a higher abundance of Firmicutes (MD = 7.11, 95%CI: 1.76 to 12.46). At the genus level, Streptococcus (MD = 3.03, 95%CI: 0.07 to 6.00) and Lactobacillus (MD = 5.15, 95%CI: 1.27 to 9.04) were found to be enriched in GCgroup. The relative abundance of the rest bacterial phyla or genera analyzed in our study did not significantly differ between two groups. Subgroup analyses indicated that the source of samples was the major source of interstudy heterogeneity. Conclusion: This systematic review suggested that gastric microbiota dysbiosis occurred in gastric carcinogenesis, with alpha diversity declined and microbiota composition altered.
Collapse
Affiliation(s)
- Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Ruoyu Ji
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinyu Zhao
- National Clinical Research Center for Digestive Diseases, Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qiang Wang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Qingwei Jiang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yizhen Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xi Wu
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
35
|
Yang H, Wei B, Hu B. Chronic inflammation and long-lasting changes in the gastric mucosa after Helicobacter pylori infection involved in gastric cancer. Inflamm Res 2021; 70:1015-1026. [PMID: 34549319 DOI: 10.1007/s00011-021-01501-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Helicobacter pylori (H. pylori) infects approximately half of the world's population, as one of the most common chronic infections. H. pylori infection has been widely recognized as a major risk factor for gastric cancer (GC). METHODS Eradication treatment is considered to abolish the inflammatory response and prevent progression to GC. However, only 1-3% of H. pylori-infected patients develop GC, whereas GC can occur even after eradicating H. pylori. In addition, the incidence of GC following H. pylori infection is significantly higher compared to the gross incidence induced by all causes, although eradicating H. pylori reduces the risk of developing GC. RESULTS Therefore, it is reasonable to hypothesize that H. pylori infection results in changes that persist even after its eradication. Several of these changes may not be reversible within a short time, including the status of inflammation, the dysfunction of immunity and apoptosis, mitochondrial changes, aging and gastric dysbacteriosis. CONCLUSION The present review article aimed to discuss these potential long-lasting changes induced by H. pylori infection that may follow the eradication of H. pylori and contribute to the development of GC.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
| | - Bin Wei
- Department of Gastroenterology, The First Hospital of Xi'an City, Xi'an, 710002, Shanxi, People's Republic of China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
36
|
Wen J, Lau HCH, Peppelenbosch M, Yu J. Gastric Microbiota beyond H. pylori: An Emerging Critical Character in Gastric Carcinogenesis. Biomedicines 2021; 9:1680. [PMID: 34829909 PMCID: PMC8615612 DOI: 10.3390/biomedicines9111680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Gastric cancer (GC) is one of the global leading causes of cancer death. The association between Helicobacter pylori, which is a predominant risk factor for GC, with GC development has been well-studied. Recently, accumulating evidence has demonstrated the presence of a large population of microorganisms other than H. pylori in the human stomach. Existing sequencing studies have revealed microbial compositional and functional alterations in patients with GC and highlighted a progressive shift in the gastric microbiota in gastric carcinogenesis with marked enrichments of oral or intestinal commensals. Moreover, using a combination of gastric bacterial signatures, GC patients could be significantly distinguished from patients with gastritis. These findings, therefore, emphasize the importance of a collective microbial community in gastric carcinogenesis. Here, we provide an overview of non-H. pylori gastric microbes in gastric carcinogenesis. The molecular mechanisms of gastric microbes-related carcinogenesis and potential clinical applications of gastric microbiota as biomarkers of GC are also explored.
Collapse
Affiliation(s)
- Jun Wen
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
| | - Harry Cheuk-Hay Lau
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
| | - Maikel Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Postbus 2040, 3000 CA Rotterdam, The Netherlands;
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; (J.W.); (H.C.-H.L.)
