1
|
Zouali M. Swaying the advantage: multifaceted functions of inflammasomes in adaptive immunity. FEBS J 2025; 292:1817-1832. [PMID: 38922787 DOI: 10.1111/febs.17204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/17/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Eukaryotic cells are equipped with cytoplasmic sensors that recognize diverse pathogen- or danger-associated molecular patterns. In cells of the myeloid lineage, activation of these sensors leads to the assembly of a multimeric protein complex, called the inflammasome, that culminates in the production of inflammatory cytokines and pyroptosis. Recently, investigation of the inflammasomes in lymphocytes led to the discovery of functional pathways that were initially believed to be confined to the innate arm of the immune system. Thus, the adapter protein apoptosis-associated speck-like protein containing a CARD (ASC) was documented to play a critical role in antigen uptake by dendritic cells, and regulation of T- and B-cell motility at several stages, and absent in melanoma 2 (AIM2) was found to act as a modulator of regulatory T-cell differentiation. Remarkably, NLRP3 was demonstrated to act as a transcription factor that controls Th2 cell polarization, and as a negative regulator of regulatory T-cell differentiation by limiting Foxp3 expression. In B lymphocytes, NLRP3 plays a role in the transcriptional network that regulates B-cell development and homing, and its activation is essential for germinal center formation and maturation of high-affinity antibody responses. Such recently discovered inflammasome-mediated functions in T and B lymphocytes offer multiple cross-talk opportunities for the innate and adaptive arms of the immune system. A better understanding of the dialog between inflammasomes and intracellular components could be beneficial for therapeutic purposes in restoring immune homeostasis and mitigating inflammation in a wide range of disorders.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Zhang X, Xu C, Liu ZY, Zhang DY, Wang BH, Wang J, Ding XM. The Inflammasome: A Promising Potential Therapeutic Target for Early Brain Injury Following Subarachnoid Hemorrhage. FRONT BIOSCI-LANDMRK 2025; 30:33454. [PMID: 40018941 DOI: 10.31083/fbl33454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
Subarachnoid hemorrhage (SAH), a severe cerebrovascular disorder, is principally instigated by the rupture of an aneurysm. Early brain injury (EBI), which gives rise to neuronal demise, microcirculation impairments, disruption of the blood-brain barrier, cerebral edema, and the activation of oxidative cascades, has been established as the predominant cause of mortality among patients with SAH. These pathophysiological processes hinge on the activation of inflammasomes, specifically the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)and absent in melanoma 2 (AIM2) inflammasomes. These inflammasomes assume a crucial role in downstream intracellular signaling pathways and hold particular significance within the nervous system. The activation of inflammasomes can be modulated, either by independently regulating these two entities or by influencing their engagement at specific target loci within the pathway, thereby attenuating EBI subsequent to SAH. Although certain clinical instances lend credence to this perspective, more in-depth investigations are essential to ascertain the optimal treatment regimen, encompassing dosage, timing, administration route, and frequency. Consequently, targeting the ensuing early brain injury following SAH represents a potentially efficacious therapeutic approach.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Chao Xu
- Department of Neurosurgery, Chongqing General Hospital, 400799 Chongqing, China
| | - Zi-Yuan Liu
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Dong-Yuan Zhang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Bo-Hong Wang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Xin-Min Ding
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| |
Collapse
|
3
|
VanPortfliet JJ, Chute C, Lei Y, Shutt TE, West AP. Mitochondrial DNA release and sensing in innate immune responses. Hum Mol Genet 2024; 33:R80-R91. [PMID: 38779772 PMCID: PMC11112387 DOI: 10.1093/hmg/ddae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.
Collapse
Affiliation(s)
- Jordyn J VanPortfliet
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| | - Cole Chute
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Phillip West
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| |
Collapse
|
4
|
Hu C, Li M, Chen Y, Cheng W, Wang H, Zhou Y, Teng F, Ling T, Pan J, Xu H, Zheng Y, Ji G, Zhao T, You Q. AIM2 regulates autophagy to mitigate oxidative stress in aged mice with acute liver injury. Cell Death Discov 2024; 10:107. [PMID: 38429284 PMCID: PMC10907373 DOI: 10.1038/s41420-024-01870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
The cytoplasmic pattern recognition receptor, absent in melanoma 2 (AIM2), detects cytosolic DNA, activating the inflammasome and resulting in pro-inflammatory cytokine production and pyroptotic cell death. Recent research has illuminated AIM2's contributions to PANoptosis and host defense. However, the role of AIM2 in acetaminophen (APAP)-induced hepatoxicity remains enigmatic. In this study, we unveil AIM2's novel function as a negative regulator in the pathogenesis of APAP-induced liver damage in aged mice, independently of inflammasome activation. AIM2-deficient aged mice exhibited heightened lipid accumulation and hepatic triglycerides in comparison to their wild-type counterparts. Strikingly, AIM2 knockout mice subjected to APAP overdose demonstrated intensified liver injury, compromised mitochondrial stability, exacerbated glutathione depletion, diminished autophagy, and elevated levels of phosphorylated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Furthermore, our investigation revealed AIM2's mitochondrial localization; its overexpression in mouse hepatocytes amplified autophagy while dampening JNK phosphorylation. Notably, induction of autophagy through rapamycin administration mitigated serum alanine aminotransferase levels and reduced the necrotic liver area in AIM2-deficient aged mice following APAP overdose. Mechanistically, AIM2 deficiency exacerbated APAP-induced acute liver damage and inflammation in aged mice by intensifying oxidative stress and augmenting the phosphorylation of JNK and ERK. Given its regulatory role in autophagy and lipid peroxidation, AIM2 emerges as a promising therapeutic target for age-related acute liver damage treatment.
Collapse
Affiliation(s)
- Chao Hu
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mengjing Li
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yongzhen Chen
- Department of general practice, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Wei Cheng
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Haining Wang
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yiming Zhou
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fengmeng Teng
- Affilated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Tao Ling
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jinshun Pan
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Haozhe Xu
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanan Zheng
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Guozhong Ji
- Department of general practice, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Ting Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Qiang You
- Department of Geriatrics, Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
5
|
Bradley L, Savage KI. 'From R-lupus to cancer': Reviewing the role of R-loops in innate immune responses. DNA Repair (Amst) 2023; 131:103581. [PMID: 37832251 DOI: 10.1016/j.dnarep.2023.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
Cells possess an inherent and evolutionarily conserved ability to detect and respond to the presence of foreign and pathological 'self' nucleic acids. The result is the stimulation of innate immune responses, signalling to the host immune system that defence mechanisms are necessary to protect the organism. To date, there is a vast body of literature describing innate immune responses to various nucleic acid species, including dsDNA, ssDNA and ssRNA etc., however, there is limited information available on responses to R-loops. R-loops are 3-stranded nucleic acid structures that form during transcription, upon DNA damage and in various other settings. Emerging evidence suggests that innate immune responses may also exist for the detection of R-loop related nucleic acid structures, implicating R-loops as drivers of inflammatory states. In this review, we aim to summarise the evidence indicating that R-loops are immunogenic species that can trigger innate immune responses in physiological and pathological settings and discuss the implications of this in the study of various diseases and therapeutic development.
Collapse
Affiliation(s)
- Leanne Bradley
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom
| | - Kienan I Savage
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Rd, Belfast, United Kingdom.
