1
|
Huang Y, Gao Y, Lin Z, Miao H. Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression. Genes Dis 2025; 12:101240. [PMID: 39759114 PMCID: PMC11697063 DOI: 10.1016/j.gendis.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2025] Open
Abstract
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment. This review focuses on the role and function of ubiquitination and deubiquitination modification in the tumor microenvironment while discussing the prospect of developing inhibitors targeting ubiquity-related enzymes, thereby providing ideas for future research in cancer therapy.
Collapse
Affiliation(s)
- Yulan Huang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuan Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Sun S, Ni J, Liu J, Tan J, Jin R, Li H, Wu X. Ubiquitin-Conjugating Enzyme Ubc13 in Macrophages Suppresses Lung Tumor Progression Through Inhibiting PD-L1 Expression. Eur J Immunol 2025; 55:e202451118. [PMID: 39711265 DOI: 10.1002/eji.202451118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Tumor cell-intrinsic ubiquitin-conjugating enzyme Ubc13 promotes tumorigenesis, yet how Ubc13 in immune cell compartments regulates tumor progression remains elusive. Here, we show that myeloid-specific deletion of Ubc13 (Ubc13fl/flLyz2Cre) leads to accelerated transplanted lung tumor growth in mice. Compared with their littermate controls, tumor-bearing Ubc13fl/flLyz2Cre mice had lower proliferation and effector function of CD8+ T lymphocytes, accompanied by increased infiltration of myeloid-derived suppressor cells within the tumor microenvironment. Mechanistically, Ubc13 deficiency leads to upregulation of Arg1 and PD-L1, the latter is modulated by reduced Ubc13-mediated K63-linked polyubiquitination and increasing activation of Akt, thereby inducing skewness to protumoral polarization and immunosuppressive manifestation. Taken together, we reveal that macrophage-intrinsic Ubc13 restrains lung tumor progression, indicating that activating Ubc13 in macrophages could be an effective immunotherapeutic regimen for lung cancer.
Collapse
Affiliation(s)
- Siying Sun
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juofang Tan
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runsen Jin
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Luo C, Lu Y, Fang Q, Lu J, Zhan P, Xi W, Wang J, Chen X, Yao Q, Wang F, Yin Z, Xie C. TRIM55 restricts the progression of hepatocellular carcinoma through ubiquitin-proteasome-mediated degradation of NF90. Cell Death Discov 2024; 10:441. [PMID: 39420007 PMCID: PMC11487063 DOI: 10.1038/s41420-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Tripartite motif containing 55 (TRIM55), also known as muscle-specific ring finger 2 (Murf2), belongs to the TRIM protein family and serves as an E3 ligase. Recently, the function and mechanism of TRIM55 in the advancement of solid tumors have been elucidated. However, the role of TRIM55 and its corresponding protein substrates in HCC remains incompletely explored. In this study, we observed a significant reduction in TRIM55 expression in HCC tissues. The downregulation of TRIM55 expression correlated with larger tumor size and elevated serum alpha-fetoprotein (AFP), and predicted unfavorable overall and tumor-free survival. Functional experiments demonstrated that TRIM55 suppressed the proliferation, migration, and invasion of HCC cells in vitro, as well as hindered HCC growth and metastasis in vivo. Additionally, TRIM55 exhibited a suppressive effect on HCC angiogenesis. Mechanistically, TRIM55 interacted with nuclear factor 90 (NF90), a double-stranded RNA-binding protein responsible for regulating mRNA stability and gene transcription, thereby facilitating its degradation via the ubiquitin-proteasome pathway. Furthermore, TRIM55 attenuated the association between NF90 and the mRNA of HIF1α and TGF-β2, consequently reducing their stability and inactivating the HIF1α/VEGF and TGFβ/Smad signaling pathways. In conclusion, our findings unveil the important roles of TRIM55 in suppressing the progression of HCC partly by promoting the degradation of NF90 and subsequently modulating its downstream pathways, including HIF1α/VEGF and TGFβ/Smad signaling.
Collapse
Affiliation(s)
- Changhong Luo
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Yuyan Lu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Qinliang Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Jing Lu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Ping Zhan
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Wenqing Xi
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China
| | - Jinzhu Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xijun Chen
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China
| | - Qin Yao
- Central Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China.
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China.
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
4
|
Liu X, Zheng M, Zhang H, Feng B, Li J, Zhang Y, Zhang J, Zhao N, Li C, Song N, Song B, Yang D, Chen J, Qi A, Zhao L, Luo C, Zang Y, Liu H, Li J, Zhang B, Zhou Y, Zheng J. Characterization and noncovalent inhibition of the K63-deubiquitinase activity of SARS-cov-2 PLpro. Antiviral Res 2024; 228:105944. [PMID: 38914283 DOI: 10.1016/j.antiviral.2024.105944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
SARS-CoV-2 papain-like protease (PLpro) could facilitate viral replication and host immune evasion by respectively hydrolyzing viral polyprotein and host ubiquitin conjugates, thereby rendering itself as an important antiviral target. Yet few noncovalent PLpro inhibitors of SARS-CoV-2 have been reported with improved directed towards pathogenic deubiquitinating activities inhibition. Herein, we report that coronavirus PLpro proteases have distinctive substrate bias and are conserved to deubiquitylate K63-linked polyubiquitination, thereby attenuating host type I interferon response. We identify a noncovalent compound specifically optimized towards halting the K63-deubiquitinase activity of SARS-CoV-2 PLpro, but not other coronavirus (CoV) counterparts or host deubiquitinase. Contrasting with GRL-0617, a SARS-CoV-1 PLpro inhibitor, SIMM-036 is 50-fold and 7-fold (half maximal inhibitory concentration (IC50)) more potent to inhibit viral replication during SARS-CoV-2 infection and restore the host interferon-β (IFN-β) response in human angiotensin-converting enzyme 2 (hACE2)-HeLa cells, respectively. Structure-activity relationship (SAR) analysis further reveals the importance of BL2 groove of PLpro, which could determine the selectivity of K63-deubiquitinase activity of the enzyme.
Collapse
Affiliation(s)
- Xin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Miao Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongqing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bo Feng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaqi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yanan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Ji Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Na Zhao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chaoqiang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dongyuan Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ao Qi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linxiang Zhao
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cheng Luo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Zang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Renz C, Asimaki E, Meister C, Albanèse V, Petriukov K, Krapoth NC, Wegmann S, Wollscheid HP, Wong RP, Fulzele A, Chen JX, Léon S, Ulrich HD. Ubiquiton-An inducible, linkage-specific polyubiquitylation tool. Mol Cell 2024; 84:386-400.e11. [PMID: 38103558 PMCID: PMC10804999 DOI: 10.1016/j.molcel.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
The posttranslational modifier ubiquitin regulates most cellular processes. Its ability to form polymeric chains of distinct linkages is key to its diverse functionality. Yet, we still lack the experimental tools to induce linkage-specific polyubiquitylation of a protein of interest in cells. Here, we introduce a set of engineered ubiquitin protein ligases and matching ubiquitin acceptor tags for the rapid, inducible linear (M1-), K48-, or K63-linked polyubiquitylation of proteins in yeast and mammalian cells. By applying the so-called "Ubiquiton" system to proteasomal targeting and the endocytic pathway, we validate this tool for soluble cytoplasmic and nuclear as well as chromatin-associated and integral membrane proteins and demonstrate how it can be used to control the localization and stability of its targets. We expect that the Ubiquiton system will serve as a versatile, broadly applicable research tool to explore the signaling functions of polyubiquitin chains in many biological contexts.
