1
|
Li M, Lu L, Xu H. Diagnostic value of miR-34a in Mycoplasma pneumoniae pneumonia in children and its correlation with rehabilitation effect. J Cardiothorac Surg 2024; 19:507. [PMID: 39223566 PMCID: PMC11367975 DOI: 10.1186/s13019-024-02992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae pneumonia (MPP) is responsible for 20 to 40% of all cases of pneumonia acquired by children and shows an increasing incidence year by year. The aim of this study was to investigate the expression of miR-34a in children with MPP and its diagnostic value, and further explore the relationship between miR-34a and the rehabilitation effect of children with MPP. METHODS The expression level of miR-34a was detected by RT-qPCR, and the clinical value of miR-34a was analyzed by ROC analysis. In addition, the levels of IL-6, IL-18 and TNF-α in serum of children with MPP were detected by ELISA kit, and the correlation with miR-34a was analyzed. RESULTS Elevated levels of miR-34a were observed in the serum of children with MPP, and significantly higher expression levels were observed in children with severe symptoms and poor rehabilitation. The study suggested that miR-34a has potential as a diagnostic marker for MPP in children, helping to distinguish between mild and severe cases and predicting rehabilitation from MPP in children. In addition, miR-34a expression was positively correlated with IL-6, IL-8, and TNF-α levels. CONCLUSIONS miR-34a is closely related to MPP in children and miR-34a may be used as a clinical biomarker for MPP in children.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, 226100, China
| | - Leijuan Lu
- Department of Pediatrics, Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong, 226100, China
| | - Hong Xu
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
2
|
Ghorab RA, Fouad SH, Sherief AF, El-Sehsah EM, Shamloul S, Taha SI. MiR-146a (rs2910164) Gene Polymorphism and Its Impact on Circulating MiR-146a Levels in Patients with Inflammatory Bowel Diseases. Inflammation 2024:10.1007/s10753-024-02108-0. [PMID: 39103590 DOI: 10.1007/s10753-024-02108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
MicroRNA-146a (miR-146a) has been involved in the pathophysiology of inflammatory bowel disease (IBD). However, the precise processes are still not entirely understood. Contradictory studies suggest that miR-146a expression could be influenced by the miR-146a rs2910164 C > G polymorphism. This case-control study aimed to investigate the association of miR-146a rs2910164 C > G gene polymorphism and its impact on circulating miR-146a expression levels in Egyptian IBD patients. We included 40 IBD patients and 30 matched healthy controls. Genotyping of miR-146a rs2910164 polymorphism and assessment of miR-146a expression level were done using quantitative real-time PCR in all participants. MiR-146a rs2910164 GG genotype and the G allele were reported in 47% and 70% of the IBD patient group, respectively. And they were associated with increased IBD risk. All the IBD patients with the CC genotype (100%) and most of those with the CG genotype (66.67%) had an inactive disease, while most IBD patients with the GG genotype (73.68%) had an active disease. The miR-146a expression level was the highest with the CC genotype and the lowest with the GG genotype. Also, miR-146a expression level decreased significantly in IBD patients than controls and with disease activity. Combined detection of fecal calprotectin with miR-146a expression level improved the diagnostic sensitivity and the negative predictive value in differentiating IBD patients with active disease from those inactive. Our study identified a strong association of miR-146a rs2910164 GG genotype and G allele with IBD-increased susceptibility and activity in the Egyptian population. The miR-146a rs2910164 polymorphism can reduce miR-146a expression levels in these patients as well. Further research on a larger sample size and different ethnic populations can be the key to progress in establishing this genetic association.
Collapse
Affiliation(s)
- Rasha Ahmed Ghorab
- Department of Clinical Pathology, Faculty of Medicine, Ain-Shams University, 11591 Abbasia, Cairo, Egypt
| | - Shaimaa H Fouad
- Department of Internal Medicine /Allergy and Clinical Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed F Sherief
- Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman M El-Sehsah
- Department of Medical Microbiology and Immunology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Sara Shamloul
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain-Shams University, 11591 Abbasia, Cairo, Egypt.
| |
Collapse
|
3
|
Brogaard L, Heegaard PMH, Larsen LE, Skovgaard K. Pulmonary MicroRNA expression after heterologous challenge with swine influenza A virus (H1N2) in immunized and non-immunized pigs. Virology 2024; 596:110117. [PMID: 38797064 DOI: 10.1016/j.virol.2024.110117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
MicroRNAs (miRNAs) contribute to post-transcriptional modulation of the host response during influenza A virus (IAV) infection and may be involved in shaping disease severity. Differential disease severity was achieved in two groups of pigs by immunization of one group with a commercial swine IAV vaccine prior to heterologous IAV (H1N2) challenge of both groups. Lung tissue was harvested 1, 3, and 14 days after challenge and miRNA expression was quantified. Gene Ontology term enrichment analysis was employed to examine the functional relevance of genes potentially regulated by differentially expressed miRNAs in pigs with varying degrees of disease severity following IAV infection. Results suggested that the miRNA response associated with less severe disease may modulate host mechanisms essential for viral life cycle, e.g. transcription, translation, and protein trafficking. During more severe disease, miRNA-mediated regulation may focus on dampening virus-specific processes e.g. virion assembly and viral protein processing, and controlling host metabolism.
Collapse
Affiliation(s)
- Louise Brogaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Peter M H Heegaard
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Manni G, Gargaro M, Ricciuti D, Fontana S, Padiglioni E, Cipolloni M, Mazza T, Rosati J, di Veroli A, Mencarelli G, Pieroni B, Silva Barcelos EC, Scalisi G, Sarnari F, di Michele A, Pascucci L, de Franco F, Zelante T, Antognelli C, Cruciani G, Talesa VN, Romani R, Fallarino F. Amniotic fluid stem cell-derived extracellular vesicles educate type 2 conventional dendritic cells to rescue autoimmune disorders in a multiple sclerosis mouse model. J Extracell Vesicles 2024; 13:e12446. [PMID: 38844736 PMCID: PMC11156524 DOI: 10.1002/jev2.12446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 06/10/2024] Open
Abstract
Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.
Collapse
Affiliation(s)
- Giorgia Manni
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
| | - Marco Gargaro
- Department of Pharmaceutical ScienceUniversity of PerugiaPerugiaItaly
| | - Doriana Ricciuti
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and advanced Diagnostics (Bi.N.D) School of MedicineUniversity of PalermoPalermoItaly
| | | | | | - Tommaso Mazza
- Bioinformatics unit, Fondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni RotondoItaly
| | - Alessandra di Veroli
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | | | | | | | - Giulia Scalisi
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Alessandro di Michele
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
- Department of Physics and GeologyUniversity of PerugiaPerugiaItaly
| | - Luisa Pascucci
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
- Department of Veterinary MedicineUniversity of PerugiaPerugiaItaly
| | | | - Teresa Zelante
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | | - Gabriele Cruciani
- Department of Chemistry, Biology and BiotechnologyUniversity of PerugiaPerugiaItaly
| | | | - Rita Romani
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
| | - Francesca Fallarino
- Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
- Extracellular Vesicles network (EV‐net) of the University of PerugiaPerugiaItaly
| |
Collapse
|
5
|
Shahdab N, Ward C, Hansbro PM, Cummings S, Young JS, Moheimani F. Distinct Effects of Respiratory Viral Infection Models on miR-149-5p, IL-6 and p63 Expression in BEAS-2B and A549 Epithelial Cells. Cells 2024; 13:919. [PMID: 38891051 PMCID: PMC11172188 DOI: 10.3390/cells13110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Respiratory viruses cause airway inflammation, resulting in epithelial injury and repair. miRNAs, including miR-149-5p, regulate different pathological conditions. We aimed to determine how miR-149-5p functions in regulating pro-inflammatory IL-6 and p63, key regulators of airway epithelial wound repair, in response to viral proteins in bronchial (BEAS-2B) and alveolar (A549) epithelial cells. BEAS-2B or A549 cells were incubated with poly (I:C, 0.5 µg/mL) for 48 h or SARS-CoV-2 spike protein-1 or 2 subunit (S1 or S2, 1 μg/mL) for 24 h. miR-149-5p was suppressed in BEAS-2B challenged with poly (I:C), correlating with IL-6 and p63 upregulation. miR-149-5p was down-regulated in A549 stimulated with poly (I:C); IL-6 expression increased, but p63 protein levels were undetectable. miR-149-5p remained unchanged in cells exposed to S1 or S2, while S1 transfection increased IL-6 expression in BEAS-2B cells. Ectopic over-expression of miR-149-5p in BEAS-2B cells suppressed IL-6 and p63 mRNA levels and inhibited poly (I:C)-induced IL-6 and p63 mRNA expressions. miR-149-5p directly suppressed IL-6 mRNA in BEAS-2B cells. Hence, BEAS-2B cells respond differently to poly (I:C), S1 or S2 compared to A549 cells. Thus, miR-149-5p dysregulation may be involved in poly (I:C)-stimulated but not S1- or S2-stimulated increased IL-6 production and p63 expression in BEAS-2B cells.
Collapse
Affiliation(s)
- Nafeesa Shahdab
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney 2007, Australia;
| | - Stephen Cummings
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - John S. Young
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; (N.S.); (S.C.); (J.S.Y.)
| | - Fatemeh Moheimani
- Department of Life Sciences, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
6
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
Wang Z, Chu C, Ding Y, Li Y, Lu C. Clinical significance of serum microRNA-146a and inflammatory factors in children with Mycoplasma pneumoniae pneumonia after azithromycin treatment. J Pediatr (Rio J) 2024; 100:108-115. [PMID: 37778397 PMCID: PMC10751685 DOI: 10.1016/j.jped.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the clinical significance of serum microRNA-146a and pro-inflammatory factors in children with Mycoplasma pneumoniae pneumonia after azithromycin treatment. microRNA-146a is known to regulate inflammatory responses, and excessive inflammation is a primary characteristic of MPP. METHODS Children with MPP received conventional symptomatic therapy along with intravenous administration of azithromycin for one week. Serum levels of microRNA-146a and pro-inflammatory factors were measured using RT-qPCR and ELISA kits, respectively. The correlation between microRNA-146a and pro-inflammatory factors was analyzed by the Pearson method. Pulmonary function indexes were assessed using a pulmonary function analyzer, and their correlation with microRNA-146a and pro-inflammatory factors after treatment was evaluated. Children with MPP were divided into effective and ineffective treatment groups, and the clinical significance of microRNA-146a and pro-inflammatory factors was evaluated using receiver operating characteristic curves and logistic multivariate regression analysis. RESULTS Serum microRNA-146a was downregulated in children with MPP but upregulated after azithromycin treatment, contrasting with the trend observed for pro-inflammatory factors. MicroRNA-146a showed a negative correlation with pro-inflammatory cytokines. Pulmonary function parameters were initially reduced in children with MPP, but increased after treatment, showing positive/inverse associations with microRNA-146a and pro-inflammatory factors. Higher microRNA-146a and lower pro-inflammatory factors predicted better efficacy of azithromycin treatment. MicroRNA-146a, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and forced expiratory volume in the first second/forced vital capacity (FEV1/FVC) were identified as independent factors influencing treatment efficacy. CONCLUSION Azithromycin treatment in children with MPP upregulates microRNA-146a, downregulates pro-inflammatory factors, and effectively improves pulmonary function.
