1
|
Esmaeili Z, Kamal Shahsavar S, Ariannejad H, Hajinajaf N, Menbari S, Ghazvini K. Investigation of the inhibitory effects of immunoglobulin Y antibody against key epitopes of Helicobacter pylori UreB recombinant protein. Microb Pathog 2025; 204:107613. [PMID: 40252938 DOI: 10.1016/j.micpath.2025.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Helicobacter pylori (H.pylori) is considered to be the most important gastrointestinal pathogen causing gastritis, gastric ulcers and even gastric cancer. The treatment of these infections has failed due to the rapidly increasing antibiotic resistance to standard treatment regimens and the lack of an effective vaccine. This study investigates the production and therapeutic potential of Immunoglobulin Y (IgY) antibodies targeting key epitopes of the H. pylori UreB recombinant protein. Given the increasing challenge of antibiotic resistance in H. pylori treatment, this research underscores the necessity for alternative therapeutic strategies. A specific region of the UreB gene, containing critical immunogenic epitopes, was amplified using Polymerase Chain Reaction (PCR) and cloned into the pET32b vector. The recombinant plasmid was expressed in Escherichia coli BL21 (DE3), and the UreB protein was purified via Ni-NTA affinity chromatography, confirmed by SDS-PAGE and Western blot analysis. Hens were immunized with the recombinant UreB protein, resulting in the generation of specific IgY antibodies. The purified IgY-UreB antibodies exhibited a remarkable reduction in urease activity by 84.53 % at a concentration of 10 mg/mL, effectively neutralizing this critical virulence factor. Additionally, in vitro assays demonstrated that IgY-UreB antibodies significantly inhibited the growth of H. pylori at a concentration of 5 mg/mL. These findings highlight the potential of IgY as a viable alternative to traditional antibiotic therapies, particularly in the context of rising antibiotic resistance. This study paves the way for the development of innovative immunotherapeutic strategies that may improve treatment outcomes for H. pylori infections.
Collapse
Affiliation(s)
- Zahra Esmaeili
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Kamal Shahsavar
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Ariannejad
- Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| | - Nima Hajinajaf
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Shaho Menbari
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Sun M, Liu Y, Ni X, Tan R, Wang Y, Jiang Y, Ke D, Du H, Guo G, Liu K. Intranasal immunization with poly I:C and CpG ODN adjuvants enhances the protective efficacy against Helicobacter pylori infection in mice. Microbes Infect 2025; 27:105433. [PMID: 39461584 DOI: 10.1016/j.micinf.2024.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Helicobacter pylori (H. pylori) infection is a serious public health issue, and development of vaccines is a desirable preventive strategy for H. pylori. Toll-like receptor (TLR) ligands have shown potential as vaccine adjuvants that induce immune responses, but polyinosinic-polycytidylic acid (poly I:C), a nucleic acid-based TLR9 ligand, is less well studied in H. pylori vaccine research. Here, we evaluated the effects of poly I:C and CpG oligodeoxynucleotide (CpG ODN), a nucleic acid TLR3 ligand, as adjuvants in combination with the H. pylori recombinant proteins LpoB and UreA to protect against H. pylori infection. For analysis of specific immune responses, the levels of specific antibodies and splenic cytokines were measured in the immunized mice. Compared with CpG ODN, poly I:C could induce mucosal sIgA antibody responses and reduce H. pylori colonization. Additionally, the combination of poly I:C and CpG ODN caused greater immunoprotection and significantly reduced gastritis, exerting synergistic effects. Analysis of splenic cytokines revealed that poly I:C mainly triggered a mixed Th1/Th2/Th17 immune response, whereas the combination of CpG ODN and poly I:C induced a Th1/Th17 immune response. Our findings indicated that increased levels of mucosal sIgA antibodies and a robust splenic Th1/Th17 immune response were associated with reduced H. pylori colonization in vaccinated mice. This study identified a potential TLR ligand adjuvant for developing more effective H. pylori vaccines.
