1
|
Ye W, Li C, Zhu S, Lv Z. A novel double Ig interleukin-1 receptor-related molecule from Apostichopus japonicus alleviates Vibrio splendidus-induced inflammation. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110340. [PMID: 40239930 DOI: 10.1016/j.fsi.2025.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
In vertebrates, the single immunoglobulin (Ig) interleukin-1 receptor-related molecule, SIGIRR, plays a role in controlling inflammatory responses. Its invertebrate homologous double Ig interleukin-1 receptor-related molecule, DIGIRR, is little known. We report here the cloning of a novel DIGIRR homologue in Apostichopus japonicus, named AjDIGIRR, using rapid amplification of cDNA ends (RACE). Gene structure analysis revealed that AjDIGIRR contains a conserved intracellular TIR domain that differs from SIGIRR and IL-1R by having a different number of extracellular Ig domains. Subcellular localization analysis showed that, unlike fish DIGIRR, which is cytoplasmic, AjDIGIRR was membrane-associated and had increased expression 24 h after infection. In vertebrates, two amino acid sites in the TIR domains of IL-1R family members, Ser and Arg-Tyr, are conserved and are required for receptor signaling. Sequence alignment revealed that the primary signaling site, S279, is conserved in DIGIRR, whereas the signal activation site, Arg-Tyr536, is mutated to Gln-Gly359 in AjDIGIRR. To investigate AjDIGIRR's role in inflammation regulation, an in vivo inflammation model was established using Vibrio splendidus. Following bacterial challenge, AjDIGIRR mRNA expression in coelomocytes peaked at 6 h (1.92-fold increase) and remained elevated (1.63-fold increase) for up to 48 h, consistent with the inflammatory response. AjDIGIRR knockdown (0.26-fold) significantly exacerbated inflammation, as shown by HE staining, whereas overexpression (7.85-fold) markedly alleviated the inflammatory response. Under inflammatory conditions, AjDIGIRR overexpression reduced IL-17 expression by 29 % compared to the V. splendidus-induced group. These findings suggest that AjDIGIRR is structurally and functionally more similar to mammalian SIGIRR than to fish DIGIRR. Acting as a key negative regulator, AjDIGIRR mitigates inflammation by downregulating IL-17 expression.
Collapse
Affiliation(s)
- Wenwen Ye
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China
| | - Chenghua Li
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China.
| | - Si Zhu
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China
| | - Zhimeng Lv
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Cui S, Yang Q, Zhang Y, Liu Q, Yang D, Wang Z. Characterization of type 2 interleukin-1 receptor (IL-1R2) as an inhibitory regulator of trained immunity in teleost. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110429. [PMID: 40398502 DOI: 10.1016/j.fsi.2025.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/07/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Trained immunity refers to the immune memory of innate immune cells, which is driven by metabolic rewiring and epigenetic reprogramming after initial stimulation. Several endogenous inducers of trained immunity have been reported, such as oxidized low-density lipoprotein (oxLDL), interleukin, and interferon. However, the negative regulatory molecules of trained immunity remain largely elusive. In this study, we identify a member of IL-1 family receptors, interleukin-1 receptor 2 (IL-1R2), as a potential inhibitory regulator of trained immunity in turbot. Pre-incubating recombinant IL-1R2 protein (rIL-1R2) with turbot neutrophils could inhibit β-glucan-induced training phenotypes. Specifically, rIL-1R2 incubation significantly decreases the expression of genes involved in the TLR/IL-1R and downstream MAPK/NF-κB signaling pathway in trained neutrophils, and further reversing the elevated expression of pro-inflammatory cytokines such as IL-6 and TNF-α in response to bacterial reinfection. Moreover, rIL-1R2 inhibits the increasing production of intracellular reactive oxygen (ROS), myeloperoxidase (MPO) activity and neutrophil extracellular traps (NETs) in trained neutrophils, ultimately impairing the bacterial killing ability. Taken together, our work demonstrates that the decoy receptor IL-1R2 could negatively regulate trained immunity activation in turbot neutrophils. These findings enrich the theory of trained immunity in teleost fish and provide a potential target for disease prevention and treatment in aquaculture.
Collapse
Affiliation(s)
- Shu Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiuxi Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai, 201400, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
3
|
Wang W, Li D, Luo K, Chen B, Hao T, Li X, Guo D, Dong Y, Ning Y. IL-1 Superfamily Across 400+ Species: Therapeutic Targets and Disease Implications. BIOLOGY 2025; 14:561. [PMID: 40427750 PMCID: PMC12108812 DOI: 10.3390/biology14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
An important area of interest for therapeutic development is the IL-1 superfamily, a critical group of immune regulators with profound implications in a variety of disorders. This study clarifies the evolutionary patterns of IL-1 family members by thoroughly analyzing more than 400 animal species, demonstrating their ancient roots that extend back to the earliest vertebrates. Important results show that, although IL-1 ligands expanded significantly over the evolution of mammals, their corresponding receptors remained remarkably structurally conserved. Identifying both lineage-specific adaptations and evolutionarily conserved residues provides vital information for treatment design. These findings point to the possibility of two different therapeutic strategies: addressing species-specific variants may allow for more targeted interventions, whereas focusing on conserved motifs may result in broad-acting treatments. The study also identified less well-known species as useful models for comprehending early immune systems. In addition to advancing our knowledge of the function of the IL-1 family in autoimmune, inflammatory, and carcinogenic illnesses, this research lays the groundwork for the development of more potent targeted therapeutics by creating an evolutionary framework for the IL-1 family.
Collapse
Affiliation(s)
- Weibin Wang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| | - Dawei Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| | - Kaiyong Luo
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| | - Baozheng Chen
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| | - Tingting Hao
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| | - Xuzhen Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| | - Dazhong Guo
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| | - Ya Ning
- College of Science, Yunnan Agricultural University, Kunming 650201, China; (W.W.)
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming 650201, China; (D.L.)
| |
Collapse
|
4
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
5
|
Gheorghiu M, Trandafir MF, Savu O, Pasarica D, Bleotu C. Unexpectedly High and Difficult-to-Explain Regenerative Capacity in an 82-Year-Old Patient with Insulin-Requiring Type 2 Diabetes and End-Stage Renal Disease. J Clin Med 2025; 14:2556. [PMID: 40283387 PMCID: PMC12027714 DOI: 10.3390/jcm14082556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The case we present is part of a large study that we conducted on hemodialysis patients with type 2 diabetes mellitus (T2DM) and which set the following objectives: studying changes in the intestinal microbiota, innate and acquired immune response capacity, and tissue regeneration. Methods: (1) For the genetic study of the gut microbiota, special techniques that are not based on cultivation were used since most of the species in the intestinal flora are not cultivable. (2) The immunological study had two targets: innate immunity (inflammation) and adaptive immunity (we chose to address the cellular immune response because, unlike the humoral one, it is insufficiently studied in this category of associated pathologies). As markers for innate immunity (inflammation), the following were determined: IL-6, sIL-6R, IL-1β, TNFα, IL-10, and NGAL. TNFβ/LTα was determined as a marker for adaptive immunity (the cellular immune response). (3) The study of tissue regeneration capacity was performed using NT-3 (this is the first study to do so) and VEGFβ (another marker that is scarce in this category of patients) as markers. All the aforementioned compounds were determined from serum samples, utilizing Merck Millipore ELISA kits for IL-6, IL-1β, IL-10, NT-3, and VEGF β, and Elabscience ELISA kits for IL-6R, TNFα, TNFβ, and NGAL. Results: We were very surprised to find unexpected immunological changes and tissue regenerative capacity in one of the patients studied, an 82-year-old female patient diagnosed with insulin-dependent T2DM with multiple complications, including end-stage renal disease (ESRD). The patient showed a huge capacity for tissue regeneration, combined with amplification of immunological capacity, in comparison to patients in the same group (T2DM and ESRD) and to those in the control group (ESRD). Thus, extremely elevated serum concentrations of IL-1β, IL-6, IL-10, and TNF-β, as well as the tissue regeneration indicators NT-3 and VEGFβ, were obtained in comparison to all other members of the patient group. At the same time, serum levels of the soluble IL-6 receptor (sIL6-R) and TNFα were greatly reduced compared to the test group's mean. Conclusions: All the data obtained during our research were corroborated with those from the specialized literature and entitle us to support the hypothesis that the cause of these unexpected behaviors is the genetically conditioned overproduction (possibly acquired post-infection) of IL-6, along with its predominant anti-inflammatory and pro-regenerative signaling through the membrane-bound receptor IL-6R.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Octavian Savu
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
- Doctoral School of “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Pasarica
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Coralia Bleotu
- “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania;
| |
Collapse
|
6
|
Tang J, Tudi X, Zhang T, Zhu J, Shen T. Neutrophil-related IL1R2 gene predicts the occurrence and early progression of myocardial infarction. Front Cardiovasc Med 2025; 12:1516043. [PMID: 40231027 PMCID: PMC11994735 DOI: 10.3389/fcvm.2025.1516043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Myocardial infarction (MI) is a leading cause of death worldwide. Immune cells play a significant role in the MI development. This study aims to identify a marker related to neutrophil for the diagnosis and early progression of MI. Methods Key genes were screened using three machine learning algorithms to establish a diagnostic model. A gene associated with the early progression of MI was identified based on single cell RNA sequencing data. To further validate the predictive value of the gene, the mouse models of MI were constructed. Immunofluorescence (IF) analysis demonstrated the co-expression of the gene with neutrophils. Immunohistochemistry (IHC) was performed to validate the role of the gene in the progression of MI. Results Neutrophils were identified and verified as the key infiltrating immune cells (IICs) involved in the onset of MI. A diagnostic panel with superior performance was developed using five key genes related to neutrophils in MI (AUC = 0.887). Among the panel, IL1R2 was found to early phase of MI, which was further corroborated by IHC in mouse models of MI. Conclusions This study suggests that IL1R2, which is specific to neutrophils, can predict the diagnosis and early progression of MI, providing new insights into the clinical management of MI.
