1
|
Wyatt-Johnson SK, Kersey HN, Brutkiewicz RR. Enrichment of liver MAIT cells in a mouse model of Alzheimer's disease. J Neuroimmunol 2024; 390:578332. [PMID: 38537322 PMCID: PMC11382344 DOI: 10.1016/j.jneuroim.2024.578332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 05/13/2024]
Abstract
Emerging evidence has supported a role for the immune system and liver in Alzheimer's disease (AD). However, our understanding of how hepatic immune cells are altered in AD is limited. We previously found that brain mucosal-associated invariant T (MAIT) cell numbers are increased in AD. Furthermore, loss of MAIT cells and their antigen-presenting molecule, MR1, reduced amyloid-β accumulation in the brain. MAIT cells are also significantly present in the liver. Therefore, we sought to analyze MAIT and other immune cells in the AD liver. Increased frequency of activated MAIT cells (but not conventional T cells) were found in 8-month-old 5XFAD mouse livers. Therefore, these data raise the possibility that there is a role for peripheral MAIT cells in AD pathology.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| | - Holly N Kersey
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
2
|
Yigit M, Basoglu OF, Unutmaz D. Mucosal-associated invariant T cells in cancer: dual roles, complex interactions and therapeutic potential. Front Immunol 2024; 15:1369236. [PMID: 38545100 PMCID: PMC10965779 DOI: 10.3389/fimmu.2024.1369236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells play diverse roles in cancer, infectious diseases, and immunotherapy. This review explores their intricate involvement in cancer, from early detection to their dual functions in promoting inflammation and mediating anti-tumor responses. Within the solid tumor microenvironment (TME), MAIT cells can acquire an 'exhausted' state and secrete tumor-promoting cytokines. On the other hand, MAIT cells are highly cytotoxic, and there is evidence that they may have an anti-tumor immune response. The frequency of MAIT cells and their subsets has also been shown to have prognostic value in several cancer types. Recent innovative approaches, such as programming MAIT cells with chimeric antigen receptors (CARs), provide a novel and exciting approach to utilizing these cells in cell-based cancer immunotherapy. Because MAIT cells have a restricted T cell receptor (TCR) and recognize a common antigen, this also mitigates potential graft-versus-host disease (GVHD) and opens the possibility of using allogeneic MAIT cells as off-the-shelf cell therapies in cancer. Additionally, we outline the interactions of MAIT cells with the microbiome and their critical role in infectious diseases and how this may impact the tumor responses of these cells. Understanding these complex roles can lead to novel therapeutic strategies harnessing the targeting capabilities of MAIT cells.
Collapse
Affiliation(s)
- Mesut Yigit
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Omer Faruk Basoglu
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
3
|
McWilliam HEG, Villadangos JA. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat Rev Immunol 2024; 24:178-192. [PMID: 37773272 PMCID: PMC11108705 DOI: 10.1038/s41577-023-00934-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/01/2023]
Abstract
MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Liu J, Joseph S, Manohar K, Lee J, Brokaw JP, Shelley WC, Markel TA. Role of innate T cells in necrotizing enterocolitis. Front Immunol 2024; 15:1357483. [PMID: 38390341 PMCID: PMC10881895 DOI: 10.3389/fimmu.2024.1357483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a destructive gastrointestinal disease primarily affecting preterm babies. Despite advancements in neonatal care, NEC remains a significant cause of morbidity and mortality in neonatal intensive care units worldwide and the etiology of NEC is still unclear. Risk factors for NEC include prematurity, very low birth weight, feeding with formula, intestinal dysbiosis and bacterial infection. A review of the literature would suggest that supplementation of prebiotics and probiotics prevents NEC by altering the immune responses. Innate T cells, a highly conserved subpopulation of T cells that responds quickly to stimulation, develops differently from conventional T cells in neonates. This review aims to provide a succinct overview of innate T cells in neonates, encompassing their phenotypic characteristics, functional roles, likely involvement in the pathogenesis of NEC, and potential therapeutic implications.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sharon Joseph
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jasmine Lee
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - John P. Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - W. Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| | - Troy A. Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States
| |
Collapse
|
5
|
Shrinivasan R, Wyatt-Johnson SK, Brutkiewicz RR. The MR1/MAIT cell axis in CNS diseases. Brain Behav Immun 2024; 116:321-328. [PMID: 38157945 PMCID: PMC10842441 DOI: 10.1016/j.bbi.2023.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subpopulation of innate-like T cells that can be found throughout the body, predominantly in mucosal sites, the lungs and in the peripheral blood. MAIT cells recognize microbial-derived vitamin B (e.g., riboflavin) metabolite antigens that are presented by the major histocompatibility complex class I-like protein, MR1, found on a variety of cell types in the periphery and the CNS. Since their original discovery, MAIT cells have been studied predominantly in their roles in diseases in the periphery; however, it was not until the early 2000s that these cells were first examined for their contributions to disorders of the CNS, with the bulk of the work being done within the past few years. Currently, the MR1/MAIT cell axis has been investigated in only a few neurological diseases including, multiple sclerosis and experimental autoimmune encephalomyelitis, brain cancer/tumors, ischemia, cerebral palsy, general aging and, most recently, Alzheimer's disease. Each of these diseases demonstrates a role for this under-studied innate immune axis in its neuropathology. Together, they highlight the importance of studying the MR1/MAIT cell axis in CNS disorders. Here, we review the contributions of the MR1/MAIT cell axis in the progression or remission of these neurological diseases. This work has shed some light in terms of potentially exploiting the MR1/MAIT cell axis in novel therapeutic applications.