Collapse
Affiliation(s)
- Min Sun
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiumei Ni
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Runqing Tan
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Wang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yajun Jiang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dingxin Ke
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Han Du
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kaiyun Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Elbehiry A, Marzouk E, Abalkhail A, Sindi W, Alzahrani Y, Alhifani S, Alshehri T, Anajirih NA, ALMutairi T, Alsaedi A, Alzaben F, Alqrni A, Draz A, Almuzaini AM, Aljarallah SN, Almujaidel A, Abu-Okail A. Pivotal role of Helicobacter pylori virulence genes in pathogenicity and vaccine development. Front Med (Lausanne) 2025; 11:1523991. [PMID: 39850097 PMCID: PMC11756510 DOI: 10.3389/fmed.2024.1523991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/25/2025] Open
Abstract
One of the most prevalent human infections is Helicobacter pylori (H. pylori), which affects more than half of the global population. Although H. pylori infections are widespread, only a minority of individuals develop severe gastroduodenal disorders. The global resistance of H. pylori to antibiotics has reached concerning levels, significantly impacting the effectiveness of treatment. Consequently, the development of vaccines targeting virulence factors may present a viable alternative for the treatment and prevention of H. pylori infections. This review aims to provide a comprehensive overview of the current understanding of H. pylori infection, with a particular focus on its virulence factors, pathophysiology, and vaccination strategies. This review discusses various virulence factors associated with H. pylori, such as cytotoxin-associated gene A (cagA), vacuolating cytotoxin gene (vacA), outer membrane proteins (OMPs), neutrophil-activated protein (NAP), urease (ure), and catalase. The development of vaccines based on these virulence characteristics is essential for controlling infection and ensuring long-lasting protection. Various vaccination strategies and formulations have been tested in animal models; however, their effectiveness and reproducibility in humans remain uncertain. Different types of vaccines, including vector-based vaccines, inactivated whole cells, genetically modified protein-based subunits, and multiepitope nucleic acid (DNA) vaccines, have been explored. While some vaccines have demonstrated promising results in murine models, only a limited number have been successfully tested in humans. This article provides a thorough evaluation of recent research on H. pylori virulence genes and vaccination methods, offering valuable insights for future strategies to address this global health challenge.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wael Sindi
- Department of Population, Public and Environmental Health, General Administration of Health Services, Ministry of Defense, Riyadh, Saudi Arabia
| | - Yasir Alzahrani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Salem Alhifani
- Department of Psychiatry, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Turki Alshehri
- Department of Dental, Alhada Armed Forces Hospital, Taif, Saudi Arabia
| | - Nuha Abdulaziz Anajirih
- Department of Medical Emergency Services, Faculty of Health Sciences, Umm Al-Qura University, Al-Qunfudah, Saudi Arabia
| | - Turki ALMutairi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Ahmad Alsaedi
- Department of Education and Training, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Abdullah Alqrni
- Department of Preventive Medicine, King Fahad Armed Hospital, Jeddah, Saudi Arabia
| | - Abdelmaged Draz
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz M. Almuzaini
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Sahar N. Aljarallah
- Department of Pharmacy Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Abdulrahman Almujaidel
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Cui M, Ji X, Guan F, Su G, Du L. Design of a Helicobacter pylori multi-epitope vaccine based on immunoinformatics. Front Immunol 2024; 15:1432968. [PMID: 39247202 PMCID: PMC11377293 DOI: 10.3389/fimmu.2024.1432968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Helicobacter pylori (H. pylori) is an infectious bacterium that colonizes the stomach of approximately half of the global population. It has been classified as a Group I carcinogen by the World Health Organization due to its strong association with an increased incidence of gastric cancer and exacerbation of stomach diseases. The primary treatment for H. pylori infection currently involves triple or quadruple therapy, primarily consisting of antibiotics and proton pump inhibitors. However, the increasing prevalence of antibiotic resistance poses significant challenges to this approach, underscoring the urgent need for an effective vaccine. In this study, a novel multi-epitope H. pylori vaccine was designed using immunoinformatics. The vaccine contains epitopes derived from nine essential proteins. Software tools and online servers were utilized to predict, evaluate, and analyze the physiochemical properties, secondary and tertiary structures, and immunogenicity of the candidate vaccine. These comprehensive assessments ultimately led to the formulation of an optimal design scheme for the vaccine. Through constructing a novel multi-epitope vaccine based on immunoinformatics, this study offers promising prospects and great potential for the prevention of H. pylori infection. This study also provides a reference strategy to develop multi-epitope vaccines for other pathogens.