Collapse
Affiliation(s)
- Jieqiong Tang
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xierenayi Tudi
- Department of Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingbo Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongtong Shen
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
| |
Collapse
|
7
|
Yan S, Zhao W, Du J, Teng L, Yu T, Xu P, Liu J, Yang R, Dong Y, Wang H, Lu L, Tao W. C-FOS promotes the formation of neutrophil extracellular traps and the recruitment of neutrophils in lung metastasis of triple-negative breast cancer. J Exp Clin Cancer Res 2025; 44:108. [PMID: 40148973 PMCID: PMC11951605 DOI: 10.1186/s13046-025-03370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are composed of DNA chains from neutrophils and associated proteolytic enzymes, which play an important role in cancer metastasis. However, the molecular mechanism of NET-mediated lung metastasis in triple-negative breast cancer (TNBC) remains unclear. METHODS The expression levels of NETs in breast cancer specimens and serum were analyzed and compared with normal samples. Single-cell sequencing bioinformatics analysis was conducted to identify differentially expressed genes and functional enrichment related to NET formation in patients with breast cancer. The effects of c-FOS on neutrophil recruitment and NET formation in TNBC were investigated. The upstream and downstream regulatory mechanisms mediated by c-FOS were explored through in vitro and in vivo experiments. Therapeutic approaches targeting c-FOS for treating TNBC were further studied. RESULTS Inhibition of c-FOS can suppress tumor growth and lung metastasis in TNBC. Mechanistically, c-FOS promotes transcription by binding to the PAD4 promoter region, facilitating the formation of NETs. Additionally, the activation of the ROS-p38 pathway further enhances c-FOS expression. High expression of c-FOS also promotes the expression of inflammatory factors, facilitating neutrophil recruitment. Both in vitro and in vivo experiments demonstrated that the application of T5224 effectively inhibits the formation of NETs, suppressing lung metastasis and tumor growth. CONCLUSION In summary, this study demonstrates that the ROS-p38-cFOS-PAD4 axis can increase NET formation in TNBC and promote the expression of inflammatory factors, facilitating neutrophil recruitment. Therefore, targeting this pathway may help inform new therapeutic strategies and provide new insights for immunotherapy in TNBC.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Wenxi Zhao
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Juntong Du
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lizhi Teng
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Tong Yu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Peng Xu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Jiangnan Liu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Ru Yang
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Yuhan Dong
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Hongyue Wang
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Lingran Lu
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Weiyang Tao
- Department of Breast Surgery, The First Afffliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Key Laboratory of Acoustic, Optical and Electromagnetic Diagnosis and Treatment of Cardiovascular Diseases, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
8
|
Horn S, Schmid M, Berest I, Piattini F, Zhang J, de Bock K, Devuyst O, Nlandu Khodo S, Kisielow J, Kopf M. IL-1 protects from fatal systemic candidiasis in mice by inhibiting oxidative phosphorylation and hypoxia. Nat Commun 2025; 16:2626. [PMID: 40097388 PMCID: PMC11914259 DOI: 10.1038/s41467-025-57797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Invasive C. albicans infections result in high mortality rates. While IL-1 is important to combat C. albicans infections, the underlying mechanisms remain unclear. Using global and conditional Il1r1 knockouts in mice, here we show that IL-1R signaling in non-hematopoietic cells in the kidney and brain is crucial for a protective response. In the kidney, endothelial IL-1R contributes to fungal clearance independent of neutrophil recruitment, while IL-1R in hematopoietic cells is dispensable. IL-1R signaling indirectly recruits neutrophils and monocytes in the brain by regulating chemokines and adhesion molecules. Single-nucleus-RNA-sequencing data implicates excessive metabolic activity and oxidative phosphorylation across all cell types in the kidney of Il1r1-deficient mice within a few hours upon infection, with associated, localized hypoxia at infection foci. Lastly, we find that hypoxia promotes fungal growth and pathogenicity. In summary, our results show that IL-1R-signaling in non-hematopoietic cells is required to prevent fatal candidiasis by inhibiting a metabolic shift, including excessive oxidative phosphorylation and hypoxia.
Collapse
Affiliation(s)
- Sofia Horn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Mareike Schmid
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ivan Berest
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Federica Piattini
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zurich, Zurich, Switzerland
| | - Katrien de Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zurich, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Jan Kisielow
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Gao S, Ge Y, Huang H, Wang L, Zhang W. Adipose-Derived Mesenchymal Stem Cell Exosomes Encapsulating siIL1R2 Facilitate the Repair of DSS-Induced Intestinal Mucosal Injury. Immunol Invest 2025:1-17. [PMID: 40035289 DOI: 10.1080/08820139.2025.2468959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
BACKGROUND Interleukin-1 receptor 2 (IL1R2) and C-C motif chemokine receptor 2 (CCR2) as critical mediators of immune modulation and inflammation. This study aims to evaluate their functions in dextran sulfate sodium (DSS)-induced intestinal injury. METHODS A DSS-induced intestinal injury model was established in C57BL/6 mice. Pharmacological inhibitors targeting IL1R2 or CCR2 were administered. Adipose-derived mesenchymal stem cell (ADMSC)-derived exosomes were isolated and loaded with IL1R2-siRNA, which were then administered to intestinal epithelial cells (IEC-6) or DSS-challenged mice. RESULTS IL1R2 and CCR2 were upregulated in DSS-treated colon tissues. Pharmacological inhibition of IL1R2 or CCR2 improved body weight, restored colon length, reduced serum TNF-α and IL-6 levels, and preserved epithelial integrity in mice. miR-128-3p enriched in ADMSC-derived exosomes significantly reduced CCR2 expression in IEC-6 cells. Further loading of an IL1R2 siRNA in these exosomes led to a simultaneous inhibition of IL1R2. These exosomes reduced lipopolysaccharide-induced apoptosis and inflammation in IEC-6 cells and improved histological outcomes in DSS-challenged mice. CONCLUSION IL1R2 and CCR2 are key mediators of inflammation in DSS-induced intestinal injury. Dual inhibition of IL1R2 and CCR2 holds great promise for alleviating inflammatory responses and improving histological presentations in inflammatory bowel disease.
Collapse
Affiliation(s)
- Song Gao
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Yajuan Ge
- Department of Abdominal Ultrasound, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - He Huang
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Lei Wang
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Wenbin Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
10
|
Liu FF, Li K. Molecular characterization underlying IFN-α2 treatment in polycythemia vera: a transcriptomic overview. Mol Cell Biochem 2025:10.1007/s11010-025-05238-7. [PMID: 40029555 DOI: 10.1007/s11010-025-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Polycythemia vera (PV) is the most common chronic myeloproliferative neoplasm (MPN) in adults. Pegylated interferon-α2 (IFN-α2) is an effective and safe drug for the treatment of PV. However, the mechanisms of its action in PV are still not fully understood. Using the WGCNA and Limma algorithm, we found a subset of IFN-α2 sensitive genes and four gene co-expression modules. Meanwhile, we also found 820 genes were differentially expressed in PV compared with healthy controls. By integrating the above results, several differentially expressed genes (DEGs) that were up- or down-regulated in PV but showed opposite alterations in the IFN-α2-treated group were found. These genes were mainly related to three types of biological processes (metal ion homeostasis, metabolic/catabolic process, and Jak-STAT signaling pathway), the dysfunctions of which were prevalent in PV. Moreover, we applied another threshold-free analysis method to compare global gene expression between IFN-α2 treated PV, PV, and control groups. Results showed the transcriptome changes of PV versus controls were negatively correlated with that of IFN-α2 treated versus untreated PV, indicating IFN-α2 treatment could partially reverse the dysregulated gene expression profile due to PV pathology. In summary, interferon may alleviate the progression of PV through multiple pathways. The findings may be of assistance in understanding the molecular basis underlying this treatment.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Hankou District, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Wang L, Liu C, Chen J, He X, He H, Qin Q, Yang M. The role of largemouth bass NF-κB/p65: Inhibition of LMBV and activator of IL-18 promoter. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110120. [PMID: 39832538 DOI: 10.1016/j.fsi.2025.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Nuclear factor-κB (NF-κB)/p65, a vital signaling molecule in the NF-κB pathway, participates in diverse physiological functions and host-virus interactions. However, the involvement of NF-κB/p65 in fish virus infection remains poorly understood. In this study, we explored the role of the p65 in virus infection and its impact on IL-18 regulation in largemouth bass (Micropterus salmoides). Bioinformatics analysis showed that the ORF sequence of Msp65 spanned 1941 bp, encoding 646 amino acids with two conserved functional domains, including RHD and IPT domain. Msp65 mRNA was presented in various tissues, with higher levels detected in the liver and gill. After exposure to largemouth bass virus (LMBV), red grouper nervous necrosis virus, lipopolysaccharide and poly (I:C), Msp65 expression was activated in vivo. In addition, the antiviral role of Msp65 were explored. In vitro, Msp65 overexpression hindered LMBV replication and formation of viral assembly site. In vivo, we found that disruption of Msp65 by using maslinic acid (MA) notably promoted the infectivity of LMBV, indicating its antiviral capabilities in largemouth bass. Besides, the downregulation of Msp65 suppressed the expression of inflammatory and interferon signaling molecules. Conversely, Msp65 overexpression boosted the activities of IFN-I, IFN-III and ISRE promoters, suggesting the positive regulation of Msp65 on interferon immune pathway. Furthermore, to unveil the regulatory role of Msp65 on MsIL-18, a promoter investigation was conducted. The luciferase reporter assay demonstrated that Msp65 positively influenced the expression of MsIL-18. Subsequent analysis suggested that the putative binding sites for MsIL-18 could potentially reside within the -228 to -203 bp of the MsIL-18 promoter. These findings illustrated that Msp65 involved in LMBV infection by modulating immune responses, presenting a novel insight into the antiviral mechanisms of p65 in bony fish.
Collapse
Affiliation(s)
- Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; College of Fishery, Guangdong Ocean University, Guangdong Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524088, China
| | - Cuiyu Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xin He
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hongxi He
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China.
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
12
|
Kaur G, Lamb T, Tjitropranoto A, Rahman I. Single-cell transcriptomics identifies a dampened neutrophil function and accentuated T-cell cytotoxicity in tobacco flavored e-cigarette exposed mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638715. [PMID: 40027777 PMCID: PMC11870523 DOI: 10.1101/2025.02.17.638715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
E-cigarettes (e-cigs) are a public health concern for young adults due to their popularity and evidence for increased oxidative stress and immunotoxicity. Yet an extensive study defining the cell-specific immune changes upon exposure to flavored e-cigs remains elusive. To understand the immunological lung landscape upon acute nose-only exposure of C57BL/6J to flavored e-cig aerosols we performed single-cell RNA sequencing (scRNA seq). scRNA profiles of 71,725 cells were generated from control and treatment groups (n=2/sex/group). A distinct phenotype of Ly6G-neutrophils was identified in lungs exposed to tobacco flavored e-cig aerosol which demonstrated dampened IL-1 mediated and pattern recognition signaling as compared to air controls. Differential gene expression analyses identified dysregulation of T-cell mediated pro-inflammation ( Cct7 , Cct8 ) and stress-response signals ( Neurl3 , Stap1 , Cirbp and Htr2c) in the lungs of mice exposed to e-cig aerosols, with pronounced effects for tobacco flavor. Flow cytometry analyses and cytokine/chemokine assessments within the lungs corroborated the scRNA seq data, demonstrating a significant increase in T-cell percentages and levels of T-cell associated cytokine/chemokines in the lungs of tobacco-flavored aerosol exposed mice. Increased levels of Klra4 and Klra8 expression also suggest an enhanced natural killer (NK) cell activity in this mouse group. Overall, this is a pilot study identifying increase in the percentages of Ly6G-neutrophils that may be responsible for dampened innate immune responses and heightened T-cell cytotoxicity in lungs of tobacco-flavored e-cig aerosol exposed mice. In addition, we provide preliminary evidence for sex-specific changes in the transcriptional landscape of mouse lungs upon exposure to e-cig aerosol, an area that warrants further study.