Collapse
Affiliation(s)
- Christian Renz
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Evrydiki Asimaki
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Kirill Petriukov
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Nils C Krapoth
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sabrina Wegmann
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | | | - Ronald P Wong
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Amitkumar Fulzele
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sébastien Léon
- Université de Paris, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
6
|
Saha A, Suga H, Brik A. Combining Chemical Protein Synthesis and Random Nonstandard Peptides Integrated Discovery for Modulating Biological Processes. Acc Chem Res 2023; 56:1953-1965. [PMID: 37312234 PMCID: PMC10357587 DOI: 10.1021/acs.accounts.3c00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 06/15/2023]
Abstract
Chemical manipulation of naturally occurring peptides offers a convenient route for generating analogs to screen against different therapeutic targets. However, the limited success of the conventional chemical libraries has urged chemical biologists to adopt alternative methods such as phage and mRNA displays and create libraries of a large number of variants for the screening and selection of novel peptides. Messenger RNA (mRNA) display provides great advantages in terms of the library size and the straightforward recovery of the selected polypeptide sequences. Importantly, the integration of the flexible in vitro translation (FIT) system with the mRNA display provides the basis of the random nonstandard peptides integrated discovery (RaPID) approach for the introduction of diverse nonstandard motifs, such as unnatural side chains and backbone modifications. This platform allows the discovery of functionalized peptides with tight binding against virtually any protein of interest (POI) and therefore shows great potential in the pharmaceutical industry. However, this method has been limited to targets generated by recombinant expression, excluding its applications to uniquely modified proteins, particularly those with post-translational modifications.Chemical protein synthesis allows a wide range of changes to the protein's chemical composition to be performed, including side chain and backbone modifications and access to post-translationally modified proteins, which are often inaccessible or difficult to achieve via recombinant expression methods. Notably, d-proteins can be prepared via chemical synthesis, which has been used in mirror image phase display for the discovery of nonproteolytic d-peptide binders.Combining chemical protein synthesis with the RaPID system allows the production of a library of trillions of cyclic peptides and subsequent selection for novel cyclic peptide binders targeting a uniquely modified protein to assist in studying its unexplored biology and possibly the discovery of new drug candidates.Interestingly, the small post-translational modifier protein ubiquitin (Ub), with its various polymeric forms, regulates directly or indirectly many biochemical processes, e.g., proteasomal degradation, DNA damage repair, cell cycle regulation, etc. In this Account, we discuss combining the RaPID approach against various synthetic Ub chains for selecting effective and specific macrocyclic peptide binders. This offers an advancement in modulating central Ub pathways and provides opportunities in drug discovery areas associated with Ub signaling. We highlight experimental approaches and conceptual adaptations required to design and modulate the activity of Lys48- and Lys63-linked Ub chains by macrocyclic peptides. We also present the applications of these approaches to shed light on related biological activities and ultimately their activity against cancer. Finally, we contemplate future developments still pending in this exciting multidisciplinary field.
Collapse
Affiliation(s)
- Abhishek Saha
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Ashraf Brik
- Schulich
Faculty of Chemistry, Technion-Israel Institute
of Technology, Haifa 3200008, Israel
| |
Collapse
|
7
|
Liu J, Nie B, Yu B, Xu F, Zhang Q, Wang Y, Xu W. Rice ubiquitin-conjugating enzyme OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37102249 PMCID: PMC10363768 DOI: 10.1111/pbi.14059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Ubc13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity still remain largely unknown. Here, we used molecular biological, pathological, biochemical, and genetic approaches to evaluate the roles of rice OsUbc13 in response to pathogens. The OsUbc13-RNA interference (RNAi) lines with lesion mimic phenotypes displayed a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in defence-related genes expression or hormones as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. Strikingly, OsUbc13 directly interacts with OsSnRK1a, which is the α catalytic subunit of SnRK1 (sucrose non-fermenting-1-related protein kinase-1) and acts as a positive regulator of broad-spectrum disease resistance in rice. In the OsUbc13-RNAi plants, although the protein level of OsSnRK1a did not change, its activity and ABA sensitivity were obviously enhanced, and the K63-linked polyubiquitination was weaker than that of wild-type Dongjin (DJ). Overexpression of the deubiquitinase-encoding gene OsOTUB1.1 produced similar effects with inhibition of OsUbc13 in affecting immunity responses, M. oryzae resistance, OsSnRK1a ubiquitination, and OsSnRK1a activity. Furthermore, re-interfering with OsSnRK1a in one OsUbc13-RNAi line (Ri-3) partially restored its M. oryzae resistance to a level between those of Ri-3 and DJ. Our data demonstrate OsUbc13 negatively regulates immunity against pathogens by enhancing the activity of OsSnRK1a.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Boling Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feiyun Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhang
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ya Wang
- Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Resources and Environment, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Gentili M, Liu B, Papanastasiou M, Dele-Oni D, Schwartz MA, Carlson RJ, Al'Khafaji AM, Krug K, Brown A, Doench JG, Carr SA, Hacohen N. ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling. Nat Commun 2023; 14:611. [PMID: 36739287 PMCID: PMC9899276 DOI: 10.1038/s41467-023-36132-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/17/2023] [Indexed: 02/06/2023] Open
Abstract
Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.
Collapse
Affiliation(s)
| | - Bingxu Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | | | | | - Marc A Schwartz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rebecca J Carlson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts Institute of Technology, Department of Health Sciences and Technology, Cambridge, MA, USA
| | | | - Karsten Krug
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Zhao T, Liu C, Liu L, Wang X, Liu C. Aging-accelerated differential production and aggregation of STAT3 protein in neuronal cells and neural stem cells in the male mouse spinal cord. Biogerontology 2023; 24:137-148. [PMID: 36550376 DOI: 10.1007/s10522-022-10004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Aging-affected cellular compositions of the spinal cord are diverse and region specific. Age leads to the accumulation of abnormal protein aggregates and dysregulation of proteostasis. Dysregulated proteostasis and protein aggregates result from dysfunction of the ubiquitin-proteasome system (UPS) and autophagy. Understanding the molecular mechanisms of spinal cord aging is essential and important for scientists to discover new therapies for rejuvenation. We found age-related increases in STAT3 and decreases in Tuj1 in aging mouse spinal cords, which was characterized by increased expression of P16. Coaggregation of lysine-48 and lysine-63 ubiquitin with STAT3 was revealed in aging mouse spinal cords. STAT3-ubiquitin aggregates formed via lysine-48 and lysine-63 linkages were increased significantly in the aging spinal cords but not in central canal ependymal cells or neural stem cells in the spinal cord. These results highlight the increase in STAT3 and its region-specific aggregation and ubiquitin-conjugation during spinal cord aging.
Collapse
Affiliation(s)
- Tianyi Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Institute of Stem Cell and Tissue Engineering, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chang Liu
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinmeng Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Institute of Stem Cell and Tissue Engineering, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Institute of Stem Cell and Tissue Engineering, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Zhang R, Hou X, Wang C, Li J, Zhu J, Jiang Y, Hou F. The Endoplasmic Reticulum ATP13A1 is Essential for MAVS-Mediated Antiviral Innate Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203831. [PMID: 36216581 PMCID: PMC9685455 DOI: 10.1002/advs.202203831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
RIG-I-MAVS signaling pathway is essential for efficient innate immune response against virus infection. Though many components have been identified in RIG-I pathway and it can be partially reconstituted in vitro, detailed mechanisms involved in cells are still unclear. Here, a genome-wide CRISPR-Cas9 screen is performed using an engineered cell line IFNB-P2A-GSDMD-N, and ATP13A1, a putative dislocase located on the endoplasmic reticulum, is identified as an important regulator of RIG-I pathway. ATP13A1 deficiency abolishes RIG-I-mediated antiviral innate immune response due to compromised MAVS stability and crippled signaling potency of residual MAVS. Moreover, it is discovered that MAVS is subject to protease-mediated degradation in the absence of ATP13A1. As homozygous Atp13a1 knockout mice result in developmental retardation and embryonic lethality, Atp13a1 conditional knockout mice are generated. Myeloid-specific Atp13a1-deficient mice are viable and susceptible to RNA virus infection. Collectively, the findings reveal that ATP13A1 is indispensable for the stability and activation of MAVS and a proper antiviral innate immune response.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Xianteng Hou
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Changwan Wang
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jiaxin Li
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Junyan Zhu
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Yingbo Jiang
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Fajian Hou
- State Key Laboratory of Molecular BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
11
|
Bilkei‐Gorzo O, Heunis T, Marín‐Rubio JL, Cianfanelli FR, Raymond BBA, Inns J, Fabrikova D, Peltier J, Oakley F, Schmid R, Härtlova A, Trost M. The E3 ubiquitin ligase RNF115 regulates phagosome maturation and host response to bacterial infection. EMBO J 2022; 41:e108970. [PMID: 36281581 PMCID: PMC9713710 DOI: 10.15252/embj.2021108970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is a key process in innate immunity and homeostasis. After particle uptake, newly formed phagosomes mature by acquisition of endolysosomal enzymes. Macrophage activation by interferon gamma (IFN-γ) increases microbicidal activity, but delays phagosomal maturation by an unknown mechanism. Using quantitative proteomics, we show that phagosomal proteins harbour high levels of typical and atypical ubiquitin chain types. Moreover, phagosomal ubiquitylation of vesicle trafficking proteins is substantially enhanced upon IFN-γ activation of macrophages, suggesting a role in regulating phagosomal functions. We identified the E3 ubiquitin ligase RNF115, which is enriched on phagosomes of IFN-γ activated macrophages, as an important regulator of phagosomal maturation. Loss of RNF115 protein or ligase activity enhanced phagosomal maturation and increased cytokine responses to bacterial infection, suggesting that both innate immune signalling from the phagosome and phagolysosomal trafficking are controlled through ubiquitylation. RNF115 knock-out mice show less tissue damage in response to S. aureus infection, indicating a role of RNF115 in inflammatory responses in vivo. In conclusion, RNF115 and phagosomal ubiquitylation are important regulators of innate immune functions during bacterial infections.