Collapse
Affiliation(s)
- Rashmi Shrinivasan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Singh P, Singh M, Singh B, Sharma K, Kumar N, Singh D, Klair HS, Mastana S. Implications of siRNA Therapy in Bone Health: Silencing Communicates. Biomedicines 2024; 12:90. [PMID: 38255196 PMCID: PMC10813040 DOI: 10.3390/biomedicines12010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The global statistics of bone disorders, skeletal defects, and fractures are frightening. Several therapeutic strategies are being used to fix them; however, RNAi-based siRNA therapy is starting to prove to be a promising approach for the prevention of bone disorders because of its advanced capabilities to deliver siRNA or siRNA drug conjugate to the target tissue. Despite its 'bench-to-bedside' usefulness and approval by food and drug administration for five siRNA-based therapeutic medicines: Patisiran, Vutrisiran, Inclisiran, Lumasiran, and Givosiran, its use for the other diseases still remains to be resolved. By correcting the complications and complexities involved in siRNA delivery for its sustained release, better absorption, and toxicity-free activity, siRNA therapy can be harnessed as an experimental tool for the prevention of complex and undruggable diseases with a personalized medicine approach. The present review summarizes the findings of notable research to address the implications of siRNA in bone health for the restoration of bone mass, recovery of bone loss, and recuperation of bone fractures.
Collapse
Affiliation(s)
- Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Monica Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Baani Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Kirti Sharma
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Nitin Kumar
- Department of Human Genetics, Punjabi University, Patiala 147002, Punjab, India; (M.S.); (B.S.); (K.S.); (N.K.)
| | - Deepinder Singh
- Vardhman Mahavir Health Care, Urban Estate, Ph-II, Patiala 147002, Punjab, India
| | | | - Sarabjit Mastana
- Human Genomics Laboratory, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
7
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
8
|
Yang Z, Lian W, Waiho K, Zhu L, Chen A, Cheng Y, Wang Y. Effects of copper exposure on lipid metabolism and SREBP pathway in the Chinese mitten crab Eriocheir sinensis. CHEMOSPHERE 2022; 308:136556. [PMID: 36155024 DOI: 10.1016/j.chemosphere.2022.136556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is not only a common metal pollutant in the aquatic environment but also an essential trace element for aquatic organisms such as the Chinese mitten crab (Eriocheir sinensis). Cu is known to regulate lipid metabolism yet exert toxic effects if ingested in excess. However, the molecular regulatory roles of Cu in the lipid metabolism of crabs remains unclear. Thus, this study investigated the potential regulatory mechanism of Cu onto lipid metabolism of E. sinensis following acute Cu exposure. Crabs were exposed to environmental concentration of Cu (50 μg/L) for 96 h, and the expression of sterol regulatory element binding protein (SREBP) was knocked down by RNA interference (RNAi) to test its effect on Cu exposure. The results showed that RNAi significantly attenuated the Cu exposure-induced increase in lipid synthesis and triglycerides (TG) hydrolysis, while significantly inhibited the Cu exposure-induced decrease in fatty acid β-oxidation, suggesting that SREBP is involved in Cu-induced lipid metabolism. Subsequent analyses of the transcriptome results further revealed potential responsive genes of SREBP that were linked to lipid metabolism and immune regulation. Moreover, Cu may affect lipid metabolism through the TOR-SREBP pathway in E. sinensis. This work provides a reference for exploring the effects of Cu on lipid metabolism disorders in crustaceans.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wan Lian
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
9
|