Collapse
Affiliation(s)
- Zhe Wang
- Children's Hospital of Soochow University, Department of Infectious Disease, Suzhou, Jiangsu, China
| | - Chu Chu
- Children's Hospital of Soochow University, Department of Infectious Disease, Suzhou, Jiangsu, China
| | - Ying Ding
- Children's Hospital of Soochow University, Department of Infectious Disease, Suzhou, Jiangsu, China
| | - Yuqin Li
- Children's Hospital of Soochow University, Department of Infectious Disease, Suzhou, Jiangsu, China
| | - Chunyu Lu
- Children's Hospital of Soochow University, Department of Infectious Disease, Suzhou, Jiangsu, China.
| |
Collapse
|
8
|
Kang H, Ga YJ, Kim SH, Cho YH, Kim JW, Kim C, Yeh JY. Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 2023; 30:88. [PMID: 37845731 PMCID: PMC10577957 DOI: 10.1186/s12929-023-00981-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
RNA has emerged as a revolutionary and important tool in the battle against emerging infectious diseases, with roles extending beyond its applications in vaccines, in which it is used in the response to the COVID-19 pandemic. Since their development in the 1990s, RNA interference (RNAi) therapeutics have demonstrated potential in reducing the expression of disease-associated genes. Nucleic acid-based therapeutics, including RNAi therapies, that degrade viral genomes and rapidly adapt to viral mutations, have emerged as alternative treatments. RNAi is a robust technique frequently employed to selectively suppress gene expression in a sequence-specific manner. The swift adaptability of nucleic acid-based therapeutics such as RNAi therapies endows them with a significant advantage over other antiviral medications. For example, small interfering RNAs (siRNAs) are produced on the basis of sequence complementarity to target and degrade viral RNA, a novel approach to combat viral infections. The precision of siRNAs in targeting and degrading viral RNA has led to the development of siRNA-based treatments for diverse diseases. However, despite the promising therapeutic benefits of siRNAs, several problems, including impaired long-term protein expression, siRNA instability, off-target effects, immunological responses, and drug resistance, have been considerable obstacles to the use of siRNA-based antiviral therapies. This review provides an encompassing summary of the siRNA-based therapeutic approaches against viruses while also addressing the obstacles that need to be overcome for their effective application. Furthermore, we present potential solutions to mitigate major challenges.
Collapse
Affiliation(s)
- Hara Kang
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Yun Ji Ga
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Soo Hyun Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Young Hoon Cho
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung Won Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Chaeyeon Kim
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Research Institute for New Drug Development, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- Convergence Research Center for Insect Vectors, Incheon National University, Academy-Ro 119, Yeonsu-Gu, Incheon, 22012, South Korea.
- KU Center for Animal Blood Medical Science, College of Veterinary Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Sahu P, Donovan C, Paudel KR, Pickles S, Chimankar V, Kim RY, Horvart JC, Dua K, Ieni A, Nucera F, Bielefeldt-Ohmann H, Mazilli S, Caramori G, Lyons JG, Hansbro PM. Pre-clinical lung squamous cell carcinoma mouse models to identify novel biomarkers and therapeutic interventions. Front Oncol 2023; 13:1260411. [PMID: 37817767 PMCID: PMC10560855 DOI: 10.3389/fonc.2023.1260411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Primary lung carcinoma or lung cancer (LC) is classified into small-cell or non-small-cell (NSCLC) lung carcinoma. Lung squamous cell carcinoma (LSCC) is the second most common subtype of NSCLC responsible for 30% of all LCs, and its survival remains low with only 24% of patients living for five years or longer post-diagnosis primarily due to the advanced stage of tumors at the time of diagnosis. The pathogenesis of LSCC is still poorly understood and has hampered the development of effective diagnostics and therapies. This review highlights the known risk factors, genetic and epigenetic alterations, miRNA biomarkers linked to the development and diagnosis of LSCC and the lack of therapeutic strategies to target specifically LSCC. We will also discuss existing animal models of LSCC including carcinogen induced, transgenic and xenograft mouse models, and their advantages and limitations along with the chemopreventive studies and molecular studies conducted using them. The importance of developing new and improved mouse models will also be discussed that will provide further insights into the initiation and progression of LSCC, and enable the identification of new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Priyanka Sahu
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Richard Y. Kim
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Jay C. Horvart
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Sarah Mazilli
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - J. Guy Lyons
- Department of Dermatology, The University of Sydney at Royal Prince Alfred Hospital, Sydney, Australia, and Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Philip M. Hansbro
- Immune Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| |
Collapse
|
10
|
Zhu Z, Freishtat RJ, Harmon B, Hahn A, Teach SJ, Pérez-Losada M, Hasegawa K, Camargo CA. Nasal airway microRNA profiling of infants with severe bronchiolitis and risk of childhood asthma: a multicentre prospective study. Eur Respir J 2023; 62:2300502. [PMID: 37321621 PMCID: PMC10578345 DOI: 10.1183/13993003.00502-2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation) during infancy is a major risk factor for childhood asthma. However, the exact mechanism linking these common conditions remains unclear. We examined the longitudinal relationship between nasal airway miRNAs during severe bronchiolitis and the risk of developing asthma. METHODS In a 17-centre prospective cohort study of infants with severe bronchiolitis, we sequenced their nasal microRNA at hospitalisation. First, we identified differentially expressed microRNAs (DEmiRNAs) associated with the risk of developing asthma by age 6 years. Second, we characterised the DEmiRNAs based on their association with asthma-related clinical features, and expression level by tissue and cell types. Third, we conducted pathway and network analyses by integrating DEmiRNAs and their mRNA targets. Finally, we investigated the association of DEmiRNAs and nasal cytokines. RESULTS In 575 infants (median age 3 months), we identified 23 DEmiRNAs associated with asthma development (e.g. hsa-miR-29a-3p; false discovery rate (FDR) <0.10), particularly in infants with respiratory syncytial virus infection (FDR for the interaction <0.05). These DEmiRNAs were associated with 16 asthma-related clinical features (FDR <0.05), e.g. infant eczema and corticosteroid use during hospitalisation. In addition, these DEmiRNAs were highly expressed in lung tissue and immune cells (e.g. T-helper cells, neutrophils). Third, DEmiRNAs were negatively correlated with their mRNA targets (e.g. hsa-miR-324-3p/IL13), which were enriched in asthma-related pathways (FDR <0.05), e.g. toll-like receptor, PI3K-Akt and FcɛR signalling pathways, and validated by cytokine data. CONCLUSION In a multicentre cohort of infants with severe bronchiolitis, we identified nasal miRNAs during illness that were associated with major asthma-related clinical features, immune response, and risk of asthma development.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Andrea Hahn
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Division of Infectious Diseases, Children's National Hospital, Washington, DC, USA
| | - Stephen J Teach
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Abdelrahman SA, El-Shal AS, Abdelrahman AA, Saleh EZH, Mahmoud AA. Neuroprotective effects of quercetin on the cerebellum of zinc oxide nanoparticles (ZnoNps)-exposed rats. Tissue Barriers 2023; 11:2115273. [PMID: 35996208 PMCID: PMC10364653 DOI: 10.1080/21688370.2022.2115273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022] Open
Abstract
Engineered nanomaterials induce hazardous effects at the cellular and molecular levels. We investigated different mechanisms underlying the neurotoxic potential of zinc oxide nanoparticles (ZnONPs) on cerebellar tissue and clarified the ameliorative role of Quercetin supplementation. Forty adult male albino rats were divided into control group (I), ZnONPs-exposed group (II), and ZnONPs and Quercetin group (III). Oxidative stress biomarkers (MDA & TOS), antioxidant biomarkers (SOD, GSH, GR, and TAC), serum interleukins (IL-1β, IL-6, IL-8), and tumor necrosis factor alpha (TNF-α) were measured. Serum micro-RNA (miRNA): miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-3p expression levels were quantified by real-time quantitative polymerase-chain reaction (RT-QPCR). Cerebellar tissue sections were stained with Hematoxylin & Eosin and Silver stains and examined microscopically. Expression levels of Calbindin D28k, GFAP, and BAX proteins in cerebellar tissue were detected by immunohistochemistry. Quercetin supplementation lowered oxidative stress biomarkers levels and ameliorated the antioxidant parameters that were decreased by ZnONPs. No significant differences in GR activity were detected between the study groups. ZnONPs significantly increased serum IL-1β, IL-6, IL-8, and TNF-α which were improved with Quercetin. Serum miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-p expression levels showed significant increase in ZnONPs group, while no significant difference was observed between Quercetin-treated group and control group. ZnONPs markedly impaired cerebellar tissue structure with decreased levels of calbindin D28k, increased BAX and GFAP expression. Quercetin supplementation ameliorated cerebellar tissue apoptosis, gliosis and improved calbindin levels. In conclusion: Quercetin supplementation ameliorated cerebellar neurotoxicity induced by ZnONPs at cellular and molecular basis by different studied mechanisms.Abbreviations: NPs: Nanoparticles, ROS: reactive oxygen species, ZnONPs: Zinc oxide nanoparticles, AgNPs: silver nanoparticles, BBB: blood-brain barrier, ncRNAs: Non-coding RNAs, miRNA: Micro RNA, DMSO: Dimethyl sulfoxide, LPO: lipid peroxidation, MDA: malondialdehyde, TBA: thiobarbituric acid, TOS: total oxidative status, ELISA: enzyme-linked immunosorbent assay, H2O2: hydrogen peroxide, SOD: superoxide dismutase, GR: glutathione reductase, TAC: total antioxidant capacity, IL-1: interleukin-1, TNF: tumor necrosis factor alpha, cDNA: complementary DNA, RT-QPCR: Real-time quantitative polymerase-chain reaction, ABC: Avidin biotin complex technique, DAB: 3', 3-diaminobenzidine, SPSS: Statistical Package for Social Sciences, ANOVA: One way analysis of variance, Tukey's HSD: Tukey's Honestly Significant Difference, GFAP: glial fiberillar acitic protein, iNOS: Inducible nitric oxide synthase, NO: nitric oxide, HO-1: heme oxygenase-1, Nrf2: nuclear factor erythroid 2-related factor 2, NF-B: nuclear factor-B, SCI: spinal cord injury, CB: Calbindin.
