1
|
Vaseghi-Shanjani M, Samra S, Yousefi P, Biggs CM, Turvey SE. Primary atopic disorders: inborn errors of immunity causing severe allergic disease. Curr Opin Immunol 2025; 94:102538. [PMID: 40020536 DOI: 10.1016/j.coi.2025.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
Allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, and food allergies, are driven by dysregulated immune responses, often involving IgE-mediated mast cell and basophil activation, Th2 inflammation, and epithelial dysfunction. While environmental factors are well-known contributors, the genetic components underpinning these conditions are increasingly understood. Traditionally viewed as polygenic multifactorial disorders, allergic diseases can also be caused by single-gene defects affecting the immune system and skin epithelial barrier, leading to profoundly dysregulated allergic responses. These monogenic allergic disorders are collectively referred to as primary atopic disorders or PADs. To date, over 48 single-gene defects have been established to cause PADs. This review highlights (i) the significance of PADs, (ii) the biological pathways involved in the pathogenesis of PADs, (iii) clinical strategies to differentiate PADs from their much more common polygenic counterparts, and (iv) diagnostic strategies for PADs.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Simran Samra
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Pariya Yousefi
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada; Experimental Medicine Program, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Shaverskyi A, Hegermann J, Brand K, Lee KH, Föger N. Coronin 1a-mediated F-actin disassembly controls effector function in murine neutrophils. Redox Biol 2025; 82:103618. [PMID: 40158258 PMCID: PMC11997354 DOI: 10.1016/j.redox.2025.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The double-edged role of neutrophils in effective host defense and harmful pathology is an emerging topic in clinical research. Neutrophils release highly potent antimicrobial granule compounds and reactive oxygen species (ROS) that can also be detrimental to the host and promote inflammatory diseases and cancer. Here we show that disassembly of F-actin greatly facilitates ROS production and degranulation in neutrophils. Utilizing neutrophils from Coronin 1a (Coro1a)-deficient mice, our data reveal that the actin-regulatory protein Coro1a controls this spatial F-actin deconstruction and concomitantly forms a signaling complex with Rac-GTPases, thereby promoting activation and translocation of Rac to the membrane during neutrophil activation. This functional activity of Coro1a was critical for neutrophil granule exocytosis and the activation of the NADPH oxidase complex. Consistent with these findings, impaired ROS production in Coro1a-deficient neutrophils was rescued by pharmacological promotion of actin depolymerization or activation of Rac. Together, our findings suggest that the Coro1a/Rac signaling hub acts as a central regulatory element that coordinates actin cytoskeletal reorganization required for the execution of neutrophil effector functions. Since Coro1a is highly conserved between mice and humans and associated with human immunodeficiency, our results are also relevant for human biomedical studies.
Collapse
Affiliation(s)
- Anton Shaverskyi
- Inflammation Research Group, Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Central Research Facility Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Kyeong-Hee Lee
- Inflammation Research Group, Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany.
| | - Niko Föger
- Inflammation Research Group, Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Gao H, Sun F, Zhang X, Qiao X, Guo Y. The role and application of Coronin family in human tumorigenesis and immunomodulation. Biochim Biophys Acta Rev Cancer 2025; 1880:189304. [PMID: 40154644 DOI: 10.1016/j.bbcan.2025.189304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The Coronin family, a class of actin-binding proteins involved in the formation and maintenance of cytoskeleton structural stability, is aberrantly expressed in various tumors, including lung, gastric and head and neck cancers. They can regulate tumor cell metabolism and proliferation through RAC-1 and Wnt/β-Catenin signaling pathways and regulate invasion by influencing the PI3K, PAK4, and MT1-MMP signaling pathways and impacting the actin-network dynamics. In recent years, an increasing number of studies have highlighted the crucial roles of the cytoskeleton and immune modulation in the occurrence and development of tumors. The article delves into the Coronin family's pivotal role in tumor immune evasion, highlighting its modulation of neutrophil, T cell, and vesicular transport functions, as well as its interactions with tumorigenesis related organelles such as the endoplasmic reticulum, Golgi apparatus, mitochondria, and lysosomes. It also summarizes the potential therapeutic applications of the Coronin family in oncology. This review provides valuable insights into the mechanisms through which the Coronin family is implicated in the onset and progression of tumors. It also provides more theoretical foundation for tumor immunotherapy and combination drug therapy.
Collapse
Affiliation(s)
- Huimeng Gao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Fuli Sun
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Diseases, Shenyang, Liaoning 110002, China
| | - Xuanyu Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China
| | - Xue Qiao
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| | - Yan Guo
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China; Department of Central Laboratory, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning 110002, China.
| |
Collapse
|
4
|
Jung S, Cheong S, Lee Y, Lee J, Lee J, Kwon MS, Oh YS, Kim T, Ha S, Kim SJ, Jo DH, Ko J, Jeon NL. Integrating Vascular Phenotypic and Proteomic Analysis in an Open Microfluidic Platform. ACS NANO 2024; 18:24909-24928. [PMID: 39208278 PMCID: PMC11394367 DOI: 10.1021/acsnano.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This research introduces a vascular phenotypic and proteomic analysis (VPT) platform designed to perform high-throughput experiments on vascular development. The VPT platform utilizes an open-channel configuration that facilitates angiogenesis by precise alignment of endothelial cells, allowing for a 3D morphological examination and protein analysis. We study the effects of antiangiogenic agents─bevacizumab, ramucirumab, cabozantinib, regorafenib, wortmannin, chloroquine, and paclitaxel─on cytoskeletal integrity and angiogenic sprouting, observing an approximately 50% reduction in sprouting at higher drug concentrations. Precise LC-MS/MS analyses reveal global protein expression changes in response to four of these drugs, providing insights into the signaling pathways related to the cell cycle, cytoskeleton, cellular senescence, and angiogenesis. Our findings emphasize the intricate relationship between cytoskeletal alterations and angiogenic responses, underlining the significance of integrating morphological and proteomic data for a comprehensive understanding of angiogenesis. The VPT platform not only advances our understanding of drug impacts on vascular biology but also offers a versatile tool for analyzing proteome and morphological features across various models beyond blood vessels.
Collapse
Affiliation(s)
- Sangmin Jung
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Sunghun Cheong
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Yoonho Lee
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jungseub Lee
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jihye Lee
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Min-Seok Kwon
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
- Department
of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Sun Oh
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Taewan Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs,
Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT
Foundry, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university
Semiconductor Research Center, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Dong Hyun Jo
- Department
of Anatomy and Cell Biology, Seoul National
University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Ko
- Department
of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic
of Korea
| | - Noo Li Jeon
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Republic
of Korea
- Qureator, Inc., San
Diego, California 92121, United States
| |
Collapse
|
5
|
Novbatova G, Fox I, Timme K, Keating AF. High fat diet-induced obesity and gestational DMBA exposure alter folliculogenesis and the proteome of the maternal ovary†. Biol Reprod 2024; 111:496-511. [PMID: 38813940 PMCID: PMC11327317 DOI: 10.1093/biolre/ioae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Obesity and ovotoxicant exposures impair female reproductive health with greater ovotoxicity reported in obese relative to lean females. The mother and developing fetus are vulnerable to both during gestation. 7,12-dimethylbenz[a]anthracene (DMBA) is released during carbon combustion including from cigarettes, coal, fossil fuels, and forest fires. This study investigated the hypothesis that diet-induced obesity would increase sensitivity of the ovaries to DMBA-induced ovotoxicity and determined impacts of both obesity and DMBA exposure during gestation on the maternal ovary. Female C57BL/6 J mice were fed a control or a High Sugar High Fat (45% kcal from fat; 20% kcal from sucrose) diet until ~30% weight gain was attained before mating with unexposed males. From gestation Day 7, mice were exposed intraperitoneally to either vehicle control (corn oil) or DMBA (1 mg/kg diluted in corn oil) for 7 d. Thus, there were four groups: lean control (LC); lean DMBA exposed; obese control; obese DMBA exposed. Gestational obesity and DMBA exposure decreased (P < 0.05) ovarian and increased liver weights relative to LC dams, but there was no treatment impact (P > 0.05) on spleen weight or progesterone. Also, obesity exacerbated the DMBA reduction (P < 0.05) in the number of primordial, secondary follicles, and corpora lutea. In lean mice, DMBA exposure altered abundance of 21 proteins; in obese dams, DMBA exposure affected 134 proteins while obesity alone altered 81 proteins in the maternal ovary. Thus, the maternal ovary is impacted by DMBA exposure and metabolic status influences the outcome.