| |
Collapse
|
6
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
7
|
Zhang X, Lan Q, Zhang M, Wang F, Shi K, Li X, Kuang E. Inhibition of AIM2 inflammasome activation by SOX/ORF37 promotes lytic replication of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 2023; 120:e2300204120. [PMID: 37364111 PMCID: PMC10318979 DOI: 10.1073/pnas.2300204120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Inflammasomes are one kind of important innate immune defense against viral and bacterial infections. Several inflammasome-forming sensors detect molecular patterns of invading pathogens and then trigger inflammasome activation and/or pyroptosis in infected cells, and viruses employ unique strategies to hijack or subvert inflammasome activation. Infection with herpesviruses induces the activation of diverse inflammasomes, including AIM2 and IFI16 inflammasomes; however, how Kaposi's sarcoma-associated herpesvirus (KSHV) counteracts inflammasome activation largely remains unclear. Here, we reveal that the KSHV ORF37-encoded SOX protein suppresses AIM2 inflammasome activation independent of its viral DNA exonuclease activity and host mRNA turnover. SOX interacts with the AIM2 HIN domain through the C-terminal Motif VII region and disrupts AIM2:dsDNA polymerization and ASC recruitment and oligomerization. The Y443A or F444A mutation of SOX abolishes the inhibition of AIM2 inflammasome without disrupting SOX nuclease activity, and a short SOX peptide is capable of inhibiting AIM2 inflammasome activation; consequently, infection with SOX-null, Y443A, or F444A Bac16 recombinant viruses results in robust inflammasome activation, suppressed lytic replication, and increased pyroptosis in human lymphatic endothelial cells in an AIM2-dependent manner. These results reveal that KSHV SOX suppresses AIM2 inflammasome activation to promote KSHV lytic replication and inhibit pyroptosis, representing a unique mechanism for evasion of inflammasome activation during KSHV lytic cycle.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Qingping Lan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Mingyu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Fan Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Keyi Shi
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
| | - Xiaojuan Li
- College of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei430061, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong510080, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong510080, China
| |
Collapse
|
8
|
Chew ZH, Cui J, Sachaphibulkij K, Tan I, Kar S, Koh KK, Singh K, Lim HM, Lee SC, Kumar AP, Gasser S, Lim LHK. Macrophage IL-1β contributes to tumorigenesis through paracrine AIM2 inflammasome activation in the tumor microenvironment. Front Immunol 2023; 14:1211730. [PMID: 37449203 PMCID: PMC10338081 DOI: 10.3389/fimmu.2023.1211730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Intracellular recognition of self and non-self -nucleic acids can result in the initiation of effective pro-inflammatory and anti-tumorigenic responses. We hypothesized that macrophages can be activated by tumor-derived nucleic acids to induce inflammasome activation in the tumor microenvironment. We show that tumor conditioned media (CM) can induce IL-1β production, indicative of inflammasome activation in primed macrophages. This could be partially dependent on caspase 1/11, AIM2 and NLRP3. IL-1β enhances tumor cell proliferation, migration and invasion while coculture of tumor cells with macrophages enhances the proliferation of tumor cells, which is AIM2 and caspase 1/11 dependent. Furthermore, we have identified that DNA-RNA hybrids could be the nucleic acid form which activates AIM2 inflammasome at a higher sensitivity as compared to dsDNA. Taken together, the tumor-secretome stimulates an innate immune pathway in macrophages which promotes paracrine cancer growth and may be a key tumorigenic pathway in cancer. Broader understanding on the mechanisms of nucleic acid recognition and interaction with innate immune signaling pathway will help us to better appreciate its potential application in diagnostic and therapeutic benefit in cancer.
Collapse
Affiliation(s)
- Zhi Huan Chew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Isabelle Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shreya Kar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Kiat Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kritika Singh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hong Meng Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
| | - Stephan Gasser
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Roche Pharma Research and Early Development, Roche Innovation Center, Roche Glycart AG, Schlieren, Switzerland
| | - Lina H. K. Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
IFN-Induced PARPs—Sensors of Foreign Nucleic Acids? Pathogens 2023; 12:pathogens12030457. [PMID: 36986379 PMCID: PMC10057411 DOI: 10.3390/pathogens12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Cells have developed different strategies to cope with viral infections. Key to initiating a defense response against viruses is the ability to distinguish foreign molecules from their own. One central mechanism is the perception of foreign nucleic acids by host proteins which, in turn, initiate an efficient immune response. Nucleic acid sensing pattern recognition receptors have evolved, each targeting specific features to discriminate viral from host RNA. These are complemented by several RNA-binding proteins that assist in sensing of foreign RNAs. There is increasing evidence that the interferon-inducible ADP-ribosyltransferases (ARTs; PARP9—PARP15) contribute to immune defense and attenuation of viruses. However, their activation, subsequent targets, and precise mechanisms of interference with viruses and their propagation are still largely unknown. Best known for its antiviral activities and its role as RNA sensor is PARP13. In addition, PARP9 has been recently described as sensor for viral RNA. Here we will discuss recent findings suggesting that some PARPs function in antiviral innate immunity. We expand on these findings and integrate this information into a concept that outlines how the different PARPs might function as sensors of foreign RNA. We speculate about possible consequences of RNA binding with regard to the catalytic activities of PARPs, substrate specificity and signaling, which together result in antiviral activities.
Collapse
|
10
|
Zhou JY, Sarkar MK, Okamura K, Harris JE, Gudjonsson JE, Fitzgerald KA. Activation of the NLRP1 inflammasome in human keratinocytes by the dsDNA mimetic poly(dA:dT). Proc Natl Acad Sci U S A 2023; 120:e2213777120. [PMID: 36693106 PMCID: PMC9945980 DOI: 10.1073/pnas.2213777120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The accrual of cytosolic DNA leads to transcription of type I IFNs, proteolytic maturation of the IL-1 family of cytokines, and pyroptotic cell death. Caspase-1 cleaves pro-IL1β to generate mature bioactive cytokine and gasdermin D which facilitates IL-1 release and pyroptotic cell death. Absent in melanoma-2 (AIM2) is a sensor of dsDNA leading to caspase-1 activation, although in human monocytes, cGAS-STING acting upstream of NLRP3 mediates the dsDNA-activated inflammasome response. In healthy human keratinocytes, AIM2 is not expressed yet caspase-1 is activated by the synthetic dsDNA mimetic poly(dA:dT). Here, we show that this response is not mediated by either AIM2 or the cGAS-STING-NLRP3 pathway and is instead dependent on NLRP1. Poly(dA:dT) is unique in its ability to activate NLRP1, as conventional linear dsDNAs fail to elicit NLRP1 activation. DsRNA was recently shown to activate NLRP1 and prior work has shown that poly(dA:dT) is transcribed into an RNA intermediate that stimulates the RNA sensor RIG-I. However, poly(dA:dT)-dependent RNA intermediates are insufficient to activate NLRP1. Instead, poly(dA:dT) results in oxidative nucleic acid damage and cellular stress, events which activate MAP3 kinases including ZAKα that converge on p38 to activate NLRP1. Collectively, this work defines a new activator of NLRP1, broadening our understanding of sensors that recognize poly(dA:dT) and advances the understanding of the immunostimulatory potential of this potent adjuvant.
Collapse
Affiliation(s)
- Jeffrey Y. Zhou
- aDivision of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Mrinal K. Sarkar
- bDepartment of Dermatology, University of Michigan, Ann Arbor, MI48109
| | - Ken Okamura
- cDepartment of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - John E. Harris
- cDepartment of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | | | - Katherine A. Fitzgerald
- aDivision of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA01605
- 1To whom correspondence may be addressed.
| |
Collapse
|
11
|
Mues N, Martin RJ, Alam R, Schaunaman N, Dimasuay KG, Kolakowski C, Wright CJ, Zheng L, Chu HW. Bacterial DNA amplifies neutrophilic inflammation in IL-17-exposed airways. ERJ Open Res 2023; 9:00474-2022. [PMID: 36699649 PMCID: PMC9868970 DOI: 10.1183/23120541.00474-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background Neutrophilic asthma (NA) is associated with increased airway interleukin (IL)-17 and abnormal bacterial community such as dominance of nontypeable Haemophilus influenzae (NTHi), particularly during asthma exacerbations. Bacteria release various products including DNA, but whether they cooperate with IL-17 in exaggerating neutrophilic inflammation is unclear. We sought to investigate the role of bacteria-derived DNA in airway neutrophilic inflammation related to IL-17-high asthma and underlying mechanisms (e.g. Toll-like receptor 9 (TLR9)/IL-36γ signalling axis). Methods Bacterial DNA, IL-8 and IL-36γ were measured in bronchoalveolar lavage fluid (BALF) of people with asthma and healthy subjects. The role of co-exposure to IL-17 and bacterial DNA or live bacteria in neutrophilic inflammation, and the contribution of the TLR9/IL-36γ signalling axis, were determined in cultured primary human airway epithelial cells and alveolar macrophages, and mouse models. Results Bacterial DNA levels were increased in asthma BALF, which positively correlated with IL-8 and neutrophil levels. Moreover, IL-36γ increased in BALF of NA patients. Bacterial DNA or NTHi infection under an IL-17-high setting amplified IL-8 production and mouse lung neutrophilic inflammation. DNase I treatment in IL-17-exposed and NTHi-infected mouse lungs reduced neutrophilic inflammation. Mechanistically, bacterial DNA-mediated amplification of neutrophilic inflammation is in part dependent on the TLR9/IL-36γ signalling axis. Conclusions Bacterial DNA amplifies airway neutrophilic inflammation in an IL-17-high setting partly through the TLR9 and IL-36γ signalling axis. Our novel findings may offer several potential therapeutic targets including TLR9 antagonists, IL-36γ neutralising antibodies and DNase I to reduce asthma severity associated with exaggerated airway neutrophilic inflammation.