Collapse
|
13
|
Rigante D. The Golden Card of Interleukin-1 Blockers in Systemic Inflammasomopathies of Childhood. Int J Mol Sci 2025; 26:1872. [PMID: 40076498 PMCID: PMC11899952 DOI: 10.3390/ijms26051872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
A growing number of systemic hereditary inflammatory diseases characterized by periodic fevers and elevated acute-phase proteins during flares has been linked to deregulated inflammasome function and excessive bioactivity of interleukin (IL)-1. All these conditions respond, at varying degrees, to the specific blockade of IL-1. The remarkable progress with IL-1 antagonists in treating hereditary inflammasome-based disorders has offered new hope for several patients with further non-hereditary autoinflammatory conditions from multifactorial backgrounds. The effectiveness of the IL-1 blockade has transformed our understanding and management of many complex diseases and highlighted the role of aberrant IL-1 signaling in enigmatic conditions, characterized by recurrent or continuous inflammation and a lack of a role for autoreactive T-cells or autoantibody production. To date, the long-term blockade of IL-1 has been found to restore the clinical equilibrium in systemic inflammasomopathies of childhood, and IL-1 inhibitors have become cardinal weapons in managing both monogenic innate immunity defects and a plethora of polygenic diseases occurring in children, including Still's disease, Kawasaki disease, recurrent pericarditis, chronic non-bacterial osteomyelitis, and Behçet's disease. Very few side effects have been reported with the long-term use of anakinra, rilonacept, or canakinumab, and their safety profile has been largely documented even in childhood. Further investigations into the role of inflammasomes in the pathogenesis of autoimmune conditions as well as brain degenerative or cardiovascular disorders can be expected, paving the way for precision medicine with benefits beyond inhibiting signaling by individual IL-1-family cytokines.
Collapse
Affiliation(s)
- Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; ; Tel.: +39-06-30155210
- Periodic Fever and Rare Diseases Research Centre, Università Cattolica Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
14
|
Andersen LK, Abernathy JW, Farmer BD, Lange MD, Sankappa NM, McEntire ME, Rawles SD. Analysis of Striped Bass (Morone saxatilis) and White Bass (M. chrysops) Splenic Transcriptome Following Streptococcus iniae Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:51. [PMID: 39961922 DOI: 10.1007/s10126-025-10431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/07/2025] [Indexed: 04/25/2025]
Abstract
Streptococcal disease results in major mortality events of both marine and freshwater fishes worldwide. Streptococcus iniae is among the prominent causative bacterial strains as it has been found to cause a higher incidence of mortality and act as a zoonotic pathogen. Here, we examine the susceptibility of two important aquaculture species in the USA, striped bass (Morone saxatilis) and white bass (Morone chrysops) to S. iniae. A high incidence of mortality was observed in both species, although striped bass succumbed more rapidly than white bass. Spleen gene expression at three time points following infection was analyzed to further elucidate the mechanisms underlying these observations. The down-regulation of gene transcripts associated with pathogen detection (tlr1, tlr8, tlr9), antigen processing (cd74a), immune cell recruitment and migration (ccr6b, ccr7), macrophage function (csf1ra), T-cell signaling, and NF-kB activation (card11, fyna, tirap) was detected in both species. These findings potentially indicate impairment in these critical early immune system processes such that both species were ultimately highly susceptible to S. iniae infection despite the detected up-regulation of transcripts typically associated with effective immune response, such as cytokines (il1β, il8, il12b2, il17rc, tnfα) and hepcidins (hamp, hamp2). The presented results collectively identify several candidate genes and associated pathways for further investigation to characterize the vulnerability of striped bass and white bass to S. iniae and that may be considered for selective breeding efforts, biotechnological intervention, and/or exploitation in the development of vaccines and alternative treatments.
Collapse
Affiliation(s)
- Linnea K Andersen
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, USA
| | - Jason W Abernathy
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, USA.
| | - Bradley D Farmer
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, USA
| | - Miles D Lange
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, USA
| | - Nithin M Sankappa
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, USA
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, 37830, USA
| | - Matthew E McEntire
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, USA
| | - Steven D Rawles
- Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Harry K. Dupree Stuttgart National Aquaculture Research Center (HKDSNARC), Stuttgart, AR, USA
| |
Collapse
|
15
|
Zhang JM, Han H, Fu B, Li YC, Li K, Liu JW, Yu EM, Liu LP. Identification of potential geosmin-binding proteins in grass carp gill based on affinity responsive target stability and tandem mass tag proteomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117832. [PMID: 39904256 DOI: 10.1016/j.ecoenv.2025.117832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
The escalating issue of water pollution, especially the accumulation of organic off-flavor pollutants, poses significant challenges. Geosmin, a typical off-flavor compound in aquatic environments, not only compromises the quality of aquatic products but also deters consumers. Its impact extends to aquatic organisms, with current research focusing on dose-response and ecotoxicity, while neglecting the molecular-level study of geosmin-binding proteins. This study employs an integrated approach combing affinity-responsive target stability in vitro, tandem mass tag proteomics in vivo, and molecular docking to identify geosmin-binding proteins in the gill tissue of grass carp (Ctenopharyngodon idella). ARTS analysis identified 56 proteins, predominantly membrane-associated proteins, such as catenin beta-1, annexin, and integrin beta. Proteomic analysis revealed 256 differentially expressed proteins in geosmin-exposure group, with 18 common proteins screened by in vivo and in vitro methods. Among these, annexin, cathepsin D, and interleukin-1 receptors were highlighted as potential geosmin targets, with annexin demonstrating the highest binding affinity in silico. This study provides a robust protocol integrating in vivo, in vitro, and in silico approaches to elucidate geosmin's target proteins in grass carp gill tissue, advancing our understanding of pollutant-biological interactions and enhancing environmental risk assessment accuracy.
Collapse
Affiliation(s)
- Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510640, China
| | - Yi-Chao Li
- Guangxi Academy of Marine Sciences, Nanning, 530000, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China.
| | - Jing-Wei Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Er-Meng Yu
- Guangxi Academy of Marine Sciences, Nanning, 530000, China
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
16
|
Zhang Q, Yang D, Han X, Ren Y, Fan Y, Zhang C, Sun L, Ye T, Wang Q, Ban Y, Cao Y, Zou H, Zhang Z. Alarmins and their pivotal role in the pathogenesis of spontaneous abortion: insights for therapeutic intervention. Eur J Med Res 2024; 29:640. [PMID: 39741354 DOI: 10.1186/s40001-024-02236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Alarmins are a class of molecules released when affected cells damaged or undergo apoptosis. They contain various chemotactic and immunomodulatory proteins or peptides. These molecules regulate the immune response by interacting with pattern recognition receptors (PRRs) and play important roles in inflammatory response, tissue repair, infection defense, and cancer treatment. Spontaneous abortion (SA) is a common pregnancy-related disease, and its pathogenesis has been puzzling clinicians, so it needs to be further studied. In this paper, we first reviewed the research status of various alarmins and SA, focusing on the role of high mobility box 1 (HMGB1), interleukin33 (IL-33), interleukin1β (IL-1β) and S-100 protein (S100 protein) in immune response, inflammation, embryonic development and abortion. Subsequently, this paper summarized the effect of alarmins on pregnancy outcome by influencing angiogenesis-related factors. Finally, from the perspective of aseptic inflammation, the pro-inflammatory signaling pathways involved in various alarmins and their targeted drugs were reviewed. By focusing on specific molecules in alarmins and their receptors and signaling pathways, we can more accurately conduct drug research and development. The purpose of this review is to explore the role of alarmins in SA, and provide important references for early detection of abortion risk, revealing the disease mechanism, developing new therapies and improving the prognosis of patients.
Collapse
Affiliation(s)
- Qiqi Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China
| | - Xingxing Han
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Yu Ren
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynaecology Diseases, Hefei, Anhui, China
| | - Yongqi Fan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Chao Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Lei Sun
- Department of Clinical Medical, The First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Tingting Ye
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Qiushuang Wang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Youhao Ban
- Hefei Anhua Trauma Rehabilitation Hospital, Hefei, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Huijuan Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China.
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China.
- Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
17
|
Obata‐Ninomiya K, Jayaraman T, Ziegler SF. From the bench to the clinic: basophils and type 2 epithelial cytokines of thymic stromal lymphopoietin and IL-33. Clin Transl Immunology 2024; 13:e70020. [PMID: 39654685 PMCID: PMC11626414 DOI: 10.1002/cti2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Type 2 epithelial cytokines, including thymic stromal lymphopoietin and IL-33, play central roles in modulation of type 2 immune cells, such as basophils. Basophils are a small subset of granulocytes within the leukocyte population that predominantly exist in the blood. They have non-redundant roles in allergic inflammation in peripheral tissues such as the lung, skin and gut, where they increase and accumulate at inflammatory lesions and exclusively produce large amounts of IL-4, a type 2 cytokine. These inflammatory reactions are known to be, to some extent, phenocopies of infectious diseases of ticks and helminths. Recently, biologics related to both type 2 epithelial cytokines and basophils have been approved by the US Food and Drug Administration for treatment of allergic diseases. We summarised the roles of Type 2 epithelial cytokines and basophils in basic science to translational medicine, including recent findings.
Collapse
Affiliation(s)
| | | | - Steven F Ziegler
- Center of Fundamental ImmunologyBenaroya Research InstituteSeattleWAUSA
- Department of ImmunologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
18
|
Wang T, Tian Z, Yu M, Zhang S, Zhang M, Zhai X, Shen W, Wang J. Whole-Transcriptome Analysis Reveals the Regulatory Network of Immune Response in Dapulian Pig. Animals (Basel) 2024; 14:3546. [PMID: 39682511 DOI: 10.3390/ani14233546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
There is a consensus that indigenous pigs in China are more resistant than modern commercial pigs in terms of disease resistance. Generally, the immune response is an important part of anti-disease capability; however, the related mechanism in pigs is largely puzzling. Here, the public transcriptome data of peripheral blood mononuclear cells (PBMCs) from Dapulian (Chinese local breed) and Landrace (Commercial breed) pigs after stimulation with polyinosinic-polycytidylic acid (poly I:C, a conventional reagent used for simulation of the viral infection) were reanalyzed, and the immune response mechanism in different pig breeds was investigated from a transcriptomic perspective. Of note, through comparative analyses of Dapulian and Landrace pigs, the candidate genes involved in swine broad-spectrum resistance were identified, such as TIMD4, RNF128 and VCAM1. In addition, after differential gene expression, target gene identification and functional enrichment analyses, a potential regulatory network of miRNA genes associated with immune response was obtained in Dapulian pigs, including five miRNAs and 12 genes (such as ssc-miR-181a, ssc-miR-486, IL1R1 and NFKB2). This work provides new insights into the immune response regulation of antiviral responses in indigenous and modern commercial pigs.