Collapse
Affiliation(s)
- Shaimaa A. Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal S. El-Shal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Biochemistry and Molecular Biology Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Abeer A. Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ebtehal Zaid Hassen Saleh
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A. Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Khalil BA, Sharif-Askari NS, Halwani R. Role of inflammasome in severe, steroid-resistant asthma. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100061. [PMID: 37304814 PMCID: PMC10250931 DOI: 10.1016/j.crimmu.2023.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose of review Asthma is a common heterogeneous group of chronic inflammatory diseases with different pathological phenotypes classified based on the various clinical, physiological and immunobiological profiles of patients. Despite similar clinical symptoms, asthmatic patients may respond differently to treatment. Hence, asthma research is becoming more focused on deciphering the molecular and cellular pathways driving the different asthma endotypes. This review focuses on the role of inflammasome activation as one important mechanism reported in the pathogenesis of severe steroid resistant asthma (SSRA), a Th2-low asthma endotype. Although SSRA represents around 5-10% of asthmatic patients, it is responsible for the majority of asthma morbidity and more than 50% of asthma associated healthcare costs with clear unmet need. Therefore, deciphering the role of the inflammasome in SSRA pathogenesis, particularly in relation to neutrophil chemotaxis to the lungs, provides a novel target for therapy. Recent findings The literature highlighted several activators of inflammasomes that are elevated during SSRA and result in the release of proinflammatory mediators, mainly IL-1β and IL-18, through different signaling pathways. Consequently, the expression of NLRP3 and IL-1β is shown to be positively correlated with neutrophil recruitment and negatively correlated with airflow obstruction. Furthermore, exaggerated NLRP3 inflammasome/IL-1β activation is reported to be associated with glucocorticoid resistance. Summary In this review, we summarized the reported literature on the activators of the inflammasome during SSRA, the role of IL-1β and IL-18 in SSRA pathogenesis, and the pathways by which inflammasome activation contributes to steroid resistance. Finally, our review shed light on the different levels to target inflammasome involvement in an attempt to ameliorate the serious outcomes of SSRA.
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Prince Abdullah Ben Khaled Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Saudi Arabia
| |
Collapse
|
13
|
Wu Z, Pi G, Song W, Li Y. Investigation of the Expression Pattern and Functional Role of miR-10b in Intestinal Inflammation. Animals (Basel) 2023; 13:ani13071236. [PMID: 37048492 PMCID: PMC10093392 DOI: 10.3390/ani13071236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Implications of miRNAs for animal health management in livestock remain elusive. To identify suitable miRNAs as monitoring biomarkers, piglets were randomly selected for sampling on days 0, 1, 3, 7, and 14 post-weaning. The results show that miR-10b levels in the villus upper cells of the jejunum on days 3 and 7 were significantly lower than that on day 14 post-weaning and reduced by approximately 30% on day 3 and 55% on day 7 compared to day 0. In contrast, miR-10b in crypt cells decreased by approximately 82% on day 7 and 64% on day 14 compared with day 0. Next, miR-10 knockout mice and wild-type mice were subjected to dextran sulfate sodium (DSS) for 7 days. The findings demonstrate that mice lacking miR-10b were more susceptible to DSS administration, as demonstrated by worse survival, greater weight loss, more severe tissue damage, and increased intestinal permeability. Moreover, the increased disease severity was correlated with enhanced macrophage infiltration, coincident with significantly elevated pro-inflammatory mediators and immunoglobulins. Bioinformatic analysis further reveals that the enriched pathways were mainly involved in host immune responses, and Igtp was identified as a potential target of miR-10b. These findings may provide new strategies for future interventions for swine health and production.
Collapse
Affiliation(s)
- Zijuan Wu
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Guolin Pi
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Wenxin Song
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| | - Yali Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha 410081, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
14
|
Kovaleva O, Sorokin M, Egorova A, Petrenko A, Shelekhova K, Gratchev A. Macrophage - tumor cell interaction beyond cytokines. Front Oncol 2023; 13:1078029. [PMID: 36910627 PMCID: PMC9995642 DOI: 10.3389/fonc.2023.1078029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Tumor cells communication with tumor associated macrophages is a highly important factor of tumor malignant potential development. For a long time, studies of this interaction were focused on a cytokine- and other soluble factors -mediated processes. Discovery of exosomes and regulatory RNAs as their cargo opened a broad field of research. Non-coding RNAs (ncRNAs) were demonstrated to contribute significantly to the development of macrophage phenotype, not only by regulating expression of certain genes, but also by providing for feedback loops of macrophage activation. Being a usual cargo of macrophage- or tumor cell-derived exosomes ncRNAs provide an important mechanism of tumor-stromal cell interaction that contributes significantly to the pathogenesis of various types of tumors. Despite the volume of ongoing research there are still many gaps that must be filled before the practical use of ncRNAs will be possible. In this review we discuss the role of regulatory RNAs in the development of macrophage phenotype. Further we review recent studies supporting the hypothesis that macrophages may affect the properties of tumor cells and vice versa tumor cells influence macrophage phenotype by miRNA and lncRNA transported between these cells by exosomes. We suggest that this mechanism of tumor cell - macrophage interaction is highly promising for the development of novel diagnostic and therapeutic strategies, though many problems are still to be solved.
Collapse
Affiliation(s)
- Olga Kovaleva
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Maxim Sorokin
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Anastasija Egorova
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Anatoly Petrenko
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Ksenya Shelekhova
- Department of Pathology, Clinical Research and Practical Center for Specialized Oncological Care, St. Petersburg, Russia.,Pathology Department, SPb Medico-Social Institute, St. Petersburg, Russia
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
15
|
Wang J, Ye Z, Chen Y, Qiao X, Jin Y. MicroRNA-25-5p negatively regulates TXNIP expression and relieves inflammatory responses of brain induced by lipopolysaccharide. Sci Rep 2022; 12:17915. [PMID: 36289253 PMCID: PMC9605969 DOI: 10.1038/s41598-022-21169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023] Open
Abstract
Sepsis is one of the most common causes of death in patients suffering from severe infection or injury. Currently, a specific effective therapy remains to be established. In the present study, miR-25-5p, miR-105, miR-106b-5p, miR-154-3p, miR-20b-5p, miR-295-3p, miR-291-3p, miR-301b, miR-352, and miR-93-5p were predicted to target TXNIP mRNA from the databases of miRDB, Targetscan, and microT-CDS. The luciferase reporter assay confirmed that miR-25-5p negatively regulates TXNIP expression. The ELISA analyses and western blotting demonstrated that miR-25-5p downregulated the production of IL-1β, IL-6, IL-8, and TNF-α in lipopolysaccharide (LPS)-stimulated cells or rats, as well as the protein levels of TXNIP, NLRP3, and cleaved caspase-1. In addition, miR-25-5p increased the cell viability and decreased the apoptosis in LPS-stimulated CTX TNA2 cells and reduced the abnormal morphology of the brain in LPS-stimulated rats. Besides, miR-25-5p decreased the relative mean fluorescence intensity of DCF in LPS-stimulated CTX TNA2 cell, apoptosis, and protein levels of MnSOD and catalase in LPS-stimulated brains. These findings indicate that miR-25-5p downregulated LPS-induced inflammatory responses, reactive oxygen species production, and brain damage, suggesting that miR-25-5p is a candidate treatment for septic encephalopathy.
Collapse
Affiliation(s)
- Jiabing Wang
- grid.440657.40000 0004 1762 5832Department of Pharmacy, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| | - Zhinan Ye
- grid.440657.40000 0004 1762 5832Department of Neurology, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| | - Yuan Chen
- grid.440657.40000 0004 1762 5832Department of Neurosurgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| | - Xinyu Qiao
- grid.440657.40000 0004 1762 5832Department of Neurology, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| | - Yong Jin
- grid.440657.40000 0004 1762 5832Department of Neurosurgery, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000 China
| |
Collapse
|
16
|
Gr1+ myeloid-derived suppressor cells participate in the regulation of lung-gut axis during mouse emphysema model. Biosci Rep 2022; 42:231730. [PMID: 36052717 PMCID: PMC9508528 DOI: 10.1042/bsr20221041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is often accompanied by intestinal symptoms. Myeloid-derived suppressor cells (MDSCs) possess immunosuppressive ability in cancer, chronic inflammation, and infection. The aim of this study was to verify the distribution of MDSCs in emphysema mouse model and participation in lung–gut cross-talk. Methods: Adult male C57BL/6 mice were exposed to cigarette smoke (CS) for 6 months or injected with porcine pancreas elastase to establish emphysema models. Flow cytometry and immunohistochemistry analysis revealed the distribution of MDSCs in tissues. The expression of inflammation and MDSCs-associated genes in the small intestine and colon were analyzed by real-time PCR. Results: The small intestine and colon of CS-induced emphysematous mice displayed pathological changes, CD4+/CD8+ T cells imbalance, and increased neutrophils, monocytes, and macrophages infiltration. A significant expansion of MDSCs could be seen in CS-affected respiratory and gastrointestinal tract. Importantly, higher expression of MDSCs-related effector molecules inducible nitric oxide synthase (INOS), NADPH oxidase 2 (NOX2), and arginase 1 (ARG-1) suggested the immunosuppressive effect of migrated MDSCs (P<0.05). Conclusion: These data provide evidence for lung–gut axis in emphysema model and the participants of MDSCs.