Collapse
Affiliation(s)
- Nastaran Mues
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Rafeul Alam
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | | - Clyde J. Wright
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lijun Zheng
- Department of Pediatrics, Children's Hospital of Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
12
|
Choubey D. Cytosolic DNA sensor IFI16 proteins: Potential molecular integrators of interactions among the aging hallmarks. Ageing Res Rev 2022; 82:101765. [PMID: 36270606 DOI: 10.1016/j.arr.2022.101765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Cellular changes that are linked to aging in humans include genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, cellular senescence, and altered intercellular communications. The extent of the changes in these aging hallmarks and their interactions with each other are part of the human aging. However, the molecular mechanisms through which the aging hallmarks interact with each other remain unclear. Studies have indicated a potential role for the type I interferon (IFN) and p53-inducible IFI16 proteins in interactions with the aging hallmarks. The IFI16 proteins are members of the PYHIN protein family. Proteins in the family share a DNA-binding domain (the HIN domain) and a protein-protein interaction pyrin domain (PYD). IFI16 proteins are needed for cytosolic DNA-induced activation of the cGAS-STING pathway for type I IFN (IFN-β) expression. The pathway plays an important role in aging-related inflammation (inflammaging). Further, increased levels of the IFI16 proteins potentiate the cell growth inhibitory functions of the p53 and pRb tumor suppressors proteins. Moreover, IFI16 proteins are needed for most aging hallmarks. Therefore, here we discuss how an improved understanding of the role of the IFI16 proteins in integration of the aging hallmarks has potential to improve the human health and lifespan.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental & Public Health Sciences University of Cincinnati, 160 Panzeca Way, P.O. Box 670056, Cincinnati, OH 45267, USA.
| |
Collapse
|
13
|
Kano N, Ong GH, Ori D, Kawai T. Pathophysiological Role of Nucleic Acid-Sensing Pattern Recognition Receptors in Inflammatory Diseases. Front Cell Infect Microbiol 2022; 12:910654. [PMID: 35734577 PMCID: PMC9207338 DOI: 10.3389/fcimb.2022.910654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pattern recognition receptors (PRRs) play critical roles in recognizing pathogen-derived nucleic acids and inducing innate immune responses, such as inflammation and type I interferon production. PRRs that recognize nucleic acids include members of endosomal Toll-like receptors, cytosolic retinoic acid inducible gene I-like receptors, cyclic GMP–AMP synthase, absent in melanoma 2-like receptors, and nucleotide binding oligomerization domain-like receptors. Aberrant recognition of self-derived nucleic acids by these PRRs or unexpected activation of downstream signaling pathways results in the constitutive production of type I interferons and inflammatory cytokines, which lead to the development of autoimmune or autoinflammatory diseases. In this review, we focus on the nucleic acid-sensing machinery and its pathophysiological roles in various inflammatory diseases.
Collapse
|
14
|
Tupik JD, Markov Madanick JW, Ivester HM, Allen IC. Detecting DNA: An Overview of DNA Recognition by Inflammasomes and Protection against Bacterial Respiratory Infections. Cells 2022; 11:1681. [PMID: 35626718 PMCID: PMC9139316 DOI: 10.3390/cells11101681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
The innate immune system plays a key role in modulating host immune defense during bacterial disease. Upon sensing pathogen-associated molecular patterns (PAMPs), the multi-protein complex known as the inflammasome serves a protective role against bacteria burden through facilitating pathogen clearance and bacteria lysis. This can occur through two mechanisms: (1) the cleavage of pro-inflammatory cytokines IL-1β/IL-18 and (2) the initiation of inflammatory cell death termed pyroptosis. In recent literature, AIM2-like Receptor (ALR) and Nod-like Receptor (NLR) inflammasome activation has been implicated in host protection following recognition of bacterial DNA. Here, we review current literature synthesizing mechanisms of DNA recognition by inflammasomes during bacterial respiratory disease. This process can occur through direct sensing of DNA or indirectly by sensing pathogen-associated intracellular changes. Additionally, DNA recognition may be assisted through inflammasome-inflammasome interactions, specifically non-canonical inflammasome activation of NLRP3, and crosstalk with the interferon-inducible DNA sensors Stimulator of Interferon Genes (STING) and Z-DNA Binding Protein-1 (ZBP1). Ultimately, bacterial DNA sensing by inflammasomes is highly protective during respiratory disease, emphasizing the importance of inflammasome involvement in the respiratory tract.
Collapse
Affiliation(s)
- Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Justin W. Markov Madanick
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Hannah M. Ivester
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; (J.D.T.); (J.W.M.M.); (H.M.I.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
15
|
Yang CA, Huang YL, Chiang BL. Innate immune response analysis in COVID-19 and kawasaki disease reveals MIS-C predictors. J Formos Med Assoc 2022; 121:623-632. [PMID: 34193364 PMCID: PMC8214167 DOI: 10.1016/j.jfma.2021.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/PURPOSE The association between dysregulated innate immune responses seen in Kawasaki disease (KD) with predisposition to Kawasaki-like multisystem inflammatory syndrome in children (MIS-C) remains unclear. We aimed to compare the innate immunity transcriptome signature between COVID-19 and KD, and to analyze the interactions of these molecules with genes known to predispose to KD. METHODS Transcriptome datasets of COVID-19 and KD cohorts (E-MTAB-9357, GSE-63881, GSE-68004) were downloaded from ArrayExpress for innate immune response analyses. Network analysis was used to determine enriched pathways of interactions. RESULTS Upregulations of IRAK4, IFI16, STING, STAT3, PYCARD, CASP1, IFNAR1 and CD14 genes were observed in blood cells of acute SARS-CoV-2 infections with moderate severity. In the same patient group, increased expressions of TLR2, TLR7, IRF3, and CD36 were also noted in blood drawn a few days after COVID-19 diagnosis. Elevated blood PYCARD level was associated with severe COVID-19 in adults. Similar gene expression signature except differences in TLR8, NLRP3, STING and IRF3 levels was detected in KD samples. Network analysis on innate immune genes and genes associated with KD susceptibility identified enriched pathways of interactions. Furthermore, higher expression levels of KD susceptibility genes HLA-DOB, PELI1 and FCGR2A correlated with COVID-19 of different severities. CONCLUSION Our findings suggest that most enriched innate immune response pathways were shared between transcriptomes of KD and COVID-19 with moderate severity. Genetic polymorphisms associated with innate immune dysregulation and KD susceptibility, together with variants in STING and STAT3, might predict COVID-19 severity and potentially susceptibility to COVID-19 related MIS-C.
Collapse
Affiliation(s)
- Chin-An Yang
- College of Medicine, China Medical University, Taichung, 40402, Taiwan; Divisions of Laboratory Medicine and Pediatrics, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County, 302, Taiwan
| | - Ya-Ling Huang
- Divisions of Laboratory Medicine and Pediatrics, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County, 302, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Lozano-Ruiz B, Tzoumpa A, Martínez-Cardona C, Moreno D, Aransay AM, Cortazar AR, Picó J, Peiró G, Lozano J, Zapater P, Francés R, González-Navajas JM. Absent in Melanoma 2 (AIM2) Regulates the Stability of Regulatory T Cells. Int J Mol Sci 2022; 23:ijms23042230. [PMID: 35216346 PMCID: PMC8876789 DOI: 10.3390/ijms23042230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Absent in melanoma 2 (AIM2) is a cytosolic dsDNA sensor that has been broadly studied for its role in inflammasome assembly. However, little is known about the function of AIM2 in adaptive immune cells. The purpose of this study was to investigate whether AIM2 has a cell-intrinsic role in CD4+ T cell differentiation or function. We found that AIM2 is expressed in both human and mouse CD4+ T cells and that its expression is affected by T cell receptor (TCR) activation. Naïve CD4+ T cells from AIM2-deficient (Aim2−/−) mice showed higher ability to maintain forkhead box P3 (FOXP3) expression in vitro, while their capacity to differentiate into T helper (Th)1, Th2 or Th17 cells remained unaltered. Transcriptional profiling by RNA sequencing showed that AIM2 might affect regulatory T cell (Treg) stability not by controlling the expression of Treg signature genes, but through the regulation of the cell’s metabolism. In addition, in a T cell transfer model of colitis, Aim2−/−-naïve T cells induced less severe body weight loss and displayed a higher ability to differentiate into FOXP3+ cells in vivo. In conclusion, we show that AIM2 function is not confined to innate immune cells but is also important in CD4+ T cells. Our data identify AIM2 as a regulator of FOXP3+ Treg cell differentiation and as a potential intervention target for restoring T cell homeostasis.
Collapse
Affiliation(s)
- Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
| | - Amalia Tzoumpa
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
| | - Claudia Martínez-Cardona
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
| | - David Moreno
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
| | - Ana M. Aransay
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain; (A.M.A.); (J.L.)