Collapse
Affiliation(s)
- Gulnara Novbatova
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Isabelle Fox
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| |
Collapse
|
6
|
Benavides-Nieto M, Adam F, Martin E, Boussard C, Lagresle-Peyrou C, Callebaut I, Kauskot A, Repérant C, Feng M, Bordet JC, Castelle M, Morelle G, Brouzes C, Zarhrate M, Panikulam P, Lambert N, Picard C, Bodet D, Rouger-Gaudichon J, Revy P, de Villartay JP, Moshous D. Somatic RAP1B gain-of-function variant underlies isolated thrombocytopenia and immunodeficiency. J Clin Invest 2024; 134:e169994. [PMID: 39225097 PMCID: PMC11364392 DOI: 10.1172/jci169994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The ubiquitously expressed small GTPase Ras-related protein 1B (RAP1B) acts as a molecular switch that regulates cell signaling, cytoskeletal remodeling, and cell trafficking and activates integrins in platelets and lymphocytes. The residue G12 in the P-loop is required for the RAP1B-GTPase conformational switch. Heterozygous germline RAP1B variants have been described in patients with syndromic thrombocytopenia. However, the causality and pathophysiological impact remained unexplored. We report a boy with neonatal thrombocytopenia, combined immunodeficiency, neutropenia, and monocytopenia caused by a heterozygous de novo single nucleotide substitution, c.35G>A (p.G12E) in RAP1B. We demonstrate that G12E and the previously described G12V and G60R were gain-of-function variants that increased RAP1B activation, talin recruitment, and integrin activation, thereby modifying late responses such as platelet activation, T cell proliferation, and migration. We show that in our patient, G12E was a somatic variant whose allele frequency decreased over time in the peripheral immune compartment, but remained stable in bone marrow cells, suggesting a differential effect in distinct cell populations. Allogeneic hematopoietic stem cell transplantation fully restored the patient's hemato-immunological phenotype. Our findings define monoallelic RAP1B gain-of-function variants as a cause for constitutive immunodeficiency and thrombocytopenia. The phenotypic spectrum ranged from isolated hematological manifestations in our patient with somatic mosaicism to complex syndromic features in patients with reported germline RAP1B variants.
Collapse
Affiliation(s)
- Marta Benavides-Nieto
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- General Pediatrics–Infectious Diseases and Internal Medicine, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Frédéric Adam
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Emmanuel Martin
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Charlotte Boussard
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Laboratory Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Chantal Lagresle-Peyrou
- Biotherapy Clinical Investigation Center, AP-HP, Paris, France
- Laboratory Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Isabelle Callebaut
- Sorbonne University, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Alexandre Kauskot
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christelle Repérant
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Miao Feng
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d’Hémostase, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Martin Castelle
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Guillaume Morelle
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Chantal Brouzes
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France, and INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 and INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Patricia Panikulam
- Université Paris Cité, Paris, France
- Laboratory “Molecular basis of altered immune homeostasis,” INSERM UMR 1163, Imagine Institute, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Université Paris Cité, Paris, France
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Damien Bodet
- CHU de Caen Normandie, Onco-Immunohématologie Pédiatrique, Caen, France
| | | | - Patrick Revy
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Jean-Pierre de Villartay
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Despina Moshous
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| |
Collapse
|
7
|
Crater JM, Dunn D, Nixon DF, O’Brien RLF. HIV-1 Mediated Cortical Actin Disruption Mirrors ARP2/3 Defects Found in Primary T Cell Immunodeficiencies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.27.550856. [PMID: 38405733 PMCID: PMC10888893 DOI: 10.1101/2023.07.27.550856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
During cell movement, cortical actin balances mechanical and osmotic forces to maintain cell function while providing the scaffold for cell shape. Migrating CD4+ T cells have a polarized structure with a leading edge containing dynamic branched and linear F-actin structures that bridge intracellular components to surface adhesion molecules. These actin structures are complemented with a microtubular network beaded with membrane bound organelles in the trailing uropod. Disruption of actin structures leads to dysregulated migration and changes in morphology of affected cells. In HIV-1 infection, CD4+ T cells have dysregulated movement. However, the precise mechanisms by which HIV-1 affects CD4+ T cell movement are unknown. Here, we show that HIV-1 infection of primary CD4+ T cells causes at least four progressive morphological differences as a result of virally induced cortical cytoskeleton disruption, shown by ultrastructural and time lapse imaging. Infection with a ΔNef virus partially abrogated the dysfunctional phenotype in infected cells and partially restored a wild-type shape. The pathological morphologies after HIV-1 infection phenocopy leukocytes which contain genetic determinants of specific T cell Inborn Errors of Immunity (IEI) or Primary Immunodeficiencies (PID) that affect the actin cytoskeleton. To identify potential actin regulatory pathways that may be linked to the morphological deformities, uninfected CD4+ T cell morphology was characterized following addition of small molecule chemical inhibitors. The ARP2/3 inhibitor CK-666 recapitulated three of the four abnormal morphologies we observed in HIV-1 infected cells. Restoring ARP2/3 function and cortical actin integrity in people living with HIV-1 infection is a new avenue of investigation to eradicate HIV-1 infected cells from the body.
Collapse
Affiliation(s)
- Jacqueline M. Crater
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Dunn
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Douglas F. Nixon
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Robert L. Furler O’Brien
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
La Bella S, Di Ludovico A, Di Donato G, Basaran O, Ozen S, Gattorno M, Chiarelli F, Breda L. The pyrin inflammasome, a leading actor in pediatric autoinflammatory diseases. Front Immunol 2024; 14:1341680. [PMID: 38250061 PMCID: PMC10796709 DOI: 10.3389/fimmu.2023.1341680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
The activation of the pyrin inflammasome represents a highly intriguing mechanism employed by the innate immune system to effectively counteract pathogenic agents. Despite its key role in innate immunity, pyrin has also garnered significant attention due to its association with a range of autoinflammatory diseases (AIDs) including familial Mediterranean fever caused by disruption of the MEFV gene, or in other genes involved in its complex regulation mechanisms. Pyrin activation is strictly dependent on homeostasis-altering molecular processes, mostly consisting of the disruption of the small Ras Homolog Family Member A (RhoA) GTPases by pathogen toxins. The downstream pathways are regulated by the phosphorylation of specific pyrin residues by the kinases PKN1/2 and the binding of the chaperone 14-3-3. Furthermore, a key role in pyrin activation is played by the cytoskeleton and gasdermin D, which is responsible for membrane pores in the context of pyroptosis. In addition, recent evidence has highlighted the role of steroid hormone catabolites and alarmins S100A8/A9 and S100A12 in pyrin-dependent inflammation. The aim of this article is to offer a comprehensive overview of the most recent evidence on the pyrin inflammasome and its molecular pathways to better understand the pathogenesis behind the significant group of pyrin-related AIDs.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Ozge Basaran
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Marco Gattorno
- UOC Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Luciana Breda
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| |
Collapse
|
9
|
Bedi A, Choi K, Keane C, Bolger-Munro M, Ambrose AR, Gold MR. WAVE2 Regulates Actin-Dependent Processes Induced by the B Cell Antigen Receptor and Integrins. Cells 2023; 12:2704. [PMID: 38067132 PMCID: PMC10705906 DOI: 10.3390/cells12232704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
B cell antigen receptor (BCR) signaling induces actin cytoskeleton remodeling by stimulating actin severing, actin polymerization, and the nucleation of branched actin networks via the Arp2/3 complex. This enables B cells to spread on antigen-bearing surfaces in order to increase antigen encounters and to form an immune synapse (IS) when interacting with antigen-presenting cells (APCs). Although the WASp, N-WASp, and WAVE nucleation-promoting factors activate the Arp2/3 complex, the role of WAVE2 in B cells has not been directly assessed. We now show that both WAVE2 and the Arp2/3 complex localize to the peripheral ring of branched F-actin when B cells spread on immobilized anti-Ig antibodies. The siRNA-mediated depletion of WAVE2 reduced and delayed B cell spreading on immobilized anti-Ig, and this was associated with a thinner peripheral F-actin ring and reduced actin retrograde flow compared to control cells. Depleting WAVE2 also impaired integrin-mediated B cell spreading on fibronectin and the LFA-1-induced formation of actomyosin arcs. Actin retrograde flow amplifies BCR signaling at the IS, and we found that depleting WAVE2 reduced microcluster-based BCR signaling and signal amplification at the IS, as well as B cell activation in response to antigen-bearing cells. Hence, WAVE2 contributes to multiple actin-dependent processes in B lymphocytes.