Collapse
|
17
|
Therapeutic Effect of Renifolin F on Airway Allergy in an Ovalbumin-Induced Asthma Mouse Model In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123789. [PMID: 35744915 PMCID: PMC9227769 DOI: 10.3390/molecules27123789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Renifolin F is a prenylated chalcone isolated from Shuteria involucrata, a traditional minority ethnic medicine used to treat the respiratory diseases and asthma. Based on the effects of the original medicine plant, we established an in vivo mouse model of allergic asthma using ovalbumin (OVA) as an inducer to evaluate the therapeutic effects of Renifolin F. In the research, mice were sensitized and challenged with OVA to establish an allergic asthma model to evaluate the effects of Renifolin F on allergic asthma. The airway hyper-reactivity (AHR) to methacholine, cytokine levels, ILC2s quantity and mircoRNA-155 expression were assessed. We discovered that Renifolin F attenuated AHR and airway inflammation in the OVA-induced asthmatic mouse model by inhibiting the regulation of ILC2s in the lung, thereby, reducing the upstream inflammatory cytokines IL-25, IL-33 and TSLP; the downstream inflammatory cytokines IL-4, IL-5, IL-9 and IL-13 of ILC2s; and the co-stimulatory factors IL-2 and IL-7; as well as the expression of microRNA-155 in the lung. The findings suggest a therapeutic potential of Renifolin F on OVA-induced airway inflammation.
Collapse
|
18
|
Beeraka NM, Zhou R, Wang X, Vikram P R H, Kumar TP, Liu J, Greeshma MV, Mandal SP, Gurupadayya BM, Fan R. Immune Repertoire and Advancements in Nanotherapeutics for the Impediment of Severe Steroid Resistant Asthma (SSR). Int J Nanomedicine 2022; 17:2121-2138. [PMID: 35592101 PMCID: PMC9112344 DOI: 10.2147/ijn.s364693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Severe steroid-resistant asthma (SSR) patients do not respond to the corticosteroid therapies due to the heterogeneity, and genome-wide variations. However, there are very limited reports pertinent to the molecular signaling underlying SSR and making pharmacologists, and formulation scientists to identify the effective therapeutic targets in order to produce novel therapies using novel drug delivery systems (NDDS). We have substantially searched literature for the peer-reviewed and published reports delineating the role of glucocorticoid-altered gene expression, and the mechanisms responsible for SSR asthma, and NDDS for treating SSR asthma using public databases PubMed, National Library of Medicine (NLM), google scholar, and medline. Subsequently, we described reports underlying the SSR pathophysiology through several immunological and inflammatory phenotypes. Furthermore, various therapeutic strategies and the role of signaling pathways such as mORC1-STAT3-FGFBP1, NLRP3 inflammasomes, miR-21/PI3K/HDAC2 axis, PI3K were delineated and these can be considered as the therapeutic targets for mitigating the pathophysiology of SSR asthma. Finally, the possibility of nanomedicine-based formulation and their applications in order to enhance the long term retention of several antioxidant and anti-asthmatic drug molecules as a significant therapeutic modality against SSR asthma was described vividly.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Human Anatomy, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical college, Mysuru, Karnataka, India
| | - Runze Zhou
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xiaoyan Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Hemanth Vikram P R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysore, Karnataka, 570015, India
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - M V Greeshma
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), JSS Medical college, Mysuru, Karnataka, India
| | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570015, Karnataka, India
| | - B M Gurupadayya
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Correspondence: Ruitai Fan, Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, People’s Republic of China, Email
| |
Collapse
|
19
|
Zhang Y, Almazi JG, Ong HX, Johansen MD, Ledger S, Traini D, Hansbro PM, Kelleher AD, Ahlenstiel CL. Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract. Int J Mol Sci 2022; 23:2408. [PMID: 35269550 PMCID: PMC8909959 DOI: 10.3390/ijms23052408] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Juhura G. Almazi
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Scott Ledger
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia; (J.G.A.); (H.X.O.); (D.T.)
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Ryde, NSW 2109, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia; (M.D.J.); (P.M.H.)
| | - Anthony D. Kelleher
- Kirby Institute, UNSW, Sydney, NSW 2052, Australia; (Y.Z.); (S.L.); (A.D.K.)
| | | |
Collapse
|
20
|
Albeltagy RS, Mumtaz F, Abdel Moneim AE, El-Habit OH. N-Acetylcysteine Reduces miR-146a and NF-κB p65 Inflammatory Signaling Following Cadmium Hepatotoxicity in Rats. Biol Trace Elem Res 2021; 199:4657-4665. [PMID: 33454892 DOI: 10.1007/s12011-021-02591-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
We performed a thorough screening and analysis of the impact of cadmium chloride (CdCl2) and N-acetylcysteine (NAC) on the miR146a/NF-κB p65 inflammatory pathway and mitochondrial biogenesis dysfunction in male albino rats. A total of 24 male albino rats were divided into three groups: a control group, a CdCl2-treated group (3 mg/kg, orally), and a CdCl2 + NAC-treated group (200 mg/kg of NAC, 1 h after CdCl2 treatment), for 60 consecutive days. Real-time quantitative PCR was used to analyze the expression of miR146a, Irak1, Traf6, Nrf1, Nfe2l2, Pparg, Prkaa, Stat3, Tfam, Tnfa, and Il1b, whereas tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2 protein levels were assessed using ELISA, and NF-κB p65 was detected using western blotting. A significant restoration of homeostatic inflammatory processes as well as mitochondrial biogenesis was observed after NAC and CdCl2 treatment. Decreased miR146a and NF-κB p65 were also found after treatment with NAC and CdCl2 compared with CdCl2 treatment alone. Collectively, our findings demonstrate that CdCl2 caused mtDNA release because of Tfam loss, leading to NF-κB p65 activation. Co-treatment with NAC could alleviate Cd-induced genotoxicity in liver tissue. We concluded that adding NAC to CdCl2 resulted in a decreased signaling of the NF-κB p65 signaling pathway.
Collapse
Affiliation(s)
- Rasha S Albeltagy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Farah Mumtaz
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.
| | - Ola H El-Habit
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
21
|
Kim RY, Sunkara KP, Bracke KR, Jarnicki AG, Donovan C, Hsu AC, Ieni A, Beckett EL, Galvão I, Wijnant S, Ricciardolo FL, Di Stefano A, Haw TJ, Liu G, Ferguson AL, Palendira U, Wark PA, Conickx G, Mestdagh P, Brusselle GG, Caramori G, Foster PS, Horvat JC, Hansbro PM. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med 2021; 13:eaav7223. [PMID: 34818056 DOI: 10.1126/scitranslmed.aav7223] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Graduate School of Health, Discipline of Pharmacy, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales 2308, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria 3010, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina 98100, Italy
| | - Emma L Beckett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sara Wijnant
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Fabio Lm Ricciardolo
- Rare Lung Disease Unit, Department of Clinical and Biological Sciences, University of Torino, San Luigi Gonzaga University Hospital Orbassano, Torino 10043, Italy
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, SpA Società Benefit, Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Veruno, Novara 28100, Italy
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Angela L Ferguson
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2006, Australia
| | - Umamainthan Palendira
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium.,Ablynx N.V., a Sanofi company, Ghent 9052, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina 98100, Italy
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
22
|
Gutierrez MJ, Perez GF, Gomez JL, Rodriguez-Martinez CE, Castro-Rodriguez JA, Nino G. Genes, environment, and developmental timing: New insights from translational approaches to understand early origins of respiratory diseases. Pediatr Pulmonol 2021; 56:3157-3165. [PMID: 34388306 PMCID: PMC8858026 DOI: 10.1002/ppul.25598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Over the past decade, "omics" approaches have advanced our understanding of the molecular programming of the airways in humans. Several studies have identified potential molecular mechanisms that contribute to early life epigenetic reprogramming, including DNA methylation, histone modifications, microRNAs, and the homeostasis of the respiratory mucosa (epithelial function and microbiota). Current evidence supports the notion that early infancy is characterized by heightened susceptibility to airway genetic reprogramming in response to the first exposures in life, some of which can have life-long consequences. Here, we summarize and analyze the latest insights from studies that support a novel epigenetic paradigm centered on human maturational and developmental programs including three cardinal elements: genes, environment, and developmental timing. The combination of these factors is likely responsible for the functional trajectory of the respiratory system at the molecular, functional, and clinical levels.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Geovanny F Perez
- Division of Pediatric Pulmonology, Oishei Children's Hospital, University at Buffalo, Buffalo, New York, USA
| | - Jose L Gomez
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carlos E Rodriguez-Martinez
- Department of Pediatrics, Universidad Nacional de Colombia, Bogota, Colombia.,Department of Pediatric Pulmonology and Pediatric Critical Care Medicine, School of Medicine, Universidad El Bosque, Bogota, Colombia
| | - Jose A Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Gustavo Nino
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington D.C., USA
| |
Collapse
|
23
|
Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther 2021; 6:170. [PMID: 33927185 PMCID: PMC8085147 DOI: 10.1038/s41392-021-00554-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Sensing invasive cytosolic DNA is an integral component of innate immunity. cGAS was identified in 2013 as the major cytosolic DNA sensor that binds dsDNA to catalyze the synthesis of a special asymmetric cyclic-dinucleotide, 2'3'-cGAMP, as the secondary messenger to bind and activate STING for subsequent production of type I interferons and other immune-modulatory genes. Hyperactivation of cGAS signaling contributes to autoimmune diseases but serves as an adjuvant for anticancer immune therapy. On the other hand, inactivation of cGAS signaling causes deficiency to sense and clear the viral and bacterial infection and creates a tumor-prone immune microenvironment to facilitate tumor evasion of immune surveillance. Thus, cGAS activation is tightly controlled. In this review, we summarize up-to-date multilayers of regulatory mechanisms governing cGAS activation, including cGAS pre- and post-translational regulations, cGAS-binding proteins, and additional cGAS regulators such as ions and small molecules. We will also reveal the pathophysiological function of cGAS and its product cGAMP in human diseases. We hope to provide an up-to-date review for recent research advances of cGAS biology and cGAS-targeted therapies for human diseases.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
25
|
Zhao YJ, Chen YE, Zhang HJ, Gu X. LncRNA UCA1 remits LPS-engendered inflammatory damage through deactivation of miR-499b-5p/TLR4 axis. IUBMB Life 2020; 73:463-473. [PMID: 33368965 DOI: 10.1002/iub.2443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
Neonatal pneumonia is a high neonatal mortality disease. The current research was designed to elucidate the modulatory function and feasible molecular mechanism of UCA1 in LPS-induced injury in pneumonia. Herein, LPS was applied to induce WI-38 cell inflammatory damage. We displayed that UCA1 was elevated in LPS-injured WI-38 cells. In the functional aspect, intervention of UCA1 evidently aggrandized cell viability in LPS-triggered WI-38 cells. In the meanwhile, elimination of UCA1 distinctly assuaged cell apoptosis concomitant with declined levels of proapoptotic proteins Bax and C-caspase-3, and ascended the expression of antiapoptotic protein Bcl-2. Subsequently, disruption of UCA1 manifestly restrained inflammatory damage as characterized by declination of multiple pro-inflammatory factors IL-1β, IL-6, and TNF-α in WI-38 cells under LPS circumstance. More importantly, we predicted and verified that UCA1 functioned as a ceRNA by efficaciously binding to miR-499b-5p thereby inversely adjusting miR-499b-5p expression. Interesting, TLR4 was identified as direct target of miR-499b-5p, and positively regulated by UCA1 through sponging miR-499b-5p. Mechanistically, absence of miR-499b-5p or restoration of TLR4 impeded the beneficial effects of UCA1 ablation on LPS-stimulated apoptosis and inflammatory response. Collectively, these observations illuminated that UCA1 inhibition protected WI-38 cells against LPS-managed inflammatory injury and apoptosis process via miR-499b-5p/TLR4 crosstalk, which ultimately influencing the development of pneumonia.