- Institute of Digestive Disease, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
37
|
Lin Y, Wu SH, Wang XH, Zhang W, Li BG, Liu WS. Associations of imbalance of intestinal flora with severity of disease, inflammatory factors, adiponectin, and vascular endothelial function of hypertension patients. Kaohsiung J Med Sci 2021; 38:165-173. [PMID: 34672426 DOI: 10.1002/kjm2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022] Open
Abstract
To explore the relationship between the severity of hypertension and the imbalanced intestinal flora, inflammatory factors, adiponectin (ADPN) and vascular endothelial function in primary hypertension patients. According to the grading criteria for hypertension, in total of 60 patients with primary hypertension in our hospital from April to July, 2020 were divided into Grade 1 group (n = 20), Grade 2 group (n = 20), and Grade 3 group (n = 20). The feces of the research subjects were collected to extract the deoxyribonucleic acid (DNA) and detect its composition of intestinal flora. Subsequently, the peripheral blood was collected to determine the changes in inflammatory factors interleukin-2 (IL-2), IL-4, tumor necrosis factor-α (TNF-α) and IL-1β, serum immunoglobulin G (IgG) and IgM, ADPN and vascular endothelial function-related endothelin-1 (ET-1), nitric oxide (NO), vascular endothelial growth factor (VEGF), and intercellular adhesion molecule-1 (ICAM-1). There were no significant differences in the gender, age, and body mass index (BMI), the proportion of smokers, diet habit, probiotics and antihypertensive medication use, and number of diabetic cases among groups (p > 0.05). We found an inverse association between blood pressure measures and microbial diversity, in particular microbial richness (p < 0.05). Among the four major kinds of intestinal flora, the composition of firmicutes (p < 0.05) and bacteroidetes (p < 0.05) showed obvious differences among the three groups, and they had consistent trends with the changes in the abundance of firmicutes and bacteroidetes. Intestinal flora imbalance is closely related to the severity of hypertension, inflammatory factors, ADPN, and vascular endothelial function.
Collapse
Affiliation(s)
- Yang Lin
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Shi-Hui Wu
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Xu-Hong Wang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Wei Zhang
- Department of Endocrinology, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China.,Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China
| | - Bai-Gang Li
- Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China.,Department of Emergency, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China
| | - Wen-Shu Liu
- Qiqihar Hospital Affiliated to Southern Medical University, Qiqihar City, Heilongjiang Province, China.,Department of Emergency, Qiqihar First Hospital, Qiqihar City, Heilongjiang Province, China
| |
Collapse
|
38
|
Mao LQ, Zhou YL, Wang SS, Chen L, Hu Y, Yu LM, Xu JM, Lyu B. Impact of Helicobacter pylori eradication on the gastric microbiome. Gut Pathog 2021; 13:60. [PMID: 34645495 PMCID: PMC8513236 DOI: 10.1186/s13099-021-00460-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Helicobacter pylori (Hp) eradication has been used for many years. Yet, the impact of this eradication on the normal gastric microflora is not well understood. In this study, we explored the effect of eradication on the stomach microbial community and its recovery after successful Hp eradication. METHODS Among the 89 included patients, 23, 17, 40, and 9 were included in the Hp-negative, Hp-positive, successful eradication, and failed eradication groups, respectively. Four subgroups were further determined according to disease status (Hp-negative chronic gastritis [N-CG], Hp-negative atrophic gastritis [N-AG], successful-eradication chronic gastritis [SE-CG], and atrophic gastritis with successful eradication [SE-AG]). During the endoscopic examination, one piece of gastric mucosa tissue was obtained from the lesser curvature side of the gastric antrum and gastric corpus, respectively. In addition, 16S rDNA gene sequencing was used to analyze the gastric mucosal microbiome. RESULTS In the Hp-negative group, the gastric microbiota was dominated by five phyla: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria. After successfully eradicating Hp, the bacterial flora in the stomach recovered to a considerable extent. In the failed eradication group, the flora was similar to the flora in Hp-positive subjects based on the alpha and beta diversities. Among the groups, Curvibacter and Acinetobacter were enriched in the presence of Hp (i.e., failed eradication and Hp-positive groups), suggesting that these two genera could be used as biomarkers in the symbiotic flora in the presence of Hp. SE-CG was characterized by an increase in Firmicutes taxa and a decrease in Proteobacteria taxa compared with N-CG. SE-AG was characterized by a decrease in Firmicutes relative to N-AG. Finally, no differences were found in the pairwise comparisons of nitrate and nitrite reductase functions of the microflora among the four subgroups. CONCLUSIONS After Hp infection, the diversity and relative abundance of gastric microflora were significantly decreased. Yet, gastric microbiota could be partially restored to the Hp-negative status after eradication. Still, this effect was incomplete and might contribute to the long-term risks.