Collapse
Affiliation(s)
- Man Cui
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Xiaohui Ji
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Fengtao Guan
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Guimin Su
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| | - Lin Du
- Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China
- Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
| |
Collapse
|
5
|
Nguyen TKC, Do HDK, Nguyen TLP, Pham TT, Mach BN, Nguyen TC, Pham TL, Katsande PM, Hong HA, Duong HT, Phan AN, Cutting SM, Vu MT, Nguyen VD. Genomic and vaccine preclinical studies reveal a novel mouse-adapted Helicobacter pylori model for the hpEastAsia genotype in Southeast Asia. J Med Microbiol 2024; 73. [PMID: 38235783 DOI: 10.1099/jmm.0.001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Introduction. Helicobacter pylori infection is a major global health concern, linked to the development of various gastrointestinal diseases, including gastric cancer. To study the pathogenesis of H. pylori and develop effective intervention strategies, appropriate animal pathogen models that closely mimic human infection are essential.Gap statement. This study focuses on the understudied hpEastAsia genotype in Southeast Asia, a region marked by a high H. pylori infection rate. No mouse-adapted model strains has been reported previously. Moreover, it recognizes the urgent requirement for vaccines in developing countries, where overuse of antimicrobials is fuelling the emergence of resistance.Aim. This study aims to establish a novel mouse-adapted H. pylori model specific to the hpEastAsia genotype prevalent in Southeast Asia, focusing on comparative genomic and histopathological analysis of pathogens coupled with vaccine preclinical studies.Methodology. We collected and sequenced the whole genome of clinical strains of H. pylori from infected patients in Vietnam and performed comparative genomic analyses of H. pylori strains in Southeast Asia. In parallel, we conducted preclinical studies to assess the pathogenicity of the mouse-adapted H. pylori strain and the protective effect of a new spore-vectored vaccine candidate on male Mlac:ICR mice and the host immune response in a female C57BL/6 mouse model.Results. Genome sequencing and comparison revealed unique and common genetic signatures, antimicrobial resistance genes and virulence factors in strains HP22 and HP34; and supported clarithromycin-resistant HP34 as a representation of the hpEastAsia genotype in Vietnam and Southeast Asia. HP34-infected mice exhibited gastric inflammation, epithelial erosion and dysplastic changes that closely resembled the pathology observed in human H. pylori infection. Furthermore, comprehensive immunological characterization demonstrated a robust host immune response, including both mucosal and systemic immune responses. Oral vaccination with candidate vaccine formulations elicited a significant reduction in bacterial colonization in the model.Conclusion. Our findings demonstrate the successful development of a novel mouse-adapted H. pylori model for the hpEastAsia genotype in Vietnam and Southeast Asia. Our research highlights the distinctive genotype and pathogenicity of clinical H. pylori strains in the region, laying the foundation for targeted interventions to address this global health burden.
Collapse
Affiliation(s)
- Thi Kim Cuc Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Thi Lan Phuong Nguyen
- Institute of Vaccines and Biological Medicals (IVAC), 9 Pasteur Street, Nha Trang, Khanh Hoa, Vietnam
| | - Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Bao Ngoc Mach
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Thi Chinh Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Thi Lan Pham
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Paidamoyo M Katsande
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Huynh Anh Hong
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Huu Thai Duong
- Institute of Vaccines and Biological Medicals (IVAC), 9 Pasteur Street, Nha Trang, Khanh Hoa, Vietnam
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Simon M Cutting
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Minh Thiet Vu
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
6
|
Liu Q, Li B, Lu J, Zhang Y, Shang Y, Li Y, Gong T, Zhang C. Recombinant outer membrane vesicles delivering eukaryotic expression plasmid of cytokines act as enhanced adjuvants against Helicobacter pylori infection in mice. Infect Immun 2023; 91:e0031323. [PMID: 37889003 PMCID: PMC10652931 DOI: 10.1128/iai.00313-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023] Open
Abstract
The widespread prevalence of Helicobacter pylori (H. pylori) infection remains a great challenge to human health. The existing vaccines are not ideal for preventing H. pylori infection; thus, exploring highly effective adjuvants may improve the immunoprotective efficacy of H. pylori vaccines. In a previous study, we found that the outer membrane vesicles (OMVs), a type of nanoscale particle spontaneously produced by Gram-negative bacteria, could act as adjuvants to boost the immune responses to vaccine antigens. In this study, we explored the potential application of OMVs as delivery vectors for adjuvant development. We constructed recombinant OMVs containing eukaryotic expression plasmid of cytokines, including interleukin 17A or interferon-γ, and evaluated their function as adjuvants in combination with inactivated whole-cell vaccine (WCV) or UreB as vaccine antigens. Our results showed that recombinant OMVs as adjuvants could induce stronger humoral and mucosal immune responses in mice than wild-type H. pylori OMVs and the cholera toxin (CT) adjuvant. Additionally, the recombinant OMVs significantly promoted Th1/Th2/Th17-type immune responses. Furthermore, the recombinant OMV adjuvant induced more potent clearance of H. pylori than CT and wild-type OMVs. Our findings suggest that the recombinant OMVs coupled with cytokines may become potent adjuvants for the development of novel and effective vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Biaoxian Li