Collapse
Affiliation(s)
- Abhishek Bedi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Kate Choi
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Connor Keane
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Madison Bolger-Munro
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Ashley R Ambrose
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Michael R Gold
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| |
Collapse
|
10
|
Tangye SG, Meyts I. DOCK11 and Immune Disease. N Engl J Med 2023; 389:563-567. [PMID: 37590454 DOI: 10.1056/nejme2305431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Affiliation(s)
- Stuart G Tangye
- From the Garvan Institute of Medical Research, Darlinghurst, NSW, and the School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Randwick, NSW - both in Australia (S.G.T.); and the Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, and the Department of Pediatrics, University Hospitals, Leuven, and Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Brussels - all in Belgium (I.M.)
| | - Isabelle Meyts
- From the Garvan Institute of Medical Research, Darlinghurst, NSW, and the School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Randwick, NSW - both in Australia (S.G.T.); and the Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, and the Department of Pediatrics, University Hospitals, Leuven, and Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Brussels - all in Belgium (I.M.)
| |
Collapse
|
11
|
Nunes-Santos CJ, Kuehn H, Boast B, Hwang S, Kuhns DB, Stoddard J, Niemela JE, Fink DL, Pittaluga S, Abu-Asab M, Davies JS, Barr VA, Kawai T, Delmonte OM, Bosticardo M, Garofalo M, Carneiro-Sampaio M, Somech R, Gharagozlou M, Parvaneh N, Samelson LE, Fleisher TA, Puel A, Notarangelo LD, Boisson B, Casanova JL, Derfalvi B, Rosenzweig SD. Inherited ARPC5 mutations cause an actinopathy impairing cell motility and disrupting cytokine signaling. Nat Commun 2023; 14:3708. [PMID: 37349293 PMCID: PMC10287756 DOI: 10.1038/s41467-023-39272-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
We describe the first cases of germline biallelic null mutations in ARPC5, part of the Arp2/3 actin nucleator complex, in two unrelated patients presenting with recurrent and severe infections, early-onset autoimmunity, inflammation, and dysmorphisms. This defect compromises multiple cell lineages and functions, and when protein expression is reestablished in-vitro, the Arp2/3 complex conformation and functions are rescued. As part of the pathophysiological evaluation, we also show that interleukin (IL)-6 signaling is distinctively impacted in this syndrome. Disruption of IL-6 classical but not trans-signaling highlights their differential roles in the disease and offers perspectives for therapeutic molecular targets.
Collapse
Affiliation(s)
- Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - HyeSun Kuehn
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Brigette Boast
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - SuJin Hwang
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Julie E Niemela
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Danielle L Fink
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mones Abu-Asab
- Electron Microscopy Laboratory, Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - John S Davies
- Predictive Toxicology Department of Safety Assessment, Genentech, South San Francisco, CA, USA
| | - Valarie A Barr
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mary Garofalo
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Magda Carneiro-Sampaio
- Children's Hospital, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, Brazil
| | - Raz Somech
- Pediatric Department A and Immunology Service, Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel
- The Jeffrey Modell Foundation Israeli Network for Primary Immunodeficiency, New York, NY, USA
- Sheba Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mohammad Gharagozlou
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Medical Centre, University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Medical Centre, University of Medical Sciences, Tehran, Iran
| | - Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas A Fleisher
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Beata Derfalvi
- Department of Pediatrics, Division of Immunology, Dalhousie University and IWK Health Center, Halifax, NS, Canada
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Szczawińska-Popłonyk A, Popłonyk N, Badura-Stronka M, Juengling J, Huhn K, Biskup S, Bancerz B, Walkowiak J. The clinical phenotype with gastrostomy and abdominal wall infection in a pediatric patient with Takenouchi-Kosaki syndrome due to a heterozygous c.191A > G (p.Tyr64Cys) variant in CDC42: a case report. Front Genet 2023; 14:1108852. [PMID: 37347054 PMCID: PMC10280004 DOI: 10.3389/fgene.2023.1108852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
The CDC42 (cell division cycle homolog 42) gene product, Cdc42 belongs to the Rho GTPase family which plays a pivotal role in the regulation of multiple cellular functions, including cell cycle progression, motility, migration, proliferation, transcription activation, and reactive oxygen species production. The Cdc42 molecule controls various tissue-specific functional pathways underpinning organogenesis as well as developmental integration of the hematopoietic and immune systems. Heterozygous c.191A>G (p.Tyr64Cys) pathogenic variants in CDC42 cause Takenouchi-Kosaki syndrome characterized by a spectrum of phenotypic features comprising psychomotor developmental delay, sensorineural hearing loss, growth retardation, facial dysmorphism, cardiovascular and urinary tract malformations, camptodactyly, accompanied by thrombocytopenia and immunodeficiency of variable degree. Herein, we report a pediatric patient with the Takenouchi-Kosaki syndrome due to a heterozygous p.Tyr64Cys variant in CDC42 manifesting as a congenital malformation complex accompanied by macrothrombocytopenia, poor specific antibody response, B and T cell immunodeficiency, and low serum immunoglobulin A level. We also suggst that feeding disorders, malnutrition, and a gastrointestinal infection could be a part of the phenotypic characteristics of Takenouchi-Kosaki syndrome supporting the hypothesis of immune dysregulation and systemic inflammation occurring in the p.Tyr64Cys variant in CDC42.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Karol Jonscher University Hospital, Poznań University of Medical Sciences, Poznań, Poland
| | - Natalia Popłonyk
- Student Scientific Society, Poznań University of Medical Sciences, Poznań, Poland
| | - Magdalena Badura-Stronka
- Centers for Medical Genetics Genesis, Poznań, Poland
- Chair and Department of Medical Genetics, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Kerstin Huhn
- Zentrum Fur Humangenetik Tübingen, Tübingen, Germany
| | - Saskia Biskup
- Zentrum Fur Humangenetik Tübingen, Tübingen, Germany
- CeGaT GmbH, Tübingen, Germany
| | - Bartłomiej Bancerz
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Karol Jonscher University Hospital, Poznań University of Medical Sciences, Poznań, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Karol Jonscher University Hospital, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|
13
|
Ma CS. T-helper-2 cells and atopic disease: lessons learnt from inborn errors of immunity. Curr Opin Immunol 2023; 81:102298. [PMID: 36870225 DOI: 10.1016/j.coi.2023.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
Inborn errors of immunity (IEI) are caused by monogenic variants that affect the host response to bacterial, viral, and fungal pathogens. As such, individuals with IEI often present with severe, recurrent, and life-threatening infections. However, the spectrum of disease due to IEI is very broad and extends to include autoimmunity, malignancy, and atopic diseases such as eczema, atopic dermatitis, and food and environmental allergies. Here, I review IEI that affect cytokine signaling pathways that dysregulate CD4+ T-cell differentiation, resulting in increased T-helper-2 (Th2) cell development, function, and pathogenicity. These are elegant examples of how rare IEI can provide unique insights into more common pathologies such as allergic disease that are impacting the general population at increased frequency.