Collapse
Affiliation(s)
- Li-Qi Mao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gastroenterology, The First People's Hospital of Huzhou, The First Affiliated Hospital of Huzhou Teachers College, Huzhou, China
| | - Yan-Lin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuang-Shuang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Lin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Hu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei-Min Yu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Department of Gastroenterology, Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Ming Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lyu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
39
|
Gastritis: The clinico-pathological spectrum. Dig Liver Dis 2021; 53:1237-1246. [PMID: 33785282 DOI: 10.1016/j.dld.2021.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
The inflammatory spectrum of gastric diseases includes different clinico-pathological entities, the etiology of which was recently established in the international Kyoto classification. A diagnosis of gastritis combines the information resulting form the gross examination (endoscopy) and histology (microscopy). It is important to consider the anatomical/functional heterogeneity of the gastric mucosa when obtaining representative mucosal biopsy samples. Gastritis includes self-limiting and non-self-limiting (long-standing) inflammatory diseases, and the latter are epidemiologically, biologically and clinically linked to the onset of gastric cancer (i.e. "inflammation-associated cancer"). Different biological models of inflammation-associated gastric oncogenesis have been proposed. Helicobacter pylori (H. pylori) gastritis is the most prevalent worldwide, and H. pylori is classified as a first-class carcinogen. On these bases, eradicating H. pylori is mandatory for the primary prevention of gastric cancer. Non-self-limiting gastritis may also be triggered by the immune-mediated destruction of gastric parietal cells, resulting in autoimmune gastritis. In both H. pylori-related and autoimmune gastritis, the non-self-limiting inflammation results in atrophy of the gastric mucosa, which is the main factor promoting gastric cancer. Long-term follow-up studies consistently demonstrate the prognostic impact of the histological staging of gastritis in gastric cancer secondary prevention strategies.
Collapse
|
40
|
Gong L, El-Omar EM. Application of molecular techniques in Helicobacter pylori detection: limitations and improvements. Helicobacter 2021; 26:e12841. [PMID: 34333819 DOI: 10.1111/hel.12841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Emad M El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
41
|
Park JY, Kang CS, Seo HC, Shin JC, Kym SM, Park YS, Shin TS, Kim JG, Kim YK. Bacteria-Derived Extracellular Vesicles in Urine as a Novel Biomarker for Gastric Cancer: Integration of Liquid Biopsy and Metagenome Analysis. Cancers (Basel) 2021; 13:cancers13184687. [PMID: 34572913 PMCID: PMC8468964 DOI: 10.3390/cancers13184687] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Gastric cancer shows an improved prognosis when diagnosed in its early stage. However, non-invasive diagnostic markers for gastric cancer known to date have poor clinical efficacies. Many studies have shown that gastric cancer patients have distinct microbial changes compared to normal subjects. In the present study, we performed metagenome analysis using body fluid samples (gastric juice, blood, and urine) to investigate the distinct microbial composition using bacteria-derived EVs from gastric cancer patients. We could build diagnostic prediction models for gastric cancer with the metagenomic data and analyzed the accuracy of models. Although further validation is required to apply these findings to real clinical practice yet, our study showed the possibility of gastric cancer diagnosis with the integration of liquid biopsy and metagenome analysis. Abstract Early detection is crucial for improving the prognosis of gastric cancer, but there are no non-invasive markers for the early diagnosis of gastric cancer in real clinical settings. Recently, bacteria-derived extracellular vesicles (EVs) emerged as new biomarker resources. We aimed to evaluate the microbial composition in gastric cancer using bacteria-derived EVs and to build a diagnostic prediction model for gastric cancer with the metagenome data. Stool, urine, and serum samples were prospectively collected from 453 subjects (gastric cancer, 181; control, 272). EV portions were extracted from the samples for metagenome analysis. Differences in microbial diversity and composition were analyzed with 16S rRNA gene profiling, using the next-generation sequencing method. Biomarkers were selected using logistic regression models based on relative abundances at the genus level. The microbial composition of healthy groups and gastric cancer patient groups was significantly different in all sample types. The compositional differences of various bacteria, based on relative abundances, were identified at the genus level. Among the diagnostic prediction models for gastric cancer, the urine-based model showed the highest performance when compared to that of stool or serum. We suggest that bacteria-derived EVs in urine can be used as novel metagenomic markers for the non-invasive diagnosis of gastric cancer by integrating the liquid biopsy method and metagenome analysis.