Collapse
Affiliation(s)
- Orsolya Bilkei‐Gorzo
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of BiomedicineUniversity of GothenburgGothenburgSweden,MRC Protein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK
| | - Tiaan Heunis
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | - Joseph Inns
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Daniela Fabrikova
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of BiomedicineUniversity of GothenburgGothenburgSweden
| | - Julien Peltier
- MRC Protein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK,Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Fiona Oakley
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK,Newcastle Fibrosis Research GroupNewcastle UniversityNewcastle upon TyneUK
| | - Ralf Schmid
- Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLeicesterUK,Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of BiomedicineUniversity of GothenburgGothenburgSweden,MRC Protein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK,Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation UnitUniversity of DundeeDundeeUK,Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
12
|
Yang K, Xiao W. Functions and mechanisms of the Ubc13-UEV complex and lysine 63-linked polyubiquitination in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5372-5387. [PMID: 35640002 DOI: 10.1093/jxb/erac239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is one of the best-known post-translational modifications in eukaryotes, in which different linkage types of polyubiquitination result in different outputs of the target proteins. Distinct from the well-characterized K48-linked polyubiquitination that usually serves as a signal for degradation of the target protein, K63-linked polyubiquitination often requires a unique E2 heterodimer Ubc13-UEV and alters the target protein activity instead of marking it for degradation. This review focuses on recent advances on the roles of Ubc13-UEV-mediated K63-linked polyubiquitination in plant growth, development, and response to environmental stresses.
Collapse
Affiliation(s)
- Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
He J, Hu S, Xie Y, Wei Y, Zhang Q, Pi X, Qi Z. Molecular characterization and expression analysis of TRIF, TRAF6, and TBK1 of golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:604-610. [PMID: 35809882 DOI: 10.1016/j.fsi.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF), tumor necrosis factor receptor-associated factor 6 (TRAF6) and TANK-binding kinase 1 (TBK1) are critical signal transducers in toll-like receptors (TLRs) signaling pathway. In the present study, TRIF, TRAF6 and TBK1 were characterized from golden pompano (Trachinotus ovatus), named as TroTRIF, TroTRAF6 and TroTBK1, respectively. The full cDNA length of TroTRIF, TroTRAF6 and TroTBK1 was 2297 bp, 2293 bp, and 2482 bp, which respectively encoded 589, 573 and 723 amino acids. The deduced amino acids sequences of TroTRIF, TroTRAF6 and TroTBK1 contained conserved motifs, similar to their counterparts in other vertebrates. Phylogenetic tree analysis revealed that TroTRIF, TroTRAF6 and TroTBK1 were well clustered with their counterparts in other fish species. Quantitative Real-Time PCR (qPCR) analysis showed that TroTRIF, TroTBK1 and TroTRAF6 were detected in all examined tissues of healthy fish, but shared distinct transcript levels. Moreover, the expressions of TroTRIF, TroTBK1 and TroTRAF6 were generally induced by polyriboinosinic-polyribocytidylic acid (polyI:C), lipopolysaccharide (LPS), and Vibrio alginolyticus stimulation in vivo, indicating their critical roles in the immune defense of golden pompano against pathogen invasion. Our results provide valuable information for understanding the functions of these genes in golden pompano.
Collapse
Affiliation(s)
- Jinquan He
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China
| | - Shu Hu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China
| | - Yushuai Xie
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China
| | - Youchuan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi Autonomous Region, 530004, China.
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Xiangyu Pi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| |
Collapse
|
14
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
15
|
Wegmann S, Meister C, Renz C, Yakoub G, Wollscheid HP, Takahashi DT, Mikicic I, Beli P, Ulrich HD. Linkage reprogramming by tailor-made E3s reveals polyubiquitin chain requirements in DNA-damage bypass. Mol Cell 2022; 82:1589-1602.e5. [PMID: 35263628 PMCID: PMC9098123 DOI: 10.1016/j.molcel.2022.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
A polyubiquitin chain can adopt a variety of shapes, depending on how the ubiquitin monomers are joined. However, the relevance of linkage for the signaling functions of polyubiquitin chains is often poorly understood because of our inability to control or manipulate this parameter in vivo. Here, we present a strategy for reprogramming polyubiquitin chain linkage by means of tailor-made, linkage- and substrate-selective ubiquitin ligases. Using the polyubiquitylation of the budding yeast replication factor PCNA in response to DNA damage as a model case, we show that altering the features of a polyubiquitin chain in vivo can change the fate of the modified substrate. We also provide evidence for redundancy between distinct but structurally similar linkages, and we demonstrate by proof-of-principle experiments that the method can be generalized to targets beyond PCNA. Our study illustrates a promising approach toward the in vivo analysis of polyubiquitin signaling.
Collapse
Affiliation(s)
- Sabrina Wegmann
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Cindy Meister
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - George Yakoub
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | | | - Diane T Takahashi
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, 10413 Illkirch, Strasbourg, France
| | - Ivan Mikicic
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany.
| |
Collapse
|
16
|
Site-specific ubiquitination of MLKL targets it to endosomes and targets Listeria and Yersinia to the lysosomes. Cell Death Differ 2022; 29:306-322. [PMID: 34999730 PMCID: PMC8816944 DOI: 10.1038/s41418-021-00924-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation of the pseudokinase mixed lineage kinase domain-like protein (MLKL) by the protein kinase RIPK3 targets MLKL to the cell membrane, where it triggers necroptotic cell death. We report that conjugation of K63-linked polyubiquitin chains to distinct lysine residues in the N-terminal HeLo domain of phosphorylated MLKL (facilitated by the ubiquitin ligase ITCH that binds MLKL via a WW domain) targets MLKL instead to endosomes. This results in the release of phosphorylated MLKL within extracellular vesicles. It also prompts enhanced endosomal trafficking of intracellular bacteria such as Listeria monocytogenes and Yersinia enterocolitica to the lysosomes, resulting in decreased bacterial yield. Thus, MLKL can be directed by specific covalent modifications to differing subcellular sites, whence it signals either for cell death or for non-deadly defense mechanisms.
Collapse
|
17
|
Madiraju C, Novack JP, Reed JC, Matsuzawa SI. K63 ubiquitination in immune signaling. Trends Immunol 2022; 43:148-162. [PMID: 35033428 PMCID: PMC8755460 DOI: 10.1016/j.it.2021.12.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022]
Abstract
Ubc13-catalyzed K63 ubiquitination is a major control point for immune signaling. Recent evidence has shown that the control of multiple immune functions, including chronic inflammation, pathogen responses, lymphocyte activation, and regulatory signaling, is altered by K63 ubiquitination. In this review, we detail the novel cellular sensors that are dependent on K63 ubiquitination for their function in the immune signaling network. Many pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can target K63 ubiquitination to inhibit pathogen immune responses; we describe novel details of the pathways involved and summarize recent clinically relevant SARS-CoV-2-specific responses. We also discuss recent evidence that regulatory T cell (Treg) versus T helper (TH) 1 and TH17 cell subset regulation might involve K63 ubiquitination. Knowledge gaps that merit future investigation and clinically relevant pathways are also addressed.
Collapse
Affiliation(s)
| | - Jeffrey P Novack
- Pacific Northwest University of Health Sciences, Yakima, WA, USA
| | - John C Reed
- Sanofi, Paris, France & University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Lenoir JJ, Parisien JP, Horvath CM. Immune regulator LGP2 targets Ubc13/UBE2N to mediate widespread interference with K63 polyubiquitination and NF-κB activation. Cell Rep 2021; 37:110175. [PMID: 34965427 DOI: 10.1016/j.celrep.2021.110175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Lysine 63-linked polyubiquitin (K63-Ub) chains activate a range of cellular immune and inflammatory signaling pathways, including the mammalian antiviral response. Interferon and antiviral genes are triggered by TRAF family ubiquitin ligases that form K63-Ub chains. LGP2 is a feedback inhibitor of TRAF-mediated K63-Ub that can interfere with diverse immune signaling pathways. Our results demonstrate that LGP2 inhibits K63-Ub by association with and sequestration of the K63-Ub-conjugating enzyme, Ubc13/UBE2N. The LGP2 helicase subdomain, Hel2i, mediates protein interaction that engages and inhibits Ubc13/UBE2N, affecting control over a range of K63-Ub ligase proteins, including TRAF6, TRIM25, and RNF125, all of which are inactivated by LGP2. These findings establish a unifying mechanism for LGP2-mediated negative regulation that can modulate a variety of K63-Ub signaling pathways.