Ruiz-Cortes K, Villageliu DN, Samuelson DR. Innate lymphocytes: Role in alcohol-induced immune dysfunction. Front Immunol 2022; 13:934617. [PMID: 36105802 PMCID: PMC9464604 DOI: 10.3389/fimmu.2022.934617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use is known to alter the function of both innate and adaptive immune cells, such as neutrophils, macrophages, B cells, and T cells. Immune dysfunction has been associated with alcohol-induced end-organ damage. The role of innate lymphocytes in alcohol-associated pathogenesis has become a focus of research, as liver-resident natural killer (NK) cells were found to play an important role in alcohol-associated liver damage pathogenesis. Innate lymphocytes play a critical role in immunity and homeostasis; they are necessary for an optimal host response against insults including infections and cancer. However, the role of innate lymphocytes, including NK cells, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, gamma delta T cells, and innate lymphoid cells (ILCs) type 1–3, remains ill-defined in the context of alcohol-induced end-organ damage. Innate-like B lymphocytes including marginal zone B cells and B-1 cells have also been identified; however, this review will address the effects of alcohol misuse on innate T lymphocytes, as well as the consequences of innate T-lymphocyte dysfunction on alcohol-induced tissue damage.
Collapse
|
10
|
Landry RL, Embers ME. Does Dementia Have a Microbial Cause? NEUROSCI 2022; 3:262-283. [PMID: 39483362 PMCID: PMC11523730 DOI: 10.3390/neurosci3020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2024] Open
Abstract
The potential contribution of pathogenic microbes to dementia-inducing disease is a subject of considerable importance. Alzheimer's disease (AD) is a neurocognitive disease that slowly destroys brain function, leading to cognitive decline and behavioral and psychiatric disorders. The histopathology of AD is associated with neuronal loss and progressive synaptic dysfunction, accompanied by the deposition of amyloid-β (Aβ) peptide in the form of parenchymal plaques and abnormal aggregated tau protein in the form of neurofibrillary tangles. Observational, epidemiological, experimental, and pathological studies have generated evidence for the complexity and possible polymicrobial causality in dementia-inducing diseases. The AD pathogen hypothesis states that pathogens and microbes act as triggers, interacting with genetic factors to initiate the accumulation of Aβ, hyperphosphorylated tau protein (p-tau), and inflammation in the brain. Evidence indicates that Borrelia sp., HSV-1, VZV (HHV-2), HHV-6/7, oral pathogens, Chlamydophila pneumoniae, and Candida albicans can infect the central nervous system (CNS), evade the immune system, and consequently prevail in the AD brain. Researchers have made significant progress in understanding the multifactorial and overlapping factors that are thought to take part in the etiopathogenesis of dementia; however, the cause of AD remains unclear.
Collapse
Affiliation(s)
- Remi L Landry
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| | - Monica E Embers
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA 70433, USA
| |
Collapse
|
11
|
Liu J, Nan H, Brutkiewicz RR, Casasnovas J, Kua KL. Sex discrepancy in the reduction of mucosal-associated invariant T cells caused by obesity. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:299-309. [PMID: 33332759 PMCID: PMC7860596 DOI: 10.1002/iid3.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/28/2020] [Indexed: 01/07/2023]
Abstract
Introduction Gut microbiota has been reported to contribute to obesity and the pathology of obesity‐related diseases but the underlying mechanisms are largely unknown. Mucosal‐associated invariant T (MAIT) cells are a unique subpopulation of T cells characterized by the expression of a semi‐invariant T cell receptor (TCR) α chain (Vα19 in mice; Vα7.2 in humans). The expansion and maturation of MAIT cells require the gut microbiota and antigen‐presenting molecule MR1, suggesting that MAIT cells may play a unique role in bridging gut microbiota, obesity, and obesity‐associated inflammation. Methods The levels of human MAIT cells from obese patients, as well as mouse MAIT cells from obese mouse models, were determined by flow cytometry. By comparing to controls, we analyzed the change of MAIT cells in obese subjects. Results We found obese patients had fewer circulating MAIT cells than healthy‐weight donors and the difference was more distinct in male patients. Consistently, male mice (but not female mice) have shown reduced MAIT cells in the liver and adipose tissue after a 10‐week Western diet compared to mice on a control diet. We also explored the possibility of utilizing high‐throughput technology (i.e., quantitative polymerase chain reaction [qPCR]), other than flow cytometry, to determine the expression levels of the invariant TCR of human MAIT cells. But a minimal correlation (R2 = 0.23, p = .11) was observed between qPCR and flow cytometry data. Conclusion Our study suggests that there is a sex discrepancy in the impact of obesity on MAIT cells: MAIT cells in male (but not female) humans and male mice are reduced by obesity.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongmei Nan