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Jiahui Lu
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yejia Zhang
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yinpan Shang
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yi Li
- The Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Tian Gong
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengsheng Zhang
- Center for Molecular Diagnosis and Precision Medicine, and The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Li Z, Zhang Y, Mi C, Deng X, Wang X, Hu D, Yin K, Yin C, Zhao L, Shan B. Identification of the immunogenic membrane proteins, catalase, PgbA, and PgbB, as potential antigens against Helicobacter pylori. J Appl Microbiol 2023; 134:lxad218. [PMID: 37777837 DOI: 10.1093/jambio/lxad218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
AIMS This study aims to investigate the specific membrane antigens that are targeted by antibodies raised against Helicobacter pylori. METHODS AND RESULTS Bovine milk antibodies were prepared using whole H. pylori, purified membrane proteins, or both. Enzyme-linked immunosorbent assay and sodium dodecyl sulfate-polyacrylamide gel electrophoresis experiments revealed that these immunogens triggered anti-H. pylori antibody production in milk. The highest antibody titer was induced by the mixture of whole bacteria and purified membrane proteins. The antibodies induced by mixed immunogens significantly inhibited H. pylori growth in vitro and were used to identify catalase, plasminogen-binding protein A (PgbA), and PgbB via western blotting, immunoprecipitation, and two-dimensional western blotting followed by liquid chromatography with tandem mass spectrophotometry. The immunogenicity of PgbA and PgbB was verified in mice vaccinated with their B-cell epitope vaccines. Following prophylactic vaccination of C57BL/6 mice, each of the three antigens alone and their combination reduced the weight loss in mice, increased antibody titers, and relieved the inflammatory status of the gastric mucosa following H. pylori infection. CONCLUSIONS Catalase, PgbA, and PgbB could serve as valuable membrane antigens for the development of anti-H. pylori immunotherapies.
Collapse
Affiliation(s)
- Zhirong Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
- Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Chaoyi Mi
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xiaoqing Deng
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xian Wang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei 050000, China
| | - Dailun Hu
- Clinical College, Hebei Medical University, Shijiazhuang, Hebei 050020, China
| | - Kaige Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Changfu Yin
- Clinical College, Hebei Medical University, Shijiazhuang, Hebei 050020, China
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| |
Collapse
|
8
|
Gao Y, Wang R, Liu L, Feng S, Xi X, Yu W, Gu Y, Wang Y. Identification and characterization of shark VNARs targeting the Helicobacter pylori adhesin HpaA. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:509-519. [PMID: 37695066 DOI: 10.1080/21691401.2023.2255635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. H. pylori can adhere to and colonize the gastric mucosa through H. pylori adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of H. pylori infection.
Collapse
Affiliation(s)
- Yanchun Gao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Ruihong Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, P.R. China
| | - Lin Liu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Shitao Feng
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Xiaozhi Xi
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Ye Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
9
|
Friedrich V, Gerhard M. Vaccination against Helicobacter pylori - An approach for cancer prevention? Mol Aspects Med 2023; 92:101183. [PMID: 37018869 DOI: 10.1016/j.mam.2023.101183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
The gram-negative bacterium Helicobacter pylori is the most common chronic bacterial infection and the main cause of gastric cancer. Due to the increasing antimicrobial resistance of H. pylori, the development of an efficacious vaccine is a valid option to protect from disease or infection and ultimately prevent gastric cancer. However, despite more than 30 years of research, no vaccine has entered the market yet. This review highlights the most relevant previous preclinical and clinical studies to allow conclusions to be drawn on which parameters need special attention in the future to develop an efficacious vaccine against H. pylori and thus prevent gastric cancer.