Collapse
Affiliation(s)
- Yan-Jun Zhao
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Xi'an TB and Thoracic Tumor Hospital, Xi'an, PR China
| | - Yue-E Chen
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Xi'an TB and Thoracic Tumor Hospital, Xi'an, PR China
| | - Hong-Jun Zhang
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Xi'an TB and Thoracic Tumor Hospital, Xi'an, PR China
| | - Xing Gu
- Department of Respiratory and Critical Care Medicine, Xi'an Chest Hospital, Xi'an TB and Thoracic Tumor Hospital, Xi'an, PR China
| |
Collapse
|
26
|
Shastri MD, Chong WC, Dua K, Peterson GM, Patel RP, Mahmood MQ, Tambuwala M, Chellappan DK, Hansbro NG, Shukla SD, Hansbro PM. Emerging concepts and directed therapeutics for the management of asthma: regulating the regulators. Inflammopharmacology 2020; 29:15-33. [PMID: 33152094 DOI: 10.1007/s10787-020-00770-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Asthma is a common, heterogeneous and serious disease, its prevalence has steadily risen in most parts of the world, and the condition is often inadequately controlled in many patients. Hence, there is a major need for new therapeutic approaches. Mild-to-moderate asthma is considered a T-helper cell type-2-mediated inflammatory disorder that develops due to abnormal immune responses to otherwise innocuous allergens. Prolonged exposure to allergens and persistent inflammation results in myofibroblast infiltration and airway remodelling with mucus hypersecretion, airway smooth muscle hypertrophy, and excess collagen deposition. The airways become hyper-responsive to provocation resulting in the characteristic wheezing and obstructed airflow experienced by patients. Extensive research has progressed the understanding of the underlying mechanisms and the development of new treatments for the management of asthma. Here, we review the basis of the disease, covering new areas such as the role of vascularisation and microRNAs, as well as associated potential therapeutic interventions utilising reports from animal and human studies. We also cover novel drug delivery strategies that are being developed to enhance therapeutic efficacy and patient compliance. Potential avenues to explore to improve the future of asthma management are highlighted.
Collapse
Affiliation(s)
- Madhur D Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Wai Chin Chong
- Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gregory M Peterson
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Malik Q Mahmood
- Faculty of Health, School of Medicine, Deakin University, Melbourne, Australia
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Belfast, Northern Ireland, UK
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Medicine and Public Health, The University of Newcastle, Callaghan, Australia. .,Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia. .,Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
27
|
From the Argonauts Mythological Sailors to the Argonautes RNA-Silencing Navigators: Their Emerging Roles in Human-Cell Pathologies. Int J Mol Sci 2020; 21:ijms21114007. [PMID: 32503341 PMCID: PMC7312461 DOI: 10.3390/ijms21114007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
Regulation of gene expression has emerged as a fundamental element of transcript homeostasis. Key effectors in this process are the Argonautes (AGOs), highly specialized RNA-binding proteins (RBPs) that form complexes, such as the RNA-Induced Silencing Complex (RISC). AGOs dictate post-transcriptional gene-silencing by directly loading small RNAs and repressing their mRNA targets through small RNA-sequence complementarity. The four human highly-conserved family-members (AGO1, AGO2, AGO3, and AGO4) demonstrate multi-faceted and versatile roles in transcriptome’s stability, plasticity, and functionality. The post-translational modifications of AGOs in critical amino acid residues, the nucleotide polymorphisms and mutations, and the deregulation of expression and interactions are tightly associated with aberrant activities, which are observed in a wide spectrum of pathologies. Through constantly accumulating information, the AGOs’ fundamental engagement in multiple human diseases has recently emerged. The present review examines new insights into AGO-driven pathology and AGO-deregulation patterns in a variety of diseases such as in viral infections and propagations, autoimmune diseases, cancers, metabolic deficiencies, neuronal disorders, and human infertility. Altogether, AGO seems to be a crucial contributor to pathogenesis and its targeting may serve as a novel and powerful therapeutic tool for the successful management of diverse human diseases in the clinic.
Collapse
|
28
|
Ramelli SC, Comer BS, McLendon JM, Sandy LL, Ferretti AP, Barrington R, Sparks J, Matar M, Fewell J, Gerthoffer WT. Nanoparticle Delivery of Anti-inflammatory LNA Oligonucleotides Prevents Airway Inflammation in a HDM Model of Asthma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1000-1014. [PMID: 32044723 PMCID: PMC7013130 DOI: 10.1016/j.omtn.2019.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/16/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
To address the problem of poor asthma control due to drug resistance, an antisense oligonucleotide complementary to mmu-miR-145a-5p (antimiR-145) was tested in a house dust mite mouse model of mild/moderate asthma. miR-145 was targeted to reduce inflammation, regulate epithelial-mesenchymal transitions, and promote differentiation of structural cells. In addition, several chemical variations of a nontargeting oligonucleotide were tested to define sequence-dependent effects of the miRNA antagonist. After intravenous administration, oligonucleotides complexed with a pegylated cationic lipid nanoparticle distributed to most cells in the lung parenchyma but were not present in smooth muscle or the mucosal epithelium of the upper airways. Treatment with antimiR-145 and a nontargeting oligonucleotide both reduced eosinophilia, reduced obstructive airway remodeling, reduced mucosal metaplasia, and reduced CD68 immunoreactivity. Poly(A) RNA-seq verified that antimiR-145 increased levels of many miR-145 target transcripts. Genes upregulated in human asthma and the mouse model of asthma were downregulated by oligonucleotide treatments. However, both oligonucleotides significantly upregulated many genes of interferon signaling pathways. These results establish effective lung delivery and efficacy of locked nucleic acid/DNA oligonucleotides administered intravenously, and suggest that some of the beneficial effects of oligonucleotide therapy of lung inflammation may be due to normalization of interferon response pathways.
Collapse
Affiliation(s)
- Sabrina C Ramelli
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Brian S Comer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Jared M McLendon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Lydia L Sandy
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA
| | - Andrew P Ferretti
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Robert Barrington
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Jeff Sparks
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - Majed Matar
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - Jason Fewell
- Celsion Corporation, 601 Genome Way, Huntsville, AL, USA
| | - William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; Department of Microbiology and Immunology, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
29
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
30
|
Pakshir K, Badali H, Nami S, Mirzaei H, Ebrahimzadeh V, Morovati H. Interactions between immune response to fungal infection and microRNAs: The pioneer tuners. Mycoses 2019; 63:4-20. [PMID: 31597205 DOI: 10.1111/myc.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Due to their physiological and biological characteristics, numerous fungi are potentially emerging pathogens. Active dynamicity of fungal pathogens causes life-threatening infections annually impose high costs to the health systems. Although immune responses play crucial roles in controlling the fate of fungal infections, immunocompromised patients are at high risk with high mortality. Tuning the immune response against fungal infections might be an effective strategy for controlling and reducing the pathological damages. MicroRNAs (miRNAs) are known as the master regulators of immune response. These single-stranded tuners (18-23 bp non-coding RNAs) are endogenously expressed by all metazoan eukaryotes and have emerged as the master gene expression controllers of at least 30% human genes. In this review article, following the review of biology and physiology (biogenesis and mechanism of actions) of miRNAs and immune response against fungal infections, the interactions between them were scrutinised. In conclusion, miRNAs might be considered as one of the potential goals in immunotherapy for fungal infections. Undoubtedly, advanced studies in this field, further identifying of miRNA roles in governing the immune response, pave the way for inclusion of miRNA-related immunotherapeutic in the treatment of life-threatening fungal infections.
Collapse
Affiliation(s)
- Keyvan Pakshir
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Badali
- Invasive Fungi Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Veghar Ebrahimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev 2019; 28:28/153/190096. [PMID: 31636089 DOI: 10.1183/16000617.0096-2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/19/2019] [Indexed: 01/04/2023] Open
Abstract
Severe steroid-resistant asthma is clinically important, as patients with this form of the disease do not respond to mainstay corticosteroid therapies. The heterogeneity of this form of asthma and poor understanding of the pathological mechanisms involved hinder the identification of therapeutic targets and the development of more effective therapies. A major limiting factor in the understanding of severe steroid-resistant asthma is the existence of multiple endotypes represented by different immunological and inflammatory phenotypes, particularly in adults. Several clinical and experimental studies have revealed associations between specific respiratory infections and steroid-resistant asthma in adults. Here, we discuss recent findings from other authors as well as our own studies that have developed novel experimental models for interrogating the association between respiratory infections and severe steroid-resistant asthma. These models have enabled the identification of new therapies using macrolides, as well as several novel disease mechanisms, including the microRNA-21/phosphoinositide 3-kinase/histone deacetylase 2 axis and NLRP3 inflammasomes, and highlight the potential of these mechanisms as therapeutic targets.