Collapse
Affiliation(s)
- Cindy S Ma
- Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia; Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Australia.
| |
Collapse
|
14
|
Vieira RC, Pinho LG, Westerberg LS. Understanding immunoactinopathies: A decade of research on WAS gene defects. Pediatr Allergy Immunol 2023; 34:e13951. [PMID: 37102395 DOI: 10.1111/pai.13951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
Immunoactinopathies caused by mutations in actin-related proteins are a growing group of inborn errors of immunity (IEI). Immunoactinopathies are caused by a dysregulated actin cytoskeleton and affect hematopoietic cells especially because of their unique capacity to survey the body for invading pathogens and altered self, such as cancer cells. These cell motility and cell-to-cell interaction properties depend on the dynamic nature of the actin cytoskeleton. Wiskott-Aldrich syndrome (WAS) is the archetypical immunoactinopathy and the first described. WAS is caused by loss-of-function and gain-of-function mutations in the actin regulator WASp, uniquely expressed in hematopoietic cells. Mutations in WAS cause a profound disturbance of actin cytoskeleton regulation of hematopoietic cells. Studies during the last 10 years have shed light on the specific effects on different hematopoietic cells, revealing that they are not affected equally by mutations in the WAS gene. Moreover, the mechanistic understanding of how WASp controls nuclear and cytoplasmatic activities may help to find therapeutic alternatives according to the site of the mutation and clinical phenotypes. In this review, we summarize recent findings that have added to the complexity and increased our understanding of WAS-related diseases and immunoactinopathies.
Collapse
Affiliation(s)
- Rhaissa Calixto Vieira
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lia Goncalves Pinho
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Vásquez-Echeverri E, Yamazaki-Nakashimada MA, Venegas Montoya E, Scheffler Mendoza SC, Castano-Jaramillo LM, Medina-Torres EA, González-Serrano ME, Espinosa-Navarro M, Bustamante Ogando JC, González-Villarreal MG, Ortega Cisneros M, Valencia Mayoral PF, Consuelo Sanchez A, Varela-Fascinetto G, Ramírez-Uribe RMN, Salazar Gálvez Y, Bonifaz Alonzo LC, Fuentes-Pananá EM, Gómez Hernández N, Rojas Maruri CM, Casanova JL, Espinosa-Padilla SE, Staines Boone AT, López-Velázquez G, Boisson B, Lugo Reyes SO. Is Your Kid Actin Out? A Series of Six Patients With Inherited Actin-Related Protein 2/3 Complex Subunit 1B Deficiency and Review of the Literature. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1261-1280.e8. [PMID: 36708766 PMCID: PMC10085853 DOI: 10.1016/j.jaip.2022.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hereditary actin-related protein 2/3 complex subunit 1B deficiency is characterized clinically by ear, skin, and lung infections, bleeding, eczema, food allergy, asthma, skin vasculitis, colitis, arthritis, short stature, and lymphadenopathy. OBJECTIVE We aimed to describe the clinical, laboratory, and genetic features of six patients from four Mexican families. METHODS We performed exome sequencing in patients of four families with suspected actinopathy, collected their data from medical records, and reviewed the literature for reports of other patients with actin-related protein 2/3 complex subunit 1B deficiency. RESULTS Six patients from four families were included. All had recurrent infections, mainly bacterial pneumonia, and cellulitis. A total of 67% had eczema whereas 50% had food allergies, failure to thrive, hepatomegaly, and bleeding. Eosinophilia was found in all; 84% had thrombocytopenia, 67% had abnormal-size platelets and anemia. Serum levels of IgG, IgA, and IgE were highly increased in most; IgM was normal or low. T cells were decreased in 67% of patients, whereas B and NK cells were increased in half of patients. Two of the four probands had compound heterozygous variants. One patient was successfully transplanted. We identified 28 other patients whose most prevalent features were eczema, recurrent infections, failure to thrive, bleeding, diarrhea, allergies, vasculitis, eosinophilia, platelet abnormalities, high IgE/IgA, low T cells, and high B cells. CONCLUSION Actin-related protein 2/3 complex subunit 1B deficiency has a variable and heterogeneous clinical spectrum, expanded by these cases to include keloid scars and Epstein-Barr virus chronic hepatitis. A novel deletion in exon 8 was shared by three unrelated families and might be the result of a founder effect.
Collapse
Affiliation(s)
| | | | - Edna Venegas Montoya
- Immunology Service, Unidad Médica de Alta Especialidad, Monterrey, Nuevo Leon, Mexico
| | | | - Lina Maria Castano-Jaramillo
- Clinical Immunology Service, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico; Fundación Hospital de la Misericordia, Bogotá, Colombia
| | | | | | - Melissa Espinosa-Navarro
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | | | | | - Margarita Ortega Cisneros
- Allergy and Clinical Immunology Service, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente IMSS, Guadalajara, Jalisco, Mexico
| | | | - Alejandra Consuelo Sanchez
- Pediatric Gastroenterology and Nutrition Department, Hospital Infantil de Mexico "Dr Federico Gomez," Mexico City, Mexico
| | | | | | | | - Laura Cecilia Bonifaz Alonzo
- Immunochemistry Research Unit, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | | | - Noemí Gómez Hernández
- Allergy and Clinical Immunology Service, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente IMSS, Guadalajara, Jalisco, Mexico
| | | | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York City, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, Paris, France
| | - Sara Elva Espinosa-Padilla
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico.
| | | | - Gabriel López-Velázquez
- Laboratory of Biomolecules and Infant Health, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York City, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France
| | - Saul Oswaldo Lugo Reyes
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Health Secretariat, Mexico City, Mexico.
| |
Collapse
|
16
|
Chiriaco M, Ursu GM, Amodio D, Cotugno N, Volpi S, Berardinelli F, Pizzi S, Cifaldi C, Zoccolillo M, Prigione I, Di Cesare S, Giancotta C, Anastasio E, Rivalta B, Pacillo L, Zangari P, Fiocchi AG, Diociaiuti A, Bruselles A, Pantaleoni F, Ciolfi A, D’Oria V, Palumbo G, Gattorno M, El Hachem M, de Villartay JP, Finocchi A, Palma P, Rossi P, Tartaglia M, Aiuti A, Antoccia A, Di Matteo G, Cancrini C. Radiosensitivity in patients affected by ARPC1B deficiency: a new disease trait? Front Immunol 2022; 13:919237. [PMID: 35967303 PMCID: PMC9372879 DOI: 10.3389/fimmu.2022.919237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 12/16/2022] Open
Abstract
Actin-related protein 2/3 complex subunit 1B (ARPC1B) deficiency is a recently described inborn error of immunity (IEI) presenting with combined immunodeficiency and characterized by recurrent infections and thrombocytopenia. Manifestations of immune dysregulation, including colitis, vasculitis, and severe dermatitis, associated with eosinophilia, hyper-IgA, and hyper-IgE are also described in ARPC1B-deficient patients. To date, hematopoietic stem cell transplantation seems to be the only curative option for patients. ARPC1B is part of the actin-related protein 2/3 complex (Arp2/3) and cooperates with the Wiskott–Aldrich syndrome protein (WASp) in the regulation of the actin cytoskeleton remodeling and in driving double-strand break clustering for homology-directed repair. In this study, we aimed to investigate radiosensitivity (RS) in ARPC1B-deficient patients to assess whether it can be considered an additional disease trait. First, we performed trio-based next-generation-sequencing studies to obtain the ARPC1B molecular diagnosis in our index case characterized by increased RS, and then we confirmed, using three different methods, an increment of radiosensitivity in all enrolled ARPC1B-deficient patients. In particular, higher levels of chromatid-type aberrations and γH2AX foci, with an increased number of cells arrested in the G2/M-phase of the cell cycle, were found in patients’ cells after ionizing radiation exposition and radiomimetic bleomycin treatment. Overall, our data suggest increased radiosensitivity as an additional trait in ARPC1B deficiency and support the necessity to investigate this feature in ARPC1B patients as well as in other IEI with cytoskeleton defects to address specific clinical follow-up and optimize therapeutic interventions.