Collapse
Affiliation(s)
- Jae-Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06973, Korea;
| | - Chil-Sung Kang
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
| | - Ho-Chan Seo
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
| | - Jin-Chul Shin
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
| | - Sung-Min Kym
- Division of Infectious Diseases, Department of Internal Medicine, Sejong Chungnam National University Hospital, Sejong 30099, Korea;
| | - Young-Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Tae-Seop Shin
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
| | - Jae-Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06973, Korea;
- Correspondence: (J.-G.K.); (Y.-K.K.); Tel.: +82-2-6299-3147 (J.-G.K.); +82-2-2655-0766 (Y.-K.K.); Fax: +82-2-6299-1137 (J.-G.K.); +82-2-2655-0768 (Y.-K.K.)
| | - Yoon-Keun Kim
- Institute of MD Healthcare Inc., Seoul 03923, Korea; (C.-S.K.); (H.-C.S.); (J.-C.S.); (T.-S.S.)
- Correspondence: (J.-G.K.); (Y.-K.K.); Tel.: +82-2-6299-3147 (J.-G.K.); +82-2-2655-0766 (Y.-K.K.); Fax: +82-2-6299-1137 (J.-G.K.); +82-2-2655-0768 (Y.-K.K.)
| |
Collapse
|
42
|
Miftahussurur M, Waskito LA, Fauzia KA, Mahmudah I, Doohan D, Adnyana IK, Khomsan A, Ratnasari N, Rezkitha YAA. Overview of Helicobacter pylori Infection in Indonesia: What Distinguishes It from Countries with High Gastric Cancer Incidence? Gut Liver 2021; 15:653-665. [PMID: 32616679 PMCID: PMC8444112 DOI: 10.5009/gnl20019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori infects more than half the human population. However, the prevalence in Indonesia is low, as is the prevalence of gastric cancer. Hence, it could be instructive to compare these prevalence rates and their determining factors with those of countries that have high gastric cancer incidence. Ethnicity and genetic characteristics of H. pylori are important determinants of the H. pylori infection rate in Indonesia. The infection rate is higher in Bataknese, Papuans and Buginese than in Javanese, the predominant ethnic group. Ethnicity is also an important determinant of the genetic characteristics of H. pylori. Analysis of CagA in the EPIYA segment showed that the predominant genotypes in Papuans, Bataknese and Buginese are ABB-, ABDand ABC-type CagA, respectively. Meanwhile, in the countries with high gastric cancer incidence, almost all strains had East Asian type CagA. An antibiotic susceptibility evaluation showed that the standard triple therapy can still be used with caution in several cities. There is a very high rate of resistance to second-line regimens such as levofloxacin and metronidazole. Recent studies have shown that furazolidone, rifabutin and sitafloxacin are potential alternative treatments for antibiotic-resistant H. pylori infection in Indonesia. Rather than focusing on early detection and eradication as in countries with high gastric cancer prevalence, countries with low gastric cancer prevalence should focus on screening the several groups that have a high risk of gastric cancer.
