1
|
Latour S. Human Immune Responses to Epstein-Barr Virus Highlighted by Immunodeficiencies. Annu Rev Immunol 2025; 43:723-749. [PMID: 40279309 DOI: 10.1146/annurev-immunol-082323-035455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Inborn errors of immunity (IEIs) represent unique in natura models that uncover key components of immunity in humans, in particular those that predispose to infections. Epstein-Barr virus (EBV) is one of the most common opportunistic infectious agents in humans and is responsible for several diseases, including infectious mononucleosis, nonmalignant and malignant lymphoproliferative disorders, hemophagocytic lymphohistiocytosis, and smooth muscle and epithelial tumors. For most individuals, EBV infection persists for life without pathological consequences. IEIs that do not predispose to EBV infection suggest that innate and humoral responses are not necessary or redundant for the immune response to EBV. IEIs associated with high susceptibility to EBV infection provide unequivocal genetic proof of the central role of CD8+ T cell responses in immunity to EBV. They also highlight the distinct steps and pathways required for, on the one hand, the effector cytotoxic functions of CD8+ T cells and, on the other hand, the expansion and maturation of cytotoxic CD8+ T cells.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Paris, France;
- Institut Imagine, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
3
|
Lack of an immune receptor might prevent cancers associated with Epstein-Barr virus. Nature 2024:10.1038/d41586-024-01627-y. [PMID: 38890521 DOI: 10.1038/d41586-024-01627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
|
4
|
Mitchell MR, Urdinez L, Bernasconi AR, Danielian S, Katsikas MM, Sajaroff EO, Roffé G, Villa NM, Galluzzo L, Sanz M, Palma AM, Bouso C, Prieto E, Goris V, Yancoski J, Rosenzweig SD, Oleastro M, Rosé A, Cacciavillano W, Felizzia G, Guitter M, Sánchez La Rosa C, Ríos M, Zubizarreta P, Felice MS, Rossi JG. Cancer Prevalence in Children with Inborn Errors of Immunity: Report from a Single Institution. J Clin Immunol 2024; 44:138. [PMID: 38805138 DOI: 10.1007/s10875-024-01736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Inborn Errors of Immunity (IEI) comprise several genetic anomalies that affect different components of the innate and adaptive responses, predisposing to infectious diseases, autoimmunity and malignancy. Different studies, mostly in adults, have reported a higher prevalence of cancer in IEI patients. However, in part due to the rarity of most of these IEI subtypes (classified in ten categories by the Primary Immunodeficiency Committee of the International Union of Immunological Societies), it is difficult to assess the risk in a large number of patients, especially during childhood. OBJECTIVE To document the cancer prevalence in a pediatric cohort from a single referral institution, assessing their risk, together with the type of neoplasia within each IEI subgroup. METHOD An extensive review of clinical records from 1989 to 2022 of IEI patients who at some point developed cancer before the age of sixteen. RESULTS Of a total of 1642 patients with IEI diagnosis, 34 developed cancer before 16 years of age, showing a prevalence (2.1%) significantly higher than that of the general age matched population (0.22). Hematologic neoplasms (mostly lymphomas) were the most frequent malignancies. CONCLUSION This study represents one of the few reports focused exclusively in pediatric IEI cases, describing not only the increased risk of developing malignancy compared with the age matched general population (a fact that must be taken into account by immunologists during follow-up) but also the association of the different neoplasms with particular IEI subtypes, thus disclosing the possible mechanisms involved.
Collapse
Affiliation(s)
- María Raquel Mitchell
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina.