Collapse
Affiliation(s)
- Maria Chiriaco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giorgiana Madalina Ursu
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Nicola Cotugno
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research and Healthcare (IRCCS) Istituto Giannina Gaslini and University of Genoa, Genoa, Italy
| | - Francesco Berardinelli
- Laboratory of Neurodevelopment, Neurogenetics and Molecular Neurobiology, Scientific Institute for Research and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Cristina Cifaldi
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Matteo Zoccolillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), San Raffaele Scientific Institute, Milan, Italy
| | - Ignazia Prigione
- Center for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research and Healthcare (IRCCS) Istituto Giannina Gaslini and University of Genoa, Genoa, Italy
| | - Silvia Di Cesare
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Elisa Anastasio
- Department of Medical and Surgical Sciences, Pediatrics Unit, University “Magna Graecia”, Catanzaro, Italy
| | - Beatrice Rivalta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandro G. Fiocchi
- Pediatric Allergology Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Andrea Diociaiuti
- Dermatology Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Valentina D’Oria
- Research Laboratories, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Giuseppe Palumbo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Haematology, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research and Healthcare (IRCCS) Istituto Giannina Gaslini and University of Genoa, Genoa, Italy
| | - Maya El Hachem
- Dermatology Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Jean-Pierre de Villartay
- Université de Paris, Imagine Institute, Laboratory “Genome Dynamics in the Immune System”, INSERM UMR 1163, F-75015, Paris, France
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Paolo Palma
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paolo Rossi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute for Research and Healthcare (IRCCS), San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | | | - Gigliola Di Matteo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Gigliola Di Matteo, ; Caterina Cancrini, ;
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic department of Pediatrics, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Gigliola Di Matteo, ; Caterina Cancrini, ;
| |
Collapse
|
17
|
Signa S, Dell’Orso G, Gattorno M, Faraci M. Hematopoietic stem cell transplantation in systemic autoinflammatory diseases - the first one hundred transplanted patients. Expert Rev Clin Immunol 2022; 18:667-689. [DOI: 10.1080/1744666x.2022.2078704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Sara Signa
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Dell’Orso
- Hematopoietic stem cell Transplantation Unit, Department of Hematology-Oncology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Maura Faraci
- Hematopoietic stem cell Transplantation Unit, Department of Hematology-Oncology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
18
|
Cavannaugh C, Ochs HD, Buchbinder D. Diagnosis and clinical management of Wiskott-Aldrich syndrome: current and emerging techniques. Expert Rev Clin Immunol 2022; 18:609-623. [PMID: 35533396 DOI: 10.1080/1744666x.2022.2074400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Wiskott-Aldrich syndrome (WAS) serves as the prototype of how variants in a gene which encodes a protein central to actin cytoskeletal homeostasis can manifest clinically in a variety of ways including infection, atopy, autoimmunity, inflammation, bleeding, neutropenia, non-malignant lymphoproliferation, and malignancy. Despite the discovery of the WAS gene almost 30 years ago, our understanding of the pathophysiological mechanisms underlying WAS continues to unfold. AREAS COVERED This review will provide an overview of the approach to the diagnosis of WAS as well as the management of its associated complications. Advances in the use of allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy as well as the associated challenges unique to WAS will be discussed. EXPERT OPINION Basic research, combined with clinical research focusing on longitudinal analysis of WAS patients, will help clarify determinants that influence WAS pathogenesis as well as clinical complications and outcomes. Advances in curative approaches including the use of alternative donor HSCT for WAS continue to evolve. Gene therapy employing safer and more effective protocols ensuring full correction of WAS will provide life-saving benefit to WAS patients that are unable to undergo HSCT.
Collapse
Affiliation(s)
- Corey Cavannaugh
- Department of Pediatrics University of California at Irvine 333 The City Blvd. West Suite 800 Orange, CA 92868
| | - Hans D Ochs
- Department of Pediatrics University of Washington and Seattle Children's Research Institute Seattle, WA 98105
| | - David Buchbinder
- Division of Hematology Children's Hospital of Orange County 1201 La Veta Avenue Orange, CA 92868
| |
Collapse
|
19
|
Homing of granulocytes transfused in perineal cellulitis in a RAC2 deficiency child monitored by chimerism quantification methods. Transfus Clin Biol 2022; 29:265-268. [PMID: 35331893 DOI: 10.1016/j.tracli.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022]
Abstract
Granulocyte transfusions can be used to treat infections when appropriate antibiotic and anti-fungal drugs have proved ineffective. We report a case of clinical efficacy of 18 granulocyte transfusions for perineal cellulitis in a 3-week-old RAC2-deficient newborn girl. This RAC2 deficiency is characterized by severe phagocyte defects including defective superoxide formation, adhesion and chemotaxis deficiency. In order to check that the granulocytes infused had reached the lesion site, the infiltration of donor cells was quantified by next generation sequencing (NGS) and digital droplet PCR after identification of DNA specific markers for donor and patient. After the 6th transfusion, 20% circulating cells and 55% cells isolated by swabbing from the lesion site were donor cells, confirming the infiltration of polynuclear cells in the perineal lesion site. These results strengthen the indication of granulocyte transfusions, and its continuation until the healing process of the skin is complete. This clinical case report highlights the potential efficacy of granulocyte transfusions to treat skin lesions in RAC2-deficient patients, a process which could be monitored by molecular biology tools for chimerism quantification.
Collapse
|
20
|
Tangye SG, Gray PE, Pillay BA, Yap JY, Figgett WA, Reeves J, Kummerfeld SK, Stoddard J, Uzel G, Jing H, Su HC, Campbell DE, Sullivan A, Burnett L, Peake J, Ma CS. Hyper-IgE Syndrome due to an Elusive Novel Intronic Homozygous Variant in DOCK8. J Clin Immunol 2022; 42:119-129. [PMID: 34657245 PMCID: PMC10461790 DOI: 10.1007/s10875-021-01152-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
Rare, biallelic loss-of-function mutations in DOCK8 result in a combined immune deficiency characterized by severe and recurrent cutaneous infections, eczema, allergies, and susceptibility to malignancy, as well as impaired humoral and cellular immunity and hyper-IgE. The advent of next-generation sequencing technologies has enabled the rapid molecular diagnosis of rare monogenic diseases, including inborn errors of immunity. These advances have resulted in the implementation of gene-guided treatments, such as hematopoietic stem cell transplant for DOCK8 deficiency. However, putative disease-causing variants revealed by next-generation sequencing need rigorous validation to demonstrate pathogenicity. Here, we report the eventual diagnosis of DOCK8 deficiency in a consanguineous family due to a novel homozygous intronic deletion variant that caused aberrant exon splicing and subsequent loss of expression of DOCK8 protein. Remarkably, the causative variant was not initially detected by clinical whole-genome sequencing but was subsequently identified and validated by combining advanced genomic analysis, RNA-seq, and flow cytometry. This case highlights the need to adopt multipronged confirmatory approaches to definitively solve complex genetic cases that result from variants outside protein-coding exons and conventional splice sites.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
| | - Paul E Gray
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Bethany A Pillay
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jin Yan Yap
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
| | - William A Figgett
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
| | - John Reeves
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sarah K Kummerfeld
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dianne E Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anna Sullivan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Queensland Children's Hospital and University of Queensland, South Brisbane, Queensland, Australia
| | - Leslie Burnett
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jane Peake
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia
- Queensland Children's Hospital and University of Queensland, South Brisbane, Queensland, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, New South Wales, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA), Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Kamnev A, Lacouture C, Fusaro M, Dupré L. Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related Actinopathies. Front Immunol 2021; 12:750537. [PMID: 34867982 PMCID: PMC8634686 DOI: 10.3389/fimmu.2021.750537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Motility is a crucial activity of immune cells allowing them to patrol tissues as they differentiate, sample or exchange information, and execute their effector functions. Although all immune cells are highly migratory, each subset is endowed with very distinct motility patterns in accordance with functional specification. Furthermore individual immune cell subsets adapt their motility behaviour to the surrounding tissue environment. This review focuses on how the generation and adaptation of diversified motility patterns in immune cells is sustained by actin cytoskeleton dynamics. In particular, we review the knowledge gained through the study of inborn errors of immunity (IEI) related to actin defects. Such pathologies are unique models that help us to uncover the contribution of individual actin regulators to the migration of immune cells in the context of their development and function.