- Center for Cooperative Research in Biosciences (CIC bioGUNE), 48160 Derio, Spain;
| | - Ana R. Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), 48160 Derio, Spain;
| | - Joanna Picó
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
| | - Gloria Peiró
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
- Pathology Unit, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain
| | - Juanjo Lozano
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain; (A.M.A.); (J.L.)
| | - Pedro Zapater
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain; (A.M.A.); (J.L.)
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández (UMH), 03202 Elche, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández (UMH), 03202 Elche, Spain
| | - Rubén Francés
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain; (A.M.A.); (J.L.)
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández (UMH), 03202 Elche, Spain
- Department of Clinical Medicine, University Miguel Hernández (UMH), 03202 Elche, Spain
| | - José M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain; (B.L.-R.); (A.T.); (C.M.-C.); (D.M.); (J.P.); (G.P.); (P.Z.); (R.F.)
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain; (A.M.A.); (J.L.)
- Department of Pharmacology, Pediatrics and Organic Chemistry, University Miguel Hernández (UMH), 03202 Elche, Spain
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), University Miguel Hernández (UMH), 03202 Elche, Spain
- Correspondence: ; Tel.: +34-965913928
| |
Collapse
|
17
|
Linder A, Hornung V. Inflammasomes in T cells. J Mol Biol 2021; 434:167275. [PMID: 34599941 DOI: 10.1016/j.jmb.2021.167275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
The concept of non-self recognition through germ-line encoded pattern recognition receptors (PRRs) has been well-established for professional innate immune cells. However, there is growing evidence that also T cells employ PRRs and associated effector functions in response to certain non-self or damage signals. Inflammasomes constitute a special subgroup of PRRs that is hardwired to a signaling cascade that culminates in the activation of caspase-1. Active caspase-1 processes pro-inflammatory cytokines of the IL-1 family and also triggers a lytic programmed cell death pathway known as pyroptosis. An increasing body of literature suggests that inflammasomes are also functional in T cells. On the one hand, conventional inflammasome signaling cascades have been described that operate similarly to pathways characterized in innate immune cells. On the other hand, unconventional functions have been suggested, in which certain inflammasome components play a role in unrelated processes, such as cell fate decisions and functions of T helper cells. In this review, we discuss our current knowledge on inflammasome functions in T cells and the biological implications of these findings for health and disease.
Collapse
Affiliation(s)
- Andreas Linder
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany. https://twitter.com/AndreasLinder7
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
18
|
Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 2021; 131:143780. [PMID: 33393506 DOI: 10.1172/jci143780] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The field of gene therapy has made considerable progress over the past several years. Adeno-associated virus (AAV) vectors have emerged as promising and attractive tools for in vivo gene therapy. Despite the recent clinical successes achieved with recombinant AAVs (rAAVs) for therapeutics, host immune responses against the vector and transgene product have been observed in numerous preclinical and clinical studies. These outcomes have hampered the advancement of AAV gene therapies, preventing them from becoming fully viable and safe medicines. The human immune system is multidimensional and complex. Both the innate and adaptive arms of the immune system seem to play a concerted role in the response against rAAVs. While most efforts have been focused on the role of adaptive immunity and developing ways to overcome it, the innate immune system has also been found to have a critical function. Innate immunity not only mediates the initial response to the vector, but also primes the adaptive immune system to launch a more deleterious attack against the foreign vector. This Review highlights what is known about innate immune responses against rAAVs and discusses potential strategies to circumvent these pathways.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Yukiko Maeda
- Horae Gene Therapy Center.,VIDE Program.,Department of Medicine
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology
| | | | - Phillip Wl Tai
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,VIDE Program
| | - Guangping Gao
- Horae Gene Therapy Center.,Department of Microbiology and Physiological Systems.,Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
19
|
Salvi V, Nguyen HO, Sozio F, Schioppa T, Gaudenzi C, Laffranchi M, Scapini P, Passari M, Barbazza I, Tiberio L, Tamassia N, Garlanda C, Del Prete A, Cassatella MA, Mantovani A, Sozzani S, Bosisio D. SARS-CoV-2-associated ssRNAs activate inflammation and immunity via TLR7/8. JCI Insight 2021; 6:e150542. [PMID: 34375313 PMCID: PMC8492321 DOI: 10.1172/jci.insight.150542] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 01/08/2023] Open
Abstract
The inflammatory and IFN pathways of innate immunity play a key role in the resistance and pathogenesis of coronavirus disease 2019 (COVID-19). Innate sensors and SARS-CoV-2–associated molecular patterns (SAMPs) remain to be completely defined. Here, we identified single-stranded RNA (ssRNA) fragments from the SARS-CoV-2 genome as direct activators of endosomal TLR7/8 and MyD88 pathway. The same sequences induced human DC activation in terms of phenotype and function, such as IFN and cytokine production and Th1 polarization. A bioinformatic scan of the viral genome identified several hundreds of fragments potentially activating TLR7/8, suggesting that products of virus endosomal processing potently activate the IFN and inflammatory responses downstream of these receptors. In vivo, SAMPs induced MyD88-dependent lung inflammation characterized by accumulation of proinflammatory and cytotoxic mediators and immune cell infiltration, as well as splenic DC phenotypical maturation. These results identified TLR7/8 as a crucial cellular sensor of ssRNAs encoded by SARS-CoV-2 involved in host resistance and the disease pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Hoang Oanh Nguyen
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Cecilia Garlanda
- Research in Immunology and Infectious Disease, IRCCS Humanities Research Hospital, Milan, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Alberto Mantovani
- Research in Immunology and Infectious Disease, IRCCS Humanities Research Hospital, Milan, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
20
|
Poh L, Fann DY, Wong P, Lim HM, Foo SL, Kang SW, Rajeev V, Selvaraji S, Iyer VR, Parathy N, Khan MB, Hess DC, Jo DG, Drummond GR, Sobey CG, Lai MKP, Chen CLH, Lim LHK, Arumugam TV. AIM2 inflammasome mediates hallmark neuropathological alterations and cognitive impairment in a mouse model of vascular dementia. Mol Psychiatry 2021; 26:4544-4560. [PMID: 33299135 DOI: 10.1038/s41380-020-00971-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Chronic cerebral hypoperfusion is associated with vascular dementia (VaD). Cerebral hypoperfusion may initiate complex molecular and cellular inflammatory pathways that contribute to long-term cognitive impairment and memory loss. Here we used a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate its effect on the innate immune response-particularly the inflammasome signaling pathway. Comprehensive analyses revealed that chronic cerebral hypoperfusion induces a complex temporal expression and activation of inflammasome components and their downstream products (IL-1β and IL-18) in different brain regions, and promotes activation of apoptotic and pyroptotic cell death pathways. Polarized glial-cell activation, white-matter lesion formation and hippocampal neuronal loss also occurred in a spatiotemporal manner. Moreover, in AIM2 knockout mice we observed attenuated inflammasome-mediated production of proinflammatory cytokines, apoptosis, and pyroptosis, as well as resistance to chronic microglial activation, myelin breakdown, hippocampal neuronal loss, and behavioral and cognitive deficits following BCAS. Hence, we have demonstrated that activation of the AIM2 inflammasome substantially contributes to the pathophysiology of chronic cerebral hypoperfusion-induced brain injury and may therefore represent a promising therapeutic target for attenuating cognitive impairment in VaD.
Collapse
Affiliation(s)
- Luting Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Peiyan Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neuroscience and Behavioural Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Hong Meng Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sok Lin Foo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sung-Wook Kang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vismitha Rajeev
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vinaya Rajagopal Iyer
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nageiswari Parathy
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Christopher Li-Hsian Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea. .,Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
21
|
Functional Interplay between Methyltransferases and Inflammasomes in Inflammatory Responses and Diseases. Int J Mol Sci 2021; 22:ijms22147580. [PMID: 34299198 PMCID: PMC8306412 DOI: 10.3390/ijms22147580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
An inflammasome is an intracellular protein complex that is activated in response to a pathogenic infection and cellular damage. It triggers inflammatory responses by promoting inflammatory cell death (called pyroptosis) and the secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. Many types of inflammasomes have been identified and demonstrated to play a central role in inducing inflammatory responses, leading to the onset and progression of numerous inflammatory diseases. Methylation is a biological process by which methyl groups are transferred from methyl donors to proteins, nucleic acids, and other cellular molecules. Methylation plays critical roles in various biological functions by modulating gene expression, protein activity, protein localization, and molecular stability, and aberrant regulation of methylation causes deleterious outcomes in various human diseases. Methylation is a key determinant of inflammatory responses and diseases. This review highlights the current understanding of the functional relationship between inflammasome regulation and methylation of cellular molecules in inflammatory responses and diseases.