Collapse
Affiliation(s)
- Jessica J Lenoir
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | | | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
19
|
Ang RL, Chan M, Legarda D, Sundberg JP, Sun SC, Gillespie VL, Chun N, Heeger PS, Xiong H, Lira SA, Ting AT. Immune dysregulation in SHARPIN-deficient mice is dependent on CYLD-mediated cell death. Proc Natl Acad Sci U S A 2021; 118:e2001602118. [PMID: 34887354 PMCID: PMC8685717 DOI: 10.1073/pnas.2001602118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/31/2022] Open
Abstract
SHARPIN, together with RNF31/HOIP and RBCK1/HOIL1, form the linear ubiquitin chain assembly complex (LUBAC) E3 ligase that catalyzes M1-linked polyubiquitination. Mutations in RNF31/HOIP and RBCK/HOIL1 in humans and Sharpin in mice lead to autoinflammation and immunodeficiency, but the mechanism underlying the immune dysregulation remains unclear. We now show that the phenotype of the Sharpincpdm/cpdm mice is dependent on CYLD, a deubiquitinase previously shown to mediate removal of K63-linked polyubiquitin chains. Dermatitis, disrupted splenic architecture, and loss of Peyer's patches in the Sharpincpdm/cpdm mice were fully reversed in Sharpincpdm/cpdm Cyld-/- mice. We observed enhanced association of RIPK1 with the death-signaling Complex II following TNF stimulation in Sharpincpdm/cpdm cells, a finding dependent on CYLD since we observed reversal in Sharpincpdm/cpdm Cyld-/- cells. Enhanced RIPK1 recruitment to Complex II in Sharpincpdm/cpdm cells correlated with impaired phosphorylation of CYLD at serine 418, a modification reported to inhibit its enzymatic activity. The dermatitis in the Sharpincpdm/cpdm mice was also ameliorated by the conditional deletion of Cyld using LysM-cre or Cx3cr1-cre indicating that CYLD-dependent death of myeloid cells is inflammatory. Our studies reveal that under physiological conditions, TNF- and RIPK1-dependent cell death is suppressed by the linear ubiquitin-dependent inhibition of CYLD. The Sharpincpdm/cpdm phenotype illustrates the pathological consequences when CYLD inhibition fails.
Collapse
Affiliation(s)
- Rosalind L Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030
| | - Virginia L Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicholas Chun
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter S Heeger
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Medicine, Translational Transplant Research Center, Recanati Miller Transplant Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Huabao Xiong
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
- Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
20
|
Yao D, Arguez MA, He P, Bent AF, Song J. Coordinated regulation of plant immunity by poly(ADP-ribosyl)ation and K63-linked ubiquitination. MOLECULAR PLANT 2021; 14:2088-2103. [PMID: 34418551 PMCID: PMC9070964 DOI: 10.1016/j.molp.2021.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/24/2021] [Accepted: 08/15/2021] [Indexed: 05/02/2023]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a posttranslational modification reversibly catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs) and plays a key role in multiple cellular processes. The molecular mechanisms by which PARylation regulates innate immunity remain largely unknown in eukaryotes. Here we show that Arabidopsis UBC13A and UBC13B, the major drivers of lysine 63 (K63)-linked polyubiquitination, directly interact with PARPs/PARGs. Activation of pathogen-associated molecular pattern (PAMP)-triggered immunity promotes these interactions and enhances PARylation of UBC13. Both parp1 parp2 and ubc13a ubc13b mutants are compromised in immune responses with increased accumulation of total pathogenesis-related (PR) proteins but decreased accumulation of secreted PR proteins. Protein disulfide-isomerases (PDIs), essential components of endoplasmic reticulum quality control (ERQC) that ensure proper folding and maturation of proteins destined for secretion, complex with PARPs/PARGs and are PARylated upon PAMP perception. Significantly, PARylation of UBC13 regulates K63-linked ubiquitination of PDIs, which may further promote their disulfide isomerase activities for correct protein folding and subsequent secretion. Taken together, these results indicate that plant immunity is coordinately regulated by PARylation and K63-linked ubiquitination.
Collapse
Affiliation(s)
- Dongsheng Yao
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA
| | - Marcus A Arguez
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA
| | - Ping He
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX 75252, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells 2021; 10:2374. [PMID: 34572023 PMCID: PMC8469536 DOI: 10.3390/cells10092374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins. Importantly, inactivation in cancer of E3 enzymes that regulates the physiological degradation of oncoproteins, results in tumor cells that accumulate multiple active oncoproteins with prolonged half-lives, leading to the development of "degradation-resistant" cancer cells. In addition, specific sequences may enable ubiquitinated proteins to evade degradation at the 26S proteasome. While the ubiquitin-proteasome pathway was originally discovered as central for protein degradation, in cancer cells a ubiquitin-dependent protein stabilization pathway actively translates transient mitogenic signals into long-lasting protein stabilization and enhances the activity of key oncoproteins. A central enzyme in this pathway is the ubiquitin ligase RNF4. An intimate link connects protein stabilization with tumorigenesis in experimental models as well as in the clinic, suggesting that pharmacological inhibition of protein stabilization has potential for personalized medicine in cancer. In this review, we highlight old observations and recent advances in our knowledge regarding protein stabilization.
Collapse
Affiliation(s)
| | | | | | - Amir Orian
- Rappaport Faculty of Medicine, R-TICC, Technion-IIT, Efron St. Bat-Galim, Haifa 3109610, Israel; (Y.A.A.); (A.O.-V.); (E.B.-L.)
| |
Collapse
|
22
|
MEKK1-dependent activation of the CRL4 complex is important for DNA damage-induced degradation of p21 and DDB2 and cell survival. Mol Cell Biol 2021; 41:e0008121. [PMID: 34251884 PMCID: PMC8462458 DOI: 10.1128/mcb.00081-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cullin-4 ubiquitin ligase (CRL4) complexes are differentially composed and highly dynamic protein assemblies that control many biological processes including the global genome nucleotide excision repair (GG-NER) pathway. Here we identified the kinase mitogen-activated protein kinase kinase kinase 1 (MEKK1) as a novel constitutive interactor of a cytosolic CRL4 complex that disassembles after DNA damage due to the Caspase-mediated cleavage of MEKK1. The kinase activity of MEKK1 was important to trigger auto-ubiquitination of the CRL4 complex by K48- and K63-linked ubiquitin chains. MEKK1 knockdown prohibited DNA damage-induced degradation of the CRL4 component DNA-damage binding protein 2 (DDB2) and the CRL4 substrate p21 and also cell recovery and survival. A ubiquitin replacement strategy revealed a contribution of K63-branched ubiquitin chains for DNA damage-induced DDB2/p21 decay, cell cycle regulation and cell survival. These data might have also implications for cancer, as frequently occurring mutations of MEKK1 might have an impact on genome stability and the therapeutic efficacy of CRL4-dependent immunomodulatory drugs such as thalidomide-derivatives.
Collapse
|
23
|
Structural basis for specific recognition of K6-linked polyubiquitin chains by the TAB2 NZF domain. Biophys J 2021; 120:3355-3362. [PMID: 34242591 DOI: 10.1016/j.bpj.2021.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
TAK1-binding protein 2 (TAB2) has generally been considered to bind specifically to K63-linked polyubiquitin chains via its C-terminal Npl4 zinc-finger (NZF) domain. However, a recent study showed that the NZF domain of TAB2 (TAB2-NZF) could also interact with K6-linked polyubiquitin chains. Here, we report the crystal structure of TAB2-NZF in complex with K6-linked diubiquitin (K6-Ub2) at 1.99-Å resolution. TAB2-NZF simultaneously interacts with the distal and proximal ubiquitin moieties of K6-Ub2. By comparing the structures of TAB2-NZF in complex with K6-Ub2 and with K63-linked diubiquitin (K63-Ub2), we reveal that the binding mechanism of TAB2-NZF with K6-Ub2 is similar to that with K63-Ub2, except for the flexible C-terminal region of the distal ubiquitin. Therefore, we conclude that the C-terminal flexibility of the distal ubiquitin contributes to the dual specificity of TAB2-NZF toward K6- and K63-linked ubiquitin chains. This study provides important insights into the functions of K6-linked ubiquitin chains, which are currently unclear.