- Department of Global Health, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA.,Indiana University Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jose Casasnovas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kok Lim Kua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
12
|
Priya R, Brutkiewicz RR. Brain astrocytes and microglia express functional MR1 molecules that present microbial antigens to mucosal-associated invariant T (MAIT) cells. J Neuroimmunol 2020; 349:577428. [PMID: 33096293 DOI: 10.1016/j.jneuroim.2020.577428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022]
Abstract
It is unknown whether brain astrocytes and microglia have the capacity to present microbial antigens via the innate immune MR1/MAIT cell axis. We have detected MAIT cells in the normal mouse brain and found that both astrocytes and microglia are MR1+. When we stimulated brain astrocytes and microglia with E. coli, and then co-cultured them with MAIT cells, MR1 surface expression was upregulated and MAIT cells were activated in an antigen-dependent manner. Considering the association of MAIT cells with inflammatory conditions, including those in the CNS, the MR1/MAIT cell axis could be a novel therapeutic target in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Raj Priya
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
13
|
Lin Q, Kuypers M, Philpott DJ, Mallevaey T. The dialogue between unconventional T cells and the microbiota. Mucosal Immunol 2020; 13:867-876. [PMID: 32704035 DOI: 10.1038/s41385-020-0326-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 02/04/2023]
Abstract
The mammalian immune system is equipped with unconventional T cells that respond to microbial molecules such as glycolipids and small-molecule metabolites, which are invisible to conventional CD4 and CD8 T cells. Unconventional T cells include invariant natural killer T (iNKT) cells and mucosa-associated invariant T (MAIT) cells, which are involved in a wide range of infectious and non-infectious diseases, such as cancer and autoimmunity. In addition, their high conservation across mammals, their restriction by non-polymorphic antigen-presenting molecules, and their immediate and robust responses make these 'innate' T cells appealing targets for the development of one-size-fits-all immunotherapies. In this review, we discuss how iNKT and MAIT cells directly and indirectly detect the presence of and respond to pathogenic and commensal microbes. We also explore the current understanding of the bidirectional relationship between the microbiota and innate T cells, and how this crosstalk shapes the immune response in disease.
Collapse
Affiliation(s)
- Qiaochu Lin
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada. .,Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada.
| |
Collapse
|
14
|
Sajid MI, Moazzam M, Kato S, Yeseom Cho K, Tiwari RK. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals (Basel) 2020; 13:E294. [PMID: 33036435 PMCID: PMC7600125 DOI: 10.3390/ph13100294] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, their therapeutic use is limited by several challenges. siRNAs, being negatively charged, are membrane-impermeable and highly unstable in the systemic circulation. In this review, we have comprehensively discussed the extracellular barriers, including enzymatic degradation of siRNAs by serum endonucleases and RNAases, rapid renal clearance, membrane impermeability, and activation of the immune system. Besides, we have thoroughly described the intracellular barriers such as endosomal trap and off-target effects of siRNAs. Moreover, we have reported most of the strategies and techniques in overcoming these barriers, followed by critical comments in translating these molecules from bench to bedside.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan;
| | - Shun Kato
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Kayley Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (S.K.); (K.Y.C.)