Collapse
Affiliation(s)
- Muhammad Miftahussurur
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Indonesia
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | | | | | - Isna Mahmudah
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - I Ketut Adnyana
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Ali Khomsan
- Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, Indonesia
| | - Neneng Ratnasari
- Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada-Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Faculty of Medicine, Muhammadiyah University of Surabaya, Surabaya, Indonesia
| |
Collapse
|
43
|
Park JM, Han YM, Hahm KB. Rejuvenation of Helicobacter pylori-Associated Atrophic Gastritis Through Concerted Actions of Placenta-Derived Mesenchymal Stem Cells Prevented Gastric Cancer. Front Pharmacol 2021; 12:675443. [PMID: 34483897 PMCID: PMC8416416 DOI: 10.3389/fphar.2021.675443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic Helicobacter pylori infection causes gastric cancer via the progression of precancerous chronic atrophic gastritis (CAG). Therefore, repairing gastric atrophy could be a useful strategy in preventing H. pylori-associated gastric carcinogenesis. Although eradication of the bacterial pathogen offers one solution to this association, this study was designed to evaluate an alternative approach using mesenchymal stem cells to treat CAG and prevent carcinogenesis. Here, we used human placenta-derived mesenchymal stem cells (PD-MSCs) and their conditioned medium (CM) to treat H. pylori-associated CAG in a mice/cell model to explore their therapeutic effects and elucidate their molecular mechanisms. We compared the changes in the fecal microbiomes in response to PD-MSC treatments, and chronic H. pylori-infected mice were given ten treatments with PD-MSCs before being sacrificed for end point assays at around 36 weeks of age. These animals presented with significant reductions in the mean body weights of the control group, which were eradicated following PD-MSC treatment (p < 0.01). Significant changes in various pathological parameters including inflammation, gastric atrophy, erosions/ulcers, and dysplastic changes were noted in the control group (p < 0.01), but these were all significantly reduced in the PD-MSC/CM-treated groups. Lgr5+, Ki-67, H+/K+-ATPase, and Musashi-1 expressions were all significantly increased in the treated animals, while inflammatory mediators, MMP, and apoptotic executors were significantly decreased in the PD-MSC group compared to the control group (p < 0.001). Our model showed that H. pylori-initiated, high-salt diet-promoted gastric atrophic gastritis resulted in significant changes in the fecal microbiome at the phylum/genus level and that PD-MSC/CM interventions facilitated a return to more normal microbial communities. In conclusion, administration of PD-MSCs or their conditioned medium may present a novel rejuvenating agent in preventing the progression of H. pylori-associated premalignant lesions.
Collapse
Affiliation(s)
- Jong Min Park
- College of Oriental Medicine, Daejeon University, Daejeon, Korea
| | - Young Min Han
- Western Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Seoul, Korea.,CHA Cancer Preventive Research Center, CHA Bio Complex, Seongnam, Korea
| |
Collapse
|
44
|
Shen L, Bian R, Wang W, Zhao J. Association of Helicobacter pylori infection with colorectal adenoma in the Chinese urban population: A cross-sectional study. Microb Pathog 2021; 158:105111. [PMID: 34324998 DOI: 10.1016/j.micpath.2021.105111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/19/2023]
Abstract
OBJECTION Helicobacter pylori (H. pylori) infection is considered to increase the risk of colorectal adenoma (CRA) and remains controversial. In this study, we aimed to evaluate the association between H. pylori infection and CAR in the Chinese urban population. METHODS A cross-sectional study of 301 urban adults, who underwent both screening colonoscopy and 13C urea breath test (13C UBT) from June 2018 to December 2019 at Geriatric Hospital of Nanjing Medical University, was carried out to assess the relationship between H. pylori infection and CRA. All baseline characteristics and laboratory examination of subjects were collected and analyzed by specific personnel. The strength of association between H. pylori infection and the risk of CRA was described by multivariate logistic regression analyses to calculate the odds ratios (ORs) and 95% confidence interval (CIs). RESULTS Among the 301 subjects, 82 (27.24%) patients with H. pylori positive and 141 (46.84%) were confirmed to have CRA. Multivariate analysis adjusted for age, gender, uric acid and fatty liver revealed that H. pylori infection increased the risk of CRA significantly (adjusted OR 2.007, 95%CI 1.153-3.492, p = 0.014). In addition, the correlation between H. pylori infection and CRA persisted after further adjusting for metabolic variables (adjusted OR 2.029, 95%CI 1.161-3.544, p = 0.013) or other potential confounding factors related to CRA including smoking status, alcohol intake, cholecystitis and gallstone (adjusted OR 1.996, 95%CI 1.141-3.492, p = 0.015). In a gender-based subgroup analysis, H. pylori infection had an increased risk of CRA in male group (adjusted OR 1.997, 95%CI 1.010-3.945, p = 0.047). CONCLUSIONS H. pylori infection had a significant association with the risk of CRA in Chinese urban populations, which will provide new insights into selecting high-risk subjects with CRA.