Collapse
|
22
|
Chen JX, Cheng CS, Gao HF, Chen ZJ, Lv LL, Xu JY, Shen XH, Xie J, Zheng L. Overexpression of Interferon-Inducible Protein 16 Promotes Progression of Human Pancreatic Adenocarcinoma Through Interleukin-1β-Induced Tumor-Associated Macrophage Infiltration in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:640786. [PMID: 34150748 PMCID: PMC8213213 DOI: 10.3389/fcell.2021.640786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of inflammasomes has been reported in human pancreatic adenocarcinoma (PAAD); however, the expression pattern and functional role of inflammasome-related proteins in PAAD have yet to be identified. In this study, we systemically examined the expression and role of different inflammasome proteins by retrieving human expression data. Several genes were found to be differentially expressed; however, only interferon-inducible protein 16 (IFI16) expression was found to be adversely correlated with the overall survival of PAAD patients. Overexpression of IFI16 significantly promoted tumor growth, increased tumor size and weight in the experimental PAAD model of mice, and specifically increased the population of tumor-associated macrophages (TAMs) in the tumor microenvironment. Depletion of TAMs by injection of liposome clodronate attenuated the IFI16 overexpression-induced tumor growth in PAAD. In vitro treatment of conditioned medium from IFI16-overexpressing PAAD cells induced maturation, proliferation, and migration of bone marrow-derived monocytes, suggesting that IFI16 overexpression resulted in cytokine secretion that favored the TAM population. Further analysis suggested that IFI16 overexpression activated inflammasomes, thereby increasing the release of IL-1β. Neutralization of IL-1β attenuated TAM maturation, proliferation, and migration induced by the conditioned medium from IFI16-overexpressing PAAD cells. Additionally, knockdown of IFI16 could significantly potentiate gemcitabine treatment in PAAD, which may be associated with the reduced infiltration of TAMs in the tumor microenvironment. The findings of our study shed light on the role of IFI16 as a potential therapeutic target for PAAD.
Collapse
Affiliation(s)
- Jing-Xian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Fang Gao
- Department of Oncology, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Jie Chen
- Department of Geriatrics, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Ling Lv
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Jia-Yue Xu
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Xiao-Heng Shen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Jing Xie
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Zheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
23
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Wang X, Liu Y, Han X, Zou G, Zhu W, Shen H, Liu H. Small molecule approaches to treat autoimmune and inflammatory diseases (Part II): Nucleic acid sensing antagonists and inhibitors. Bioorg Med Chem Lett 2021; 44:128101. [PMID: 33984476 DOI: 10.1016/j.bmcl.2021.128101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023]
Abstract
Nucleic acid sensing pathways play an important role in the innate immune system, protecting hosts against infections. However, a large body of evidence supports a close association between aberrant activation of those pathways and autoimmune and inflammatory diseases. Part II of the digest series on small molecule approaches to autoimmune and inflammatory diseases concentrates on recent advances with respect to small molecule antagonists or inhibitors of the nucleic acid sensing pathways, including endosomal TLRs, NLRP3 inflammasome and cGAS-STING.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Yafei Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Xingchun Han
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Ge Zou
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Wei Zhu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Hong Shen
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China
| | - Haixia Liu
- Department of Medicinal Chemistry, Roche Innovation Center Shanghai, Roche Pharma Research and Early Development, Shanghai 201203, China.
| |
Collapse
|
25
|
Fan X, Jiang J, Zhao D, Chen F, Ma H, Smith P, Unterholzner L, Xiao TS, Jin T. Structural mechanism of DNA recognition by the p204 HIN domain. Nucleic Acids Res 2021; 49:2959-2972. [PMID: 33619523 PMCID: PMC7969034 DOI: 10.1093/nar/gkab076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/22/2021] [Accepted: 02/14/2021] [Indexed: 12/25/2022] Open
Abstract
The interferon gamma-inducible protein 16 (IFI16) and its murine homologous protein p204 function in non-sequence specific dsDNA sensing; however, the exact dsDNA recognition mechanisms of IFI16/p204, which harbour two HIN domains, remain unclear. In the present study, we determined crystal structures of p204 HINa and HINb domains, which are highly similar to those of other PYHIN family proteins. Moreover, we obtained the crystal structure of p204 HINab domain in complex with dsDNA and provided insights into the dsDNA binding mode. p204 HINab binds dsDNA mainly through α2 helix of HINa and HINb, and the linker between them, revealing a similar HIN:DNA binding mode. Both HINa and HINb are vital for HINab recognition of dsDNA, as confirmed by fluorescence polarization assays. Furthermore, a HINa dimerization interface was observed in structures of p204 HINa and HINab:dsDNA complex, which is involved in binding dsDNA. The linker between HINa and HINb reveals dynamic flexibility in solution and changes its direction at ∼90° angle in comparison with crystal structure of HINab:dsDNA complex. These structural information provide insights into the mechanism of DNA recognition by different HIN domains, and shed light on the unique roles of two HIN domains in activating the IFI16/p204 signaling pathway.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
| | - Jiansheng Jiang
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China
| | - Feng Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China
| | - Huan Ma
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China
| | - Patrick Smith
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P.R. China
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| |
Collapse
|
26
|
Toxic Shock Syndrome Toxin 1 Induces Immune Response via the Activation of NLRP3 Inflammasome. Toxins (Basel) 2021; 13:toxins13010068. [PMID: 33477467 PMCID: PMC7829800 DOI: 10.3390/toxins13010068] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 01/13/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen which causes infections in a variety of vertebrates. Virulence factors are the main pathogenesis of S. aureus as a pathogen, which induce the host’s innate and adaptive immune responses. Toxic shock syndrome toxin 1 (TSST-1) is one of the most important virulence factors of S. aureus. However, the role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) in TSST-1-induced innate immune response is still unclear. Here, purified recombinant TSST-1 (rTSST-1) was prepared and used to stimulate mouse peritoneal macrophages. The results showed that under the action of adenosine-triphosphate (ATP), rTSST-1 significantly induced interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) production in mouse macrophages and the production was dose-dependent. In addition, rTSST-1+ATP-stimulated cytokine production in macrophage depends on the activation of toll like receptor 4 (TLR4), but not TLR2 on the cells. Furthermore, the macrophages of NLRP3−/− mice stimulated with rTSST-1+ATP showed significantly low levels of IL-1β production compared to that of wild-type mice. These results demonstrated that TSST-1 can induce the expression of inflammatory cytokines in macrophages via the activation of the TLR4 and NLRP3 signaling pathways. Our study provides new information about the mechanism of the TSST-1-inducing host’s innate immune responses.
Collapse
|
27
|
Sun X, Liu H. Nucleic Acid Nanostructure Assisted Immune Modulation. ACS APPLIED BIO MATERIALS 2020; 3:2765-2778. [DOI: 10.1021/acsabm.9b01195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoli Sun
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
28
|
Kang WS, Kim SK, Park HJ. Association of the Promoter Haplotype of IFN-γ-Inducible Protein 16 Gene with Schizophrenia in a Korean Population. Psychiatry Investig 2020; 17:140-146. [PMID: 32046472 PMCID: PMC7047005 DOI: 10.30773/pi.2019.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Viral infections play an important role in the development of schizophrenia, inducing the faulty immunological responses and aberrant inflammation. IFN-γ-inducible protein 16 (IFI16) is an immunological DNA sensor against viral infections, triggering the inflammatory responses. In this study, we investigated an association between putative promoter single nucleotide polymorphisms (SNPs) and haplotypes of IFI16 and schizophrenia. METHODS A total of 280 schizophrenia patients and 427 control subjects were recruited in this study. We genotyped three promoter SNPs (rs1465175, rs3754464, rs1417806) using direct sequencing. Associations of SNPs and haplotypes of IFI16 with schizophrenia were analyzed. The promoter activities on the haplotypes of IFI16 were measured. RESULTS The T allele of rs1465175 and the C allele of rs1417806 were protectively associated with schizophrenia (p=0.021 on rs1465175; p=0.016 on rs1417806), whereas the G allele of rs3754464 was associated with an increased risk of schizophrenia (p=0.019). In haplotype analysis, a significant association between the GGA haplotype and schizophrenia was shown (p=0.013). Moreover, we found that the GGA haplotype elevated the promoter activity compared to the GAA haplotype, whereas the TAC haplotype reduced that. CONCLUSION The promoter SNPs and haplotypes of IFI16 may contribute to the susceptibility of schizophrenia, affecting the promoter activity of IFI16.