| | - Luciano Urdinez
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Andrea R Bernasconi
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Silvia Danielian
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María Martha Katsikas
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Elisa O Sajaroff
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Georgina Roffé
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Nélida M Villa
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Laura Galluzzo
- Servicio de Anatomía Patológica, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marianela Sanz
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Alejandro M Palma
- Departament of Pediatrics - Division of Immunology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Carolina Bouso
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Emma Prieto
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Verónica Goris
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Judith Yancoski
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, USA
| | - Matías Oleastro
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Adriana Rosé
- Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Walter Cacciavillano
- Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Guido Felizzia
- Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Myriam Guitter
- Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Cristian Sánchez La Rosa
- Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Mailén Ríos
- Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Pedro Zubizarreta
- Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María Sara Felice
- Servicio de Hematología y Oncología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Jorge G Rossi
- Servicio de Inmunología y Reumatología, Hospital de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
5
|
Costagliola G, De Marco E, Massei F, Roberti G, Catena F, Casazza G, Consolini R. The Etiologic Landscape of Lymphoproliferation in Childhood: Proposal for a Diagnostic Approach Exploring from Infections to Inborn Errors of Immunity and Metabolic Diseases. Ther Clin Risk Manag 2024; 20:261-274. [PMID: 38770035 PMCID: PMC11104440 DOI: 10.2147/tcrm.s462996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024] Open
Abstract
Lymphoproliferation is defined by lymphadenopathy, splenomegaly, hepatomegaly, or lymphocytic organ and tissue infiltration. The most common etiologies of lymphoproliferation are represented by infectious diseases and lymphoid malignancies. However, it is increasingly recognized that lymphoproliferative features can be the presenting sign of rare conditions, including inborn errors of immunity (IEI) and inborn errors of metabolism (IEM). Among IEI, lymphoproliferation is frequently observed in autoimmune lymphoproliferative syndrome (ALPS) and related disorders, common variable immunodeficiency (CVID), activated phosphoinositide 3-kinase δ syndrome, and Epstein-Barr virus (EBV)-related disorders. Gaucher disease and Niemann-Pick disease are the most common IEMs that can present with isolated lymphoproliferative features. Notably, other rare conditions, such as sarcoidosis, Castleman disease, systemic autoimmune diseases, and autoinflammatory disorders, should be considered in the differential diagnosis of patients with persistent lymphoproliferation when infectious and malignant diseases have been reasonably ruled out. The clinical features of lymphoproliferative diseases, as well as the associated clinical findings and data deriving from imaging and first-level laboratory investigations, could significantly help in providing the correct diagnostic suspicion for the underlying etiology. This paper reviews the most relevant diseases associated with lymphoproliferation, including infectious diseases, hematological malignancies, IEI, and IEM. Moreover, some practical indications to orient the initial diagnostic process are provided, and two diagnostic algorithms are proposed for the first-level assessment and the approach to persistent lymphoproliferation, respectively.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Emanuela De Marco
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Francesco Massei
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Giulia Roberti
- Pediatrics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| | - Fabrizio Catena
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Gabriella Casazza
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, 56126, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Pediatric Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
6
|
Münz C. Altered EBV specific immune control in multiple sclerosis. J Neuroimmunol 2024; 390:578343. [PMID: 38615370 DOI: 10.1016/j.jneuroim.2024.578343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Since the 1980s it is known that immune responses to the Epstein-Barr virus (EBV) are elevated in multiple sclerosis (MS) patients. Recent seroepidemiologial data have shown that this alteration after primary EBV infection identifies individuals with a more than 30-fold increased risk to develop MS. The mechanisms by which EBV infection might erode tolerance for the central nervous system (CNS) in these individuals, years prior to clinical MS onset, remain unclear. In this review I will discuss altered frequencies of EBV life cycle stages and their tissue distribution, EBV with CNS autoantigen cross-reactive immune responses and loss of immune control for autoreactive B and T cells as possible mechanisms. This discussion is intended to stimulate future studies into these mechanisms with the aim to identify candidates for interventions that might correct EBV specific immune control and/or resulting cross-reactivities with CNS autoantigens in MS patients and thereby ameliorate disease activity.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
7
|
Šimičić P, Batović M, Stojanović Marković A, Židovec-Lepej S. Deciphering the Role of Epstein-Barr Virus Latent Membrane Protein 1 in Immune Modulation: A Multifaced Signalling Perspective. Viruses 2024; 16:564. [PMID: 38675906 PMCID: PMC11054855 DOI: 10.3390/v16040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.
Collapse
Affiliation(s)
- Petra Šimičić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, 10 000 Zagreb, Croatia;
| | - Margarita Batović
- Department of Clinical Microbiology and Hospital Infections, Dubrava University Hospital, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia;
| | - Anita Stojanović Marković
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Snjezana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| |
Collapse
|
8
|
Martin E, Winter S, Garcin C, Tanita K, Hoshino A, Lenoir C, Fournier B, Migaud M, Boutboul D, Simonin M, Fernandes A, Bastard P, Le Voyer T, Roupie AL, Ben Ahmed Y, Leruez-Ville M, Burgard M, Rao G, Ma CS, Masson C, Soudais C, Picard C, Bustamante J, Tangye SG, Cheikh N, Seppänen M, Puel A, Daly M, Casanova JL, Neven B, Fischer A, Latour S. Role of IL-27 in Epstein-Barr virus infection revealed by IL-27RA deficiency. Nature 2024; 628:620-629. [PMID: 38509369 DOI: 10.1038/s41586-024-07213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.
