1
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
2
|
Lee DY, Song WH, Lim YS, Lee C, Rajbongshi L, Hwang SY, Kim BS, Lee D, Song YJ, Kim HG, Yoon S. Fish Collagen Peptides Enhance Thymopoietic Gene Expression, Cell Proliferation, Thymocyte Adherence, and Cytoprotection in Thymic Epithelial Cells via Activation of the Nuclear Factor-κB Pathway, Leading to Thymus Regeneration after Cyclophosphamide-Induced Injury. Mar Drugs 2023; 21:531. [PMID: 37888466 PMCID: PMC10608061 DOI: 10.3390/md21100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Prolonged thymic involution results in decreased thymopoiesis and thymic output, leading to peripheral T-cell deficiency. Since the thymic-dependent pathway is the only means of generating fully mature T cells, the identification of strategies to enhance thymic regeneration is crucial in developing therapeutic interventions to revert immune suppression in immunocompromised patients. The present study clearly shows that fish collagen peptides (FCPs) stimulate activities of thymic epithelial cells (TECs), including cell proliferation, thymocyte adhesion, and the gene expression of thymopoietic factors such as FGF-7, IGF-1, BMP-4, VEGF-A, IL-7, IL-21, RANKL, LTβ, IL-22R, RANK, LTβR, SDF-1, CCL21, CCL25, CXCL5, Dll1, Dll4, Wnt4, CD40, CD80, CD86, ICAM-1, VCAM-1, FoxN1, leptin, cathepsin L, CK5, and CK8 through the NF-κB signal transduction pathway. Furthermore, our study also revealed the cytoprotective effects of FCPs on TECs against cyclophosphamide-induced cellular injury through the NF-κB signaling pathway. Importantly, FCPs exhibited a significant capability to facilitate thymic regeneration in mice after cyclophosphamide-induced damage via the NF-κB pathway. Taken together, this study sheds light on the role of FCPs in TEC function, thymopoiesis, and thymic regeneration, providing greater insight into the development of novel therapeutic strategies for effective thymus repopulation for numerous clinical conditions in which immune reconstitution is required.
Collapse
Affiliation(s)
- Do Young Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Won Hoon Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Hwi-Gon Kim
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| |
Collapse
|
3
|
Chen Z, Xin Q, Wei W, Wu Y. The pathogenesis and development of targeted drugs in acute T lymphoblastic leukaemia. Br J Pharmacol 2023; 180:1017-1037. [PMID: 36623836 DOI: 10.1111/bph.16029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is mainly classified into acute T- and B-lymphoblastic leukaemia according to the source of its lymphocytes, thymus and bone. Among them, the incidence of adult T-cell accounts for about 25% of adult acute lymphoblastic leukaemia, but the degree of malignancy is high and the treatment rate and prognosis are poor. At this stage, there are few targeted drugs and the commonly used broad-spectrum chemotherapeutic drugs have poor efficacy and many adverse drug reactions. Understanding and investigating the pathogenesis of T-acute lymphoblastic leukaemia is very important for further developing new targeting drugs and improving existing drugs. Dysregulated signalling pathways are the main aetiological factors of T-acute lymphoblastic leukaemia. They play crucial roles in promoting tumour initiation, progression, drug design and therapy responses. This is primarily because signalling pathways are indispensable for many cellular biological processes, including tumour growth, migration, invasion, metastasis and others. As a result, small molecule inhibitors targeting the major kinase components of the signalling pathway have received a lot of attention and have been developed and evaluated in preclinical models and clinical trials. Already marketed drugs are also being repurposed in combination therapies to further improve efficacy and overcome tumour cell resistance. In this review, we have aimed to examine the latest and most classical signalling pathways in the aetiology of T-acute lymphoblastic leukaemia and shed light on potential targets for novel therapeutic agents to act on.