Collapse
Affiliation(s)
- Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Claire Lacouture
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,Laboratoire De Physique Théorique, IRSAMC, Université De Toulouse (UPS), CNRS, Toulouse, France
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| |
Collapse
|
22
|
Cytopenia in autosomal dominant polycystic kidney disease (ADPKD): merely an association or a disease-related feature with prognostic implications? Pediatr Nephrol 2021; 36:3505-3514. [PMID: 33502599 DOI: 10.1007/s00467-021-04937-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/03/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is associated with distinct cytopenias in observational studies; the most consistent and strongest association is seen with alternations in the lymphocytic lineages. Although the underlying mechanism of these associations is unclear, it has been hypothesized to be secondary to sequestration of white blood cells in cystic organs, or related to the uremic environment in chronic kidney disease (CKD). However, since mutations in PKD1 or -2 affect several immunomodulating pathways, cytopenia may well be an unrecognized extrarenal manifestation of ADPKD. Furthermore, many important questions on the clinical implications of this finding and the effect on the disease course in these patients are unanswered. In this review article, we provide an overview of the current evidence on cytopenia in ADPKD and explore the underlying mechanisms of this association and its potential prognostic implications. Based on the current literature, we hypothesize that polycystin deficiency can disturb immune cell homeostasis and that cytopenia is thus an intrinsic feature of ADPKD, related to genetic factors. Taken together, these findings warrant further investigation to establish the exact etiology and role of cytopenia in patients with ADPKD.
Collapse
|
23
|
Delafontaine S, Meyts I. Infection and autoinflammation in inborn errors of immunity: brothers in arms. Curr Opin Immunol 2021; 72:331-339. [PMID: 34543865 DOI: 10.1016/j.coi.2021.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022]
Abstract
The binary view of inborn errors of immunity classified as either autoinflammatory conditions or primary immunodeficiency in the strict sense, that is, increased susceptibility to infection is challenged by the description of recent inborn errors of immunity (IEI) triggers leading to activation and disruption of cell death pathways, play a major part in the pathophysiology of infection and autoinflammation. In addition, molecules with a double role in the extracellular versus intracellular milieu add to the complexity. In all, in-depth study of human inborn errors of immunity will continue to instruct us on fundamental immunology and lead to novel therapeutic targets and approaches that can be used in other monogenic and polygenic/complex immune disorders.
Collapse
Affiliation(s)
- Selket Delafontaine
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Laboratory for Inborn Errors of Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Bastard P, Galerne A, Lefevre-Utile A, Briand C, Baruchel A, Durand P, Landman-Parker J, Gouache E, Boddaert N, Moshous D, Gaudelus J, Cohen R, Deschenes G, Fischer A, Blanche S, de Pontual L, Neven B. Different Clinical Presentations and Outcomes of Disseminated Varicella in Children With Primary and Acquired Immunodeficiencies. Front Immunol 2021; 11:595478. [PMID: 33250898 PMCID: PMC7674974 DOI: 10.3389/fimmu.2020.595478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Primary infection with varicella-zoster virus (VZV) causes chickenpox, a benign and self-limited disease in healthy children. In patients with primary or acquired immunodeficiencies, primary infection can be life-threatening, due to rapid dissemination of the virus to various organs [lung, gastrointestinal tract, liver, eye, central nervous system (CNS)]. We retrospectively described and compared the clinical presentations and outcomes of disseminated varicella infection (DV) in patients with acquired (AID) (n= 7) and primary (PID) (n= 12) immunodeficiencies. Patients with AID were on immunosuppression (mostly steroids) for nephrotic syndrome, solid organ transplantation or the treatment of hemopathies, whereas those with PID had combined immunodeficiency (CID) or severe CID (SCID). The course of the disease was severe and fulminant in patients with AID, with multiple organ failure, no rash or a delayed rash, whereas patients with CID and SICD presented typical signs of chickenpox, including a rash, with dissemination to other organs, including the lungs and CNS. In the PID group, antiviral treatment was prolonged until immune reconstitution after bone marrow transplantation, which was performed in 10/12 patients. Four patients died, and three experienced neurological sequelae. SCID patients had the worst outcome. Our findings highlight substantial differences in the clinical presentation and course of DV between children with AID and PID, suggesting differences in pathophysiology. Prevention, early diagnosis and treatment are required to improve outcome.
Collapse
Affiliation(s)
- Paul Bastard
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France.,Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France
| | - Aurélien Galerne
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France
| | - Alain Lefevre-Utile
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France.,INSERM U976-Human Systems Immunology and Inflammatory Networks, Institut de Recherche de Saint Louis, Paris, France.,Université de Paris, Paris, France
| | - Coralie Briand
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France
| | - André Baruchel
- Université de Paris, Paris, France.,Département d'Hématologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Philippe Durand
- Service de Réanimation Pédiatrique, Hôpital du Kremlin-Bicêtre, Kremlin-Bicêtre, France.,Université Paris XI, AP-HP, Paris.,Université Paris Saclay, Saint-Aubin, France
| | - Judith Landman-Parker
- Sorbonne Université, Service de d'Hématologie Oncologie Pédiatrique, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Elodie Gouache
- Sorbonne Université, Service de d'Hématologie Oncologie Pédiatrique, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Nathalie Boddaert
- Université de Paris, Paris, France.,Service de Radiologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Université de Paris, Paris, France.,INSERM U1163, Institut IMAGINE, Paris, France
| | - Despina Moshous
- Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France.,INSERM U1163, Institut IMAGINE, Paris, France
| | - Joel Gaudelus
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France.,Sorbonne Paris Nord University, Bobigny, France
| | - Robert Cohen
- ACTIV Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Georges Deschenes
- Service de Néphrologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Alain Fischer
- Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France.,INSERM U1163, Institut IMAGINE, Paris, France.,Experimental Medicine, Collège de France, Paris, France
| | - Stéphane Blanche
- Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France
| | - Loïc de Pontual
- Service de Pédiatrie, Hôpital Jean Verdier, Bondy, AP-HP (Assistance-Publique-Hôpitaux de Paris), France.,Sorbonne Paris Nord University, Bobigny, France
| | - Bénédicte Neven
- Service d'Immunologie et Hématologie Pédiatrique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France.,INSERM U1163, Institut IMAGINE, Paris, France
| |
Collapse
|
25
|
Hashim IF, Ahmad Mokhtar AM. Small Rho GTPases and their associated RhoGEFs mutations promote immunological defects in primary immunodeficiencies. Int J Biochem Cell Biol 2021; 137:106034. [PMID: 34216756 DOI: 10.1016/j.biocel.2021.106034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023]
Abstract
Primary immunodeficiencies (PIDs) are associated with deleterious mutations of genes that encode proteins involved in actin cytoskeleton reorganisation. This deficiency affects haematopoietic cells. PID results in the defective function of immune cells, such as impaired chemokine-induced motility, receptor signalling, development and maturation. Some of the genes mutated in PIDs are related to small Ras homologous (Rho) guanosine triphosphatase (GTPase), one of the families of the Ras superfamily. Most of these genes act as molecular switches by cycling between active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms to control multiple cellular functions. They are best studied for their role in promoting cytoskeleton reorganisation, cell adhesion and motility. Currently, only three small Rho GTPases, namely, Rac2, Cdc42 and RhoH, have been identified in PIDs. However, several other Rho small G proteins might also contribute to the deregulation and phenotype observed in PIDs. Their contribution in PIDs may involve their main regulator, Rho guanine nucleotide exchange factors such as DOCK2 and DOCK8, wherein mutations may result in the impairment of small Rho GTPase activation. Thus, this review outlines the potential contribution of several small Rho GTPases to the promotion of PIDs.