Collapse
Affiliation(s)
- Lingyu Shen
- Chronic Disease and Health Management Research Center, Geriatric Hospital of Nanjing Medical University, Nanjing, 210024, China
| | - Rongwen Bian
- Chronic Disease and Health Management Research Center, Geriatric Hospital of Nanjing Medical University, Nanjing, 210024, China
| | - Wei Wang
- Chronic Disease and Health Management Research Center, Geriatric Hospital of Nanjing Medical University, Nanjing, 210024, China.
| | - Junning Zhao
- Department of Gastroenterology, Geriatric Hospital of Nanjing Medical University, Nanjing, 210024, China.
| |
Collapse
|
45
|
Grover K, Gregory S, Gibbs JF, Emenaker NJ. A discussion of the gut microbiome's development, determinants, and dysbiosis in cancers of the esophagus and stomach. J Gastrointest Oncol 2021; 12:S290-S300. [PMID: 34422393 DOI: 10.21037/jgo-2019-gi-07] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022] Open
Abstract
The microbiome refers to a population of microbes that colonize the skin, nasopharynx, oral cavity, gastrointestinal tract, and urogenital tract. The human microbiome consists of bacteria, archaea, fungi, viruses, and phages. Recent advances in genomic sequencing have catalyzed a deeper understanding of complex microbe-microbe and host-microbe interactions. Dysregulation of these interactions, or dysbiosis of the gastrointestinal tract, has been implicated in a growing list of pathologies including nonalcoholic fatty liver disease, cardiovascular disease, obesity, diabetes, depression, Parkinson's disease, autism, and various gastrointestinal cancers. Gastric and esophageal cancer, for example, continue to remain as two of the most common causes of cancer-related deaths worldwide, therefore there is an increased emphasis on investigating the role of dysbiosis on these cancers. In this review, we discuss the development and structure of the gut microbiome, its homeostatic and dysbiotic mechanisms, and the key microbes in esophageal and gastric carcinogenesis with a focus on bacterial biology. Further clarification of these pathways and discovery of diagnostic or therapeutic targets could have broad impacts on global subpopulations. It is important to understand the nature of the gastrointestinal tract microbiome and its potentional risk factors for dysbiosis in order to tailor its application to the individual patient and create an era of highly personalized, precision medicine.
Collapse
Affiliation(s)
- Karan Grover
- Department of Surgery, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Stephanie Gregory
- Department of Surgery, Rutgers Biomedical Health Sciences-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - John F Gibbs
- Department of Surgery, Hackensack Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Nancy J Emenaker
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
46
|
Jonaitis P, Kupcinskas L, Kupcinskas J. Molecular Alterations in Gastric Intestinal Metaplasia. Int J Mol Sci 2021; 22:ijms22115758. [PMID: 34071181 PMCID: PMC8199079 DOI: 10.3390/ijms22115758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) remains one of the most common causes of mortality worldwide. Intestinal metaplasia (IM) is one of the preneoplastic gastric lesions and is considered an essential predisposing factor in GC development. Here we present a review of recent most relevant papers to summarize major findings on the molecular alterations in gastric IM. The latest progress in novel diagnostic methods allows scientists to identify various types of molecular alterations in IM, such as polymorphisms in various genes, changes in the expression of micro-RNAs and long noncoding RNAs, and altered microbiome profiles. The results have shown that some of these alterations have strong associations with IM and a potential to be used for screening, treatment, and prognostic purposes; however, one of the most important limiting factors is the inhomogeneity of the studies. Therefore, further large-scale studies and clinical trials with standardized methods designed by multicenter consortiums are needed. As of today, various molecular alterations in IM could become a part of personalized medicine in the near future, which would help us deliver a personalized approach for each patient and identify those at risk of progression to GC.