Collapse
Affiliation(s)
- Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei, China
| |
Collapse
|
4
|
Sanchez Sanchez G, Tafesse Y, Papadopoulou M, Vermijlen D. Surfing on the waves of the human γδ T cell ontogenic sea. Immunol Rev 2023; 315:89-107. [PMID: 36625367 DOI: 10.1111/imr.13184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
While γδ T cells are present virtually in all vertebrates, there is a remarkable lack of conservation of the TRG and TRD loci underlying the generation of the γδ T cell receptor (TCR), which is associated with the generation of species-specific γδ T cells. A prominent example is the human phosphoantigen-reactive Vγ9Vδ2 T cell subset that is absent in mice. Murine γδ thymocyte cells were among the first immune cells identified to follow a wave-based layered development during embryonic and early life, and since this initial observation, in-depth insight has been obtained in their thymic ontogeny. By contrast, less is known about the development of human γδ T cells, especially regarding the generation of γδ thymocyte waves. Here, after providing an overview of thymic γδ wave generation in several vertebrate classes, we review the evidence for γδ waves in the human fetal thymus, where single-cell technologies have allowed the breakdown of human γδ thymocytes into functional waves with important TCR associations. Finally, we discuss the possible mechanisms contributing to the generation of waves of γδ thymocytes and their possible significance in the periphery.
Collapse
Affiliation(s)
- Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Yohannes Tafesse
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium.,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles (ULB), Brussels, Belgium.,WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
5
|
Anderson MK, da Rocha JDB. Direct regulation of TCR rearrangement and expression by E proteins during early T cell development. WIREs Mech Dis 2022; 14:e1578. [PMID: 35848146 PMCID: PMC9669112 DOI: 10.1002/wsbm.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022]
Abstract
γδ T cells are widely distributed throughout mucosal and epithelial cell-rich tissues and are an important early source of IL-17 in response to several pathogens. Like αβ T cells, γδ T cells undergo a stepwise process of development in the thymus that requires recombination of genome-encoded segments to assemble mature T cell receptor (TCR) genes. This process is tightly controlled on multiple levels to enable TCR segment assembly while preventing the genomic instability inherent in the double-stranded DNA breaks that occur during this process. Each TCR locus has unique aspects in its structure and requirements, with different types of regulation before and after the αβ/γδ T cell fate choice. It has been known that Runx and Myb are critical transcriptional regulators of TCRγ and TCRδ expression, but the roles of E proteins in TCRγ and TCRδ regulation have been less well explored. Multiple lines of evidence show that E proteins are involved in TCR expression at many different levels, including the regulation of Rag recombinase gene expression and protein stability, induction of germline V segment expression, chromatin remodeling, and restriction of the fetal and adult γδTCR repertoires. Importantly, E proteins interact directly with the cis-regulatory elements of the TCRγ and TCRδ loci, controlling the predisposition of a cell to become an αβ T cell or a γδ T cell, even before the lineage-dictating TCR signaling events. This article is categorized under: Immune System Diseases > Stem Cells and Development Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Michele K Anderson
- Department Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Anderson MK. Shifting gears: Id3 enables recruitment of E proteins to new targets during T cell development and differentiation. Front Immunol 2022; 13:956156. [PMID: 35983064 PMCID: PMC9378783 DOI: 10.3389/fimmu.2022.956156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Shifting levels of E proteins and Id factors are pivotal in T cell commitment and differentiation, both in the thymus and in the periphery. Id2 and Id3 are two different factors that prevent E proteins from binding to their target gene cis-regulatory sequences and inducing gene expression. Although they use the same mechanism to suppress E protein activity, Id2 and Id3 play very different roles in T cell development and CD4 T cell differentiation. Id2 imposes an irreversible choice in early T cell precursors between innate and adaptive lineages, which can be thought of as a railway switch that directs T cells down one path or another. By contrast, Id3 acts in a transient fashion downstream of extracellular signals such as T cell receptor (TCR) signaling. TCR-dependent Id3 upregulation results in the dislodging of E proteins from their target sites while chromatin remodeling occurs. After the cessation of Id3 expression, E proteins can reassemble in the context of a new genomic landscape and molecular context that allows induction of different E protein target genes. To describe this mode of action, we have developed the “Clutch” model of differentiation. In this model, Id3 upregulation in response to TCR signaling acts as a clutch that stops E protein activity (“clutch in”) long enough to allow shifting of the genomic landscape into a different “gear”, resulting in accessibility to different E protein target genes once Id3 decreases (“clutch out”) and E proteins can form new complexes on the DNA. While TCR signal strength and cytokine signaling play a role in both peripheral and thymic lineage decisions, the remodeling of chromatin and E protein target genes appears to be more heavily influenced by the cytokine milieu in the periphery, whereas the outcome of Id3 activity during T cell development in the thymus appears to depend more on the TCR signal strength. Thus, while the Clutch model applies to both CD4 T cell differentiation and T cell developmental transitions within the thymus, changes in chromatin accessibility are modulated by biased inputs in these different environments. New emerging technologies should enable a better understanding of the molecular events that happen during these transitions, and how they fit into the gene regulatory networks that drive T cell development and differentiation.