Collapse
Affiliation(s)
- Ilie Fadzilah Hashim
- Primary Immunodeficiency Diseases Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia.
| | - Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia.
| |
Collapse
|
26
|
Dupré L, Boztug K, Pfajfer L. Actin Dynamics at the T Cell Synapse as Revealed by Immune-Related Actinopathies. Front Cell Dev Biol 2021; 9:665519. [PMID: 34249918 PMCID: PMC8266300 DOI: 10.3389/fcell.2021.665519] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The actin cytoskeleton is composed of dynamic filament networks that build adaptable local architectures to sustain nearly all cellular activities in response to a myriad of stimuli. Although the function of numerous players that tune actin remodeling is known, the coordinated molecular orchestration of the actin cytoskeleton to guide cellular decisions is still ill defined. T lymphocytes provide a prototypical example of how a complex program of actin cytoskeleton remodeling sustains the spatio-temporal control of key cellular activities, namely antigen scanning and sensing, as well as polarized delivery of effector molecules, via the immunological synapse. We here review the unique knowledge on actin dynamics at the T lymphocyte synapse gained through the study of primary immunodeficiences caused by mutations in genes encoding actin regulatory proteins. Beyond the specific roles of individual actin remodelers, we further develop the view that these operate in a coordinated manner and are an integral part of multiple signaling pathways in T lymphocytes.
Collapse
Affiliation(s)
- Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| |
Collapse
|
27
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
Rispoli F, Valencic E, Girardelli M, Pin A, Tesser A, Piscianz E, Boz V, Faletra F, Severini GM, Taddio A, Tommasini A. Immunity and Genetics at the Revolving Doors of Diagnostics in Primary Immunodeficiencies. Diagnostics (Basel) 2021; 11:532. [PMID: 33809703 PMCID: PMC8002250 DOI: 10.3390/diagnostics11030532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a large and growing group of disorders commonly associated with recurrent infections. However, nowadays, we know that PIDs often carry with them consequences related to organ or hematologic autoimmunity, autoinflammation, and lymphoproliferation in addition to simple susceptibility to pathogens. Alongside this conceptual development, there has been technical advancement, given by the new but already established diagnostic possibilities offered by new genetic testing (e.g., next-generation sequencing). Nevertheless, there is also the need to understand the large number of gene variants detected with these powerful methods. That means advancing beyond genetic results and resorting to the clinical phenotype and to immunological or alternative molecular tests that allow us to prove the causative role of a genetic variant of uncertain significance and/or better define the underlying pathophysiological mechanism. Furthermore, because of the rapid availability of results, laboratory immunoassays are still critical to diagnosing many PIDs, even in screening settings. Fundamental is the integration between different specialties and the development of multidisciplinary and flexible diagnostic workflows. This paper aims to tell these evolving aspects of immunodeficiencies, which are summarized in five key messages, through introducing and exemplifying five clinical cases, focusing on diseases that could benefit targeted therapy.
Collapse
Affiliation(s)
- Francesco Rispoli
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Martina Girardelli
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Elisa Piscianz
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Flavio Faletra
- Department of Diagnostics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giovanni Maria Severini
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Andrea Taddio
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| |
Collapse
|
29
|
Castro CN, Rosenzwajg M, Carapito R, Shahrooei M, Konantz M, Khan A, Miao Z, Groß M, Tranchant T, Radosavljevic M, Paul N, Stemmelen T, Pitoiset F, Hirschler A, Nespola B, Molitor A, Rolli V, Pichot A, Faletti LE, Rinaldi B, Friant S, Mednikov M, Karauzum H, Aman MJ, Carapito C, Lengerke C, Ziaee V, Eyaid W, Ehl S, Alroqi F, Parvaneh N, Bahram S. NCKAP1L defects lead to a novel syndrome combining immunodeficiency, lymphoproliferation, and hyperinflammation. J Exp Med 2021; 217:152004. [PMID: 32766723 PMCID: PMC7526481 DOI: 10.1084/jem.20192275] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
The Nck-associated protein 1–like (NCKAP1L) gene, alternatively called hematopoietic protein 1 (HEM-1), encodes a hematopoietic lineage–specific regulator of the actin cytoskeleton. Nckap1l-deficient mice have anomalies in lymphocyte development, phagocytosis, and neutrophil migration. Here we report, for the first time, NCKAP1L deficiency cases in humans. In two unrelated patients of Middle Eastern origin, recessive mutations in NCKAP1L abolishing protein expression led to immunodeficiency, lymphoproliferation, and hyperinflammation with features of hemophagocytic lymphohistiocytosis. Immunophenotyping showed an inverted CD4/CD8 ratio with a major shift of both CD4+ and CD8+ cells toward memory compartments, in line with combined RNA-seq/proteomics analyses revealing a T cell exhaustion signature. Consistent with the core function of NCKAP1L in the reorganization of the actin cytoskeleton, patients’ T cells displayed impaired early activation, immune synapse morphology, and leading edge formation. Moreover, knockdown of nckap1l in zebrafish led to defects in neutrophil migration. Hence, NCKAP1L mutations lead to broad immune dysregulation in humans, which could be classified within actinopathies.
Collapse
Affiliation(s)
- Carla Noemi Castro
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle Rosenzwajg
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Biotherapy (Centre d'Investigation Clinique intégré en Biothérapies & immunologie; CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mohammad Shahrooei
- Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Martina Konantz
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
| | - Amjad Khan
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Zhichao Miao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, Hongkou, China
| | - Miriam Groß
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thibaud Tranchant
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Mirjana Radosavljevic
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nicodème Paul
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Tristan Stemmelen
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Fabien Pitoiset
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Biotherapy (Centre d'Investigation Clinique intégré en Biothérapies & immunologie; CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France.,Sorbonne Université, Institut National de la Santé et de la Recherche Médicale UMR_S 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Benoit Nespola
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Véronique Rolli
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| | - Laura Eva Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruno Rinaldi
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, UMR7156/Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Sylvie Friant
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, UMR7156/Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | - Christine Carapito
- Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR 7178, Université de Strasbourg, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Claudia Lengerke
- University of Basel and University Hospital Basel, Department of Biomedicine, Basel, Switzerland
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fayhan Alroqi
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
30
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
31
|
Georgin-Lavialle S, Ducharme-Benard S, Sarrabay G, Savey L, Grateau G, Hentgen V. Systemic autoinflammatory diseases: Clinical state of the art. Best Pract Res Clin Rheumatol 2020; 34:101529. [PMID: 32546426 DOI: 10.1016/j.berh.2020.101529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systemic autoinflammatory diseases (SAIDs) are defined as disorders of innate immunity. They were initially defined in opposition to autoimmune diseases due to the lack of involvement of the adaptive immune system and circulating autoantibodies. The four historical monogenic diseases are familial Mediterranean fever (associated with MEFV mutations), cryopyrinopathies (NLRP3 mutations), tumor necrosis factor receptor-associated periodic syndrome (TNFRSF1A mutations), and mevalonate kinase deficiency (MVK mutations). In the last 10 years, more than 50 new monogenic SAIDs have been discovered thanks to advances in genetics. Diagnosis is largely based on personal and family history and detailed analysis of signs and symptoms associated with febrile attacks, in the setting of elevated inflammatory markers. Increasingly efficient techniques of genetic analysis can contribute to refining the diagnosis. This review is a guide for the clinician in suspecting and establishing a diagnosis of SAID.