| |
Collapse
|
15
|
Wang H, Kjer-Nielsen L, Shi M, D'Souza C, Pediongco TJ, Cao H, Kostenko L, Lim XY, Eckle SBG, Meehan BS, Zhu T, Wang B, Zhao Z, Mak JYW, Fairlie DP, Teng MWL, Rossjohn J, Yu D, de St Groth BF, Lovrecz G, Lu L, McCluskey J, Strugnell RA, Corbett AJ, Chen Z. IL-23 costimulates antigen-specific MAIT cell activation and enables vaccination against bacterial infection. Sci Immunol 2020; 4:4/41/eaaw0402. [PMID: 31732518 DOI: 10.1126/sciimmunol.aaw0402] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are activated in a TCR-dependent manner by antigens derived from the riboflavin synthesis pathway, including 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), bound to MHC-related protein-1 (MR1). However, MAIT cell activation in vivo has not been studied in detail. Here, we have found and characterized additional molecular signals required for optimal activation and expansion of MAIT cells after pulmonary Legionella or Salmonella infection in mice. We show that either bone marrow-derived APCs or non-bone marrow-derived cells can activate MAIT cells in vivo, depending on the pathogen. Optimal MAIT cell activation in vivo requires signaling through the inducible T cell costimulator (ICOS), which is highly expressed on MAIT cells. Subsequent expansion and maintenance of MAIT-17/1-type responses are dependent on IL-23. Vaccination with IL-23 plus 5-OP-RU augments MAIT cell-mediated control of pulmonary Legionella infection. These findings reveal cellular and molecular targets for manipulating MAIT cell function under physiological conditions.
Collapse
Affiliation(s)
- Huimeng Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mai Shi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Criselle D'Souza
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC 3010, Australia
| | - Troi J Pediongco
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hanwei Cao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Tianyuan Zhu
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.,School of Medicine, Tsinghua University, Beijing, China
| | - Bingjie Wang
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jeffrey Y W Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Saint Lucia, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Saint Lucia, QLD 4072, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Michele W L Teng
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia.,Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, CF14 4XN Wales, UK
| | - Di Yu
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601 Australia
| | - Barbara Fazekas de St Groth
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - George Lovrecz
- Biomedical Manufacturing, CSIRO, Parkville, VIC, 3052, Australia
| | - Louis Lu
- Biomedical Manufacturing, CSIRO, Parkville, VIC, 3052, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Zhenjun Chen
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
16
|
Abstract
Mucosal associated invariant T (MAIT) cells are striking in their abundance and their strict conservation across 150 million years of mammalian evolution, implying they must fulfill critical immunological function(s). MAIT cells are defined by their expression of a semi-invariant αβ TCR which recognizes biosynthetic derivatives of riboflavin synthesis presented on MR1. Initial studies focused on their role in detecting predominantly intracellular bacterial and mycobacterial infections. However, it is now recognized that there are several modes of MAIT cell activation and these are related to activation of distinct transcriptional programmes, each associated with distinct functional roles. In this minireview, we summarize current knowledge from human and animal studies of MAIT cell activation induced (1) in an MR1-TCR dependent manner in the context of inflammatory danger signals and associated with antibacterial host defense; (2) in an MR1-TCR independent manner by the cytokines interleukin(IL)-12/-15/-18 and type I interferon, which is associated with antiviral responses; and (3) a recently-described TCR-dependent “tissue repair” programme which is associated with accelerated wound healing in the context of commensal microbiota. Because of this capability for diverse functional responses in diverse immunological contexts, these intriguing cells now appear to be multifunctional effectors central to the interface of innate and adaptive immunity.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom
| | - Xia-Wei Zhang
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom.,Division of Respiratory Medicine, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Abstract
Immunologists are sometimes guilty of describing the innate immune response as 'non-specific'. What we really mean is that the pattern recognition receptors of innate immune cells are not able to recombine and mutate to bind the spectacular range of molecular patterns that can be recognised by B and T cells. So, while it may be accurate to describe the innate immune response as less specific than adaptive immunity, even this belies the emerging complexity of the receptors and receptor complexes that control inflammatory responses. This complexity is necessary to recognise danger, and therefore successfully initiate proportionate inflammatory responses to cellular damage or against potential pathogens.
Collapse
Affiliation(s)
- Simon Milling
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Zhang Y, Kong D, Wang H. Mucosal-Associated Invariant T cell in liver diseases. Int J Biol Sci 2020; 16:460-470. [PMID: 32015682 PMCID: PMC6990906 DOI: 10.7150/ijbs.39016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Mucosal-associated invariant T cells (MAIT cells) are a new population of innate immune cells, which are abundant in the liver and play complex roles in various liver diseases. In this review, we summarize MAIT cells in the liver diseases in recent studies, figure out the role of MAIT cells in various liver disease, including Alcoholic liver disease, Non-alcoholic liver disease, Autoimmune liver diseases, Viral hepatitis and Liver Cancer. Briefly, MAIT cells are involved in anti-bacteria responses in the alcoholic liver diseases. Besides, the activated MAIT cells promote the liver inflammation by secreting inflammatory cytokines and produce regulatory cytokines, which induces anti-inflammatory macrophage polarization. MAIT cells participate in the liver fibrosis via enhancing hepatic stellate cell activation. In viral hepatitis, MAIT cells exhibit a flawed and exhausted phenotype, which results in little effect on controlling the virus and bacteria. In liver cancer, MAIT cells indicate the disease progression and the outcome of therapy. In summary, MAIT cells are attractive biomarkers and therapeutic targets for liver disease.