Collapse
Affiliation(s)
- Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
| | - Cécile Garcin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
| | - Kay Tanita
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
| | - David Boutboul
- Université Paris Cité, Paris, France
- Department of Hematology, Cochin Hospital, AP-HP, Paris, France
| | - Mathieu Simonin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Alicia Fernandes
- Plateforme Vecteurs Viraux et Transfert de Gènes, Institut Necker Enfants Malades, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Paul Bastard
- Université Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Université Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Anne-Laure Roupie
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
| | - Yassine Ben Ahmed
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Marianne Leruez-Ville
- Service de Bactériologie, Virologie, Parasitologie et Hygiène, Necker-Enfants Malades Hospital, Paris, France
| | - Marianne Burgard
- Service de Bactériologie, Virologie, Parasitologie et Hygiène, Necker-Enfants Malades Hospital, Paris, France
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Cécile Masson
- Plateforme de Bioinformatique, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Cité, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Jacinta Bustamante
- Université Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, APHP, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Nathalie Cheikh
- Hôpital Jean Minjoz, Centre Hospitalo-Universitaire de Besançon, Besançon, France
| | - Mikko Seppänen
- Pediatric Research Center and Rare Disease Center, New Children's Hospital, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
| | - Anne Puel
- Université Paris Cité, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Mark Daly
- Institut for Molecular Medecine Finland, University of Helsinki, Helsinki, Finland
| | - Jean-Laurent Casanova
- Université Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Bénédicte Neven
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Alain Fischer
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
- Collège de France, Paris, France
- Imagine Institute, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France.
- Université Paris Cité, Paris, France.
| |
Collapse
|
9
|
Jordan MB. Hemophagocytic lymphohistiocytosis: A disorder of T cell activation, immune regulation, and distinctive immunopathology. Immunol Rev 2024; 322:339-350. [PMID: 38100247 DOI: 10.1111/imr.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a disorder that has been recognized since the middle of the last century. In recent decades, increasing understanding of the genetic roots and pathophysiology of HLH has led to improved diagnosis and treatment of this once universally fatal disorder. HLH is best conceptualized as a maladaptive state of excessive T cell activation driving life-threatening myeloid cell activation, largely via interferon-gamma (IFN-γ). In familial forms of HLH (F-HLH), inherited defects of lymphocyte cytotoxic biology underlie excessive T cell activation, demonstrating the importance of the perforin/granzyme pathway as a negative feedback loop limiting acute T cell activation in response to environmental factors. HLH occurring in other contexts and without apparent inherited genetic predisposition remains poorly understood, though it may share some downstream aspects of pathophysiology including excessive IFN-γ action and activation of innate immune effectors. Iatrogenic forms of HLH occurring after immune-activating therapies for cancer are providing new insights into the potential toxicities of inadequately controlled T cell activation. Diagnosing HLH increasingly relies on context-specific measures of T cell activation, IFN-γ activity, and inflammation. Treatment of HLH largely relies on cytotoxic chemotherapy, though targeted therapies against T cells, IFN-γ, and other cytokines are increasingly utilized.