Collapse
Affiliation(s)
- Tao Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhe Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Mubin Yu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Min Zhang
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Xiangwei Zhai
- General Station of Animal Husbandry of Shandong Province, Jinan 250100, China
- Protection of Animal Genetic Resources and Biological Breeding Engineering Research Center of Shandong Province, Jinan 250300, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Junjie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
19
|
Zhukova JV, Lopatnikova JA, Alshevskaya AA, Sennikov SV. Molecular mechanisms of regulation of IL-1 and its receptors. Cytokine Growth Factor Rev 2024; 80:59-71. [PMID: 39414547 DOI: 10.1016/j.cytogfr.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interleukin 1 (IL-1) is a pro-inflammatory cytokine that plays a key role in the development and regulation of nonspecific defense and specific immunity. However, its regulatory influence extends beyond inflammation and impacts a range of immune and non-immune processes. The involvement of IL-1 in numerous biological processes, including modulation of inflammation, necessitates strict regulation at multiple levels. This review focuses on these regulatory processes and discusses their underlying mechanisms. IL-1 activity is controlled at various levels, including receptor binding, gene transcription, expression as inactive proforms, and regulated post-translational processing and secretion. Regulation at the level of the receptor expression - alternative splicing, tissue-specific isoforms, and gene polymorphism - is also crucial to IL-1 functional activity. Understanding these regulatory features of IL-1 will not only continue to shape future research directions but will also highlight promising therapeutic strategies to modulate the biological effects of IL-1.
Collapse
Affiliation(s)
- J V Zhukova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - J A Lopatnikova
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S V Sennikov
- Federal State Budgetary Scientific Institution "Research Institute of Fundamental and Clinical Immunology" (RIFCI), Novosibirsk 630099, Russia; Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia.
| |
Collapse
|
20
|
Dong L, He H, Chen Z, Wang X, Li Y, Lü G, Wang B, Kuang L. Pharmacological Network Analysis of the Functions and Mechanism of Quercetin From Jisuikang (JSK) in Spinal Cord Injury (SCI). J Cell Mol Med 2024; 28:e70269. [PMID: 39679746 DOI: 10.1111/jcmm.70269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Neuroinflammation, especially microglia/macrophage activation, is a hallmark of spinal cord injury (SCI). Jisuikang (JSK) is a clinical experiential Chinese herbal formula for SCI therapy containing Huangqi (Astragali Radix), Danggui (Angelica sinensis Radix), Chishao (Paeoniae Radix Rubra), Dilong (earthworm, Pheretima aspergillum), Chuanxiong (Chuanxiong Rhizoma), Taoren (Persicae Seman) and Honghua (Carthami Flos). Eighteen active ingredients in 6 herbs of JSK were found to be correlated with inflammation, spinal injury and other diseases. These 18 active ingredients target 5464 genes according to the PubChem database. Through comparing differentially expressed genes between SCI and normal samples using GSE datasets, 50 hub genes were identified. These hub-genes were enriched in oxidative stress response and inflammation response. The herb-compound-target, herb-compound-signalling and compound-target-signalling networks were generated and quercetin was identified as the hub compound. A concentration of 25 μM quercetin showed no cytotoxicity but significantly protected microglial cells from LPS-induced inhibition of cell viability. LPS stimulation elevated the levels of iNOS, IL-1β and TNF-α but decreased IL-10 levels, whereas quercetin significantly attenuated LPS-induced alterations in these factors. Moreover, quercetin targeted gene, IL1R1 was reduced by quercetin as predicted. Overexpression of IL1R1 further increased LPS-induced inflammation, which could be partly reversed by quercetin treatment. In vivo, quercetin improved histopathological alterations, inflammation and promoted M2 macrophage polarisation post-injury, whereas IL1R1 overexpression partially attenuated the beneficial effects of quercetin on the rat SCI model. Collectively, quercetin, the main ingredient compound of JSK, protects against LPS-induced cell viability inhibition and cellular inflammation, which could be partially attenuated by IL1R1 overexpression.
Collapse
Affiliation(s)
- Lini Dong
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyu He
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zejun Chen
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxiao Wang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunchao Li
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guohua Lü
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bing Wang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Kuang
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Feng Y, Chen C, Shao A, Wu L, Hu H, Zhang T. Emerging interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors or degraders as therapeutic agents for autoimmune diseases and cancer. Acta Pharm Sin B 2024; 14:5091-5105. [PMID: 39807338 PMCID: PMC11725142 DOI: 10.1016/j.apsb.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
Interleukin-1 receptor-related kinase (IRAK4) is a widely expressed serine/threonine kinase involved in the regulation of innate immunity. IRAK4 plays a pivotal role as a key kinase within the downstream signaling pathway cascades of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs). The signaling pathways orchestrated by IRAK4 are integral to inflammatory responses, and its overexpression is implicated in the pathogenesis of inflammatory diseases, autoimmune disorders, and cancer. Consequently, targeting IRAK4-mediated signaling pathways has emerged as a promising therapeutic strategy. Small molecule inhibitors and degraders designed to modulate IRAK4 have shown efficacy in mitigating related diseases. In this paper, we will provide a detailed description of the structure and function of IRAK4, the role of IRAK4 in related diseases, as well as the currently reported small molecule inhibitors and degraders of IRAK4. It is expected to provide new directions for enriching the clinical treatment of inflammation and related diseases.
Collapse
Affiliation(s)
- Yifan Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Anqi Shao
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haiyu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
22
|
Aksu MD, van der Ent T, Zhang Z, Riza AL, de Nooijer AH, Ricaño-Ponce I, Janssen N, Engel JJ, Streata I, Dijkstra H, Lemmers H, Grondman I, Koeken VACM, Antoniadou E, Antonakos N, van de Veerdonk FL, Li Y, Giamarellos-Bourboulis EJ, Netea MG, Ziogas A. Regulation of plasma soluble receptors of TNF and IL-1 in patients with COVID-19 differs from that observed in sepsis. J Infect 2024; 89:106300. [PMID: 39357572 PMCID: PMC11624491 DOI: 10.1016/j.jinf.2024.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES IL-1α/β and TNF are closely linked to the pathology of severe COVID-19 and sepsis. The soluble forms of their receptors, functioning as decoy receptors, exhibit inhibitory effects. However, little is known about their regulation in severe bacterial and viral infections, which we aimed to investigate in this study. METHODS The circulating soluble receptors of TNF (sTNFR1 and sTNFR2) and IL-1α/β (sIL-1R1, sIL-1R2) were evaluated in the plasma of patients with COVID-19, severe bacterial infections, and sepsis and compared with healthy controls. Additionally, IL1R1, IL1R2, TNFRSF1A, and TNFRSF1B expression was evaluated at the single cell level in PBMCs derived from COVID-19 or sepsis patients. RESULTS Plasma concentrations of sIL-1R1, sTNFR1, and sTNFR2 were significantly higher in COVID-19 patients compared to healthy subjects. Notably, sIL-1R1 levels were particularly elevated in ICU COVID-19 patients, and transcriptome analysis indicated heightened IL1R1 expression in PBMCs from severe COVID-19 patients. In severe bacterial infections, only sTNFR1 and sTNFR2 exhibited increased levels compared to healthy controls. Sepsis patients had decreased sIL-1R1 plasma concentrations but elevated sIL-1R2, sTNFR1, and sTNFR2 levels compared to healthy individuals, reflecting the heightened expression due to the increased numbers of monocytes present in sepsis. Finally, elevated concentrations of sIL-1R2, sTNFR1, and sTNFR2 were moderately associated with reduced 28-day survival in sepsis patients. CONCLUSION Our study reveals distinct regulation of plasma concentrations of soluble IL-1 receptors in COVID-19 and sepsis. Moreover, soluble TNF receptors 1 and 2 consistently rise in all conditions and show a positive correlation with disease severity in sepsis.
Collapse
Affiliation(s)
- Muhammed D Aksu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Tijmen van der Ent
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Zhenhua Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Anca L Riza
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Romania; Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital Craiova, Romania
| | - Aline H de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Nico Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Job J Engel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Romania; Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital Craiova, Romania
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Eleni Antoniadou
- Intensive Care Unit, "G. Gennimatas" Hospital, Thessaloniki, Greece
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Ye Y, Shi Y, Wei Z, Liu H, Li W. SIGIRR suppresses hepatitis B virus X protein-induced chronic inflammation in hepatocytes. Gene 2024; 928:148768. [PMID: 39013482 DOI: 10.1016/j.gene.2024.148768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Although antiviral drugs can effectively inhibit hepatitis B virus (HBV) replication, the maintenance of chronic inflammation in the liver is still considered to be an important cause for the progression of HBV-related liver disease to liver fibrosis and advanced liver disease. As an endogenous inhibitory receptor of IL-1R and TLR signaling pathways, single immunoglobulin interleukin-1-related receptor (SIGIRR) has been proven to reduce inflammation in tissues to maintain system homeostasis. However, the relationship between SIGIRR expression and HBV replication and inflammatory pathway activation in hepatocytes remains unclear. In this study, hepatitis B virus X protein (HBx) upregulated MyD88 in liver cells, promoting NF-κB signaling and inflammatory factor production with LPS treatment, and the cell supernatant accelerated the activation and collagen secretion of hepatic stellate cells. However, SIGIRR overexpression suppressed HBx-mediated MyD88/NF-κB inflammatory signaling activation and inflammatory cytokine production induced by LPS in hepatocytes and HBV replication hepatocytes. Although we did not find any effect of SIGIRR on HBV replication in vitro, this study investigated the role of SIGIRR in blocking the proinflammatory function of HBx, which may provide a new idea for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Yanshuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Yunpeng Shi
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Zhenhong Wei
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China
| | - Hongyu Liu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
24
|
Ma X, Qiu J, Zou S, Tan L, Miao T. The role of macrophages in liver fibrosis: composition, heterogeneity, and therapeutic strategies. Front Immunol 2024; 15:1494250. [PMID: 39635524 PMCID: PMC11616179 DOI: 10.3389/fimmu.2024.1494250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Macrophages, the predominant immune cells in the liver, are essential for maintaining hepatic homeostasis and responding to liver injury caused by external stressors. The hepatic macrophage population is highly heterogeneous and plastic, mainly comprised of hepatic resident kuffer cells (KCs), monocyte-derived macrophages (MoMφs), lipid-associated macrophages (LAMs), and liver capsular macrophages (LCMs). KCs, a population of resident macrophages, are localized in the liver and can self-renew through in situ proliferation. However, MoMφs in the liver are recruited from the periphery circulation. LAMs are a self-renewing subgroup of liver macrophages near the bile duct. While LCMs are located in the liver capsule and derived from peripheral monocytes. LAMs and LCMs are also involved in liver damage induced by various factors. Hepatic macrophages exhibit distinct phenotypes and functions depending on the specific microenvironment in the liver. KCs are critical for initiating inflammatory responses after sensing tissue damage, while the MoMφs infiltrated in the liver are implicated in both the progression and resolution of chronic hepatic inflammation and fibrosis. The regulatory function of liver macrophages in hepatic fibrosis has attracted significant interest in current research. Numerous literatures have documented that the MoMφs in the liver have a dual impact on the progression and resolution of liver fibrosis. The MoMφs in the liver can be categorized into two subtypes based on their Ly-6C expression level: inflammatory macrophages with high Ly-6C expression (referred to as Ly-6Chi subgroup macrophages) and reparative macrophages with low Ly-6C expression (referred to as Ly-6Clo subgroup macrophages). Ly-6Chi subgroup macrophages are conducive to the occurrence and progression of liver fibrosis, while Ly-6Clo subgroup macrophages are associated with the degradation of extracellular matrix (ECM) and regression of liver fibrosis. Given this, liver macrophages play a pivotal role in the occurrence, progression, and regression of liver fibrosis. Based on these studies, treatment therapies targeting liver macrophages are also being studied gradually. This review aims to summarize researches on the composition and origin of liver macrophages, the macrophage heterogeneity in the progression and regression of liver fibrosis, and anti-fibrosis therapeutic strategies targeting macrophages in the liver.