Collapse
Affiliation(s)
- Michele K. Anderson
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michele K. Anderson,
| |
Collapse
|
7
|
Haeryfar SMM, Marshall JS, Patel KD, Marshall AJ. Celebrating a decade of Canadian immunology published in
Immunology & Cell Biology. Immunol Cell Biol 2022; 100:383-386. [DOI: 10.1111/imcb.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- SM Mansour Haeryfar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry Western University London ON Canada
| | - Jean S Marshall
- Department of Microbiology and Immunology, Faculty of Medicine Dalhousie University Halifax NS Canada
| | - Kamala D Patel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Aaron J Marshall
- Department of Immunology, Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| |
Collapse
|
8
|
Selvaratnam JS, In TSH, Anderson MK. Fetal Thymic Organ Culture (FTOC) Optimized for Gamma-Delta T Cell Studies. Methods Mol Biol 2022; 2421:243-265. [PMID: 34870824 DOI: 10.1007/978-1-0716-1944-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fetal thymic organ culture (FTOC) provides a method for analyzing T cell development in a physiological context outside the animal. This technique enables studies of genetically altered mice that are embryonic or neonatal lethal, in addition to bypassing the complication of migration of successive waves of T cells out of the thymus. The hanging drop method involves depletion of thymocytes from host lobes using deoxyguanosine, followed by reconstitution with hematopoietic progenitors. This method has become standard for analysis of fetal liver precursors, bone marrow precursors, and early thymocytes. However, difficulties are encountered in the analysis of γδ T cell precursors using this method. We have developed a modification of FTOC in which partial depletion of hematopoietic precursors by shortened deoxyguanosine treatment, coupled with the use of TCRδ-deficient host lobes, enables engraftment and development of fetal γδTCR+ thymocytes. This method allows comparisons of development and functional differentiation of γδ T cell precursors between cells of different genotypes or treatments, in the context of a permissive thymic microenvironment.
Collapse
Affiliation(s)
- Johanna S Selvaratnam
- Biological Sciences, Department of Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Tracy S H In
- Biological Sciences, Department of Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Michele K Anderson
- Biological Sciences, Department of Immunology, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Schönefeldt S, Wais T, Herling M, Mustjoki S, Bekiaris V, Moriggl R, Neubauer HA. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021; 13:6212. [PMID: 34944832 PMCID: PMC8699114 DOI: 10.3390/cancers13246212] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.
Collapse
Affiliation(s)
- Susann Schönefeldt
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Tamara Wais
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Marco Herling
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany;
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland;
- iCAN Digital Precision Cancer Medicine Flagship, 00014 Helsinki, Finland
- Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (T.W.); (R.M.)
| |
Collapse
|
10
|
Sumaria N, Martin S, Pennington DJ. Constrained TCRγδ-associated Syk activity engages PI3K to facilitate thymic development of IL-17A-secreting γδ T cells. Sci Signal 2021; 14:14/692/eabc5884. [PMID: 34285131 DOI: 10.1126/scisignal.abc5884] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Murine γδ17 cells, which are T cells that bear the γδ T cell receptor (TCRγδ) and secrete interleukin-17A (IL-17A), are generated in the thymus and are critical for various immune responses. Although strong TCRγδ signals are required for the development of interferon-γ (IFN-γ)-secreting γδ cells (γδIFN cells), the generation of γδ17 cells requires weaker TCRγδ signaling. Here, we demonstrated that constrained activation of the kinase Syk downstream of TCRγδ was required for the thymic development of γδ17 cells. Increasing or decreasing Syk activity by stimulating TCRγδ or inhibiting Syk, respectively, substantially reduced γδ17 cell numbers. This delimited Syk activity optimally engaged the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway, which maintained the expression of master regulators of the IL-17 program, RORγt and c-Maf. Inhibition of PI3K not only abrogated γδ17 cell development but also augmented the development of a distinct, previously undescribed subset of γδ T cells. These CD8+Ly6a+ γδ T cells had a type-I IFN gene expression signature and expanded in response to stimulation with IFN-β. Collectively, these studies elucidate how weaker TCRγδ signaling engages distinct signaling pathways to specify the γδ17 cell fate and identifies a role for type-I IFNs in γδ T cell development.