Collapse
|
24
|
Ni J, Guan C, Liu H, Huang X, Yue J, Xiang H, Jiang Z, Tao Y, Cao W, Liu J, Wang Z, Wang Y, Wu X. Ubc13 Promotes K63-Linked Polyubiquitination of NLRP3 to Activate Inflammasome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:2376-2385. [PMID: 33893171 DOI: 10.4049/jimmunol.2001178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
NLRP3 inflammasome plays an important role in innate immune system through recognizing pathogenic microorganisms and danger-associated molecules. Deubiquitination of NLRP3 has been shown to be essential for its activation, yet the functions of Ubc13, the K63-linked specific ubiquitin-conjugating enzyme E2, in NLRP3 inflammasome activation are not known. In this study, we found that in mouse macrophages, Ubc13 knockdown or knockout dramatically impaired NLRP3 inflammasome activation. Catalytic activity is required for Ubc13 to control NLRP3 activation, and Ubc13 pharmacological inhibitor significantly attenuates NLRP3 inflammasome activation. Mechanistically, Ubc13 associates with NLRP3 and promotes its K63-linked polyubiquitination. Through mass spectrum and biochemical analysis, we identified lysine 565 and lysine 687 as theK63-linked polyubiquitination sites of NLRP3. Collectively, our data suggest that Ubc13 potentiates NLRP3 inflammasome activation via promoting site-specific K63-linked ubiquitination of NLRP3. Our study sheds light on mechanisms of NLRP3 inflammasome activation and identifies that targeting Ubc13 could be an effective therapeutic strategy for treating aberrant NLRP3 inflammasome activation-induced pathogenesis.
Collapse
Affiliation(s)
- Jun Ni
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Guan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinnan Yue
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongrui Xiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Jiang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexiao Tao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenyi Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yugang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Pei S, Huang M, Huang J, Zhu X, Wang H, Romano S, Deng X, Wang Y, Luo Y, Hao S, Xu J, Yu T, Zhu Q, Yuan J, Shen K, Liu Z, Hu G, Peng C, Luo Q, Wen Z, Dai D, Xiao Y. BFAR coordinates TGFβ signaling to modulate Th9-mediated cancer immunotherapy. J Exp Med 2021; 218:212036. [PMID: 33914044 PMCID: PMC8091105 DOI: 10.1084/jem.20202144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023] Open
Abstract
TGFβ is essential for the generation of anti-tumor Th9 cells; on the other hand, it causes resistance against anti-tumor immunity. Despite recent progress, the underlying mechanism reconciling the double-edged effect of TGFβ signaling in Th9-mediated cancer immunotherapy remains elusive. Here, we find that TGFβ-induced down-regulation of bifunctional apoptosis regulator (BFAR) represents the key mechanism preventing the sustained activation of TGFβ signaling and thus impairing Th9 inducibility. Mechanistically, BFAR mediates K63-linked ubiquitination of TGFβR1 at K268, which is critical to activate TGFβ signaling. Thus, BFAR deficiency or K268R knock-in mutation suppresses TGFβR1 ubiquitination and Th9 differentiation, thereby inhibiting Th9-mediated cancer immunotherapy. More interestingly, BFAR-overexpressed Th9 cells exhibit promising therapeutic efficacy to curtail tumor growth and metastasis and promote the sensitivity of anti–PD-1–mediated checkpoint immunotherapy. Thus, our findings establish BFAR as a key TGFβ-regulated gene to fine-tune TGFβ signaling that causes Th9 induction insensitivity, and they highlight the translational potential of BFAR in promoting Th9-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Pei
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, Federico II, Naples, Italy
| | - Xiuyu Deng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yixiao Luo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shumeng Hao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Yu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingchen Zhu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia Yuan
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiqiang Liu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Guohong Hu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongfang Dai
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
26
|
Du X, Song H, Shen N, Hua R, Yang G. The Molecular Basis of Ubiquitin-Conjugating Enzymes (E2s) as a Potential Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms22073440. [PMID: 33810518 PMCID: PMC8037234 DOI: 10.3390/ijms22073440] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2s) are one of the three enzymes required by the ubiquitin-proteasome pathway to connect activated ubiquitin to target proteins via ubiquitin ligases. E2s determine the connection type of the ubiquitin chains, and different types of ubiquitin chains regulate the stability and activity of substrate proteins. Thus, E2s participate in the regulation of a variety of biological processes. In recent years, the importance of E2s in human health and diseases has been particularly emphasized. Studies have shown that E2s are dysregulated in variety of cancers, thus it might be a potential therapeutic target. However, the molecular basis of E2s as a therapeutic target has not been described systematically. We reviewed this issue from the perspective of the special position and role of E2s in the ubiquitin-proteasome pathway, the structure of E2s and biological processes they are involved in. In addition, the inhibitors and microRNAs targeting E2s are also summarized. This article not only provides a direction for the development of effective drugs but also lays a foundation for further study on this enzyme in the future.
Collapse
|
27
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
28
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
29
|
Berruti G. Destruction or Reconstruction: A Subtle Liaison between the Proteolytic and Signaling Role of Protein Ubiquitination in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:215-240. [PMID: 34453739 DOI: 10.1007/978-3-030-77779-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ubiquitination is one of the most diverse forms of protein post-translational modification that changes the function of the landscape of substrate proteins in response to stimuli, without the need for "de novo" protein synthesis. Ubiquitination is involved in almost all aspects of eukaryotic cell biology, from the best-studied role in promoting the removal of faulty or unnecessary proteins by the way of the ubiquitin proteasome system and autophagy-lysosome pathway to the recruitment of proteins in specific non-proteolytic signaling pathways, as emerged by the more recent discoveries about the protein signature with peculiar types of ubiquitin chains. Spermatogenesis, on its own, is a complex cellular developmental process in which mitosis, meiosis, and cell differentiation coexist so to result in the continuous formation of haploid spermatozoa. Successful spermatogenesis is thus at the same time a mixed result of the precise expression and correct intracellular destination of structural proteins and enzymes, from one hand, and the fine removal by targeted degradation of unfolded or damaged proteins as well as of obsolete, outlived proteins, from the other hand. In this minireview, I will focus on the importance of the ubiquitin system all over the spermatogenic process, discussing both proteolytic and non-proteolytic functions of protein ubiquitination. Alterations in the ubiquitin system have been in fact implicated in pathologies leading to male infertility. Notwithstanding several aspects of the multifaceted world of the ubiquitin system have been clarified, the physiological meaning of the so-called ubiquitin code remains still partially elusive. The studies reviewed in this chapter provide information that could aid the investigators to pursue new promising discoveries in the understanding of human and animal reproductive potential.
Collapse
|
30
|
YAMAMOTO M, GOHDA J, AKIYAMA T, INOUE JI. TNF receptor-associated factor 6 (TRAF6) plays crucial roles in multiple biological systems through polyubiquitination-mediated NF-κB activation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:145-160. [PMID: 33840674 PMCID: PMC8062261 DOI: 10.2183/pjab.97.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
NF-κB was first identified in 1986 as a B cell-specific transcription factor inducing immunoglobulin κ light chain expression. Subsequent studies revealed that NF-κB plays important roles in development, organogenesis, immunity, inflammation, and neurological functions by spatiotemporally regulating cell proliferation, differentiation, and apoptosis in several cell types. Furthermore, studies on the signal pathways that activate NF-κB led to the discovery of TRAF family proteins with E3 ubiquitin ligase activity, which function downstream of the receptor. This discovery led to the proposal of an entirely new signaling mechanism concept, wherein K63-ubiquitin chains act as a scaffold for the signaling complex to activate downstream kinases. This concept has revolutionized ubiquitin studies by revealing the importance of the nonproteolytic functions of ubiquitin not only in NF-κB signaling but also in a variety of other biological systems. TRAF6 is the most diverged among the TRAF family proteins, and our studies uncovered its notable physiological and pathological functions.