Collapse
Affiliation(s)
- Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.,Both authors contributed equally
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Both authors contributed equally
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.,Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
32
|
Drury RE, Pollard AJ, O’Connor D. The effect of H1N1 vaccination on serum miRNA expression in children: A tale of caution for microRNA microarray studies. PLoS One 2019; 14:e0221143. [PMID: 31430297 PMCID: PMC6701777 DOI: 10.1371/journal.pone.0221143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 01/24/2023] Open
Abstract
Background MicroRNAs (miRNAs) are a class of small regulatory RNAs around 21–25 nucleotides in length which govern many aspects of immunity including the host innate and adaptive responses to infection. RT-qPCR studies of select microRNAs show that vaccination alters the expression circulating microRNAs but the effect of vaccination on the global microRNA population (i.e. micronome) has never been studied. Aim To describe vaccine associated changes in the expression of microRNAs 21 days after vaccination in children receiving a pandemic influenza (H1N1) vaccination. Method Serum samples were obtained from children aged 6 months to 12 years enrolled in an open label randomised control trial of two pandemic influenza (H1N1) vaccines, in which participants received either ASO3B adjuvanted split virion or a whole virion non-adjuvanted vaccine. MicroRNA expression was profiled in a discovery cohort of participants prior to, and 21 days after vaccination using an Agilent microarray platform. Findings were followed up by RT-qPCR in the original discovery cohort and then in a validation cohort of participants taken from the same study. Results 44 samples from 22 children were assayed in a discovery cohort. The microarray results revealed 19 microRNAs were differentially expressed after vaccination after adjustment for multiple testing. The microarray detected ubiquitous expression of several microRNAs which could not be validated by RT-qPCR, many of which have little evidence of existence in publicly available RNA sequencing data. Real time PCR (RT-qPCR) confirmed downregulation of miR-142-3p in the discovery cohort. These findings were not replicated in the subsequent validation cohort (n = 22). Conclusion This study is the first study to profile microRNA expression after vaccination. An important feature of this study is many of the differentially expressed microRNAs could not be detected and validated by RT-qPCR. This study highlights the care that should be taken when interpreting omics biomarker discovery, highlighting the need for supplementary methods to validate microRNA microarray findings, and emphasises the importance of validation cohorts. Data from similar studies which do not meet these requirements should be interpreted with caution.
Collapse
Affiliation(s)
- Ruth Elizabeth Drury
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, Oxfordshire, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, Oxfordshire, United Kingdom
- * E-mail:
| | - Andrew John Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, Oxfordshire, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, Oxfordshire, United Kingdom
| | - Daniel O’Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, Oxfordshire, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
33
|
Zhang H, Sun Y, Rong W, Fan L, Cai Y, Qu Q, Gao Y, Zhao H. miR-221 participates in the airway epithelial cells injury in asthma via targeting SIRT1. Exp Lung Res 2019; 44:272-279. [PMID: 30654657 DOI: 10.1080/01902148.2018.1533051] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM OF THE STUDY To investigate the role of microRNA-221 (miR-221) in the airway epithelial cell injury in asthma and delineate the underlying mechanism that may involve with SIRT1. MATERIALS AND METHOD Bronchial epithelial cells from asthma patients and healthy controls were obtained by bronchoscopic brushing. The miR-221 and SIRT1 mRNA level in collected cells were detected by qRT-CPR. BEAS2B cell lines were cultured in vitro. In order to up-regulate miR-221 and SIRT1, miR-221 mimic and pcDNA3.1-SIRT1 vector was transfected into BEAS2B cells, respectively. The expression changes of miR-221 and SIRT1 after transfection was observed by qRT-PCR and Western blot. The target relationship between miR-221 and SIRT1 was confirmed using dual-luciferase reporter assay.The cell viability changes after transfection was measured using cellTiter-blue reagent. The apoptosis rate was detected by flow cytometry. RESULT Compared with healthy controls, miR-221 expression significantly increased in bronchial epithelial cells from patients subjects. In contrast, the level of SIRT1 mRNA reduced in the bronchial epithelial cell from asthma patients. In vitro, up-regulation of miR-221 could inhibit the expression of SIRT1 both at mRNA and protein level in BEAS2B cells. A negative correlation between miR-221 and SIRT1 mRNA in samples from patients was confirmed and dual-luciferase reporter assay showed that miR-221 directly binds to the 3'UTR of SIRT1 mRNA. Overexpression of miR-221 or SIRT1 knockdown could inhibit proliferation but induce apoptosis in BEAS2B cells. Moreover, up-regulation of SIRT1 could antagonize miR-221's inhibitory effect. CONCLUSION miR-221 may participate in the airway epithelial cells injury in asthma via targeting SIRT1.
Collapse
Affiliation(s)
- Hong Zhang
- a Asthma Control and Prevention Center, the Gansu Provincial People's Hospital , Lanzhou , China
| | - Yuanchun Sun
- b Department of Pediatrics , the Gansu Provincial People's Hospital , Lanzhou , China
| | - Wei Rong
- a Asthma Control and Prevention Center, the Gansu Provincial People's Hospital , Lanzhou , China
| | - Linxia Fan
- c Department of Respiratory , the Gansu Provincial People's Hospital , Lanzhou , China
| | - Yufeng Cai
- d Department of Internal Medicine , the People's Hospital of Tianshui City , Tianshui , China
| | - Qiang Qu
- e Department of Emergency Department , the Gansu Provincial People's Hospital , Lanzhou , China
| | - Yun Gao
- a Asthma Control and Prevention Center, the Gansu Provincial People's Hospital , Lanzhou , China
| | - Hongxia Zhao
- a Asthma Control and Prevention Center, the Gansu Provincial People's Hospital , Lanzhou , China
| |
Collapse
|
34
|
Hussain SRA, Mejias A, Ramilo O, Peeples ME, Grayson MH. Post-viral atopic airway disease: pathogenesis and potential avenues for intervention. Expert Rev Clin Immunol 2018; 15:49-58. [PMID: 30370798 DOI: 10.1080/1744666x.2019.1541737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: In early childhood, wheezing due to lower respiratory tract illness is often associated with infection by commonly known respiratory viruses such as respiratory syncytial virus (RSV) and human rhinovirus (RV). How respiratory viral infections lead to wheeze and/or asthma is an area of active research. Areas covered: This review provides an updated summary of the published information on the development of post-viral induced atopy and asthma and the mechanisms involved. We focus on the contribution of animal models in identifying pathways that may contribute to atopy and asthma following respiratory virus infection, different polymorphisms that have been associated with asthma development, and current options for disease management and potential future interventions. Expert commentary: Currently there are no prophylactic therapies that prevent infants infected with respiratory viruses from developing asthma or atopy. Neither are there curative therapies for patients with asthma. Therefore, a better understanding of genetic factors and other associated biomarkers in respiratory viral induced pathogenesis is important for developing effective personalized therapies.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- a Division of Allergy and Immunology , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,b Center for Clinical and Translational Research , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA
| | - Asuncion Mejias
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,d Division of Infectious Diseases , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Octavio Ramilo
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,d Division of Infectious Diseases , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Mark E Peeples
- c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA.,e Center for Vaccines and Immunity , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA
| | - Mitchell H Grayson
- a Division of Allergy and Immunology , Nationwide Children's Hospital - The Ohio State University College of Medicine , Columbus , OH , USA.,b Center for Clinical and Translational Research , Research Institute at Nationwide Children's Hospital , Columbus , OH , USA.,c Department of Pediatrics , The Ohio State University College of Medicine , Columbus , OH , USA
| |
Collapse
|
35
|
Bardin P, Sonneville F, Corvol H, Tabary O. Emerging microRNA Therapeutic Approaches for Cystic Fibrosis. Front Pharmacol 2018; 9:1113. [PMID: 30349480 PMCID: PMC6186820 DOI: 10.3389/fphar.2018.01113] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains the most common life-shortening diseases affecting the exocrine organs. The absence of this channel results in an imbalance of ion concentrations across the cell membrane and results in more abnormal secretion and mucus plugging in the gastrointestinal tract and in the lungs of CF patients. The direct introduction of fully functional CFTR by gene therapy has long been pursued as a therapeutical option to restore CFTR function independent of the specific CFTR mutation, but the different clinical trials failed to propose persuasive evidence of this strategy. The last ten years has led to the development of new pharmacotherapies which can activate CFTR function in a mutation-specific manner. Although approximately 2,000 different disease-associated mutations have been identified, a single codon deletion, F508del, is by far the most common and is present on at least one allele in approximately 70% of the patients in CF populations. This strategy is limited by chemistry, the knowledge on CFTR and the heterogenicity of the patients. New research efforts in CF aim to develop other therapeutical approaches to combine different strategies. Targeting RNA appears as a new and an important opportunity to modulate dysregulated biological processes. Abnormal miRNA activity has been linked to numerous diseases, and over the last decade, the critical role of miRNA in regulating biological processes has fostered interest in how miRNA binds to and interacts explicitly with the target protein. Herein, this review describes the different strategies to identify dysregulated miRNA opens up a new concept and new opportunities to correct CFTR deficiency. This review describes therapeutic applications of antisense techniques currently under investigation in CF.
Collapse
Affiliation(s)
- Pauline Bardin
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| | - Florence Sonneville
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| | - Harriet Corvol
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France.,Paediatric Respiratory Department, Hôpital Trousseau, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Olivier Tabary
- INSERM UMR-S938, Centre de Recherche Saint Antoine, Faculté des Sciences, Sorbonne Université, Paris, France
| |
Collapse
|
36
|
Takatori H, Makita S, Ito T, Matsuki A, Nakajima H. Regulatory Mechanisms of IL-33-ST2-Mediated Allergic Inflammation. Front Immunol 2018; 9:2004. [PMID: 30233590 PMCID: PMC6131616 DOI: 10.3389/fimmu.2018.02004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
Interleukin-33 (IL-33) plays multiple roles in tissue homeostasis, prevention of parasitic infection, and induction of allergic inflammation. Especially, IL-33-ST2 (IL-1RL1) axis has been regarded as the villain in allergic diseases such as asthma and atopic dermatitis and in autoimmune diseases such as rheumatoid arthritis. Indeed, a number of studies have indicated that IL-33 produced by endothelial cells and epithelial cells plays a critical role in the activation and expansion of group 2 innate lymphoid cells (ILC2s) which cause allergic inflammation by producing large amounts of IL-5 and IL-13. However, mechanisms that antagonize IL-33-ST2-mediated allergic responses remain largely unknown. Recently, several groups including our group have demonstrated cellular and molecular mechanisms that could suppress excessive activation of ILC2s by the IL-33-ST2 axis. In this review, we summarize recent progress in the regulatory mechanisms of IL-33-ST2-mediated allergic responses. Selective targeting of the IL-33-ST2 axis would be a promising strategy in the treatment of allergic diseases.