Collapse
Affiliation(s)
- Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Stefania Martin
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
11
|
Chen ELY, Lee CR, Thompson PK, Wiest DL, Anderson MK, Zúñiga-Pflücker JC. Ontogenic timing, T cell receptor signal strength, and Notch signaling direct γδ T cell functional differentiation in vivo. Cell Rep 2021; 35:109227. [PMID: 34107257 PMCID: PMC8256923 DOI: 10.1016/j.celrep.2021.109227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/20/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
γδ T cells form an integral arm of the immune system and are critical during protective and destructive immunity. However, how γδ T cells are functionally programmed in vivo remains unclear. Here, we employ RBPJ-inducible and KN6-transgenic mice to assess the roles of ontogenic timing, T cell receptor (TCR) signal strength, and Notch signaling. We find skewing of Vγ1+ cells toward the PLZF+Lin28b+ lineage at the fetal stage. Generation of interleukin-17 (IL-17)-producing γδ T cells is favored during, although not exclusive to, the fetal stage. Surprisingly, Notch signaling is dispensable for peripheral γδ T cell IL-17 production. Strong TCR signals, together with Notch, promote IL-4 differentiation. Conversely, less strong TCR signals promote Notch-independent IL-17 differentiation. Single-cell transcriptomic analysis reveals differential programming instilled by TCR signal strength and Notch for specific subsets. Thus, our results precisely define the roles of ontogenic timing, TCR signal strength, and Notch signaling in γδ T cell functional programming in vivo.
Collapse
Affiliation(s)
- Edward L Y Chen
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | - David L Wiest
- Blood Cell Development and Function, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michele K Anderson
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Fiala GJ, Gomes AQ, Silva‐Santos B. From thymus to periphery: Molecular basis of effector γδ-T cell differentiation. Immunol Rev 2020; 298:47-60. [PMID: 33191519 PMCID: PMC7756812 DOI: 10.1111/imr.12918] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
The contributions of γδ T cells to immune (patho)physiology in many pre-clinical mouse models have been associated with their rapid and abundant provision of two critical cytokines, interferon-γ (IFN-γ) and interleukin-17A (IL-17). These are typically produced by distinct effector γδ T cell subsets that can be segregated on the basis of surface expression levels of receptors such as CD27, CD44 or CD45RB, among others. Unlike conventional T cells that egress the thymus as naïve lymphocytes awaiting further differentiation upon activation, a large fraction of murine γδ T cells commits to either IFN-γ or IL-17 expression during thymic development. However, extrathymic signals can both regulate pre-programmed γδ T cells; and induce peripheral differentiation of naïve γδ T cells into effectors. Here we review the key cellular events of "developmental pre-programming" in the mouse thymus; and the molecular basis for effector function maintenance vs plasticity in the periphery. We highlight some of our contributions towards elucidating the role of T cell receptor, co-receptors (like CD27 and CD28) and cytokine signals (such as IL-1β and IL-23) in these processes, and the various levels of gene regulation involved, from the chromatin landscape to microRNA-based post-transcriptional control of γδ T cell functional plasticity.