Collapse
Affiliation(s)
- Verena Friedrich
- Technical University of Munich (TUM), School of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 30, Munich 81675, Germany
| | - Markus Gerhard
- Technical University of Munich (TUM), School of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 30, Munich 81675, Germany.
| |
Collapse
|
10
|
Li S, Zhao W, Xia L, Kong L, Yang L. How Long Will It Take to Launch an Effective Helicobacter pylori Vaccine for Humans? Infect Drug Resist 2023; 16:3787-3805. [PMID: 37342435 PMCID: PMC10278649 DOI: 10.2147/idr.s412361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Helicobacter pylori infection often occurs in early childhood, and can last a lifetime if not treated with medication. H. pylori infection can also cause a variety of stomach diseases, which can only be treated with a combination of antibiotics. Combinations of antibiotics can cure H. pylori infection, but it is easy to relapse and develop drug resistance. Therefore, a vaccine is a promising strategy for prevention and therapy for the infection of H. pylori. After decades of research and development, there has been no appearance of any H. pylori vaccine reaching the market, unfortunately. This review summarizes the aspects of candidate antigens, immunoadjuvants, and delivery systems in the long journey of H. pylori vaccine research, and also introduces some clinical trials that have displayed encouraging or depressing results. Possible reasons for the inability of an H. pylori vaccine to be available over the counter are cautiously discussed and some propositions for the future of H. pylori vaccines are outlined.
Collapse
Affiliation(s)
- Songhui Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Wenfeng Zhao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Xia
- Bloomage Biotechnology Corporation Limited, Jinan, People’s Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009People’s Republic of China
| |
Collapse
|
11
|
Sukri A, Hanafiah A, Patil S, Lopes BS. The Potential of Alternative Therapies and Vaccine Candidates against Helicobacter pylori. Pharmaceuticals (Basel) 2023; 16:ph16040552. [PMID: 37111309 PMCID: PMC10141204 DOI: 10.3390/ph16040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Alternative therapies and vaccination are essential to combat the emergence of multidrug-resistant Helicobacter pylori and to prevent the development of gastroduodenal diseases. This review aimed to systematically review recent studies on alternative therapies, i.e., probiotics, nanoparticles, and natural products from plants, as well as recent progress in H. pylori vaccines at the preclinical stage. Articles published from January 2018 to August 2022 were systematically searched using PubMed, Scopus, Web of Science, and Medline. After the screening process, 45 articles were eligible for inclusion in this review. Probiotics (n = 9 studies) and natural products from plants (n = 28 studies) were observed to inhibit the growth of H. pylori, improve immune response, reduce inflammation, and reduce the pathogenic effects of H. pylori virulence factors. Natural products from plants also showed anti-biofilm activity against H. pylori. However, clinical trials of natural products from plants and probiotics are still lacking. A paucity of data assessing the nanoparticle activity of N-acylhomoserine lactonase-stabilized silver against H. pylori was observed. Nonetheless, one nanoparticle study showed anti-biofilm activity against H. pylori. Promising results of H. pylori vaccine candidates (n = 7) were observed at preclinical stage, including elicitation of a humoral and mucosal immune response. Furthermore, the application of new vaccine technology including multi-epitope and vector-based vaccines using bacteria was investigated at the preclinical stage. Taken together, probiotics, natural products from plants, and nanoparticles exhibited antibacterial activity against H. pylori. New vaccine technology shows promising results against H. pylori.