Collapse
Affiliation(s)
- Yujue Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.,Department of Gastroenterology, Fuyang Hospital of Anhui Medical University, Fuyang, Anhui 236000, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
19
|
Kalinkovich A, Livshits G. A cross talk between dysbiosis and gut-associated immune system governs the development of inflammatory arthropathies. Semin Arthritis Rheum 2019; 49:474-484. [PMID: 31208713 DOI: 10.1016/j.semarthrit.2019.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests that dysbiosis, imbalanced gut microbial community, might be a key player in the development of various diseases, including inflammatory arthropathies, such as rheumatoid arthritis, spondyloarthritis (mainly, ankylosing spondylitis and psoriatic arthritis), and osteoarthritis. Yet, the underlying mechanisms and corresponding interactions remain poorly understood. METHODS We conducted a critical and extensive literature review to explore the association between dysbiosis and the development of inflammatory arthropathies. We also reviewed the literature to assess the perspectives that ameliorate inflammatory arthropathies by manipulating the microbiota with probiotics, prebiotics or fecal microbiota transplantation. RESULTS Some bacterial species (e.g. Prevotella, Citrobacter rodentium, Collinsella aerofaciens, Segmented filamentous bacteria) participate in the creation of the pro-inflammatory immune status, presumably via epitope mimicry, modification of self-antigens, enhanced cell apoptosis mechanisms, and destruction of tight junction proteins and intestinal barrier integrity, all leading to the development and maintainance of inflammatory arthropathies. Whether dysbiosis is an epiphenomenon or is an active driver of these disorders remains unclear, yet, recent observations clearly suggest that dysbiosis precedes and triggers their development implying a causative relationship between dysbiosis and inflammatory arthropathies. The underlying mechanisms include dysbiosis-mediated changes in the functional activity of the intestinal immune cell subsets, such as innate lymphoid cells, mucosa-associated invariant T cells, invariant natural killer T cells, T-follicular helper and T-regulatory cells. In turn, disturbed functionality of the gut-associated immune system is shown to promote the overgrowth of many bacteria, thus establishing a detrimental vicious circle of actively maintaining arthritis. CONCLUSIONS Analysis of the data described in the review supports the notion that a close, dynamic and tightly regulated cross talk between dysbiosis and the gut-associated immune system governs the development of inflammatory arthropathies.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gregory Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
20
|
Bánki Z, Krabbendam L, Klaver D, Leng T, Kruis S, Mehta H, Müllauer B, Orth-Höller D, Stoiber H, Willberg CB, Klenerman P. Antibody opsonization enhances MAIT cell responsiveness to bacteria via a TNF-dependent mechanism. Immunol Cell Biol 2019; 97:538-551. [PMID: 30695101 PMCID: PMC6767153 DOI: 10.1111/imcb.12239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an abundant human T-cell subset with antimicrobial properties. They can respond to bacteria presented via antigen-presenting cells (APCs) such as macrophages, which present bacterially derived ligands from the riboflavin synthesis pathway on MR1. Moreover, MAIT cells are also highly responsive to cytokines which enhance and even substitute for T-cell receptor-mediated signaling. The mechanisms leading to an efficient presentation of bacteria to MAIT cells by APCs have not been fully elucidated. Here, we showed that the monocytic cell line THP-1 and B cells activated MAIT cells differentially in response to Escherichia coli. THP-1 cells were generally more potent in inducing IFNγ and IFNγ/TNF production by MAIT cells. Furthermore, THP-1, but not B, cells produced TNF upon bacterial stimulation, which in turn supported IFNγ production by MAIT cells. Finally, we addressed the role of antibody-dependent opsonization of bacteria in the activation of MAIT cells using in vitro models. We found that opsonization had a substantial impact on downstream MAIT cell activation by monocytes. This was associated with enhanced activation of monocytes and increased TNF release. Importantly, this TNF acted in concert with other cytokines to drive MAIT cell activation. These data indicate both a significant interaction between adaptive and innate immunity in the response to bacteria, and an important role for TNF in MAIT cell triggering.