Collapse
Affiliation(s)
- Xiaocao Ma
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jia Qiu
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang, China
| | - Shubiao Zou
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liling Tan
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tingting Miao
- Department of Nuclear Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Song M, Deng M, Peng Z, Dai F, Wang Y, Shu W, Zhou X, Zhang J, Hou Y, Yu B. Granulocyte colony-stimulating factor mediates bone loss via the activation of IL-1β/JNK signaling pathway in murine Staphylococcus aureus-induced osteomyelitis. Int Immunopharmacol 2024; 141:112959. [PMID: 39163688 DOI: 10.1016/j.intimp.2024.112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
Staphylococcus aureus (S. aureus)-induced bone loss is a significant challenge in the treatment of osteomyelitis. Our previous study was the first to confirm that granulocyte colony-stimulating factor (G-CSF) mediates S. aureus-induced bone loss. However, the underlying mechanism remains unknown. The objective of this study was to elucidate this. We found G-CSF mediated BMSC senescence and increased IL-1β concentration of serum and bone marrow in mice after S. aureus infection. Furthermore, we demonstrated that G-CSF promoted the expression of IL1b in murine bone marrow-derived neutrophils. Notably, we identified that IL-1β mediated BMSC (bone marrow mesenchymal stromal cell) senescence in mice after S. aureus infection. Importantly, IL-1β neutralizing antibody effectively alleviated BMSC senescence and bone loss caused by S. aureus infection in mice. In terms of molecular mechanism, we found IL-1β induced BMSC senescence by JNK/P53 and JNK/BCL2 pathways. Collectively, G-CSF promotes IL-1β production which induces BMSC senescence via JNK/P53 and JNK/BCL2 pathways, leading to S. aureus-induced bone loss. This study identified novel targets for preventing and treating S. aureus-induced bone loss in osteomyelitis.
Collapse
Affiliation(s)
- Mingrui Song
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingye Deng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyue Peng
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangfang Dai
- Huiqiao Medical Center, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yutian Wang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen Shu
- Department of Trauma Orthopedics, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xuyou Zhou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinye Zhang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Hou
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Guo M, Sun R, Wu Z, Li A, Wang Q, Zhao Z, Liu H, Wang B, Xiao K, Shi Z, Ji W. A comparative study on the immune response in the head and trunk kidney of yellow catfish infected with Edwardsiella ictaluri. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109895. [PMID: 39265963 DOI: 10.1016/j.fsi.2024.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The teleost kidneys are anatomically divided into head kidney and trunk kidney, each performing distinct physiological functions. Although previous research has elucidated the role of the head kidney in immune responses, there is a paucity of literature on the comparative studies of the head and trunk kidney response to bacterial infection. Therefore, an Edwardsiella ictaluri infection model of yellow catfish was constructed to investigate and compare the immune responses between the two kidney types. The findings indicated that E. ictaluri infection induced significant pathological changes in both the head and trunk kidney. Despite variances in structure, both the head and trunk kidney of yellow catfish exhibit robust immune responses following E. ictaluri infection. Unexpectedly, the up-regulation level of IgM was found to be higher in the trunk kidney compared to the head kidney. Additionally, both the IgM+ and IgD+ B cells were increased after bacterial infection. This research elucidates the parallels and distinctions in immune functions between both the head and trunk kidney in fish, enriching the immune theory of the fish kidney, and also providing a theoretical basis for the immune response of teleost kidney against bacterial infections.
Collapse
Affiliation(s)
- Mengge Guo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhan Sun
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengyan Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anqi Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangchun Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huimin Liu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingchao Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Xiao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zechao Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
28
|
Huang S, Xu M, Deng X, Da Q, Li M, Huang H, Zhao L, Jing L, Wang H. Anti irradiation nanoparticles shelter immune organ from radio-damage via preventing the IKK/IκB/NF-κB activation. Mol Cancer 2024; 23:234. [PMID: 39425231 PMCID: PMC11490033 DOI: 10.1186/s12943-024-02142-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Normal tissue and immune organ protection are critical parts of the tumor radiation therapy process. Radiation-induced immune organ damage (RIOD) causes several side reactions by increasing oxidative stress and inflammatory responses, resulting in unsatisfactory curability in tumor radiation therapy. The aim of this study was to develop a novel and efficient anti irradiation nanoparticle and explore its mechanism of protecting splenic tissue from radiation in mice. METHODS Nanoparticles of triphenylphosphine cation NIT radicals (NPs-TPP-NIT) were prepared and used to protect the spleens of mice irradiated with X-rays. Splenic tissue histopathology and hematological parameters were investigated to evaluate the protective effect of NPs-TPP-NIT against X-ray radiation. Proteomics was used to identify differentially expressed proteins related to inflammatory factor regulation. In addition, in vitro and in vivo experiments were performed to assess the impact of NPs-TPP-NIT on radiation therapy. RESULTS NPs-TPP-NIT increased superoxide dismutase, catalase, and glutathione peroxidase activity and decreased malondialdehyde levels and reactive oxygen species generation in the spleens of mice after exposure to 6.0 Gy X-ray radiation. Moreover, NPs-TPP-NIT inhibited cell apoptosis, blocked the activation of cleaved cysteine aspartic acid-specific protease/proteinase, upregulated the expression of Bcl-2, and downregulated that of Bax. We confirmed that NPs-TPP-NIT prevented the IKK/IκB/NF-κB activation induced by ionizing radiation, thereby alleviating radiation-induced splenic inflammatory damage. In addition, when used during radiotherapy for tumors in mice, NPs-TPP-NIT exhibited no significant toxicity and conferred no significant tumor protective effects. CONCLUSIONS NPs-TPP-NIT prevented activation of IKK/IκB/NF-κB signaling, reduced secretion of pro-inflammatory factors, and promoted production of anti-inflammatory factors in the spleen, which exhibited radiation-induced damage repair capability without diminishing the therapeutic effect of radiation therapy. It suggests that NPs-TPP-NIT serve as a potential radioprotective drug to shelter immune organs from radiation-induced damage.
Collapse
Affiliation(s)
- Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Min Xu
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
- The Third Stationed Outpatient Department, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Xiaojun Deng
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
| | - Qingyue Da
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Miaomiao Li
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Hao Huang
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Linlin Jing
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Haibo Wang
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
29
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
30
|
Zhang Y, Park M, Ghoda LY, Zhao D, Valerio M, Nafie E, Gonzalez A, Ly K, Parcutela B, Choi H, Gong X, Chen F, Harada K, Chen Z, Nguyen LXT, Pichiorri F, Chen J, Song J, Forman SJ, Amanam I, Zhang B, Jin J, Williams JC, Marcucci G. IL1RAP-specific T cell engager depletes acute myeloid leukemia stem cells. J Hematol Oncol 2024; 17:67. [PMID: 39143574 PMCID: PMC11325815 DOI: 10.1186/s13045-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The interleukin-1 receptor accessory protein (IL1RAP) is highly expressed on acute myeloid leukemia (AML) bulk blasts and leukemic stem cells (LSCs), but not on normal hematopoietic stem cells (HSCs), providing an opportunity to target and eliminate the disease, while sparing normal hematopoiesis. Herein, we report the activity of BIF002, a novel anti-IL1RAP/CD3 T cell engager (TCE) in AML. METHODS Antibodies to IL1RAP were isolated from CD138+ B cells collected from the immunized mice by optoelectric positioning and single cell sequencing. Individual mouse monoclonal antibodies (mAbs) were produced and characterized, from which we generated BIF002, an anti-human IL1RAP/CD3 TCE using Fab arm exchange. Mutations in human IgG1 Fc were introduced to reduce FcγR binding. The antileukemic activity of BIF002 was characterized in vitro and in vivo using multiple cell lines and patient derived AML samples. RESULTS IL1RAP was found to be highly expressed on most human AML cell lines and primary blasts, including CD34+ LSC-enriched subpopulation from patients with both de novo and relapsed/refractory (R/R) leukemia, but not on normal HSCs. In co-culture of T cells from healthy donors and IL1RAPhigh AML cell lines and primary blasts, BIF002 induced dose- and effector-to-target (E:T) ratio-dependent T cell activation and leukemic cell lysis at subnanomolar concentrations. BIF002 administered intravenously along with human T cells led to depletion of leukemic cells, and significantly prolonged survival of IL1RAPhigh MOLM13 or AML patient-derived xenografts with no off-target side effects, compared to controls. Of note, BiF002 effectively redirects T cells to eliminate LSCs, as evidenced by the absence of disease initiation in secondary recipients of bone marrow (BM) from BIF002+T cells-treated donors (median survival not reached; all survived > 200 days) compared with recipients of BM from vehicle- (median survival: 26 days; p = 0.0004) or isotype control antibody+T cells-treated donors (26 days; p = 0.0002). CONCLUSIONS The novel anti-IL1RAP/CD3 TCE, BIF002, eradicates LSCs and significantly prolongs survival of AML xenografts, representing a promising, novel treatment for AML.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Miso Park
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lucy Y Ghoda
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dandan Zhao
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Melissa Valerio
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ebtesam Nafie
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Asaul Gonzalez
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin Ly
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bea Parcutela
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Hyeran Choi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Xubo Gong
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Chen
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Kaito Harada
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Le Xuan Truong Nguyen
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Idoroenyi Amanam
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Bin Zhang
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - John C Williams
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, USA.