Collapse
Affiliation(s)
- Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Bruno S Lopes
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| |
Collapse
|
12
|
Zhang Y, Li X, Shan B, Zhang H, Zhao L. Perspectives from recent advances of Helicobacter pylori vaccines research. Helicobacter 2022; 27:e12926. [PMID: 36134470 DOI: 10.1111/hel.12926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main factor leading to some gastric diseases. Currently, H. pylori infection is primarily treated with antibiotics. However, with the widespread application of antibiotics, H. pylori resistance to antibiotics has also gradually increased year by year. Vaccines may be an alternative solution to clear H. pylori. AIMS By reviewing the recent progress on H. pylori vaccines, we expected it to lead to more research efforts to accelerate breakthroughs in this field. MATERIALS & METHODS We searched the research on H. pylori vaccine in recent years through PubMed®, and then classified and summarized these studies. RESULTS The study of the pathogenic mechanism of H. pylori has led to the development of vaccines using some antigens, such as urease, catalase, and heat shock protein (Hsp). Based on these antigens, whole-cell, subunit, nucleic acid, vector, and H. pylori exosome vaccines have been tested. DISCUSSION At present, researchers have developed many types of vaccines, such as whole cell vaccines, subunit vaccines, vector vaccines, etc. However, although some of these vaccines induced protective immunity in mouse models, only a few were able to move into human trials. We propose that mRNA vaccine may play an important role in preventing or treating H. pylori infection. The current study shows that we have developed various types of vaccines based on the virulence factors of H. pylori. However, only a few vaccines have entered human clinical trials. In order to improve the efficacy of vaccines, it is necessary to enhance T-cell immunity. CONCLUSION We should fully understand the pathogenic mechanism of H. pylori and find its core antigen as a vaccine target.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Yang H, Guan L, Hu B. Detection and Treatment of Helicobacter pylori: Problems and Advances. Gastroenterol Res Pract 2022; 2022:4710964. [PMID: 36317106 PMCID: PMC9617708 DOI: 10.1155/2022/4710964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is chronic and etiologically linked to gastric cancer (GC) derived from gastric epithelium. The potential mechanism is complex, covering chronic inflammation, epithelial senescence, NF-κB activation, the cytotoxin-associated gene A protein translocation, and related abnormal signaling pathways. In clinical practice, the test-and-treat strategy, endoscopy-based strategy, and (family-based) screen-and-treat strategy are recommended to detect H. pylori and prevent GC. It has been demonstrated that the decreasing annual incidence of GC is largely attributable to the management of H. pylori. This study reviews the current clinical practice of H. pylori on the detection and eradication, alternative treatment strategies, and related problems and advances, and hopes to contribute to the better clinical management of H. pylori.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liwen Guan
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Tamjid N, Eskandari S, Karimi Z, Nezafat N, Negahdaripour M. Vaccinomics strategy to design an epitope peptide vaccine against Helicobacter pylori. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Disruption of sncRNA Improves the Protective Efficacy of Outer Membrane Vesicles against Helicobacter pylori Infection in a Mouse Model. Infect Immun 2022; 90:e0026722. [PMID: 35861532 PMCID: PMC9387243 DOI: 10.1128/iai.00267-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The outer membrane vesicles (OMVs) secreted by Helicobacter pylori contain various bacterial components, such as proteins, phospholipids, toxins, and nucleic acids, including small noncoding RNA (sncRNA), which have regulatory functions in cell envelope structure, metabolism, bacterial communication, biofilm formation, and virulence. We previously showed that knocking out sncRNAs sR-989262 and sR-2509025 at the cellular level increased interleukin 8 (IL-8) levels in mice exposed to OMVs. In this study, we show that immunization with ΔsR-989262 and ΔsR-2509025 OMVs intragastrically significantly increased immunoglobulin G (IgG) and secreted IgA levels in mice compared to wild-type OMVs and without weight changes, which indicated that sncRNA-deficient OMVs are relatively safe to immunize mice. The detection of IgG subtypes IgG1 and IgG2c showed that the sncRNA-deficient OMVs primarily stimulate the T helper 2 (Th2)-mediated immune response. Moreover, levels of the cytokines IL-4, IL-13, gamma interferon (IFN-γ), IL-12 (p40), IL-8, and IL-17 indicate that ΔsR-989262 and ΔsR-2509025 OMVs trigger the Th2-type immune response but primarily trigger a Th1-mediated and Th17-mediated immune response. These findings show that OMV-encapsulated sncRNA plays an important role in regulating the immune response in hosts infected by H. pylori at the animal level. Moreover, they show that knocking out of sR-989262 and sR-2509025 improves the immunogenicity and protective efficacy of OMVs, and this may be beneficial to the design of OMV-based H. pylori vaccines.