Collapse
Affiliation(s)
- Gina J. Fiala
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Anita Q. Gomes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- H&TRC Health & Technology Research CenterESTeSL—Escola Superior de Tecnologia da SaúdeInstituto Politécnico de LisboaLisbonPortugal
| | - Bruno Silva‐Santos
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
13
|
Anderson MK, Selvaratnam JS. Interaction between γδTCR signaling and the E protein-Id axis in γδ T cell development. Immunol Rev 2020; 298:181-197. [PMID: 33058287 DOI: 10.1111/imr.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
γδ T cells acquire their functional properties in the thymus, enabling them to exert rapid innate-like responses. To understand how distinct γδ T cell subsets are generated, we have developed a Two-Stage model for γδ T cell development. This model is predicated on the finding that γδTCR signal strength impacts E protein activity through graded upregulation of Id3. Our model proposes that cells enter Stage 1 in response to a γδTCR signaling event in the cortex that activates a γδ T cell-specific gene network. Part of this program includes the upregulation of chemokine receptors that guide them to the medulla. In the medulla, Stage 1 cells receive distinct combinations of γδTCR, cytokine, and/co-stimulatory signals that induce their transit into Stage 2, either toward the γδT1 or the γδT17 lineage. The intersection between γδTCR and cytokine signals can tune Id3 expression, leading to different outcomes even in the presence of strong γδTCR signals. The thymic signaling niches required for γδT17 development are segregated in time and space, providing transient windows of opportunity during ontogeny. Understanding the regulatory context in which E proteins operate at different stages will be key in defining how their activity levels impose functional outcomes.
Collapse
Affiliation(s)
- Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Johanna S Selvaratnam
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Jee MH, Mraz V, Geisler C, Bonefeld CM. γδ T cells and inflammatory skin diseases. Immunol Rev 2020; 298:61-73. [DOI: 10.1111/imr.12913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Mia Hamilton Jee
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Veronika Mraz
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Charlotte Menné Bonefeld
- The LEO Foundation Skin Immunology Research Center Department of Immunology and Microbiology Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
15
|
Hayday AC. γδ T Cell Update: Adaptate Orchestrators of Immune Surveillance. THE JOURNAL OF IMMUNOLOGY 2020; 203:311-320. [PMID: 31285310 DOI: 10.4049/jimmunol.1800934] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
As interest in γδ T cells grows rapidly, what key points are emerging, and where is caution warranted? γδ T cells fulfill critical functions, as reflected in associations with vaccine responsiveness and cancer survival in humans and ever more phenotypes of γδ T cell-deficient mice, including basic physiological deficiencies. Such phenotypes reflect activities of distinct γδ T cell subsets, whose origins offer interesting insights into lymphocyte development but whose variable evolutionary conservation can obfuscate translation of knowledge from mice to humans. By contrast, an emerging and conserved feature of γδ T cells is their "adaptate" biology: an integration of adaptive clonally-restricted specificities, innate tissue-sensing, and unconventional recall responses that collectively strengthen host resistance to myriad challenges. Central to adaptate biology are butyrophilins and other γδ cell regulators, the study of which should greatly enhance our understanding of tissue immunogenicity and immunosurveillance and guide intensifying clinical interest in γδ cells and other unconventional lymphocytes.