Collapse
|
47
|
Zhou P, Hao X, Liu Y, Yang Z, Xu M, Liu S, Zhang S, Yang T, Wang X, Wang Y. Determination of the protective effects of Hua-Zhuo-Jie-Du in chronic atrophic gastritis by regulating intestinal microbiota and metabolites: combination of liquid chromatograph mass spectrometer metabolic profiling and 16S rRNA gene sequencing. Chin Med 2021; 16:37. [PMID: 33933119 PMCID: PMC8088729 DOI: 10.1186/s13020-021-00445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background
Hua-Zhuo-Jie-Du (HZJD), a Chinese herbal prescription consisting of 11 herbs, is commonly used in China to treat chronic atrophic gastritis (CAG). We aimed to determine the effect of HZJD on the microbiome-associated metabolic changes in CAG rats. Methods
The CAG rat models were induced by 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with irregular fasting and 2% sodium salicylate, which was intragastrically administrated in fasted animals for 24 weeks. The CAG rats in the Chinese medicine (CM) group were administered a daily dose of 14.81 g/kg/day HZJD, and the vitacoenzyme (V) group were administered a daily dose of 0.08 g/kg/day vitacoenzyme. All animals were treated for 10 consecutive weeks, consecutively. Hematoxylin and eosin (H&E) staining was used to assess the histopathological changes in the gastric tissues. An integrated approach based on liquid chromatograph mass spectrometer (LC-MS) metabolic profiling combined with 16S rRNA gene sequencing was carried out to assess the effects of HZJD on CAG rats. Spearman analysis was used to calculate the correlation coefficient between the different intestinal microbiota and the metabolites. Results The H&E results indicated that HZJD could improve the pathological condition of CAG rats. The LC–MS results indicated that HZJD could significantly improve 21 gastric mucosal tissue perturbed metabolites in CAG rats; the affected metabolites were found to be involved in multiple metabolic pathways, such as the central carbon metabolism in cancer. The results of 16S rRNA gene sequencing indicated that HZJD could regulate the diversity, microbial composition, and abundance of the intestinal microbiota of CAG rats. Following HZJD treatment, the relative abundance of Turicibacter was increased, and the relative abundance of Desulfococcus and Escherichia were decreased in the CM group when compared with the M group. Spearman analysis revealed that perturbed intestinal microbes had a strong correlation with differential metabolites, Escherichia exhibited a negative correlation with l-Leucine, Turicibacter was negatively correlated with urea, and Desulfococcus exhibited a positive correlation with trimethylamine, and a negative correlation with choline. Conclusions HZJD could protect CAG by regulating intestinal microbiota and its metabolites.
Collapse
Affiliation(s)
- Pingping Zhou
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Xinyu Hao
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Yu Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Zeqi Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Miaochan Xu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Shaowei Liu
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Shixiong Zhang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Tianxiao Yang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Xiaomei Wang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China
| | - Yangang Wang
- Hebei University of Chinese Medicine, Xinshi South Road No 326, Qiaoxi District, Hebei, 050091, Shijiazhuang, China. .,Beijing University of Chinese Medicine Third Affiliated Hospital, Anwai Xiaoguan Street No. 51, Chaoyang District, 100029, Beijing, China.
| |
Collapse
|
48
|
Zhao W, Ren Z, Luo Y, Cheng J, Wang J, Wang Y, Yang Z, Yao X, Zhong Z, Yang W, Wu X. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Genes Genomics 2021; 43:43-53. [PMID: 33428153 DOI: 10.1007/s13258-020-01029-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The forest musk deer (FMD, Moschus berezovskii) is an threatened species in China. Bacterial pneumonia was found to seriously restrict the development of FMD captive breeding. Historical evidence has demonstrated the relationship between immune system and intestinal Lactobacillus in FMD. OBJECTIVE We sought to elucidate the differences in the gut microbiota of healthy and bacterial pneumonia FMD. METHODS The bacterial pneumonia FMD was demonstrated by bacterial and pathological diagnosis, and the gut microbiome of healthy and bacterial pneumonia FMD was sequenced and analysed. RESULTS There are three pathogens (Pseudomonas aeruginosa, Streptococcus equinus and Trueperella pyogenes) isolated from the bacterial pneumonia FMD individuals. Compared with the healthy group, the abundance of Firmicutes and Proteobacteria in the pneumonia group was changed, and a high level of Proteobacteria was found in the pneumonia group. In addition, a higher abundance of Acinetobacter (p = 0.01) was observed in the population of the pneumonia group compared with the healthy group. Several potentially harmful bacteria and disease-related KEGG subsystems were only found in the gut of the bacterial pneumonia group. Analysis of KEGG revealed that many genes related to type IV secretion system, type IV pilus, lipopolysaccharide export system, HTH-type transcriptional regulator/antitoxin MqsA, and ArsR family transcriptional regulator were significantly enriched in the metagenome of the bacterial pneumonia FMD. CONCLUSION Our results demonstrated that the gut microbiome was significantly altered in the bacterial pneumonia group. Overall, our research improves the understanding of the potential role of the gut microbiota in the FMD bacterial pneumonia.