Collapse
Affiliation(s)
- Hiroaki Takatori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Rheumatology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Sohei Makita
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayako Matsuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
37
|
Moheimani F, Koops J, Williams T, Reid AT, Hansbro PM, Wark PA, Knight DA. Influenza A virus infection dysregulates the expression of microRNA-22 and its targets; CD147 and HDAC4, in epithelium of asthmatics. Respir Res 2018; 19:145. [PMID: 30068332 PMCID: PMC6090696 DOI: 10.1186/s12931-018-0851-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background Specific microRNAs (miRNAs) play essential roles in airway remodeling in asthma. Infection with influenza A virus (IAV) may also magnify pre-existing airway remodeling leading to asthma exacerbation. However, these events remain to be fully defined. We investigated the expression of miRNAs with diverse functions including proliferation (miR-20a), differentiation (miR-22) or innate/adaptive immune responses (miR-132) in primary bronchial epithelial cells (pBECs) of asthmatics following infection with the H1N1 strain of IAV. Methods pBECs from subjects (n = 5) with severe asthma and non-asthmatics were cultured as submerged monolayers or at the air-liquid-interface (ALI) conditions and incubated with IAV H1N1 (MOI 5) for up to 24 h. Isolated miRNAs were subjected to Taqman miRNAs assays. We confirmed miRNA targets using a specific mimic and antagomir. Taqman mRNAs assays and immunoblotting were used to assess expression of target genes and proteins, respectively. Results At baseline, these miRNAs were expressed at the same level in pBECs of asthmatics and non-asthmatics. After 24 h of infection, miR-22 expression increased significantly which was associated with the suppression of CD147 mRNA and HDAC4 mRNA and protein expression in pBECs from non-asthmatics, cultured in ALI. In contrast, miR-22 remained unchanged while CD147 expression increased and HDAC4 remained unaffected in cells from asthmatics. IAV H1N1 mediated increases in SP1 and c-Myc transcription factors may underpin the induction of CD147 in asthmatics. Conclusion The different profile of miR-22 expression in differentiated epithelial cells from non-asthmatics may indicate a self-defense mechanism against aberrant epithelial responses through suppressing CD147 and HDAC4, which is compromised in epithelial cells of asthmatics. Electronic supplementary material The online version of this article (10.1186/s12931-018-0851-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia. .,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.
| | - Jorinke Koops
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Teresa Williams
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Andrew T Reid
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, HMRI building, Callaghan, NSW, 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed Pharmacother 2018; 104:87-93. [DOI: 10.1016/j.biopha.2018.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
|
39
|
Kishore A, Navratilova Z, Kolek V, Novosadova E, Čépe K, du Bois RM, Petrek M. Expression analysis of extracellular microRNA in bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. Respirology 2018; 23:1166-1172. [PMID: 29956871 DOI: 10.1111/resp.13364] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVE MicroRNA (miRNA) are transcriptional regulators implicated in pulmonary sarcoidosis and packaged in extracellular vesicles (EV) during cellular communication. We characterized EV and investigated miRNA expression in bronchoalveolar lavage (BAL) fluid from sarcoidosis patients. METHODS EV were characterized for size(s) using dynamic light scattering and transmission electron microscopy (TEM) analysis and protein markers by immunoblotting. Twelve extracellular and 5 cellular miRNA were investigated in BAL from 16 chest X-ray stage-I (CXR-I) and 17 CXR stage-II (CXR-II) sarcoidosis patients. Associations between miRNA and disease characteristics (extrapulmonary involvement, pulmonary function and BAL cell profile) were statistically analysed. RESULTS BAL from sarcoidosis patients contained exosomes and microvesicles (MV) as EV. In these EV, expression of miR-146a (P = 0.007), miR-150 (P = 0.003) and BAL cellular miR-21 (P = 0.01) was increased in CXR-II compared with CXR-I. Other detected EV (miR-21 and miR-26a) and cellular (miR-31, miR-129-3p, miR-146a and miR-452) miRNA were not differentially expressed. The investigated miRNA did not reflect extrapulmonary involvement, but EV miR-146a and miR-150 were negatively correlated with pulmonary function (miR-146a with vital capacity (VC; Spearman's correlation coefficient (rs ), P = -0.657, 0.007), percent predicted forced expiratory volume in 1 s (FEV1 ; -0.662, 0.006) and FEV1 /forced vital capacity (FVC) ratio (-0.649, 0.008); miR-150 correlated negatively with VC (-0.584, 0.019) and FEV1 /FVC ratio (-0.746, 0.001) in CXR-II cases). CONCLUSION Our data provide evidence that exosomes and microvesicles as extracellular vesicles are present in the bronchoalveolar space of sarcoidosis patients and they differentially express EV miRNA (miR-146a and miR-150), the expression of which correlates negatively with pulmonary function indices. The significance of these findings for disease pathophysiology and clinical course require further investigation.
Collapse
Affiliation(s)
- Amit Kishore
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zdenka Navratilova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Vitezslav Kolek
- Department of Respiratory Medicine and Tuberculosis, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Novosadova
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Klára Čépe
- Faculty of Science, Palacky University, Olomouc, Czech Republic
| | | | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
40
|
Tahamtan A, Teymoori-Rad M, Nakstad B, Salimi V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front Immunol 2018; 9:1377. [PMID: 29988529 PMCID: PMC6026627 DOI: 10.3389/fimmu.2018.01377] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/04/2018] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a complicated biological and pathophysiological cascade of responses to infections and injuries, and inflammatory mechanisms are closely related to many diseases. The magnitude, the complicated network of pro- and anti-inflammatory factors, and the direction of the inflammatory response can impact on the development and progression of various disorders. The currently available treatment strategies often target the symptoms and not the causes of inflammatory disease and may often be ineffective. Since the onset and termination of inflammation are crucial to prevent tissue damage, a range of mechanisms has evolved in nature to regulate the process including negative and positive feedback loops. In this regard, microRNAs (miRNAs) have emerged as key gene regulators to control inflammation, and it is speculated that they are fine-tune signaling regulators to allow for proper resolution and prevent uncontrolled progress of inflammatory reactions. In this review, we discuss recent findings related to significant roles of miRNAs in immune regulation, especially the potential utility of these molecules as novel anti-inflammatory agents to treat inflammatory diseases. Furthermore, we discuss the possibilities of using miRNAs as drugs in the form of miRNA mimics or miRNA antagonists.
Collapse
Affiliation(s)
- Alireza Tahamtan
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Britt Nakstad
- Department of Pediatric and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Bardin P, Marchal-Duval E, Sonneville F, Blouquit-Laye S, Rousselet N, Le Rouzic P, Corvol H, Tabary O. Small RNA and transcriptome sequencing reveal the role of miR-199a-3p in inflammatory processes in cystic fibrosis airways. J Pathol 2018; 245:410-420. [DOI: 10.1002/path.5095] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/11/2018] [Accepted: 04/26/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Pauline Bardin
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Emmeline Marchal-Duval
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Florence Sonneville
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Sabine Blouquit-Laye
- Université de Versailles Saint Quentin en Yvelines; UFR des Sciences de la Santé, UMR 1173; Montigny-Le-Bretonneux France
| | - Nathalie Rousselet
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Philippe Le Rouzic
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| | - Harriet Corvol
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
- Hôpital Trousseau; Paediatric Respiratory Department, AP-HP; Paris France
| | - Olivier Tabary
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Centre de Recherche Saint Antoine (CRSA); Paris France
| |
Collapse
|
42
|
Abstract
La mucoviscidose est la plus fréquente des maladies génétiques dans les populations d’origine caucasienne, caractérisée par des mutations du gène codant le canal chlorure CFTR. Bien que ce gène soit connu depuis 1989, les solutions thérapeutiques curatives proposées aux patients restent limitées. De nouvelles stratégies thérapeutiques sont explorées, comme celles ciblant les microARN qui participent à la régulation de l’expression d’ARN messagers cibles. Cette revue fait le point sur les travaux portant sur l’implication de ces microARN dans la mucoviscidose, notamment dans le contrôle des canaux ioniques, de l’inflammation, de l’infection et de l’obstruction bronchique, et leurs potentiels thérapeutiques.
Collapse
|
43
|
Turini Gonzales Marioto D, Navarro Dos Santos Ferraro AC, Goulart de Andrade F, Barros Oliveira M, Itano EN, Petrofeza S, Venancio EJ. Study of differential expression of miRNAs in lung tissue of mice submitted to experimental infection by Paracoccidioides brasiliensis. Med Mycol 2018; 55:774-784. [PMID: 28053145 DOI: 10.1093/mmy/myw135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small single stranded RNA sequences involved in post-transcriptional regulation of different biological and physiological processes. Paracoccidioidomycosis (PCM) is an infection caused by Paracoccidioides brasiliensis, and it is a major cause of mortality due to systemic mycoses in Brazil. To date, there have been few reports on the role of miRNAs in the immune response against fungi, especially PCM. The objective of this study was to evaluate the differential expression of miRNAs related to the inflammatory response associated with pulmonary infection by P. brasiliensis. For this purpose, lungs from BALB/c mice, intravenously infected with P. brasiliensis (2.7×107 yeast cells/ml, n = 12) and noninfected BALB/c mice (n = 8), were collected at the 28 and 56 day after infection. The lung parenchyma presented a great number of yeast cells, granulomas, and edema at 28 days and a framework of resolution of the inflammatory process after 56 days. The mRNAs gata-3, ror-γt, foxp3, and IL-6 were positively regulated at the moment at the 56 day, while the TGF-β1 mRNA was positively regulated at both moments. The miRNAs 126a-5p, 340-5p, 30b-5p, 19b-3p, 221-3p, 20a-5p, 130a-3p, and 301a-3p, 466k presented the greatest increase in expression levels 28 days after infection, and the miRNAs let-7f-5p, let-7a-5p, 5p-26b, let-7e-5p and 369-3p, 466k presented a greater increase in levels of expression 56 days after infection. This study shows a set of differentially expressed miRNAs possibly involved in the immune response in mice during pulmonary infection by P. brasiliensis.