Collapse
Affiliation(s)
- Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Kang Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Hortelano S, González-Cofrade L, Cuadrado I, de Las Heras B. Current status of terpenoids as inflammasome inhibitors. Biochem Pharmacol 2019; 172:113739. [PMID: 31786260 DOI: 10.1016/j.bcp.2019.113739] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
Increasing evidence supports NLRP3 inflammasome as a new target to control inflammation. Dysregulation of NLRP3 inflammasome has been reported to be involved in the pathogenesis of several human inflammatory diseases. However, no NLRP3 inflammasome inhibitors are available in clinic. Terpenoids are natural products with multi-target activities against inflammation. Recent studies have revealed that these compounds are capable of inhibiting the activation of NLRP3 inflammasome in several mouse models of NLRP3 inflammasome-related pathogenesis. Thus, terpenoids represent an interesting pharmacological approach for the treatment of inflammatory diseases as they are endowed with a dual mechanism of inhibition of NF-KB transcription factor and inflammasome activation, both critically involved in their anti-inflammatory effects. This work provides an overview of the current knowledge on the therapeutic potential of terpenoids as NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain.
| | - Laura González-Cofrade
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Irene Cuadrado
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Bacteriophage and the Innate Immune System: Access and Signaling. Microorganisms 2019; 7:microorganisms7120625. [PMID: 31795262 PMCID: PMC6956183 DOI: 10.3390/microorganisms7120625] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage and the bacteria they infect are the dominant members of the gastrointestinal microbiome. While bacteria are known to be central to maintenance of the structure, function, and health of the microbiome, it has only recently been recognized that phage too might serve a critical function. Along these lines, bacteria are not the only cells that are influenced by bacteriophage, and there is growing evidence of bacteriophage effects on epithelial, endothelial, and immune cells. The innate immune system is essential to protecting the Eukaryotic host from invading microorganisms, and bacteriophage have been demonstrated to interact with innate immune cells regularly. Here, we conduct a systematic review of the varying mechanisms allowing bacteriophage to access and interact with cells of the innate immune system and propose the potential importance of these interactions.
Collapse
|
31
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|
32
|
Overexpression of absent in melanoma 2 in oral squamous cell carcinoma contributes to tumor progression. Biochem Biophys Res Commun 2019; 509:82-88. [DOI: 10.1016/j.bbrc.2018.12.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/30/2022]
|
33
|
Lupfer CR, Rippee-Brooks MD, Anand PK. Common Differences: The Ability of Inflammasomes to Distinguish Between Self and Pathogen Nucleic Acids During Infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:139-172. [PMID: 30798987 DOI: 10.1016/bs.ircmb.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The innate immune system detects the presence of pathogens based on detection of non-self. In other words, most pathogens possess intrinsic differences that can distinguish them from host cells. For example, bacteria and fungi have cell walls comprised of peptidoglycan and carbohydrates (like mannans), respectively. Germline encoded pattern recognition receptors (PRRs) of the Toll-like receptor (TLR) and C-type lectin receptor (CLR) family have the ability to detect such unique pathogen associated features. However, some TLRs and members of the RIG-I-like receptor (RLR), NOD-like receptor (NLR), or AIM2-like receptor (ALR) family can sense pathogen invasion based on pathogen nucleic acids. Nucleic acids are not unique to pathogens, thus raising the question of how such PRRs evolved to detect pathogens but not self. In this chapter, we will examine the PRRs that sense pathogen nucleic acids and subsequently activate the inflammasome signaling pathway. We will examine the selective mechanisms by which these receptors distinguish pathogens from "self" and discuss the importance of such pathways in disease development in animal models and human patients.
Collapse
Affiliation(s)
- Christopher R Lupfer
- Department of Biology, Missouri State University, Springfield, MO, United States.
| | | | - Paras K Anand
- Infectious Diseases and Immunity, Imperial College London, London, United Kingdom.
| |
Collapse
|
34
|
Heil M, Vega-Muñoz I. Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:225-285. [PMID: 30904194 DOI: 10.1016/bs.ircmb.2018.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of nucleic acids in aberrant compartments is a signal of danger: fragments of cytosolic or extracellular self-DNA indicate cellular dysfunctions or disruption, whereas cytosolic fragments of nonself-DNA or RNA indicate infections. Therefore, nucleic acids trigger immunity in mammals and plants. In mammals, endosomal Toll-like receptors (TLRs) sense single-stranded (ss) or double-stranded (ds) RNA or CpG-rich DNA, whereas various cytosolic receptors sense dsDNA. Although a self/nonself discrimination could favor targeted immune responses, no sequence-specific sensing of nucleic acids has been reported for mammals. Specific immune responses to extracellular self-DNA versus DNA from related species were recently reported for plants, but the underlying mechanism remains unknown. The subcellular localization of mammalian receptors can favor self/nonself discrimination based on the localization of DNA fragments. However, autoantibodies and diverse damage-associated molecular patterns (DAMPs) shuttle DNA through membranes, and most of the mammalian receptors share downstream signaling elements such as stimulator of interferon genes (STING) and the master transcription regulators, nuclear factor (NF)-κB, and interferon regulatory factor 3 (IRF3). The resulting type I interferon (IFN) response stimulates innate immunity against multiple threats-from infection to physical injury or endogenous DNA damage-all of which lead to the accumulation of eDNA or cytoplasmatic dsDNA. Therefore, no or only low selective pressures might have favored a strict self/nonself discrimination in nucleic acid sensing. We conclude that the discrimination between self- and nonself-DNA is likely to be less strict-and less important-than assumed originally.
Collapse
Affiliation(s)
- Martin Heil
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| | - Isaac Vega-Muñoz
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
35
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
36
|
Martínez-Cardona C, Lozano-Ruiz B, Bachiller V, Peiró G, Algaba-Chueca F, Gómez-Hurtado I, Such J, Zapater P, Francés R, González-Navajas JM. AIM2 deficiency reduces the development of hepatocellular carcinoma in mice. Int J Cancer 2018; 143:2997-3007. [PMID: 30133699 DOI: 10.1002/ijc.31827] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/10/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022]
Abstract
Chronic liver inflammation is crucial in the pathogenesis of hepatocellular carcinoma (HCC). Activation of the inflammasome complex is a key inflammatory process that has been associated with different liver diseases, but its role in HCC development remains largely unexplored. Here we analyzed the impact of different inflammasome components, including absent in melanoma 2 (AIM2) and NOD-like receptor family pyrin domain containing 3 (NLRP3), in the development of diethylnitrosamine (DEN)-induced HCC in mice. Genetic inactivation of AIM2, but not NLRP3, reduces liver damage and HCC development in this model. AIM2 deficiency ameliorates inflammasome activation, liver inflammation and proliferative responses during HCC initiation. We also identified that AIM2 is highly expressed in Kupffer cells, and that AIM2-mediated production of IL-1β by these cells is enhanced after DEN-induced liver damage. Our data indicate that AIM2 promotes inflammation during carcinogenic liver injury and that it contributes to genotoxic HCC development in mice, thereby recognizing AIM2 as a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Claudia Martínez-Cardona
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO), Hospital General Universitario de Alicante, Alicante, Spain.,Biomedical Research Network for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Department of Pharmacology, University Miguel Hernández, Elche, Spain
| | - Beatriz Lozano-Ruiz
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO), Hospital General Universitario de Alicante, Alicante, Spain.,Biomedical Research Network for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Bachiller
- Biomedical Research Network for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Peiró
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO), Hospital General Universitario de Alicante, Alicante, Spain.,Pathology Department, Hospital General Universitario de Alicante, Alicante, Spain
| | - Francisco Algaba-Chueca
- Biomedical Research Network for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gómez-Hurtado
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO), Hospital General Universitario de Alicante, Alicante, Spain.,Biomedical Research Network for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José Such
- Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Pedro Zapater
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO), Hospital General Universitario de Alicante, Alicante, Spain.,Biomedical Research Network for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Department of Pharmacology, University Miguel Hernández, Elche, Spain
| | - Rubén Francés
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO), Hospital General Universitario de Alicante, Alicante, Spain.,Biomedical Research Network for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Medicine, University Miguel Hernández, Elche, Spain
| | - José Manuel González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO), Hospital General Universitario de Alicante, Alicante, Spain.,Biomedical Research Network for Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,The Second Affiliated Hospital, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Liu F, Ma R, Wang Y, Zhang L. The Clinical Importance of Campylobacter concisus and Other Human Hosted Campylobacter Species. Front Cell Infect Microbiol 2018; 8:243. [PMID: 30087857 PMCID: PMC6066527 DOI: 10.3389/fcimb.2018.00243] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Historically, Campylobacteriosis has been considered to be zoonotic; the Campylobacter species that cause human acute intestinal disease such as Campylobacter jejuni and Campylobacter coli originate from animals. Over the past decade, studies on human hosted Campylobacter species strongly suggest that Campylobacter concisus plays a role in the development of inflammatory bowel disease (IBD). C. concisus primarily colonizes the human oral cavity and some strains can be translocated to the intestinal tract. Genome analysis of C. concisus strains isolated from saliva samples has identified a bacterial marker that is associated with active Crohn's disease (one major form of IBD). In addition to C. concisus, humans are also colonized by a number of other Campylobacter species, most of which are in the oral cavity. Here we review the most recent advancements on C. concisus and other human hosted Campylobacter species including their clinical relevance, transmission, virulence factors, disease associated genes, interactions with the human immune system and pathogenic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
38
|
Systemic activation of NLRP3 inflammasome in patients with severe primary Sjögren's syndrome fueled by inflammagenic DNA accumulations. J Autoimmun 2018; 91:23-33. [DOI: 10.1016/j.jaut.2018.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022]
|
39
|
Caneparo V, Landolfo S, Gariglio M, De Andrea M. The Absent in Melanoma 2-Like Receptor IFN-Inducible Protein 16 as an Inflammasome Regulator in Systemic Lupus Erythematosus: The Dark Side of Sensing Microbes. Front Immunol 2018; 9:1180. [PMID: 29892303 PMCID: PMC5985366 DOI: 10.3389/fimmu.2018.01180] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Absent in melanoma 2 (AIM2)-like receptors (ALRs) are a newly characterized class of pathogen recognition receptors (PRRs) involved in cytosolic and nuclear pathogen DNA recognition. In recent years, two ALR family members, the interferon (IFN)-inducible protein 16 (IFI16) and AIM2, have been linked to the pathogenesis of various autoimmune diseases, among which systemic lupus erythematosus (SLE) has recently gained increasing attention. SLE patients are indeed often characterized by constitutively high serum IFN levels and increased expression of IFN-stimulated genes due to an abnormal response to pathogens and/or incorrect self-DNA recognition process. Consistently, we and others have shown that IFI16 is overexpressed in a wide range of autoimmune diseases where it triggers production of specific autoantibodies. In addition, evidence from mouse models supports a model whereby ALRs are required for IFN-mediated host response to both exogenous and endogenous DNA. Following interaction with cytoplasmic or nuclear nucleic acids, ALRs can form a functional inflammasome through association with the adaptor ASC [apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD)] and with procaspase-1. Importantly, inflammasome-mediated upregulation of IL-1β and IL-18 production positively correlates with SLE disease severity. Therefore, targeting ALR sensors and their downstream pathways represents a promising alternative therapeutic approach for SLE and other systemic autoimmune diseases.