Collapse
Affiliation(s)
- Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Ziwei Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China.
| | - Jianguo Cheng
- Sichuan Institute of Musk Deer Breeding, Chengdu, 610000, Sichuan, People's Republic of China
| | - Jie Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Wei Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xi Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| |
Collapse
|
49
|
Chen CC, Liou JM, Lee YC, Hong TC, El-Omar EM, Wu MS. The interplay between Helicobacter pylori and gastrointestinal microbiota. Gut Microbes 2021; 13:1-22. [PMID: 33938378 PMCID: PMC8096336 DOI: 10.1080/19490976.2021.1909459] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
The complex population of microbes in the human gastrointestinal (GI) tract interacts with itself and with the host, exerting a deep influence on health and disease development. The development of modern sequencing technology has enabled us to gain insight into GI microbes. Helicobacter pylori colonization significantly affects the gastric microenvironment, which in turn affects gastric microbiota and may be correlated with colonic microbiota changes. Crosstalk between H. pylori and GI commensal flora may play a role in H. pylori-related carcinogenicity and extragastric manifestations. We review current knowledge on how H. pylori shapes GI microbiota with a specific focus on its impact on the stomach and colon. We also review current evidence on colonic microbiota changes attributed to eradication therapy based on the clinical studies performed to date.
Collapse
Affiliation(s)
- Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medicine, National Taiwan University Cancer Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chia Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Chan Hong
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Emad M El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
50
|
Park CH, Seo SI, Kim JS, Kang SH, Kim BJ, Choi YJ, Byun HJ, Yoon JH, Lee SK. Treatment of non-erosive reflux disease and dynamics of the esophageal microbiome: a prospective multicenter study. Sci Rep 2020; 10:15154. [PMID: 32938975 PMCID: PMC7494862 DOI: 10.1038/s41598-020-72082-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Non-erosive reflux disease (NERD) pathogenesis has not been thoroughly evaluated. Here, we assessed the response of patients with NERD to proton pump inhibitor (PPI) therapy; changes in the microbiome and biologic marker expression in the esophageal mucosa were also evaluated. Patients with NERD (n = 55) received esomeprazole (20 mg) for eight weeks. The treatment response was evaluated at baseline, week four, and week eight. Esophageal mucosal markers and oropharyngeal and esophageal microbiomes were analyzed in patients who underwent upper gastrointestinal endoscopy at screening (n = 18). Complete and partial response rates at week eight were 60.0% and 32.7% for heartburn, and 61.8% and 29.1% for regurgitation, respectively. The expressions of several inflammatory cytokines, including IL-6, IL-8, and NF-κB, were decreased at week eight. Streptococcus, Haemophilus, Prevotella, Veillonella, Neisseria, and Granulicatella were prevalent regardless of the time-point (baseline vs. week eight) and organ (oropharynx vs. esophagus). The overall composition of oropharyngeal and esophageal microbiomes showed significant difference (P = 0.004), which disappeared after PPI therapy. In conclusion, half-dose PPI therapy for eight weeks could effectively control NERD symptoms. The expression of several inflammatory cytokines was reduced in the esophagus, and oropharyngeal and esophageal microbiomes in patients with NERD showed significant difference. However, the microbial compositions in the oropharynx and esophagus were not affected by PPI therapy in this study. Impact of PPI on the microbiome in patients with NERD should be more investigated in future studies.
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Seung In Seo
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Joon Sung Kim
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, Incheon St Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Hyung Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Beom Jin Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yoon Jin Choi
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Internal Medicine, Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Joo Byun
- Department of Internal Medicine, Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Jung-Ho Yoon
- Department of Internal Medicine, Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Sang Kil Lee
- Department of Internal Medicine, Yonsei Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|