Collapse
Affiliation(s)
- Michael B Jordan
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Gutiérrez-Guerrero A, Espinosa-Padilla SE, Lugo-Reyes SO. [Anything that can go wrong: cytotoxic cells and their control of Epstein-Barr virus]. REVISTA ALERGIA MÉXICO 2024; 71:29-39. [PMID: 38683066 DOI: 10.29262/ram.v71i1.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 05/01/2024] Open
Abstract
Epstein-Barr virus (EBV) is an gamma of herpes virus affecting exclusively humans, was the first oncogenic virus described and is associated with over seven different cancers. Curiously, the exchange of genes during viral infections has enabled the evolution of other cellular organisms, favoring new functions and the survival of the host. EBV has been co-evolving with mammals for hundreds of millions of years, and more than 95% of adults have been infected in one moment of their life. The infection is acquired primarily during childhood, in most cases as an asymptomatic infection. However, during adolescence or young adulthood, around 10 to 30% develop infectious mononucleosis. The NK and CD8+ T cells are the cytotoxic cells of the immune system that focus on antiviral responses. Importantly, an essential role of NK and CD8+ T cells has been demonstrated during the control and elimination of EBV-infected cells. Nonetheless, when the cytotoxic function of these cells is compromised, the infection increases the risk of developing lymphoproliferative diseases and cancer, often fatal. In this review, we delineate EBV infection and the importance of cytotoxic responses by NK and CD8+ T cells during the control and elimination of EBV-infected cells. Furthermore, we briefly discuss the main inborn errors of immunity that compromise cytotoxic responses by NK and CD8+ T cells, and how this scenario affects the antiviral response during EBV infection. Finally, we conclude the review by underlying the need for an effective EBV vaccine capable of preventing infection and the consequent development of malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Arturo Gutiérrez-Guerrero
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Sara Elva Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Saúl Oswaldo Lugo-Reyes
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| |
Collapse
|
11
|
Verbist K, Nichols KE. Cytokine Storm Syndromes Associated with Epstein-Barr Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:227-248. [PMID: 39117818 DOI: 10.1007/978-3-031-59815-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous and predominantly B cell tropic virus. One of the most common viruses to infect humans, EBV, is best known as the causative agent of infectious mononucleosis (IM). Although most people experience asymptomatic infection, EBV is a potent immune stimulus and as such it elicits robust proliferation and activation of the B-lymphocytes it infects as well as the immune cells that respond to infection. In certain individuals, such as those with inherited or acquired defects affecting the immune system, failure to properly control EBV leads to the accumulation of EBV-infected B cells and EBV-reactive immune cells, which together contribute to the development of often life-threatening cytokine storm syndromes (CSS). Here, we review the normal immune response to EBV and discuss several CSS associated with EBV, such as chronic active EBV infection, hemophagocytic lymphohistiocytosis, and post-transplant lymphoproliferative disorder. Given the critical role for cytokines in driving inflammation and contributing to disease pathogenesis, we also discuss how targeting specific cytokines provides a rational and potentially less toxic treatment for EBV-driven CSS.
Collapse
Affiliation(s)
- Katherine Verbist
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
12
|
Cox MF, Mackenzie S, Low R, Brown M, Sanchez E, Carr A, Carpenter B, Bishton M, Duncombe A, Akpabio A, Kulasekararaj A, Sin FE, Jones A, Kavirayani A, Sen ES, Quick V, Dulay GS, Clark S, Bauchmuller K, Tattersall RS, Manson JJ. Diagnosis and investigation of suspected haemophagocytic lymphohistiocytosis in adults: 2023 Hyperinflammation and HLH Across Speciality Collaboration (HiHASC) consensus guideline. THE LANCET. RHEUMATOLOGY 2024; 6:e51-e62. [PMID: 38258680 DOI: 10.1016/s2665-9913(23)00273-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome characterised by persistently activated cytotoxic lymphocytes and macrophages, which, if untreated, leads to multiorgan dysfunction and death. HLH should be considered in any acutely unwell patient not responding to treatment as expected, with prompt assessment to look for what we term the three Fs-fever, falling blood counts, and raised ferritin. Worldwide, awareness of HLH and access to expert management remain inequitable. Terminology is not standardised, classification criteria are validated in specific patient groups only, and some guidelines rely on specialised and somewhat inaccessible tests. The consensus guideline described in this Health Policy was produced by a self-nominated working group from the UK network Hyperinflammation and HLH Across Speciality Collaboration (HiHASC), a multidisciplinary group of clinicians experienced in managing people with HLH. Combining literature review and experience gained from looking after patients with HLH, it provides a practical, structured approach for all health-care teams managing adult (>16 years) patients with possible HLH. The focus is on early recognition and diagnosis of HLH and parallel identification of the underlying cause. To ensure wide applicability, the use of inexpensive, readily available tests is prioritised, but the role of specialist investigations and their interpretation is also addressed.