Collapse
Affiliation(s)
- Valeria Caneparo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy.,Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy
| | - Marisa Gariglio
- Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| | - Marco De Andrea
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy.,Virology Unit, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Department of Translational Medicine, Novara Medical School, Novara, Italy.,Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
40
|
Yang B, Song D, Liu Y, Cui Y, Lu G, Di W, Xing H, Ma L, Guo Z, Guan Y, Wang H, Wang J. IFI16 regulates HTLV-1 replication through promoting HTLV-1 RTI-induced innate immune responses. FEBS Lett 2018; 592:1693-1704. [PMID: 29710427 DOI: 10.1002/1873-3468.13077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/05/2018] [Accepted: 04/22/2018] [Indexed: 01/19/2023]
Abstract
Interferon (IFN)-inducible protein 16 (IFI16) regulates human immunodeficiency virus replication by inducing innate immune responses as a DNA sensor. Human T-lymphotropic virus type 1 (HTLV-1), a delta retrovirus family member, has been linked to multiple diseases. Here, we report that IFI16 expression is induced by HTLV-1 infection or HTLV-1 reverse transcription intermediate (RTI) ssDNA90 transfection. IFI16 overexpression decreases HTLV-1 protein expression, whereas IFI16 knockdown increases it. Furthermore, the knockdown of IFI16 is followed by impaired innate immune responses upon HTLV-1 infection. In addition, IFI16 forms a complex with ssDNA90 and enhances ssDNA90-triggered innate immune responses. Collectively, our data suggest a critical role for IFI16 during HTLV-1 infection by interacting with HTLV-1 RTI ssDNA90 and restricting HTLV-1 replication.
Collapse
Affiliation(s)
- Bo Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, China.,Xinxiang Assegai Medical Laboratory Institute, China
| | - Di Song
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, China.,Xinxiang Assegai Medical Laboratory Institute, China
| | - Yue Liu
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Yuhan Cui
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Guangjian Lu
- The First Affiliated Hospital of Xinxiang Medical University, China
| | - Wenyu Di
- The First Affiliated Hospital of Xinxiang Medical University, China
| | - Hongxia Xing
- The First Affiliated Hospital of Xinxiang Medical University, China
| | - Lingling Ma
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Zhixiang Guo
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Yuhe Guan
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China
| | - Jie Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Xinxiang Medical University, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, China.,Xinxiang Assegai Medical Laboratory Institute, China
| |
Collapse
|
41
|
Jabbari K, Heger P, Sharma R, Wiehe T. The Diverging Routes of BORIS and CTCF: An Interactomic and Phylogenomic Analysis. Life (Basel) 2018; 8:life8010004. [PMID: 29385718 PMCID: PMC5871936 DOI: 10.3390/life8010004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is multi-functional, ubiquitously expressed, and highly conserved from Drosophila to human. It has important roles in transcriptional insulation and the formation of a high-dimensional chromatin structure. CTCF has a paralog called “Brother of Regulator of Imprinted Sites” (BORIS) or “CTCF-like” (CTCFL). It binds DNA at sites similar to those of CTCF. However, the expression profiles of the two proteins are quite different. We investigated the evolutionary trajectories of the two proteins after the duplication event using a phylogenomic and interactomic approach. We find that CTCF has 52 direct interaction partners while CTCFL only has 19. Almost all interactors already existed before the emergence of CTCF and CTCFL. The unique secondary loss of CTCF from several nematodes is paralleled by a loss of two of its interactors, the polycomb repressive complex subunit SuZ12 and the multifunctional transcription factor TYY1. In contrast to earlier studies reporting the absence of BORIS from birds, we present evidence for a multigene synteny block containing CTCFL that is conserved in mammals, reptiles, and several species of birds, indicating that not the entire lineage of birds experienced a loss of CTCFL. Within this synteny block, BORIS and its genomic neighbors seem to be partitioned into two nested chromatin loops. The high expression of SPO11, RAE1, RBM38, and PMEPA1 in male tissues suggests a possible link between CTCFL, meiotic recombination, and fertility-associated phenotypes. Using the 65,700 exomes and the 1000 genomes data, we observed a higher number of intergenic, non-synonymous, and loss-of-function mutations in CTCFL than in CTCF, suggesting a reduced strength of purifying selection, perhaps due to less functional constraint.
Collapse
Affiliation(s)
- Kamel Jabbari
- Cologne Biocenter, Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Köln, Germany.
| | - Peter Heger
- Cologne Biocenter, Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Köln, Germany.
| | - Ranu Sharma
- Cologne Biocenter, Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Köln, Germany.
| | - Thomas Wiehe
- Cologne Biocenter, Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Köln, Germany.
| |
Collapse
|
42
|
Robijns J, Houthaeve G, Braeckmans K, De Vos WH. Loss of Nuclear Envelope Integrity in Aging and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:205-222. [DOI: 10.1016/bs.ircmb.2017.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Abstract
The caspase-1 protease is a core component of multiprotein inflammasome complexes, which play a critical role in regulating the secretion of mature, bioactive pro-inflammatory cytokines interleukin (IL)-1β and IL-18. The activity of caspase-1 is often measured indirectly, by monitoring cleavage of cellular caspase-1 substrates, processing of caspase-1 itself, or by quantifying cell death. Here we describe methods for eliciting caspase-1 activity in murine macrophages, via activation of the NLRP3, NAIP/NLRC4 or AIM2 inflammasomes. We then describe a simple fluorogenic assay for directly quantifying cellular caspase-1 activity.