Collapse
Affiliation(s)
- Mizuki YAMAMOTO
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jin GOHDA
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Taishin AKIYAMA
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Jun-ichiro INOUE
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Burge RJ, Damianou A, Wilkinson AJ, Rodenko B, Mottram JC. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathog 2020; 16:e1008784. [PMID: 33108402 PMCID: PMC7647121 DOI: 10.1371/journal.ppat.1008784] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function. The post-translational modification of proteins is key for allowing Leishmania parasites to transition between the different life cycle stages that exist in its insect vector and mammalian host. In particular, components of the ubiquitin system are important for the transformation of Leishmania from its insect (promastigote) to mammalian (amastigote) stage and normal infection in mice. However, little is known about the role of the enzymes that generate ubiquitin modifications in Leishmania. Here we characterise 28 enzymes of the ubiquitination pathway and show that many are required for life cycle progression or mouse infection by this parasite. Two proteins, UBC2 and UEV1, were selected for further study based on their importance in the promastigote to amastigote transition. We demonstrate that UBC2 and UEV1 form a heterodimer capable of carrying out ubiquitination and that the structural basis for this activity is conserved between Leishmania, Saccharomyces cerevisiae and humans. We also show that the interaction of UBC2 with UEV1 alters the nature of the ubiquitination activity performed by UBC2. Overall, we demonstrate the important role that ubiquitination enzymes play in the life cycle and infection process of Leishmania and explore the biochemistry underlying UBC2 and UEV1 function.
Collapse
Affiliation(s)
- Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Anthony J. Wilkinson
- York Biomedical Research Institute and York Structural Biology Laboratory, Department of Chemistry, University of York, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, the Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Renz C, Albanèse V, Tröster V, Albert TK, Santt O, Jacobs SC, Khmelinskii A, Léon S, Ulrich HD. Ubc13-Mms2 cooperates with a family of RING E3 proteins in budding yeast membrane protein sorting. J Cell Sci 2020; 133:jcs.244566. [PMID: 32265276 DOI: 10.1242/jcs.244566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Polyubiquitin chains linked via lysine (K) 63 play an important role in endocytosis and membrane trafficking. Their primary source is the ubiquitin protein ligase (E3) Rsp5/NEDD4, which acts as a key regulator of membrane protein sorting. The heterodimeric ubiquitin-conjugating enzyme (E2), Ubc13-Mms2, catalyses K63-specific polyubiquitylation in genome maintenance and inflammatory signalling. In budding yeast, the only E3 proteins known to cooperate with Ubc13-Mms2 so far is a nuclear RING finger protein, Rad5, involved in the replication of damaged DNA. Here, we report a contribution of Ubc13-Mms2 to the sorting of membrane proteins to the yeast vacuole via the multivesicular body (MVB) pathway. In this context, Ubc13-Mms2 cooperates with Pib1, a FYVE-RING finger protein associated with internal membranes. Moreover, we identified a family of membrane-associated FYVE-(type)-RING finger proteins as cognate E3 proteins for Ubc13-Mms2 in several species, and genetic analysis indicates that the contribution of Ubc13-Mms2 to membrane trafficking in budding yeast goes beyond its cooperation with Pib1. Thus, our results widely implicate Ubc13-Mms2 as an Rsp5-independent source of K63-linked polyubiquitin chains in the regulation of membrane protein sorting.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Christian Renz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Véronique Albanèse
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Vera Tröster
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Thomas K Albert
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043 Marburg, Germany
| | - Olivier Santt
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Susan C Jacobs
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Anton Khmelinskii
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Sébastien Léon
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
33
|
Xu N, Gulick J, Osinska H, Yu Y, McLendon PM, Shay-Winkler K, Robbins J, Yutzey KE. Ube2v1 Positively Regulates Protein Aggregation by Modulating Ubiquitin Proteasome System Performance Partially Through K63 Ubiquitination. Circ Res 2020; 126:907-922. [PMID: 32081062 DOI: 10.1161/circresaha.119.316444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
RATIONALE Compromised protein quality control can result in proteotoxic intracellular protein aggregates in the heart, leading to cardiac disease and heart failure. Defining the participants and understanding the underlying mechanisms of cardiac protein aggregation is critical for seeking therapeutic targets. We identified Ube2v1 (ubiquitin-conjugating enzyme E2 variant 1) in a genome-wide screen designed to identify novel effectors of the aggregation process. However, its role in the cardiomyocyte is undefined. OBJECTIVE To assess whether Ube2v1 regulates the protein aggregation caused by cardiomyocyte expression of a mutant αB crystallin (CryABR120G) and identify how Ube2v1 exerts its effect. METHODS AND RESULTS Neonatal rat ventricular cardiomyocytes were infected with adenoviruses expressing either wild-type CryAB (CryABWT) or CryABR120G. Subsequently, loss- and gain-of-function experiments were performed. Ube2v1 knockdown decreased aggregate accumulation caused by CryABR120G expression. Overexpressing Ube2v1 promoted aggregate formation in CryABWT and CryABR120G-expressing neonatal rat ventricular cardiomyocytes. Ubiquitin proteasome system performance was analyzed using a ubiquitin proteasome system reporter protein. Ube2v1 knockdown improved ubiquitin proteasome system performance and promoted the degradation of insoluble ubiquitinated proteins in CryABR120G cardiomyocytes but did not alter autophagic flux. Lys (K) 63-linked ubiquitination modulated by Ube2v1 expression enhanced protein aggregation and contributed to Ube2v1's function in regulating protein aggregate formation. Knocking out Ube2v1 exclusively in cardiomyocytes by using AAV9 (adeno-associated virus 9) to deliver multiplexed single guide RNAs against Ube2v1 in cardiac-specific Cas9 mice alleviated CryABR120G-induced protein aggregation, improved cardiac function, and prolonged lifespan in vivo. CONCLUSIONS Ube2v1 plays an important role in protein aggregate formation, partially by enhancing K63 ubiquitination during a proteotoxic stimulus. Inhibition of Ube2v1 decreases CryABR120G-induced aggregate formation through enhanced ubiquitin proteasome system performance rather than autophagy and may provide a novel therapeutic target to treat cardiac proteinopathies.
Collapse
Affiliation(s)
- Na Xu
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - James Gulick
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Hanna Osinska
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Yang Yu
- Division of Developmental Biology (Y.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Patrick M McLendon
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Kritton Shay-Winkler
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Jeffrey Robbins
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| | - Katherine E Yutzey
- From the Division of Molecular Cardiovascular Biology (N.X., J.G., H.O., P.M.M., K.S.-W., J.R., K.E.Y.), Department of Pediatrics, Cincinnati Children's Medical Center, OH
| |
Collapse
|
34
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
35
|
Cadena C, Ahmad S, Xavier A, Willemsen J, Park S, Park JW, Oh SW, Fujita T, Hou F, Binder M, Hur S. Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell 2019; 177:1187-1200.e16. [PMID: 31006531 PMCID: PMC6525047 DOI: 10.1016/j.cell.2019.03.017] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023]
Abstract
The conventional view posits that E3 ligases function primarily through conjugating ubiquitin (Ub) to their substrate molecules. We report here that RIPLET, an essential E3 ligase in antiviral immunity, promotes the antiviral signaling activity of the viral RNA receptor RIG-I through both Ub-dependent and -independent manners. RIPLET uses its dimeric structure and a bivalent binding mode to preferentially recognize and ubiquitinate RIG-I pre-oligomerized on dsRNA. In addition, RIPLET can cross-bridge RIG-I filaments on longer dsRNAs, inducing aggregate-like RIG-I assemblies. The consequent receptor clustering synergizes with the Ub-dependent mechanism to amplify RIG-I-mediated antiviral signaling in an RNA-length dependent manner. These observations show the unexpected role of an E3 ligase as a co-receptor that directly participates in receptor oligomerization and ligand discrimination. It also highlights a previously unrecognized mechanism by which the innate immune system measures foreign nucleic acid length, a common criterion for self versus non-self nucleic acid discrimination.