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
31
|
Rusiñol L, Puig L. A Narrative Review of the IL-18 and IL-37 Implications in the Pathogenesis of Atopic Dermatitis and Psoriasis: Prospective Treatment Targets. Int J Mol Sci 2024; 25:8437. [PMID: 39126010 PMCID: PMC11312859 DOI: 10.3390/ijms25158437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Atopic dermatitis and psoriasis are prevalent inflammatory skin conditions that significantly impact the quality of life of patients, with diverse treatment options available. Despite advances in understanding their underlying mechanisms, recent research highlights the significance of interleukins IL-18 and IL-37, in Th1, Th2, and Th17 inflammatory responses, closely associated with the pathogenesis of psoriasis and atopic dermatitis. Hence, IL-18 and IL-37 could potentially become therapeutic targets. This narrative review synthesizes knowledge on these interleukins, their roles in atopic dermatitis and psoriasis, and emerging treatment strategies. Findings of a literature search up to 30 May 2024, underscore a research gap in IL-37-targeted therapies. Conversely, IL-18-focused treatments have demonstrated promise in adult-onset Still's Disease, warranting further exploration for their potential efficacy in psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Lluís Rusiñol
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lluís Puig
- Dermatology Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Sant Pau (IR Sant Pau), Sant Quintí 77-79, 08041 Barcelona, Spain
- Unitat Docent Hospital Universitari Sant Pau, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
32
|
Sghaier I, Sheridan JM, Daldoul A, El-Ghali RM, Al-Awadi AM, Habel AF, Aimagambetova G, Almawi WY. Association of IL-1β gene polymorphisms rs1143627, rs1799916, and rs16944 with altered risk of triple-negative breast cancer. Cytokine 2024; 180:156659. [PMID: 38781872 DOI: 10.1016/j.cyto.2024.156659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Breast cancer (BC) is the most recognized malignancy in females globally and is heterogeneous in its clinical manifestation, among which the triple-negative (TNBC) subtype is the most aggressive. This study examines the associations between IL-1β polymorphisms and BC and TNBC susceptibility. METHODS Genotyping ofIL-1βrs1143627, rs1799916, and rs16944 polymorphisms was done in 488 women with BC (130 TNBC, 358 non-TNBC) and 476 cancer-free control women using real-time PCR genotyping. RESULTS The minor allele and genotype frequencies of rs1799916, rs1143627, and rs16944 significantly differed among BC cases and controls and remained after correcting key covariates. On the other hand, minor allele and genotype frequencies of only rs16944 significantly differed between TNBC and non-TNBC cases. Spearman correlation analyses demonstrated that all three variants correlated positively with menopausal status and Her2 status but negatively with menarche, breastfeeding, and cancer type. In addition, rs1143627 and rs16944 correlated positively with HR and ER, while rs1799916 correlated positively with Ki67 status. The three variants correlated negatively with menarche, breastfeeding, and cancer type in non-TNBC cases but positively with histological grading in non-TNBC and Her2 in TNBC cases. A positive correlation was noted between rs1143627 and rs1799916 and age (<40 years) and between rs1799916 and rs16944 with menopausal status. We confirmed that GCG haplotype imparted BC susceptibility, while TCA and TTG haplotypes were protective of BC. Among TNBC cases, only GCG and TCA haplotypes remained protective of TNBC after adjustment. CONCLUSIONS Our study highlights the association between IL-1βgenetic polymorphisms and BC and TNBC susceptibility, suggesting these variants' diagnostic/prognostic capacity in BC patients.
Collapse
Affiliation(s)
- Ikram Sghaier
- Faculty of Sciences, El-Manar University, Tunis, Tunisia
| | - Jordan M Sheridan
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Amira Daldoul
- Department of Medical Oncol., Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rabeb M El-Ghali
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | | | - Azza F Habel
- Faculty of Sciences, El-Manar University, Tunis, Tunisia
| | | | - Wassim Y Almawi
- Faculty of Sciences, El-Manar University, Tunis, Tunisia; Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
33
|
Zhang Y, Liu K, Guo M, Yang Y, Zhang H. Negative regulator IL-1 receptor 2 (IL-1R2) and its roles in immune regulation of autoimmune diseases. Int Immunopharmacol 2024; 136:112400. [PMID: 38850793 DOI: 10.1016/j.intimp.2024.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The decoy receptor interleukin 1 receptor 2 (IL-1R2), also known as CD121b, has different forms: membrane-bound (mIL-1R2), soluble secreted (ssIL-1R2), shedded (shIL-1R2), intracellular domain (IL-1R2ICD). The different forms of IL-1R2 exert not exactly similar functions. IL-1R2 can not only participate in the regulation of inflammatory response by competing with IL-1R1 to bind IL-1 and IL-1RAP, but also regulate IL-1 maturation and cell activation, promote cell survival, participate in IL-1-dependent internalization, and even have biological activity as a transcriptional cofactor. In this review, we provide a detailed description of the biological characteristics of IL-1R2 and discuss the expression and unique role of IL-1R2 in different immune cells. Importantly, we summarize the role of IL-1R2 in immune regulation from different autoimmune diseases, hoping to provide a new direction for in-depth studies of pathogenesis and therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Ke Liu
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha City, Hunan Province, China
| | - Yiying Yang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China; Postdoctoral Research Station of Biology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China.
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha City, Hunan Province, China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China.
| |
Collapse
|
34
|
Dawalibi A, Alosaimi AA, Mohammad KS. Balancing the Scales: The Dual Role of Interleukins in Bone Metastatic Microenvironments. Int J Mol Sci 2024; 25:8163. [PMID: 39125732 PMCID: PMC11311339 DOI: 10.3390/ijms25158163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Bone metastases, a common and debilitating consequence of advanced cancers, involve a complex interplay between malignant cells and the bone microenvironment. Central to this interaction are interleukins (ILs), a group of cytokines with critical roles in immune modulation and inflammation. This review explores the dualistic nature of pro-inflammatory and anti-inflammatory interleukins in bone metastases, emphasizing their molecular mechanisms, pathological impacts, and therapeutic potential. Pro-inflammatory interleukins, such as IL-1, IL-6, and IL-8, have been identified as key drivers in promoting osteoclastogenesis, tumor proliferation, and angiogenesis. These cytokines create a favorable environment for cancer cell survival and bone degradation, contributing to the progression of metastatic lesions. Conversely, anti-inflammatory interleukins, including IL-4, IL-10, and IL-13, exhibit protective roles by modulating immune responses and inhibiting osteoclast activity. Understanding these opposing effects is crucial for developing targeted therapies aimed at disrupting the pathological processes in bone metastases. Key signaling pathways, including NF-κB, JAK/STAT, and MAPK, mediate the actions of these interleukins, influencing tumor cell survival, immune cell recruitment, and bone remodeling. Targeting these pathways presents promising therapeutic avenues. Current treatment strategies, such as the use of denosumab, tocilizumab, and emerging agents like bimekizumab and ANV419, highlight the potential of interleukin-targeted therapies in mitigating bone metastases. However, challenges such as therapeutic resistance, side effects, and long-term efficacy remain significant hurdles. This review also addresses the potential of interleukins as diagnostic and prognostic biomarkers, offering insights into patient stratification and personalized treatment approaches. Interleukins have multifaceted roles that depend on the context, including the environment, cell types, and cellular interactions. Despite substantial progress, gaps in research persist, particularly regarding the precise mechanisms by which interleukins influence the bone metastatic niche and their broader clinical implications. While not exhaustive, this overview underscores the critical roles of interleukins in bone metastases and highlights the need for continued research to fully elucidate their complex interactions and therapeutic potential. Addressing these gaps will be essential for advancing our understanding and treatment of bone metastases in cancer patients.
Collapse
Affiliation(s)
- Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Amal Ahmed Alosaimi
- College of Medicine, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia;
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
35
|
Qian G, Yu Y, Dong Y, Hong Y, Wang M. Exosomes derived from human urine-derived stem cells ameliorate IL-1β-induced intervertebral disk degeneration. BMC Musculoskelet Disord 2024; 25:537. [PMID: 38997667 PMCID: PMC11241922 DOI: 10.1186/s12891-024-07636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Human intervertebral disk degeneration (IVDD) is a sophisticated degenerative pathological process. A key cause of IVDD progression is nucleus pulposus cell (NPC) degeneration, which contributes to excessive endoplasmic reticulum stress in the intervertebral disk. However, the mechanisms underlying IVDD and NPC degeneration remain unclear. METHODS We used interleukin (IL)-1β stimulation to establish an NPC-degenerated IVDD model and investigated whether human urine-derived stem cell (USC) exosomes could prevent IL-1β-induced NPC degeneration using western blotting, quantitative real-time polymerase chain reaction, flow cytometry, and transcriptome sequencing techniques. RESULTS We successfully extracted and identified USCs and exosomes from human urine. IL-1β substantially downregulated NPC viability and induced NPC degeneration while modulating the expression of SOX-9, collagen II, and aggrecan. Exosomes from USCs could rescue IL-1β-induced NPC degeneration and restore the expression levels of SOX-9, collagen II, and aggrecan. CONCLUSIONS USC-derived exosomes can prevent NPCs from degeneration following IL-1β stimulation. This finding can aid the development of a potential treatment strategy for IVDD.
Collapse
Grants
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2020WYZT01 Scientific Research Project funded by Shanghai Fifth People 's Hospital, Fudan University
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
- 2022MHZ073 Natural Science Research Funds of Minhang District, Shanghai
Collapse
Affiliation(s)
- Guang Qian
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Yueming Yu
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Youhai Dong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Yang Hong
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
36
|
Zhang H, Shi S, Huang X, Gong C, Zhang Z, Zhao Z, Gao J, Zhang M, Yu X. Identification of core genes in intervertebral disc degeneration using bioinformatics and machine learning algorithms. Front Immunol 2024; 15:1401957. [PMID: 39050860 PMCID: PMC11266004 DOI: 10.3389/fimmu.2024.1401957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Background Intervertebral Disc Degeneration (IDD) is a major cause of lower back pain and a significant global health issue. However, the specific mechanisms of IDD remain unclear. This study aims to identify key genes and pathways associated with IDD using bioinformatics and machine learning algorithms. Methods Gene expression profiles, including those from 35 LDH patients and 43 healthy volunteers, were downloaded from the GEO database (GSE124272, GSE150408, GSE23130, GSE153761). After merging four microarray datasets, differentially expressed genes (DEGs) were selected for GO and KEGG pathway enrichment analysis. Weighted Gene Co-expression Network Analysis (WGCNA) was then applied to the merged dataset to identify relevant modules and intersect with DEGs to discover candidate genes with diagnostic value. A LASSO model was established to select appropriate genes, and ROC curves were drawn to elucidate the diagnostic value of genetic markers. A Protein-Protein Interaction (PPI) network was constructed and visualized to determine central genes, followed by external validation using qRT-PCR. Results Differential analysis of the preprocessed dataset identified 244 genes, including 183 upregulated and 61 downregulated genes. WGCNA analysis revealed the most relevant module intersecting with DEGs, yielding 9 candidate genes. The lasso-cox method was used for regression analysis, ultimately identifying 6 genes: ASPH, CDC42EP3, FOSL2, IL1R1, NFKBIZ, TCF7L2. A Protein-Protein Interaction (PPI) network created with GENEMANIA identified IL1R1 and TCF7L2 as central genes. Conclusion Our study shows that IL1R1 and TCF7L2 are the core genes of IDD, offering new insights into the pathogenesis and therapeutic development of IDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaobing Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
37
|
Zhang C, Ma J, Zhang X, Zhou D, Cao Z, Qiao L, Chen G, Yang L, Ding BS. Processing of angiocrine alarmin IL-1α in endothelial cells promotes lung and liver fibrosis. Int Immunopharmacol 2024; 134:112176. [PMID: 38723369 DOI: 10.1016/j.intimp.2024.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/21/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Fibrosis results from excessive scar formation after tissue injury. Injured cells release alarmins such as interleukin 1 (IL-1) α and β as primary mediators initiating tissue repair. However, how alarmins from different cell types differentially regulate fibrosis remains to be explored. METHODS Here, we used tissue specific knockout strategy to illustrate a unique contribution of endothelial cell-derived IL-1α to lung and liver fibrosis. The two fibrotic animal model triggered by bleomycin and CCl4 were used to study the effects of endothelial paracrine/angiocrine IL-1α in fibrotic progression. Human umbilical vein endothelial cells (HUVEC) were performed to explore the production of angiocrine IL-1α at both transcriptional and post-transcriptional levels in vitro. RESULTS We found that endothelial paracrine/angiocrine IL-1α primarily promotes lung and liver fibrosis during the early phase of organ repair. By contrast, myeloid cell-specific ablation of IL-1α in mice resulted in little influence on fibrosis, suggesting the specific pro-fibrotic role of IL-1α from endothelial cell but not macrophage. In vitro study revealed a coordinated regulation of IL-1α production in human primary endothelial cells at both transcriptional and post-transcriptional levels. Specifically, the transcription of IL-1α is regulated by RIPK1, and after caspase-8 (CASP8) cleaves the precursor form of IL-1α, its secretion is triggered by ion channel Pannexin 1 upon CASP8 cleavage. CONCLUSIONS Endothelial cell-produced IL-1α plays a unique role in promoting organ fibrosis. Furthermore, the release of this angiocrine alarmin relies on a unique molecular mechanism involving RIPK1, CASP8, and ion channel Pannexin 1.