Collapse
Affiliation(s)
- Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisette Krabbendam
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Dominik Klaver
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tianqi Leng
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Simon Kruis
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hema Mehta
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Brigitte Müllauer
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
D’Souza C, Chen Z, Corbett AJ. Revealing the protective and pathogenic potential of MAIT cells. Mol Immunol 2018; 103:46-54. [DOI: 10.1016/j.molimm.2018.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022]
|
22
|
McWilliam HEG, Villadangos JA. MR1 antigen presentation to MAIT cells: new ligands, diverse pathways? Curr Opin Immunol 2018; 52:108-113. [DOI: 10.1016/j.coi.2018.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023]
|
23
|
Shey MS, Balfour A, Wilkinson KA, Meintjes G. Contribution of APCs to mucosal-associated invariant T cell activation in infectious disease and cancer. Innate Immun 2018; 24:192-202. [PMID: 29631470 PMCID: PMC6139754 DOI: 10.1177/1753425918768695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
APCs such as monocytes and dendritic cells are among the first cells to recognize
invading pathogens and initiate an immune response. The innate response can
either eliminate the pathogen directly, or through presentation of Ags to T
cells, which can help to clear the infection. Mucosal-associated invariant T
(MAIT) cells are among the unconventional T cells whose activation does not
involve the classical co-stimulation during Ag presentation. MAIT cells can be
activated either via presentation of unconventional Ags (such as riboflavin
metabolites) through the evolutionarily conserved major histocompatibility class
I-like molecule, MR1, or directly by cytokines such as IL-12 and IL-18. Given
that APCs produce cytokines and can express MR1, these cells can play an
important role in both pathways of MAIT cell activation. In this review, we
summarize evidence on the role of APCs in MAIT cell activation in infectious
disease and cancer. A better understanding of the interactions between APCs and
MAIT cells is important in further elucidating the role of MAIT cells in
infectious diseases, which may facilitate the design of novel interventions such
as vaccines.
Collapse
Affiliation(s)
- Muki Shehu Shey
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| | - Avuyonke Balfour
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| | - Katalin Andrea Wilkinson
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa.,3 The Francis Crick Institute, Midland Road, London, NW1 2AT
| | - Graeme Meintjes
- 1 Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,2 Department of Medicine, Faculty of Health Sciences University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
24
|
Ussher JE, Willberg CB, Klenerman P. MAIT cells and viruses. Immunol Cell Biol 2018; 96:630-641. [PMID: 29350807 PMCID: PMC6055725 DOI: 10.1111/imcb.12008] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
Mucosal associated invariant T cells (MAIT cells) bear a T cell receptor (TCR) that specifically targets microbially derived metabolites. Functionally, they respond to bacteria and yeasts, which possess the riboflavin pathway, essential for production of such metabolites and which are presented on MR1. Viruses cannot generate these ligands, so a priori, they should not be recognized by MAIT cells and indeed this is true when considering recognition through the TCR. However, MAIT cells are distinctive in another respect, since they respond quite sensitively to non‐TCR signals, especially in the form of inflammatory cytokines. Thus, a number of groups have shown that virus infection can be “sensed” by MAIT cells and a functional response invoked. Since MAIT cells are abundant in humans, especially in tissues such as the liver, the question has arisen as to whether this TCR‐independent MAIT cell triggering by viruses plays any role in vivo. In this review, we will discuss the evidence for this phenomenon and some common features which emerge across different recent studies in this area.
Collapse
Affiliation(s)
- James E Ussher
- Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, Oxford, UK.,Translational Gastroenterology Unit, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
25
|
Constantinides MG. Interactions between the microbiota and innate and innate-like lymphocytes. J Leukoc Biol 2017; 103:409-419. [PMID: 29345366 DOI: 10.1002/jlb.3ri0917-378r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022] Open
Abstract
The microbiota, which consists of commensal bacteria, fungi, and viruses, limits the colonization of pathogens at barrier tissues and promotes immune homeostasis. The latter is accomplished through the induction and regulation of both innate and adaptive immune responses. Innate lymphocytes, which include the type-1 innate lymphoid cell (ILC1), NK cell, type-2 innate lymphoid cell (ILC2), type-3 innate lymphoid cell (ILC3), and lymphoid tissue inducer (LTi) cell populations, and innate-like lymphocytes, such as NKT cells, mucosal-associated invariant T (MAIT) cells, and γδ T cells, are uniquely capable of responding to the microbiota due to their tissue localization and rapid primary responses. In turn, through their effector functions, these lymphocyte populations modulate the composition of the microbiota and maintain the segregation of commensals. This review will focus on how innate and innate-like lymphocytes mediate the crosstalk with the microbiome.