Collapse
Affiliation(s)
- Denise Turini Gonzales Marioto
- Postgraduate Program in Experimental Pathology, Department of Pathological Sciences - State University of Londrina, Londrina, PR, Brazil
| | | | | | - Marília Barros Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Eiko Nakagawa Itano
- Postgraduate Program in Experimental Pathology, Department of Pathological Sciences - State University of Londrina, Londrina, PR, Brazil
| | - Silvana Petrofeza
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Emerson José Venancio
- Postgraduate Program in Experimental Pathology, Department of Pathological Sciences - State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
44
|
MiR-27-3p regulates TLR2/4-dependent mouse alveolar macrophage activation by targetting PPARγ. Clin Sci (Lond) 2018; 132:943-958. [PMID: 29572385 DOI: 10.1042/cs20180083] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
Activation of alveolar macrophages (AMs) and the release of cytokines play critical roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, little is known about the mechanisms of AM activation. miRNAs have recently emerged as key regulators of inflammation and as mediators of macrophage activation and polarization. We identified potential miRNAs related to AM activation using miRNA microarray analysis, which showed that miR-27-3p expression was up-regulated in AMs and the lung tissues of mice exposed to cigarette smoke (CS)/lipopolysaccharide (LPS), and found that miR-27-3p regulated proinflammatory cytokine production and AM polarization depending on TLR2/4 intracellular signaling in AMs. We also found that miR-27-3p controlled TLR2/4 signaling in AMs via targetting the 3′-UTR sequences of peroxisome proliferator-activated receptor γ (PPARγ) and inhibiting PPARγ activation. Moreover, we found that PPARγ activation not only inhibited CS/LPS-induced TLR2/4 expression and miR-27-3p-mediated TLR2/4 signaling cascades involving the nuclear factor-κB (NF-κB), c-Jun NH2-terminal kinase (JNK)/p38, and Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathways in AMs but also ameliorated CS/LPS-induced AM activation and pulmonary inflammation. Our study revealed that miR-27-3p mediated AM activation by the inhibition of PPARγ activation and sensitization of TLR signaling.
Collapse
|
45
|
Tang X, Wu F, Fan J, Jin Y, Wang J, Yang G. Posttranscriptional Regulation of Interleukin-33 Expression by MicroRNA-200 in Bronchial Asthma. Mol Ther 2018; 26:1808-1817. [PMID: 29778524 DOI: 10.1016/j.ymthe.2018.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/12/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
The importance of understanding how interleukin-33 (IL-33) is regulated (particularly by miRs) is critical in IL-33 biology, and evidence of this in asthma pathology is limited. MicroRNA profiling of cells isolated from bronchoalveolar lavage of 14 asthmatic patients and 11 healthy controls revealed miR-200b and miR-200c were significantly reduced in asthmatic patients compared with healthy controls. The reduction was validated in two independent models of allergen-induced allergic airway inflammation and further demonstrated to be inversely correlated with asthma severity, as well as increased IL-33 production in asthmatic patients. In addition, the miR-200b and miR-200c binding sites in the 3' UTR of IL-33 mRNA were identified by bioinformatics analysis and reporter gene assay. More importantly, introduction of miR-200b and miR-200c reduced, while inhibition of endogenous miR-200b and miR-200c increased, the induction of IL-33 expression in lung epithelial cells. Exogenous administration of miR-200b to lungs of mice with allergic inflammation resulted in a decrease in IL-33 levels and resolution of airway inflammation phenotype. In conclusion, miR-200b and miR-200c by regulating the expression of IL-33 have a role in bronchial asthma, and dysregulation of expression of miR-200b/c may be the underlying mechanism resulting in the asthmatic phenotype.
Collapse
Affiliation(s)
- Xin Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Wu
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinshuo Fan
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Jin
- Department of Respiratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianjun Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
46
|
Brogaard L, Larsen LE, Heegaard PMH, Anthon C, Gorodkin J, Dürrwald R, Skovgaard K. IFN-λ and microRNAs are important modulators of the pulmonary innate immune response against influenza A (H1N2) infection in pigs. PLoS One 2018; 13:e0194765. [PMID: 29677213 PMCID: PMC5909910 DOI: 10.1371/journal.pone.0194765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/02/2018] [Indexed: 11/19/2022] Open
Abstract
The innate immune system is paramount in the response to and clearance of influenza A virus (IAV) infection in non-immune individuals. Known factors include type I and III interferons and antiviral pathogen recognition receptors, and the cascades of antiviral and pro- and anti-inflammatory gene expression they induce. MicroRNAs (miRNAs) are increasingly recognized to participate in post-transcriptional modulation of these responses, but the temporal dynamics of how these players of the antiviral innate immune response collaborate to combat infection remain poorly characterized. We quantified the expression of miRNAs and protein coding genes in the lungs of pigs 1, 3, and 14 days after challenge with swine IAV (H1N2). Through RT-qPCR we observed a 400-fold relative increase in IFN-λ3 gene expression on day 1 after challenge, and a strong interferon-mediated antiviral response was observed on days 1 and 3 accompanied by up-regulation of genes related to the pro-inflammatory response and apoptosis. Using small RNA sequencing and qPCR validation we found 27 miRNAs that were differentially expressed after challenge, with the highest number of regulated miRNAs observed on day 3. In contrast, the number of protein coding genes found to be regulated due to IAV infection peaked on day 1. Pulmonary miRNAs may thus be aimed at fine-tuning the initial rapid inflammatory response after IAV infection. Specifically, we found five miRNAs (ssc-miR-15a, ssc-miR-18a, ssc-miR-21, ssc-miR-29b, and hsa-miR-590-3p)-four known porcine miRNAs and one novel porcine miRNA candidate-to be potential modulators of viral pathogen recognition and apoptosis. A total of 11 miRNAs remained differentially expressed 14 days after challenge, at which point the infection had cleared. In conclusion, the results suggested a role for miRNAs both during acute infection as well as later, with the potential to influence lung homeostasis and susceptibility to secondary infections in the lungs of pigs after IAV infection.
Collapse
Affiliation(s)
- Louise Brogaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| | - Lars E. Larsen
- Division of Diagnostics and Scientific Advice–Virology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter M. H. Heegaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health (RTH), Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ralf Dürrwald
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Kerstin Skovgaard
- Section for Protein Science and Signaling Biology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
47
|
Glady G. Clinical efficacy of implementing Bio Immune(G)ene MEDicine in the treatment of chronic asthma with the objective of reducing or removing effectively corticosteroid therapy: A novel approach and promising results. Exp Ther Med 2018; 15:5133-5140. [PMID: 29805540 DOI: 10.3892/etm.2018.6019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/14/2018] [Indexed: 12/25/2022] Open
Abstract
Asthma is one of the diseases that demonstrates a wide range of variation in its clinical expression, in addition to an important heterogeneity in the pathophysiological mechanisms present in each case. The ever-increasing knowledge of the molecular signalling routes and the development of the Bio Immune(G)ene Medicine [BI(G)MED] therapy in line with this knowledge has revealed a whole novel potential set of self-regulation biological molecules, that may be used to promote the physiological immunogenic self-regulation mechanisms and re-establish the homeostatic balance at a genomic, proteomic and cellular level. The aim of the present study is to demonstrate that the sublingual use of a therapeutic protocol based on BI(G)MED regulatory BIMUREGs in the treatment of chronic asthma may reduce or suppress corticosteroid therapy and avoid its harmful side effects which some patients suffer when using this treatment on a long-term basis. The clinical efficacy of BI(G)MED for chronic asthma was evaluated through a multi-centre study carried out in 2016 implementing a 6-month BI(G)MED treatment protocol for Bronchial Asthma. A total of 61 patients from private medical centres and of European countries including Germany, Austria, France, Belgium and Spain participated. The manuscript describes in detail the clinical efficacy of Bio Immune(G)ene regulatory BI(G)MED treatment protocol that allows the reduction or total removal of the corticosteroid dose in patients with chronic asthma. No adverse reactions were observed. The BI(G)MED regulatory therapy brings novel therapeutic possibilities as an effective and safe treatment of chronic asthma. BI(G)MED was demonstrated to significantly reduce asthma severity when parameter compositions were all analysed by categorical outcomes. Therefore, it is considered a good therapeutic alternative for patients who respond poorly to steroids.
Collapse
Affiliation(s)
- Gilbert Glady
- European Bio Immune(G)ene Medecine Association, Internal Medicine, 68000 Colmar, France
| |
Collapse
|
48
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
49
|
Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK, Mattes J. Modeling T H 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 2018; 278:20-40. [PMID: 28658543 DOI: 10.1111/imr.12549] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical TH 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam M Collison
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Rakesh K Kumar
- Pathology, UNSW Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Joerg Mattes
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| |
Collapse
|
50
|
Hasegawa K, Pérez-Losada M, Hoptay CE, Epstein S, Mansbach JM, Teach SJ, Piedra PA, Camargo CA, Freishtat RJ. RSV vs. rhinovirus bronchiolitis: difference in nasal airway microRNA profiles and NFκB signaling. Pediatr Res 2018; 83:606-614. [PMID: 29244796 PMCID: PMC6174252 DOI: 10.1038/pr.2017.309] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/25/2017] [Indexed: 01/03/2023]
Abstract
BackgroundAlthough rhinovirus infection is associated with increased risks of acute and chronic respiratory outcomes during childhood compared with respiratory syncytial virus (RSV), the underlying mechanisms remain unclear. We aimed to determine the differences in nasal airway microRNA profiles and their downstream effects between infants with rhinovirus and RSV bronchiolitis.MethodsAs part of a multicenter cohort study of infants hospitalized for bronchiolitis, we examined nasal samples obtained from 16 infants with rhinovirus and 16 infants with RSV. We tested nasal airway samples using microarrays to profile global microRNA expression and determine the predicted regulation of targeted transcripts. We also measured gene expression and cytokines for NFκB pathway components.ResultsBetween the virus groups, 386 microRNAs were differentially expressed (false discovery rate (FDR)<0.05). In infants with rhinovirus, the NFκB pathway was highly ranked as a predicted target for these differentially expressed microRNAs compared with RSV. Pathway analysis using measured mRNA expression data validated that rhinovirus infection had upregulation of NFκB family (RelA and NFκB2) and downregulation of inhibitor κB family. Infants with rhinovirus had higher levels of NFκB-induced type-2 cytokines (IL-10 and IL-13; FDR<0.01).ConclusionIn infants with bronchiolitis, rhinovirus and RSV infections had different nasal airway microRNA profiles associated with NFκB signaling.
Collapse
Affiliation(s)
- Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Marcos Pérez-Losada
- Computational Biology Institute, George Washington University, Ashburn, VA;,Department of Pediatrics, George Washington University School of Medicine and Health Sciences and the Division of Emergency Medicine, Children’s National Health System, Washington, DC;,CIBIO-InBIO, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Claire E. Hoptay
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC
| | - Samuel Epstein
- Center for Genetic Medicine Research, Children’s National Health System, Washington, DC
| | | | - Stephen J. Teach
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences and the Division of Emergency Medicine, Children’s National Health System, Washington, DC
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert J. Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences and the Division of Emergency Medicine, Children’s National Health System, Washington, DC;,Center for Genetic Medicine Research, Children’s National Health System, Washington, DC;,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC;,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|