Collapse
Affiliation(s)
- Chunxue Zhang
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jie Ma
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China
| | - Dengcheng Zhou
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Zhongwei Cao
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Lina Qiao
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China.
| | - Guo Chen
- Department of Anesthesiology, The Research Units of West China(2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, China.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Bi-Sen Ding
- Key Laboratory of Birth Defects of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, College of Life Sciences, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
38
|
Li H, Di C, Xie Y, Bai Y, Liu Y. Therapeutic potential of the topical recombinant human interleukin-1 receptor antagonist in guinea pigs with allergic rhinitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:36. [PMID: 38835041 DOI: 10.1186/s13223-024-00893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Recombinant human Interleukin receptor antagonist (rhIL-Ra) can bind to the IL-1 receptor on the cell membrane and reversibly blocks the proinflammatory signaling pathway. However, its effect on allergic rhinitis (AR) and the underlying mechanism remains unknown. This study aims to investigate the efficacy of recombinant human interleukin-1 receptor antagonist (rhIL-1Ra) on AR guinea pigs. METHODS Guinea pigs were systemically sensitized by intraperitoneal injection and topical intranasal instillation with ovalbumin within 21 days. Animals administrated with saline served as the normal control. The AR animals were randomly divided into the model group and distinct concentrations of rhIL-1Ra and budesonide treatment groups. IL-1β and ovalbumin specific IgE levels were detected by ELISA kits. Nasal mucosa tissues were stained with hematoxylin & eosin (HE) for histological examination. RESULTS It was found that the numbers of sneezing and nose rubbing were remarkably reduced in rhIL-1Ra and budesonide-treated guinea pigs. Besides, rhIL-1Ra distinctly alleviated IgE levels in serum and IL-1β levels in nasal mucus, together with decreased exfoliation of epithelial cells, eosinophilic infiltration, tissue edema and vascular dilatation. CONCLUSIONS rhIL-1Ra is effective in AR guinea pigs and may provide a novel potential choice for AR treatments.
Collapse
Affiliation(s)
- Haibing Li
- Department of Pharmacy, Yingtan 184 Hospital, Yingtan, 335000, Jiangxi, China
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Taiping Rd., Haidian District, Beijing, 100850, China
| | - Chanjuan Di
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Taiping Rd., Haidian District, Beijing, 100850, China
| | - Yanbing Xie
- Department of Pharmacy, Yingtan 184 Hospital, Yingtan, 335000, Jiangxi, China
| | - Yuexia Bai
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Taiping Rd., Haidian District, Beijing, 100850, China
- Department of Pathology, Qilu Children's Hospital of Shandong University, Shandong, 250022, China
| | - Yongxue Liu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Taiping Rd., Haidian District, Beijing, 100850, China.
| |
Collapse
|
39
|
Özen I, Clausen F, Flygt J, Marklund N, Paul G. Neutralization of Interleukin 1-beta is associated with preservation of thalamic capillaries after experimental traumatic brain injury. Front Neurol 2024; 15:1378203. [PMID: 38765267 PMCID: PMC11100426 DOI: 10.3389/fneur.2024.1378203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Traumatic brain injury to thalamo-cortical pathways is associated with posttraumatic morbidity. Diffuse mechanical forces to white matter tracts and deep grey matter regions induce an inflammatory response and vascular damage resulting in progressive neurodegeneration. Pro-inflammatory cytokines, including interleukin-1β (IL-1β), may contribute to the link between inflammation and the injured capillary network after TBI. This study investigates whether IL-1β is a key contributor to capillary alterations and changes in pericyte coverage in the thalamus and cortex after TBI. Methods Animals were subjected to central fluid percussion injury (cFPI), a model of TBI causing widespread axonal and vascular pathology, or sham injury and randomized to receive a neutralizing anti-IL-1β or a control, anti-cyclosporin A antibody, at 30 min post-injury. Capillary length and pericyte coverage of cortex and thalamus were analyzed by immunohistochemistry at 2- and 7-days post-injury. Results and Conclusion Our results show that early post-injury attenuation of IL-1β dependent inflammatory signaling prevents capillary damage by increasing pericyte coverage in the thalamus.
Collapse
Affiliation(s)
- Ilknur Özen
- Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Fredrik Clausen
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johanna Flygt
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Niklas Marklund
- Lund Brain Injury Laboratory for Neurosurgical Research, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Clinical Sciences Lund, Neurosurgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
| |
Collapse
|
40
|
Qiu D, Xu S, Ji K, Tang C. Myeloid Cell-Derived IL-1 Signaling Damps Neuregulin-1 from Fibroblasts to Suppress Colitis-Induced Early Repair of the Intestinal Epithelium. Int J Mol Sci 2024; 25:4469. [PMID: 38674054 PMCID: PMC11050633 DOI: 10.3390/ijms25084469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Neuregulin-1 (Nrg1, gene symbol: Nrg1), a ligand of the ErbB receptor family, promotes intestinal epithelial cell proliferation and repair. However, the dynamics and accurate derivation of Nrg1 expression during colitis remain unclear. By analyzing the public single-cell RNA-sequencing datasets and employing a dextran sulfate sodium (DSS)-induced colitis model, we investigated the cell source of Nrg1 expression and its potential regulator in the process of epithelial healing. Nrg1 was majorly expressed in stem-like fibroblasts arising early in mouse colon after DSS administration, and Nrg1-Erbb3 signaling was identified as a potential mediator of interaction between stem-like fibroblasts and colonic epithelial cells. During the ongoing colitis phase, a significant infiltration of macrophages and neutrophils secreting IL-1β emerged, accompanied by the rise in stem-like fibroblasts that co-expressed Nrg1 and IL-1 receptor 1. By stimulating intestinal or lung fibroblasts with IL-1β in the context of inflammation, we observed a downregulation of Nrg1 expression. Patients with inflammatory bowel disease also exhibited an increase in NRG1+IL1R1+ fibroblasts and an interaction of NRG1-ERBB between IL1R1+ fibroblasts and colonic epithelial cells. This study reveals a novel potential mechanism for mucosal healing after inflammation-induced epithelial injury, in which inflammatory myeloid cell-derived IL-1β suppresses the early regeneration of intestinal tissue by interfering with the secretion of reparative neuregulin-1 by stem-like fibroblasts.
Collapse
Affiliation(s)
- Ding Qiu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, Guangzhou 510080, China;
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (K.J.)
| | - Shaoting Xu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (K.J.)
| | - Kaile Ji
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (K.J.)
| | - Ce Tang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, No.58, Zhong Shan Er Lu, Guangzhou 510080, China;
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; (S.X.); (K.J.)
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
41
|
Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, Elkabets M, Titus J, Bersudsky M, Apte RN, Voronov E, Braiman A. Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:3950. [PMID: 38612760 PMCID: PMC11011794 DOI: 10.3390/ijms25073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.
Collapse
Affiliation(s)
- Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Sapir Maudi-Boker
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Muhammad Yousef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Noy Machluf-Katz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Jaison Titus
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| |
Collapse
|
42
|
Gaballa JM, Højen JF, De Graaf DM, Amo-Aparicio J, Marchetti C, Cavalli G, Dinarello A, Li S, Corbisiero MF, Tengesdal IW, Redzic JS, Azam T, Webber WS, Pankratz KA, May MJ, Cominelli F, Eisenmesser EZ, Kim S, Dinarello CA, Boraschi D. International nomenclature guidelines for the IL-1 family of cytokines and receptors. Nat Immunol 2024; 25:581-582. [PMID: 38499798 DOI: 10.1038/s41590-024-01777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Joseph M Gaballa
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jesper Falkesgaard Højen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dennis M De Graaf
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jesus Amo-Aparicio
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Alberto Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Isak W Tengesdal
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Tania Azam
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William S Webber
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karl A Pankratz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Makenna J May
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Soohyun Kim
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT) of the Chinese Academy of Science (CAS), and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
- National Research Council, Napoli, Italy
| |
Collapse
|
43
|
Hu H, Wu A, Mu X, Zhou H. Role of Interleukin 1 Receptor 2 in Kidney Disease. J Interferon Cytokine Res 2024; 44:170-177. [PMID: 38527174 DOI: 10.1089/jir.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
The interleukin 1 (IL-1) family plays a significant role in the innate immune response. IL-1 receptor 2 (IL-1R2) is the decoy receptor of IL-1. It is a negative regulator that can be subdivided into membrane-bound and soluble types. IL-1R2 plays a role in the IL-1 family mainly through the following mechanisms: formation of inactive signaling complexes upon binding to the receptor auxiliary protein and inhibition of ligand IL-1 maturation. This review covers the roles of IL-1R2 in kidney disorders. Chronic kidney disease, acute kidney injury, lupus nephritis, IgA nephropathy, renal clear cell carcinoma, rhabdoid tumor of kidney, kidney transplantation, and kidney infection were all shown to have abnormal IL-1R2 expression. IL-1R2 may be a potential marker and a promising therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Huiyue Hu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Aihua Wu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaodie Mu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hua Zhou
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
44
|
Tripathi N, Saraf P, Bhardwaj N, Shrivastava SK, Jain SK. Identifying inflammation-related targets of natural lactones using network pharmacology, molecular modeling and in vitro approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38334283 DOI: 10.1080/07391102.2024.2310783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Natural lactones have been used in traditional and folklore medicine for centuries owing to their anti-inflammatory properties. The study uses a multifaceted approach to identify lead anti-inflammatory lactones from the SISTEMATX natural products database. The study analyzed the natural lactone database, revealing 18 lactones linked to inflammation targets. The primary targets were PTGES, PTGS1, COX-2, ALOX5 and IL1B. STX 12273 was the best hit, with the lowest binding energy and potential for inhibiting the COX-2 enzyme. The study suggested natural lactone, STX 12273, from the SISTEMATX database with anti-inflammatory potential and postulated its use for inflammation treatment or prevention.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
45
|
Korhonen E. Inflammasome activation in response to aberrations of cellular homeostasis in epithelial cells from human cornea and retina. Acta Ophthalmol 2024; 102 Suppl 281:3-68. [PMID: 38386419 DOI: 10.1111/aos.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
|
46
|
Calabrese L, Malvaso D, Coscarella G, Antonelli F, D’Amore A, Gori N, Rubegni P, Peris K, Chiricozzi A. Therapeutic Potential of IL-1 Antagonism in Hidradenitis Suppurativa. Biomolecules 2024; 14:175. [PMID: 38397412 PMCID: PMC10887283 DOI: 10.3390/biom14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The immunopathogenesis of HS is partially understood and exhibits features of an autoinflammatory disease; it is associated with the potential involvement of B cells and the contribution of Th1 or Th17 cell subsets. Recently, the pathogenic role of both innate immunity and IL-1 family cytokines in HS has been deeply investigated. Several agents targeting the IL-1 family pathway at different levels are currently available and under investigation for the treatment of HS. HS is still characterized by unmet clinical needs and represents an expanding field in the current scientific research. The aim of this narrative review is to describe the pathological dysregulation of IL-1 family members in HS and to provide an update on therapeutic strategies targeting IL-1 family cytokine signaling. Further clinical and preclinical data may likely lead to the enrichment of the therapeutic armamentarium of HS with IL-1 family cytokine antagonists.