Collapse
Affiliation(s)
- Cristhian Cadena
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Audrey Xavier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA; Institute of Chemistry and Biochemistry, Free University of Berlin, Germany
| | - Joschka Willemsen
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response" (division F170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sehoon Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Ji Woo Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA; Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Seong-Wook Oh
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response" (division F170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sun Hur
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
36
|
Sanfeliu A, Hokamp K, Gill M, Tropea D. Transcriptomic Analysis of Mecp2 Mutant Mice Reveals Differentially Expressed Genes and Altered Mechanisms in Both Blood and Brain. Front Psychiatry 2019; 10:278. [PMID: 31110484 PMCID: PMC6501143 DOI: 10.3389/fpsyt.2019.00278] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
Rett syndrome is a rare neuropsychiatric disorder with a wide symptomatology including impaired communication and movement, cardio-respiratory abnormalities, and seizures. The clinical presentation is typically associated to mutations in the gene coding for the methyl-CpG-binding protein 2 (MECP2), which is a transcription factor. The gene is ubiquitously present in all the cells of the organism with a peak of expression in neurons. For this reason, most of the studies in Rett models have been performed in brain. However, some of the symptoms of Rett are linked to the peripheral expression of MECP2, suggesting that the effects of the mutations affect gene expression levels in tissues other than the brain. We used RNA sequencing in Mecp2 mutant mice and matched controls, to identify common genes and pathways differentially regulated across different tissues. We performed our study in brain and peripheral blood, and we identified differentially expressed genes (DEGs) and pathways in each tissue. Then, we compared the genes and mechanisms identified in each preparation. We found that some genes and molecular pathways that are differentially expressed in brain are also differentially expressed in blood of Mecp2 mutant mice at a symptomatic-but not presymptomatic-stage. This is the case for the gene Ube2v1, linked to ubiquitination system, and Serpin1, involved in complement and coagulation cascades. Analysis of biological functions in the brain shows the enrichment of mechanisms correlated to circadian rhythms, while in the blood are enriched the mechanisms of response to stimulus-including immune response. Some mechanisms are enriched in both preparations, such as lipid metabolism and response to stress. These results suggest that analysis of peripheral blood can reveal ubiquitous altered molecular mechanisms of Rett and have applications in diagnosis and treatments' assessments.
Collapse
Affiliation(s)
- Albert Sanfeliu
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Michael Gill
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Daniela Tropea
- Neuropsychiatric Genetics, Department of Psychiatry, School of Medicine, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
- Department of Psychiatry, School of Medicine, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
37
|
Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert PR, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. THE NEW PHYTOLOGIST 2019; 221:919-934. [PMID: 30218535 DOI: 10.1111/nph.15435] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/02/2018] [Indexed: 05/17/2023]
Abstract
UBC13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity remain to be defined. Here we used genetic and pathological methods to evaluate roles of Arabidopsis UBC13 in response to pathogens and environmental stresses. Loss of UBC13 failed to activate the expression of numerous cold-responsive genes and resulted in hypersensitivity to low-temperature stress, indicating that UBC13 is involved in plant response to low-temperature stress. Furthermore, the ubc13 mutant displayed low-temperature-induced and salicylic acid-dependent lesion mimic phenotypes. Unlike typical lesion mimic mutants, ubc13 did not enhance disease resistance against virulent bacterial and fungal pathogens, but diminished hypersensitive response and compromised effector-triggered immunity against avirulent bacterial pathogens. UBC13 differently regulates two types of programmed cell death in response to low temperature and pathogen. The lesion mimic phenotype in the ubc13 mutant is partially dependent on SNC1. UBC13 interacts with an F-box protein CPR1 that regulates the homeostasis of SNC1. However, the SNC1 protein level was not altered in the ubc13 mutant, implying that UBC13 is not involved in CPR1-regulated SNC1 protein degradation. Taken together, our results revealed that UBC13 is a key regulator in plant response to low temperature and pathogens.
Collapse
Affiliation(s)
- Lipu Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Jinghe Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zheng Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Shuai Huang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Pierre R Fobert
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
38
|
Meyer AN, Gallo LH, Ko J, Cardenas G, Nelson KN, Siari A, Campos AR, Whisenant TC, Donoghue DJ. Oncogenic mutations in IKKβ function through global changes induced by K63-linked ubiquitination and result in autocrine stimulation. PLoS One 2018; 13:e0206014. [PMID: 30335863 PMCID: PMC6193727 DOI: 10.1371/journal.pone.0206014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mutations at position K171 in the kinase activation loop of Inhibitor of κB kinase beta (IKKβ) occur in multiple myeloma, spleen marginal zone lymphoma and mantle cell lymphoma. Previously, we demonstrated that these result in constitutive kinase activation and stimulate Signal Transducer and Activator of Transcription 3 (STAT3). This work also identified K147 as a site of K63-linked regulatory ubiquitination required for activation of signaling pathways. We now present a more detailed analysis of ubiquitination sites together with a comprehensive examination of the signaling pathways activated by IKKβ K171E mutants. Downstream activation of STAT3 is dependent upon the activity of: UBE2N, the E2 ubiquitin ligase involved in K63-linked ubiquitination; TAK1 (MAP3K7), or TGFβ Activated Kinase, which forms a complex required for NFκB activation; JAK kinases, involved proximally in the phosphorylation of STAT transcription factors in response to inflammatory cytokines; and gp130, or IL-6 Receptor Subunit Beta which, upon binding IL-6 or other specific cytokines, undergoes homodimerization leading to activation of associated JAKs, resulting in STAT activation. We further demonstrate, using an IL-6-responsive cell line, that IKKβ K171E mutants stimulate the release of IL-6 activity into conditioned media. These results show that IKKβ K171E mutants trigger an autocrine loop in which IL-6 is secreted and binds to the IL-6 receptor complex gp130, resulting in JAK activation. Lastly, by examining the differential abundance of proteins associated with K63-only-ubiquitinated IKKβ K171E, proteomic analysis demonstrates the global activation of proliferative responses. As cancers harboring K171-mutated IKKβ are likely to also exhibit activated STAT3 and p44/42 MAPK (Erk1/2), this suggests the possibility of using MAPK (Erk1/2) and JAK inhibitors, or specific ubiquitination inhibitors. K63-linked ubiquitination occurs in other kinases at sites homologous to K147 in IKKβ, including K578 in BRAF V600E, which serves as an oncogenic driver in melanoma and other cancers.
Collapse
Affiliation(s)
- April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Leandro H. Gallo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Juyeon Ko
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Guillermo Cardenas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Katelyn N. Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Asma Siari
- Université Joseph Fourier Grenoble, Grenoble, France
| | - Alexandre R. Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Haahr P, Borgermann N, Guo X, Typas D, Achuthankutty D, Hoffmann S, Shearer R, Sixma TK, Mailand N. ZUFSP Deubiquitylates K63-Linked Polyubiquitin Chains to Promote Genome Stability. Mol Cell 2018; 70:165-174.e6. [PMID: 29576528 DOI: 10.1016/j.molcel.2018.02.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/17/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Deubiquitylating enzymes (DUBs) enhance the dynamics of the versatile ubiquitin (Ub) code by reversing and regulating cellular ubiquitylation processes at multiple levels. Here we discovered that the uncharacterized human protein ZUFSP (zinc finger with UFM1-specific peptidase domain protein/C6orf113/ZUP1), which has been annotated as a potentially inactive UFM1 protease, and its fission yeast homolog Mug105 define a previously unrecognized class of evolutionarily conserved cysteine protease DUBs. Human ZUFSP selectively interacts with and cleaves long K63-linked poly-Ub chains by means of tandem Ub-binding domains, whereas it displays poor activity toward mono- or di-Ub substrates. In cells, ZUFSP is recruited to and regulates K63-Ub conjugates at genotoxic stress sites, promoting chromosome stability upon replication stress in a manner dependent on its catalytic activity. Our findings establish ZUFSP as a new type of linkage-selective cysteine peptidase DUB with a role in genome maintenance pathways.
Collapse
Affiliation(s)
- Peter Haahr
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nikoline Borgermann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Xiaohu Guo
- Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Dimitris Typas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Divya Achuthankutty
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Saskia Hoffmann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Robert Shearer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Titia K Sixma
- Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Niels Mailand
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Center for Chromosome Stability, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
40
|
Hodge CD, Spyracopoulos L, Glover JNM. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget 2018; 7:64471-64504. [PMID: 27486774 PMCID: PMC5325457 DOI: 10.18632/oncotarget.10948] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
Ubc13 is an ubiquitin E2 conjugating enzyme that participates with many different E3 ligases to form lysine 63-linked (Lys63) ubiquitin chains that are critical to signaling in inflammatory and DNA damage response pathways. Recent studies have suggested Ubc13 as a potential therapeutic target for intervention in various human diseases including several different cancers, alleviation of anti-cancer drug resistance, chronic inflammation, and viral infections. Understanding a potential therapeutic target from different angles is important to assess its usefulness and potential pitfalls. Here we present a global review of Ubc13 from its structure, function, and cellular activities, to its natural and chemical inhibition. The aim of this article is to review the literature that directly implicates Ubc13 in a biological function, and to integrate structural and mechanistic insights into the larger role of this critical E2 enzyme. We discuss observations of multiple Ubc13 structures that suggest a novel mechanism for activation of Ubc13 that involves conformational change of the active site loop.