Collapse
Affiliation(s)
- Sophie Georgin-Lavialle
- Sorbonne University, AP-HP, Tenon Hospital, Internal Medicine Department, 4 rue de la Chine, 75020, Paris, France; Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoire (CEREMAIA), France.
| | - Stéphanie Ducharme-Benard
- Sorbonne University, AP-HP, Tenon Hospital, Internal Medicine Department, 4 rue de la Chine, 75020, Paris, France; Service de médecine interne, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada.
| | - Guillaume Sarrabay
- CHU Montpellier, Univ Montpellier, Laboratory of Rare and Autoinflammatory Genetic Diseases and CEREMAIA, Montpellier, France; Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoire (CEREMAIA), France.
| | - Léa Savey
- Sorbonne University, AP-HP, Tenon Hospital, Internal Medicine Department, 4 rue de la Chine, 75020, Paris, France; Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoire (CEREMAIA), France.
| | - Gilles Grateau
- Sorbonne University, AP-HP, Tenon Hospital, Internal Medicine Department, 4 rue de la Chine, 75020, Paris, France; Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoire (CEREMAIA), France.
| | - Véronique Hentgen
- Service de pédiatrie générale, CH de Versailles, 177 rue de Versailles, 78150, Le Chesnay Cedex, France; Centre de référence des maladies auto-inflammatoires et des amyloses inflammatoire (CEREMAIA), France.
| |
Collapse
|
32
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
33
|
Tangye SG. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet 2020; 139:885-901. [PMID: 32152698 DOI: 10.1007/s00439-020-02145-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting > 90% of the adult population. In the vast majority of healthy individuals, infection with EBV runs a relatively benign course. However, EBV is by no means a benign pathogen. Indeed, apart from being associated with at least seven different types of malignancies, EBV infection can cause severe and often fatal diseases-hemophagocytic lymphohistiocytosis, lymphoproliferative disease, B-cell lymphoma-in rare individuals with specific monogenic inborn errors of immunity. The discovery and detailed investigation of inborn errors of immunity characterized by heightened susceptibility to, or increased frequency of, EBV-induced disease have elegantly revealed cell types and signaling pathways that play critical and non-redundant roles in host-defense against EBV. These analyses have revealed not only mechanisms underlying EBV-induced disease in rare genetic conditions, but also identified molecules and pathways that could be targeted to treat severe EBV infection and pathological consequences in immunodeficient hosts, or even potentially enhance the efficacy of an EBV-specific vaccine.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia. .,St. Vincent's Clinical School, University of NSW Sydney, Darlinghurst, NSW, 2010, Australia. .,Clincial Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW, Australia.
| |
Collapse
|
34
|
Systemic Inflammation and Myelofibrosis in a Patient with Takenouchi-Kosaki Syndrome due to CDC42 Tyr64Cys Mutation. J Clin Immunol 2020; 40:567-570. [PMID: 31953712 DOI: 10.1007/s10875-020-00742-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
|
35
|
Recent human genetic errors of innate immunity leading to increased susceptibility to infection. Curr Opin Immunol 2020; 62:79-90. [PMID: 31935567 DOI: 10.1016/j.coi.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
The germline encoded innate immunity governs eukaryotic host defense through both hematopoietic and non-hematopoietic cells, whereas adaptive immunity actions mainly via T cells and B cells characterized by their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity typically underlie infectious diseases. Disturbed innate immunity can additionally result in auto-inflammation. Here, we review inborn errors of innate immunity that have been recently discovered as well as new insights into previously described inborn errors of innate immunity.
Collapse
|
36
|
Lazy Leukocyte Syndrome-an Enigma Finally Solved? J Clin Immunol 2019; 40:9-12. [PMID: 31768891 DOI: 10.1007/s10875-019-00718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023]
|
37
|
Pillay BA, Avery DT, Smart JM, Cole T, Choo S, Chan D, Gray PE, Frith K, Mitchell R, Phan TG, Wong M, Campbell DE, Hsu P, Ziegler JB, Peake J, Alvaro F, Picard C, Bustamante J, Neven B, Cant AJ, Uzel G, Arkwright PD, Casanova JL, Su HC, Freeman AF, Shah N, Hickstein DD, Tangye SG, Ma CS. Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients. JCI Insight 2019; 5:127527. [PMID: 31021819 DOI: 10.1172/jci.insight.127527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bi-allelic inactivating mutations in DOCK8 cause a combined immunodeficiency characterised by severe pathogen infections, eczema, allergies, malignancy and impaired humoral responses. These clinical features result from functional defects in most lymphocyte lineages. Thus, DOCK8 plays a key role in immune cell function. Hematopoietic stem cell transplantation (HSCT) is curative for DOCK8 deficiency. While previous reports have described clinical outcomes for DOCK8 deficiency following HSCT, the effect on lymphocyte reconstitution and function has not been investigated. Our study determined whether defects in lymphocyte differentiation and function in DOCK8-deficient patients were restored following HSCT. DOCK8-deficient T and B lymphocytes exhibited aberrant activation and effector function in vivo and in vitro. Frequencies of αβ T and MAIT cells were reduced while γδT cells were increased in DOCK8-deficient patients. HSCT improved, abnormal lymphocyte function in DOCK8-deficient patients. Elevated total and allergen-specific IgE in DOCK8-deficient patients decreased over time following HSCT. Our results document the extensive catalogue of cellular defects in DOCK8-deficient patients, and the efficacy of HSCT to correct these defects, concurrent with improvements in clinical phenotypes. Overall, our findings provide mechanisms at a functional cellular level for improvements in clinical features of DOCK8 deficiency post-HSCT, identify biomarkers that correlate with improved clinical outcomes, and inform the general dynamics of immune reconstitution in patients with monogenic immune disorders following HSCT.
Collapse
Affiliation(s)
- Bethany A Pillay
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Danielle T Avery
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Joanne M Smart
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Theresa Cole
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sharon Choo
- Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Damien Chan
- Women and Children's Hosp==ital, Adelaide, South Australia, Australia
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Katie Frith
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard Mitchell
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Dianne E Campbell
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - John B Ziegler
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Jane Peake
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Frank Alvaro
- Pediatric Hematology, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine institut, Paris, France.,Study Center for Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker Hospital for Sick Children, Paris, France.,Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine institut, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Benedicte Neven
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Andrew J Cant
- Great North Children's Hospital, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.,Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle upon Tyne University, Newcastle upon Tyne, United Kingdom
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, United Kingdom
| | - Jean-Laurent Casanova
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Institut IMAGINE, Necker Medical School, University Paris Descartes Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, New York, New York, USA
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Dennis D Hickstein
- Experimental Transplantation and Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Clinical Immunogenomics Research Consortium of Australia (CIRCA), Sydney, New South Wales, Australia
| |
Collapse
|
38
|
Liston A, Humblet-Baron S. Inborn errors of immunity: single mutations unravel mechanisms of immune disease. Immunol Cell Biol 2019; 97:358-359. [PMID: 30942931 DOI: 10.1111/imcb.12247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Stephanie Humblet-Baron
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|