Collapse
Affiliation(s)
- Laura Calabrese
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (D.M.); (G.C.); (F.A.); (N.G.); (K.P.)
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy;
| | - Dalma Malvaso
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (D.M.); (G.C.); (F.A.); (N.G.); (K.P.)
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Giulia Coscarella
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (D.M.); (G.C.); (F.A.); (N.G.); (K.P.)
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Flaminia Antonelli
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (D.M.); (G.C.); (F.A.); (N.G.); (K.P.)
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Alessandra D’Amore
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Niccolò Gori
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (D.M.); (G.C.); (F.A.); (N.G.); (K.P.)
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy;
| | - Ketty Peris
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (D.M.); (G.C.); (F.A.); (N.G.); (K.P.)
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Andrea Chiricozzi
- Dermatologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (D.M.); (G.C.); (F.A.); (N.G.); (K.P.)
- UOC di Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| |
Collapse
|
47
|
Li Q, Sharkey A, Sheridan M, Magistrati E, Arutyunyan A, Huhn O, Sancho-Serra C, Anderson H, McGovern N, Esposito L, Fernando R, Gardner L, Vento-Tormo R, Turco MY, Moffett A. Human uterine natural killer cells regulate differentiation of extravillous trophoblast early in pregnancy. Cell Stem Cell 2024; 31:181-195.e9. [PMID: 38237587 DOI: 10.1016/j.stem.2023.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 02/04/2024]
Abstract
In humans, balanced invasion of trophoblast cells into the uterine mucosa, the decidua, is critical for successful pregnancy. Evidence suggests that this process is regulated by uterine natural killer (uNK) cells, but how they influence reproductive outcomes is unclear. Here, we used our trophoblast organoids and primary tissue samples to determine how uNK cells affect placentation. By locating potential interaction axes between trophoblast and uNK cells using single-cell transcriptomics and in vitro modeling of these interactions in organoids, we identify a uNK cell-derived cytokine signal that promotes trophoblast differentiation at the late stage of the invasive pathway. Moreover, it affects transcriptional programs involved in regulating blood flow, nutrients, and inflammatory and adaptive immune responses, as well as gene signatures associated with disorders of pregnancy such as pre-eclampsia. Our findings suggest mechanisms on how optimal immunological interactions between uNK cells and trophoblast enhance reproductive success.
Collapse
Affiliation(s)
- Qian Li
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Andrew Sharkey
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Megan Sheridan
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Elisa Magistrati
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Anna Arutyunyan
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Oisin Huhn
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Carmen Sancho-Serra
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Holly Anderson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Naomi McGovern
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Laura Esposito
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ridma Fernando
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Roser Vento-Tormo
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Sanger Institute, Cambridge CB10 1SA, UK.
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
48
|
Gržeta Krpan N, Harej Hrkać A, Janković T, Dolenec P, Bekyarova E, Parpura V, Pilipović K. Chemically Functionalized Single-Walled Carbon Nanotubes Prevent the Reduction in Plasmalemmal Glutamate Transporter EAAT1 Expression in, and Increase the Release of Selected Cytokines from, Stretch-Injured Astrocytes in Vitro. Cells 2024; 13:225. [PMID: 38334617 PMCID: PMC10854924 DOI: 10.3390/cells13030225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
We tested the effects of water-soluble single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), on primary mouse astrocytes exposed to a severe in vitro simulated traumatic brain injury (TBI). The application of SWCNT-PEG in the culture media of injured astrocytes did not affect cell damage levels, when compared to those obtained from injured, functionalization agent (PEG)-treated cells. Furthermore, SWCNT-PEG did not change the levels of oxidatively damaged proteins in astrocytes. However, this nanomaterial prevented the reduction in plasmalemmal glutamate transporter EAAT1 expression caused by the injury, rendering the level of EAAT1 on par with that of control, uninjured PEG-treated astrocytes; in parallel, there was no significant change in the levels of GFAP. Additionally, SWCNT-PEG increased the release of selected cytokines that are generally considered to be involved in recovery processes following injuries. As a loss of EAATs has been implicated as a culprit in the suffering of human patients from TBI, the application of SWCNT-PEG could have valuable effects at the injury site, by preventing the loss of astrocytic EAAT1 and consequently allowing for a much-needed uptake of glutamate from the extracellular space, the accumulation of which leads to unwanted excitotoxicity. Additional potential therapeutic benefits could be reaped from the fact that SWCNT-PEG stimulated the release of selected cytokines from injured astrocytes, which would promote recovery after injury and thus counteract the excess of proinflammatory cytokines present in TBI.
Collapse
Affiliation(s)
- Nika Gržeta Krpan
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Anja Harej Hrkać
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Petra Dolenec
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, CA 92521, USA;
| | - Vladimir Parpura
- International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, HR-51000 Rijeka, Croatia; (N.G.K.); (A.H.H.); (T.J.); (P.D.)
| |
Collapse
|
49
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Exploring the role of IL-1β in inflammatory bowel disease pathogenesis. Front Med (Lausanne) 2024; 11:1307394. [PMID: 38323035 PMCID: PMC10845338 DOI: 10.3389/fmed.2024.1307394] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Interleukin 1β (IL-1β) is a significant mediator of inflammation and tissue damage in IBD. The balance between IL-1β and its endogenous inhibitor-IL-1Ra-, plays a critical role in both initiation and regulation of inflammation. However, the precise role of IL-1β as a causative factor in IBD or simply a consequence of inflammation remains unclear. This review summarizes current knowledge on the molecular and cellular characteristics of IL-1β, describes the existing evidence on the role of this cytokine as a modulator of intestinal homeostasis and an activator of inflammatory responses, and also discusses the role of microRNAs in the regulation of IL-1β-related inflammatory responses in IBD. Current evidence indicates that IL-1β is involved in several aspects during IBD as it greatly contributes to the induction of pro-inflammatory responses through the recruitment and activation of immune cells to the gut mucosa. In parallel, IL-1β is involved in the intestinal barrier disruption and modulates the differentiation and function of T helper (Th) cells by activating the Th17 cell differentiation, known to be involved in the pathogenesis of IBD. Dysbiosis in the gut can also stimulate immune cells to release IL-1β, which, in turn, promotes inflammation. Lastly, increasing evidence pinpoints the central role of miRNAs involvement in IL-1β-related signaling during IBD, particularly in the maintenance of homeostasis within the intestinal epithelium. In conclusion, given the crucial role of IL-1β in the promotion of inflammation and immune responses in IBD, the targeting of this cytokine or its receptors represents a promising therapeutic approach. Further research into the IL-1β-associated post-transcriptional modifications may elucidate the intricate role of this cytokine in immunomodulation.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, Patras, Greece
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| |
Collapse
|
50
|
Zhang Y, Zhang ZT, Wan SY, Yang J, Wei YJ, Chen HJ, Zhou WZ, Song QY, Niu SX, Zheng L, Huang K. ANGPTL3 negatively regulates IL-1β-induced NF-κB activation by inhibiting the IL1R1-associated signaling complex assembly. J Mol Cell Biol 2024; 15:mjad053. [PMID: 37634084 PMCID: PMC11149415 DOI: 10.1093/jmcb/mjad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Interleukin-1β (IL-1β)-induced signaling is one of the most important pathways in regulating inflammation and immunity. The assembly of the receptor complex, consisting of the ligand IL-1β, the IL-1 receptor (IL-1R) type 1 (IL1R1), and the IL-1R accessory protein (IL1RAP), initiates this signaling. However, how the IL1R1-associated complex is regulated remains elusive. Angiopoietin like 3 (ANGPTL3), a key inhibitor of plasma triglyceride clearance, is mainly expressed in the liver and exists in both intracellular and extracellular secreted forms. Currently, ANGPTL3 has emerged as a highly promising drug target for hypertriglyceridemia and associated cardiovascular diseases. However, most studies have focused on the secreted form of ANGPTL3, while its intracellular role is still largely unknown. Here, we report that intracellular ANGPTL3 acts as a negative regulator of IL-1β-triggered signaling. Overexpression of ANGPTL3 inhibited IL-1β-induced NF-κB activation and the transcription of inflammatory genes in HepG2, THP1, and HEK293T cells, while knockdown or knockout of ANGPTL3 resulted in opposite effects. Mechanistically, ANGPTL3 interacted with IL1R1 and IL1RAP through its intracellular C-terminal fibrinogen-like domain and disrupted the assembly of the IL1R1-associated complex. Taken together, our study reveals a novel role for ANGPTL3 in inflammation, whereby it inhibits the physiological interaction between IL1R1 and IL1RAP to maintain immune tolerance and homeostasis in the liver.
Collapse
Affiliation(s)
- Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi-tong Zhang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi-yuan Wan
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Yang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-juan Wei
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui-jing Chen
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wan-zhu Zhou
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu-yi Song
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu-xuan Niu
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|