Collapse
Affiliation(s)
- Curtis D Hodge
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Romero-Barrios N, Vert G. Proteasome-independent functions of lysine-63 polyubiquitination in plants. THE NEW PHYTOLOGIST 2018; 217:995-1011. [PMID: 29194634 DOI: 10.1111/nph.14915] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
42
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
43
|
Park CV, Ivanova IG, Kenneth NS. XIAP upregulates expression of HIF target genes by targeting HIF1α for Lys63-linked polyubiquitination. Nucleic Acids Res 2017; 45:9336-9347. [PMID: 28666324 PMCID: PMC5766203 DOI: 10.1093/nar/gkx549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/26/2017] [Indexed: 01/25/2023] Open
Abstract
The cellular response to hypoxia is characterised by a switch in the transcriptional program, mediated predominantly by the hypoxia inducible factor family of transcription factors (HIF). Regulation of HIF1 is primarily controlled by post-translational modification of the HIF1α subunit, which can alter its stability and/or activity. This study identifies an unanticipated role for the X-linked inhibitor of apoptosis (XIAP) protein as a regulator of Lys63-linked polyubiquitination of HIF1α. Lys63-linked ubiquitination of HIF1α by XIAP is dependent on the activity of E2 ubiquitin conjugating enzyme Ubc13. We find that XIAP and Ubc13 dependent Lys63-linked polyubiquitination promotes HIF1α nuclear retention leading to an increase in the expression of HIF1 responsive genes. Inhibition of the Lys63-linked polyubiquitination pathway leads to reduced levels of nuclear HIF1α, promoter occupancy, HIF-dependent gene expression and cell viability. Our data reveals an additional and significant level of control of the HIF1 by XIAP, with important implications in understanding the role of HIF1 and XIAP in human disease.
Collapse
Affiliation(s)
- Catherine V Park
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Iglika G Ivanova
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niall S Kenneth
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
44
|
Romo-Tena J, Rajme-López S, Aparicio-Vera L, Alcocer-Varela J, Gómez-Martín D. Lys63-polyubiquitination by the E3 ligase casitas B-lineage lymphoma-b (Cbl-b) modulates peripheral regulatory T cell tolerance in patients with systemic lupus erythematosus. Clin Exp Immunol 2017; 191:42-49. [PMID: 28940360 DOI: 10.1111/cei.13054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 11/28/2022] Open
Abstract
T cells from systemic lupus erythematosus (SLE) patients display a wide array of anomalies in peripheral immune tolerance mechanisms. The role of ubiquitin ligases such as Cbl-b has been described recently in these phenomena. However, its role in resistance to suppression phenotype in SLE has not been characterized, which was the aim of the present study. Thirty SLE patients (20 with active disease and 10 with complete remission) and 30 age- and sex-matched healthy controls were recruited. Effector (CD4+ CD25- ) and regulatory (CD4+ CD25+ ) T cells (Tregs ) were purified from peripheral blood mononuclear cells (PBMCs) by magnetic selection. Suppression assays were performed in autologous and allogeneic co-cultures and analysed by a flow cytometry assay. Cbl-b expression and lysine-63 (K63)-specific polyubiquitination profile were assessed by Western blotting. We found a defective Cbl-b expression in Tregs from lupus patients in contrast to healthy controls (1·1 ± 0·9 versus 2·5 ± 1·8, P = 0·003), which was related with resistance to suppression (r = 0·633, P = 0·039). Moreover, this feature was associated with deficient K63 polyubiquitination substrates and enhanced expression of phosphorylated signal transducer and activation of transcription 3 (pSTAT-3) in Tregs from lupus patients. Our findings support that Cbl-b modulates resistance to suppression by regulating the K63 polyubiquitination profile in lupus Tregs . In addition, defective K63 polyubiquitination of STAT-3 is related to increased pSTAT-3 expression, and might promote the loss of suppressive capacity of Tregs in lupus patients.
Collapse
Affiliation(s)
- J Romo-Tena
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - S Rajme-López
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - L Aparicio-Vera
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - J Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - D Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| |
Collapse
|
45
|
Shi Y, Yuan B, Zhu W, Zhang R, Li L, Hao X, Chen S, Hou F. Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity. Nat Commun 2017; 8:15138. [PMID: 28469175 PMCID: PMC5418627 DOI: 10.1038/ncomms15138] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/02/2017] [Indexed: 12/19/2022] Open
Abstract
Innate immunity plays a pivotal role in virus infection. RIG-I senses viral RNA and initiates an effective innate immune response for type I interferon production. To transduce RIG-I-mediated antiviral signalling, a mitochondrial protein MAVS forms prion-like aggregates to activate downstream kinases and transcription factors. However, the activation mechanism of RIG-I is incompletely understood. Here we identify two ubiquitin enzymes Ube2D3 and Ube2N through chromatographic purification as activators for RIG-I on virus infection. We show that together with ubiquitin ligase Riplet, Ube2D3 promotes covalent conjugation of polyubiquitin chains to RIG-I, while Ube2N preferentially facilitates production of unanchored polyubiquitin chains. In the presence of these polyubiquitin chains, RIG-I induces MAVS aggregation directly on the mitochondria. Our data thus reveal two essential polyubiquitin-mediated mechanisms underlying the activation of RIG-I and MAVS for triggering innate immune signalling in response to viral infection in cells.
Collapse
Affiliation(s)
- Yuheng Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Bofeng Yuan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wenting Zhu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Rui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaojing Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fajian Hou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
46
|
Abstract
The ubiquitin proteasome system controls the concentrations of regulatory proteins and removes damaged and misfolded proteins from cells. Proteins are targeted to the protease at the center of this system, the proteasome, by ubiquitin tags, but ubiquitin is also used as a signal in other cellular processes. Specificity is conferred by the size and structure of the ubiquitin tags, which are recognized by receptors associated with the different cellular processes. However, the ubiquitin code remains ambiguous, and the same ubiquitin tag can target different proteins to different fates. After binding substrate protein at the ubiquitin tag, the proteasome initiates degradation at a disordered region in the substrate. The proteasome has pronounced preferences for the initiation site, and its recognition represents a second component of the degradation signal.
Collapse
Affiliation(s)
- Houqing Yu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712;
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712;
| |
Collapse
|
47
|
Xin J, Zhang Z, Su X, Wang L, Zhang Y, Yang R. Epigenetic Component p66a Modulates Myeloid-Derived Suppressor Cells by Modifying STAT3. THE JOURNAL OF IMMUNOLOGY 2017; 198:2712-2720. [PMID: 28193828 DOI: 10.4049/jimmunol.1601712] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
STAT3 plays a critical role in myeloid-derived suppressor cell (MDSC) accumulation and activation. Most studies have probed underlying mechanisms of STAT3 activation. However, epigenetic events involved in STAT3 activation are poorly understood. In this study, we identified several epigenetic-associated proteins such as p66a (Gatad2a), a novel protein transcriptional repressor that might interact with STAT3 in functional MDSCs, by using immunoprecipitation and mass spectrometry. p66a could regulate the phosphorylation and ubiquitination of STAT3. Silencing p66a promoted not only phosphorylation but also K63 ubiquitination of STAT3 in the activated MDSCs. Interestingly, p66a expression was significantly suppressed by IL-6 both in vitro and in vivo during MDSC activation, suggesting that p66a is involved in IL-6-mediated differentiation of MDSCs. Indeed, silencing p66a could promote MDSC accumulation, differentiation, and activation. Tumors in mice injected with p66a small interfering RNA-transfected MDSCs also grew faster, whereas tumors in mice injected with p66a-transfected MDSCs were smaller as compared with the control. Thus, our data demonstrate that p66a may physically interact with STAT3 to suppress its activity through posttranslational modification, which reveals a novel regulatory mechanism controlling STAT3 activation during myeloid cell differentiation.
Collapse
Affiliation(s)
- Jiaxuan Xin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zhiqian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xiaomin Su
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Liyang Wang
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; .,Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China; and.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, Lopacinski A, Nikolajczyk BS, Monti S, Snyder-Cappione J, Tanasa B, Cardamone MD, Perissi V. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development. J Biol Chem 2016; 292:2754-2772. [PMID: 28039360 DOI: 10.1074/jbc.m116.755132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.
Collapse
Affiliation(s)
| | - Anna C Belkina
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | | | | | | | | | | | | | | | - Jennifer Snyder-Cappione
- the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and.,Microbiology, and
| | - Bogdan Tanasa
- the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Averil Ma
- University of California, San Francisco, San Francisco, CA USA
| |
Collapse
|