Collapse
|
16
|
Lv Y, Zhu Y, Chang L, Yang J, Zhao Y, Zhao J, Wang Y, Zhu M, Wu C, Zhao W. Identification of a dominant murine T-cell epitope in recombinant protein P29 from Echinococcus granulosus. Acta Biochim Biophys Sin (Shanghai) 2022; 54:482-493. [PMID: 35607954 PMCID: PMC9827856 DOI: 10.3724/abbs.2022036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Abstract
Echinococcus granulosus causes echinococcosis, an important zoonotic disease worldwide and a major public health issue. Vaccination is an economical and practical approach for controlling E. granulosus. We have previously revealed that a recombinant protein P29 (rEg.P29) is a good vaccine candidate against E. granulosus. However, T cell immunogenic epitopes have not been identified. In the present study, we use rEg.P29-immunized mice as models to screen immunogenic epitopes for the construction of a novel multi-epitope vaccine. We search for immunodominant epitopes from an overlapping peptide library to screen the peptides of rEg.P29. Our results confirm that rEg.P29 immunization in mice elicits the activation of T cells and induces cellular immune responses. Further analyses show that a T cell epitope within amino acids 86–100 of rEg.P29 elicits significant antigen-specific IFN-γ production in CD4+ and CD8+ T cells and promotes specific T-cell activation and proliferation. Collectively, these results provide a reference for the construction of a novel vaccine against broad E. granulosus genotypes based on epitopes of rEg.P29.
Collapse
Affiliation(s)
- Yongxue Lv
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Department of Pathogen Biology and Medical ImmunologyNingxia Medical UniversityYinchuan750004China
| | - Yazhou Zhu
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Liangliang Chang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Jihui Yang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Department of Pathogen Biology and Medical ImmunologyNingxia Medical UniversityYinchuan750004China
| | - Yinqi Zhao
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Jiaqing Zhao
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Department of Pathogen Biology and Medical ImmunologyNingxia Medical UniversityYinchuan750004China
| | - Yana Wang
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Mingxing Zhu
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
| | - Changyou Wu
- Institute of ImmunologyZhongshan School of MedicineSun Yat-sen University Guangzhou 5102275China
| | - Wei Zhao
- School of Basic MedicineNingxia Medical UniversityYinchuan750004China
- Department of Pathogen Biology and Medical ImmunologyNingxia Medical UniversityYinchuan750004China
| |
Collapse
|
17
|
Identification of B-Cell Epitopes of HspA from Helicobacter pylori and Detection of Epitope Antibody Profiles in Naturally Infected Persons. Vaccines (Basel) 2021; 10:vaccines10010065. [PMID: 35062726 PMCID: PMC8779794 DOI: 10.3390/vaccines10010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori (H. pylori), heat-shock protein A (HspA), is a bacterial heat-shock chaperone that serves as a nickel ion scavenging protein. Ni2+ is an important co-factor required for the maturation and enzymatic activity of H. pylori urease and [NiFe] hydrogenase, both of which are key virulence factors for pathogen survival and colonization. HspA is an important target molecule for the diagnosis, treatment, and immune prevention of H. pylori. In this work, HspA was truncated into five fragments to determine the location of an antigen immunodominant peptide. A series of overlapping, truncated 11-amino-acid peptides in immunodominant peptide fragments were synthesized chemically and screened by ELISA. The immunogenicity and antigenicity of the screened epitope peptides were verified by ELISA, Western blot, and lymphocyte proliferation tests. Two novel B-cell epitopes were identified, covering amino acids 2–31 of HspA, which are HP11 (2–12; KFQPLGERVLV) and HP19 (18–28; ENKTSSGIIIP). The antiserum obtained from HP11-KLH and HP19-KLH immunized mice can bind to naive HspA in H. pylori SS2000, rHspA expressed in E. coli, and the corresponding GST fusion peptide. Among HspA seropositive persons, the seropositive rates of HP11 and HP19 were 21.4% and 33.3%, respectively. Both of the B-cell epitopes of HspA are highly conserved epitopes with good antigenicity and immunogenicity.
Collapse
|