Collapse
Affiliation(s)
- Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London SE1 9RT, United Kingdom; and Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
16
|
Chen H, Eling N, Martinez‐Jimenez CP, O'Brien LM, Carbonaro V, Marioni JC, Odom DT, de la Roche M. IL-7-dependent compositional changes within the γδ T cell pool in lymph nodes during ageing lead to an unbalanced anti-tumour response. EMBO Rep 2019; 20:e47379. [PMID: 31283095 PMCID: PMC6680116 DOI: 10.15252/embr.201847379] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
How the age-associated decline of immune function leads to increased cancer incidence is poorly understood. Here, we have characterised the cellular composition of the γδ T-cell pool in peripheral lymph nodes (pLNs) upon ageing. We find that ageing has minimal cell-intrinsic effects on function and global gene expression of γδ T cells, and γδTCR diversity remains stable. However, ageing alters TCRδ chain usage and clonal structure of γδ T-cell subsets. Importantly, IL-17-producing γδ17 T cells dominate the γδ T-cell pool of aged mice-mainly due to the selective expansion of Vγ6+ γδ17 T cells and augmented γδ17 polarisation of Vγ4+ T cells. Expansion of the γδ17 T-cell compartment is mediated by increased IL-7 expression in the T-cell zone of old mice. In a Lewis lung cancer model, pro-tumourigenic Vγ6+ γδ17 T cells are exclusively activated in the tumour-draining LN and their infiltration into the tumour correlates with increased tumour size in aged mice. Thus, upon ageing, substantial compositional changes in γδ T-cell pool in the pLN lead to an unbalanced γδ T-cell response in the tumour that is associated with accelerated tumour growth.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Gene Expression Regulation, Neoplastic
- Immunophenotyping
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-7/genetics
- Interleukin-7/immunology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Tumor Burden/genetics
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Hung‐Chang Chen
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Nils Eling
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Genome CampusCambridgeUK
| | - Celia Pilar Martinez‐Jimenez
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
- Helmholtz Pioneer Campus, Helmholtz Zentrum MünchenNeuherbergGermany
| | | | | | - John C Marioni
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Genome CampusCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
| | - Duncan T Odom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
- Division of Signalling and Functional GenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Maike de la Roche
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
17
|
La Flamme AC. Immunology & Cell Biology's top 10 original research articles 2017-2018. Immunol Cell Biol 2019; 97:119-120. [PMID: 30693569 DOI: 10.1111/imcb.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anne C La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.,Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
18
|
Sumaria N, Martin S, Pennington DJ. Developmental origins of murine γδ T-cell subsets. Immunology 2019; 156:299-304. [PMID: 30552818 DOI: 10.1111/imm.13032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/15/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Murine γδ T cells display diverse responses to pathogens and tumours through early provision of pro-inflammatory cytokines such as interleukin-17A (IL-17) and interferon-γ (IFN-γ). Although it is now clear that acquisition of these cytokine-secreting effector fates is to a great extent developmentally pre-programmed in the thymus, the stages through which γδ progenitor cells transition, and the underlying mechanistic processes that govern these commitment events, are still largely unclear. Here, we review recent progress in the field, with particular consideration of how TCR-γδ signalling impacts on developmental programmes initiated before TCR-γδ expression.
Collapse
Affiliation(s)
- Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Stefania Martin
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
19
|
Sandrock I, Reinhardt A, Ravens S, Binz C, Wilharm A, Martins J, Oberdörfer L, Tan L, Lienenklaus S, Zhang B, Naumann R, Zhuang Y, Krueger A, Förster R, Prinz I. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing γδ T cells. J Exp Med 2018; 215:3006-3018. [PMID: 30455268 PMCID: PMC6279411 DOI: 10.1084/jem.20181439] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
The authors present a genetic mouse model for conditional depletion of γδ T cells, confirming the fetal origin and persistence of Tγδ17 cells. They show differential phenotypes after acute depletion versus constitutive γδ T cell deficiency in imiquimod-induced psoriasis. γδ T cells are highly conserved in jawed vertebrates, suggesting an essential role in the immune system. However, γδ T cell–deficient Tcrd−/− mice display surprisingly mild phenotypes. We hypothesized that the lack of γδ T cells in constitutive Tcrd−/− mice is functionally compensated by other lymphocytes taking over genuine γδ T cell functions. To test this, we generated a knock-in model for diphtheria toxin–mediated conditional γδ T cell depletion. In contrast to IFN-γ–producing γδ T cells, IL-17–producing γδ T cells (Tγδ17 cells) recovered inefficiently after depletion, and their niches were filled by expanding Th17 cells and ILC3s. Complementary genetic fate mapping further demonstrated that Tγδ17 cells are long-lived and persisting lymphocytes. Investigating the function of γδ T cells, conditional depletion but not constitutive deficiency protected from imiquimod-induced psoriasis. Together, we clarify that fetal thymus-derived Tγδ17 cells are nonredundant local effector cells in IL-17–driven skin pathology.
Collapse
Affiliation(s)
- Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Annika Reinhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christoph Binz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Joana Martins
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Linda Oberdörfer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Ronald Naumann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Fiala GJ, Silva-Santos B. How to develop IL-17-producing γδ T cells. Immunol Cell Biol 2018; 96:886-887. [DOI: 10.1111/imcb.12196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gina J Fiala
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisboa Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|