Collapse
Affiliation(s)
- Michael G Constantinides
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Ghazarian L, Caillat-Zucman S, Houdouin V. Mucosal-Associated Invariant T Cell Interactions with Commensal and Pathogenic Bacteria: Potential Role in Antimicrobial Immunity in the Child. Front Immunol 2017; 8:1837. [PMID: 29326714 PMCID: PMC5736530 DOI: 10.3389/fimmu.2017.01837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional CD3+CD161high T lymphocytes that recognize vitamin B2 (riboflavin) biosynthesis precursor derivatives presented by the MHC-I related protein, MR1. In humans, their T cell receptor is composed of a Vα7.2-Jα33/20/12 chain, combined with a restricted set of Vβ chains. MAIT cells are very abundant in the liver (up to 40% of resident T cells) and in mucosal tissues, such as the lung and gut. In adult peripheral blood, they represent up to 10% of circulating T cells, whereas they are very few in cord blood. This large number of MAIT cells in the adult likely results from their gradual expansion with age following repeated encounters with riboflavin-producing microbes. Upon recognition of MR1 ligands, MAIT cells have the capacity to rapidly eliminate bacterially infected cells through the production of inflammatory cytokines (IFNγ, TNFα, and IL-17) and cytotoxic effector molecules (perforin and granzyme B). Thus, MAIT cells may play a crucial role in antimicrobial defense, in particular at mucosal sites. In addition, MAIT cells have been implicated in diseases of non-microbial etiology, including autoimmunity and other inflammatory diseases. Although their participation in various clinical settings has received increased attention in adults, data in children are scarce. Due to their innate-like characteristics, MAIT cells might be particularly important to control microbial infections in the young age, when long-term protective adaptive immunity is not fully developed. Herein, we review the data showing how MAIT cells may control microbial infections and how they discriminate pathogens from commensals, with a focus on models relevant for childhood infections.
Collapse
Affiliation(s)
- Liana Ghazarian
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Laboratoire d'Immunologie, Hôpital Saint Louis, AP-HP, Paris, France
| | - Véronique Houdouin
- INSERM UMR1149, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Paris, France.,Service des Maladies Digestives et Respiratoires de l'Enfant, Hôpital Robert Debré, AP-HP, Paris, France
| |
Collapse
|
27
|
Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game. Int Rev Immunol 2017; 37:90-110. [PMID: 29106304 DOI: 10.1080/08830185.2017.1380199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Current advances in immunology have led to the identification of a population of novel innate immune T cells, called mucosa-associated invariant T (MAIT) cells. The cells in humans express an invariant TCRα chain (Vα7.2-Jα33) paired with a limited subset of TCRβ chains (Vβ2, 13 and 22), are restricted by the MHC class I (MH1)-related (MR)-1, and recognize molecules that are produced in the bacterial riboflavin (vitamin B2) biosynthetic pathway. They are present in the circulation, liver and at various mucosal sites (i.e. intestine, lungs and female reproductive tract, etc.). They kill host cells infected with bacteria and yeast, and secrete soluble mediators such as TNF-α, IFN-γ, IL-17, etc. The cells regulate immune responses and inflammation associated with a wide spectrum of acute and chronic diseases in humans. Since their discovery in 1993, significant advances have been made in understanding biology of MAIT cells and the potential role of these cells in the pathogenesis of autoimmune, inflammatory and infectious diseases as well as cancer in humans. The purpose of this review is to provide a current state of our knowledge about MAIT cell biology and delineate their role in autoimmune and inflammatory diseases (sterile or caused by infectious agents) and cancer in humans. A better understanding of the role of MAIT cells in human diseases may lead to novel ways of immunotherapies.
Collapse
Affiliation(s)
- Vijay Kumar
- a Department of Paediatrics and Child Care , Children's Health Queensland Clinical unit School of Medicine, Mater Research, Faculty of Medicine and Biomedical Sciences, University of Queensland , ST Lucia, Brisbane , Queensland , Australia
| | - Ali Ahmad
- b Laboratory of Innate Immunity, CHU Ste-Justine/Department of Microbiology , Infectious Diseases & Immunology, University of Montreal , Montreal , Quebec , Canada
| |
Collapse
|