Collapse
Affiliation(s)
- Dave Boucher
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| | - Amy Chan
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| | - Connie Ross
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Australia.
| |
Collapse
|
44
|
Voigt C, May P, Gottschlich A, Markota A, Wenk D, Gerlach I, Voigt S, Stathopoulos GT, Arendt KAM, Heise C, Rataj F, Janssen KP, Königshoff M, Winter H, Himsl I, Thasler WE, Schnurr M, Rothenfußer S, Endres S, Kobold S. Cancer cells induce interleukin-22 production from memory CD4 + T cells via interleukin-1 to promote tumor growth. Proc Natl Acad Sci U S A 2017; 114:12994-12999. [PMID: 29150554 PMCID: PMC5724250 DOI: 10.1073/pnas.1705165114] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IL-22 has been identified as a cancer-promoting cytokine that is secreted by infiltrating immune cells in several cancer models. We hypothesized that IL-22 regulation would occur at the interface between cancer cells and immune cells. Breast and lung cancer cells of murine and human origin induced IL-22 production from memory CD4+ T cells. In the present study, we found that IL-22 production in humans is dependent on activation of the NLRP3 inflammasome with the subsequent release of IL-1β from both myeloid and T cells. IL-1 receptor signaling via the transcription factors AhR and RORγt in T cells was necessary and sufficient for IL-22 production. In these settings, IL-1 induced IL-22 production from a mixed T helper cell population comprised of Th1, Th17, and Th22 cells, which was abrogated by the addition of anakinra. We confirmed these findings in vitro and in vivo in two murine tumor models, in primary human breast and lung cancer cells, and in deposited expression data. Relevant to ongoing clinical trials in breast cancer, we demonstrate here that the IL-1 receptor antagonist anakinra abrogates IL-22 production and reduces tumor growth in a murine breast cancer model. Thus, we describe here a previously unrecognized mechanism by which cancer cells induce IL-22 production from memory CD4+ T cells via activation of the NLRP3 inflammasome and the release of IL-1β to promote tumor growth. These findings may provide the basis for therapeutic interventions that affect IL-22 production by targeting IL-1 activity.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- CD4-Positive T-Lymphocytes/metabolism
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Proliferation
- Culture Media, Conditioned
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Inflammasomes/metabolism
- Interleukin-1beta/physiology
- Interleukins/biosynthesis
- Interleukins/metabolism
- Leukocytes, Mononuclear/metabolism
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Neoplasm Transplantation
- Signal Transduction
- Tumor Burden
- Interleukin-22
Collapse
Affiliation(s)
- Cornelia Voigt
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Institute for Lung Biology and Disease, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Helmholtz Zentrum München, 81377 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Peter May
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Adrian Gottschlich
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Anamarija Markota
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Daniel Wenk
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Inga Gerlach
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | | | - Georgios T Stathopoulos
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Institute for Lung Biology and Disease, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, University of Patras, Rio, Achaia, 26504 Greece
- Faculty of Medicine, University of Patras, Rio, Achaia, 26504 Greece
| | - Kristina A M Arendt
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Institute for Lung Biology and Disease, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Helmholtz Zentrum München, 81377 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Constanze Heise
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Felicitas Rataj
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Klaus-Peter Janssen
- Chirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität, 81675 Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Institute for Lung Biology and Disease, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Helmholtz Zentrum München, 81377 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Hauke Winter
- German Center for Lung Research, 81377 Munich, Germany
- Department of Thoracic Surgery, University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Isabelle Himsl
- Brustzentrum Klinikum Dritter Orden, 80638 Munich, Germany
| | - Wolfgang E Thasler
- Biobank, Department of General, Visceral and Transplantation Surgery, University Hospital, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Max Schnurr
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Simon Rothenfußer
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany;
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, 80337 Munich, Germany
- German Center for Lung Research, 81377 Munich, Germany
| |
Collapse
|
45
|
Krocova Z, Macela A, Kubelkova K. Innate Immune Recognition: Implications for the Interaction of Francisella tularensis with the Host Immune System. Front Cell Infect Microbiol 2017; 7:446. [PMID: 29085810 PMCID: PMC5650615 DOI: 10.3389/fcimb.2017.00446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
The intracellular bacterial pathogen Francisella tularensis causes serious infectious disease in humans and animals. Moreover, F. tularensis, a highly infectious pathogen, poses a major concern for the public as a bacterium classified under Category A of bioterrorism agents. Unfortunately, research has so far failed to develop effective vaccines, due in part to the fact that the pathogenesis of intracellular bacteria is not fully understood and in part to gaps in our understanding of innate immune recognition processes leading to the induction of adaptive immune response. Recent evidence supports the concept that immune response to external stimuli in the form of bacteria is guided by the primary interaction of the bacterium with the host cell. Based on data from different Francisella models, we present here the basic paradigms of the emerging innate immune recognition concept. According to this concept, the type of cell and its receptor(s) that initially interact with the target constitute the first signaling window; the signals produced in the course of primary interaction of the target with a reacting cell act in a paracrine manner; and the innate immune recognition process as a whole consists in a series of signaling windows modulating adaptive immune response. Finally, the host, in the strict sense, is the interacting cell.
Collapse
Affiliation(s)
- Zuzana Krocova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Ales Macela
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
46
|
Kantono M, Guo B. Inflammasomes and Cancer: The Dynamic Role of the Inflammasome in Tumor Development. Front Immunol 2017; 8:1132. [PMID: 28955343 PMCID: PMC5600922 DOI: 10.3389/fimmu.2017.01132] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic Inflammation in tumor microenvironments is not only associated with various stages of tumor development, but also has significant impacts on tumor immunity and immunotherapy. Inflammasome are an important innate immune pathway critical for the production of active IL-1β and interleukin 18, as well as the induction of pyroptosis. Although extensive studies have demonstrated that inflammasomes play a vital role in infectious and autoimmune diseases, their role in tumor progression remains elusive. Multiple studies using a colitis-associated colon cancer model show that inflammasome components provide protection against the development of colon cancer. However, very recent studies demonstrate that inflammasomes promote tumor progression in skin and breast cancer. These results indicate that inflammasomes can promote and suppress tumor development depending on types of tumors, specific inflammasomes involved, and downstream effector molecules. The complicated role of inflammasomes raises new opportunities and challenges to manipulate inflammasome pathways in the treatment of cancer.
Collapse
Affiliation(s)
- Melvin Kantono
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, United States
| |
Collapse
|
47
|
Lauková L, Konečná B, Bábíčková J, Wagnerová A, Melišková V, Vlková B, Celec P. Exogenous deoxyribonuclease has a protective effect in a mouse model of sepsis. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
48
|
Hu Z, Chai J. Structural Mechanisms in NLR Inflammasome Assembly and Signaling. Curr Top Microbiol Immunol 2017; 397:23-42. [PMID: 27460803 DOI: 10.1007/978-3-319-41171-2_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammasomes are multimeric protein complexes that mediate the activation of inflammatory caspases. One central component of inflammasomes is nucleotide-binding domain (NBD)- and leucine-rich repeat (LRR)-containing proteins (NLRs) that can function as pattern recognition receptors (PRRs). In resting cells, NLR proteins exist in an auto-inhibited, monomeric, and ADP-bound state. Perception of microbial or damage-associated signals results in NLR oligomerization, thus recruiting inflammatory caspases directly or through the adaptor molecule apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). The assembled NLR inflammasomes serve as dedicated machinery to facilitate the activation of the inflammatory caspases. Here, we review current understanding of the structures of NLR inflammasomes with an emphasis on the molecular mechanisms of their assembly and activation. We also discuss implications of the self-propagation model derived from the NAIP-NLRC4 inflammasomes for the activation of other NLR inflammasomes and a potential role of the C-terminal LRR domain in the activation of an NLR protein.
Collapse
Affiliation(s)
- Zehan Hu
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jijie Chai
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
49
|
OM-85 is an immunomodulator of interferon-β production and inflammasome activity. Sci Rep 2017; 7:43844. [PMID: 28262817 PMCID: PMC5338315 DOI: 10.1038/srep43844] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
The inflammasome–IL-1 axis and type I interferons (IFNs) have been shown to exert protective effects upon respiratory tract infections. Conversely, IL-1 has also been implicated in inflammatory airway pathologies such as asthma and chronic obstructive pulmonary disease (COPD). OM-85 is a bacterial extract with proved efficacy against COPD and recurrent respiratory tract infections, a cause of co-morbidity in asthmatic patients. We therefore asked whether OM-85 affects the above-mentioned innate immune pathways. Here we show that OM-85 induced interferon-β through the Toll-like receptor adaptors Trif and MyD88 in bone marrow-derived dendritic cells. Moreover, it exerted a dual role on IL-1 production; on the one hand, it upregulated proIL-1β and proIL-1α levels in a MyD88-dependent manner without activating the inflammasome. On the other hand, it repressed IL-1β secretion induced by alum, a well-known NLRP3 activator. In vivo, OM-85 diminished the recruitment of inflammatory cells in response to peritoneal alum challenge. Our findings therefore suggest that OM-85 favors a protective primed state, while dampening inflammasome activation in specific conditions. Taken together, these data bring new insights into the mechanisms of OM-85 action on innate immune pathways and suggest potential explanations for its efficacy in the treatment of virus-induced airway diseases.
Collapse
|
50
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|