Collapse
Affiliation(s)
- Miriam F Cox
- Department of Rheumatology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Strachan Mackenzie
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ryan Low
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Michael Brown
- Division of Infection, University College London Hospitals NHS Foundation Trust, London, UK
| | - Emilie Sanchez
- Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Aisling Carr
- Centre for Neuromuscular Diseases, National hospital of Neurology and Neurosurgery, London, UK
| | - Ben Carpenter
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Mark Bishton
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Andrew Duncombe
- Department of Haematology, University Hospital Southampton, Southampton, UK
| | - Akpabio Akpabio
- Department of Rheumatology, Royal National Hospital for Rheumatic Diseases, Bath, UK
| | | | - Fang En Sin
- Department of Rheumatology, North Bristol NHS Trust, UK
| | - Alexis Jones
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Akhila Kavirayani
- Department of Paediatric Rheumatology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ethan S Sen
- Department of Paediatric Rheumatology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Vanessa Quick
- Department of Rheumatology, Bedfordshire Hospitals NHS Trust, Luton, UK
| | - Gurdeep S Dulay
- Department of Rheumatology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Sam Clark
- Department of Critical Care, University College London Hospitals NHS Foundation Trust, London, UK
| | - Kris Bauchmuller
- Department of Critical Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Rachel S Tattersall
- Department of Rheumatology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jessica J Manson
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
13
|
Deng X, Ge T, Shen K, Wang J, Mu W, Luo H, Gu J, Zhang M, Xiao M. Novel heterozygous mutations of TNFRSF13B in EBV-associated T/NK lymphoproliferative diseases (EBV-T/NK-LPDs). BLOOD SCIENCE 2024; 6:e00180. [PMID: 38226020 PMCID: PMC10789450 DOI: 10.1097/bs9.0000000000000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Jiachen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Hui Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Jia Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| |
Collapse
|
14
|
Münz C. Modulation of Epstein-Barr-Virus (EBV)-Associated Cancers by Co-Infections. Cancers (Basel) 2023; 15:5739. [PMID: 38136285 PMCID: PMC10741436 DOI: 10.3390/cancers15245739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control. The respective pathogens include Kaposi-sarcoma-associated herpesvirus (KSHV), Plasmodium falciparum and human immunodeficiency virus (HIV). In this review, I will discuss the respective tumor entities and possible mechanisms by which co-infections increase the EBV-associated cancer burden. A better understanding of the underlying mechanisms could allow us to identify crucial features of EBV-associated malignancies and defects in their immune control. These could then be explored to develop therapies against the respective cancers by targeting EBV and/or the respective co-infections with pathogen-specific therapies or vaccinations.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
15
|
Peddi NC, Vuppalapati S, Sreenivasulu H, Muppalla SK, Reddy Pulliahgaru A. Guardians of Immunity: Advances in Primary Immunodeficiency Disorders and Management. Cureus 2023; 15:e44865. [PMID: 37809154 PMCID: PMC10560124 DOI: 10.7759/cureus.44865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Primary immunodeficiency disorders (PIDs) are a heterogeneous group of genetic conditions profoundly impacting immune function. The investigation spans various PID categories, offering insights into their distinct pathogenic mechanisms and clinical manifestations. Within the adaptive immune system, B-cell, T-cell, and combined immunodeficiencies are dissected, emphasizing their critical roles in orchestrating effective immune responses. In the realm of the innate immune system, focus is directed toward phagocytes and complement deficiencies, underscoring the pivotal roles of these components in initial defense against infections. Furthermore, the review delves into disorders of immune dysregulation, encompassing hemophagocytic lymphohistiocytosis (HLH), autoimmune lymphoproliferative syndrome (ALPS), immune dysregulation, polyendocrinopathy, enteropathy, and X-linked(IPEX), and autoimmunity polyendocrinopathy candidiasis-ectodermal dystrophy(APECED), elucidating the intricate interplay between immune tolerance and autoimmunity prevention. Diagnostic strategies for PIDs are explored, highlighting advancements in genetic and molecular techniques that enable precise identification of underlying genetic mutations and alterations in immune function. We have also outlined treatment modalities for PIDs, which often entail a multidisciplinary approach involving immunoglobulin replacement, antimicrobial prophylaxis, and, in select cases, hematopoietic stem cell transplantation. Emerging therapies, including gene therapy, hold promise for targeted interventions. In essence, this review encapsulates the complexity of PIDs, emphasizing the critical importance of early diagnosis and tailored therapeutic interventions. As research advances, a clearer understanding of these disorders emerges, fostering optimism for enhanced patient care and management in the future.
Collapse
Affiliation(s)
| | - Sravya Vuppalapati
- General Physician, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| | - Himabindu Sreenivasulu
- General Physician, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| | - Sudheer Kumar Muppalla
- Pediatrics, People's Education Society (PES) Institute of Medical Sciences and Research, kuppam, IND
| | - Apeksha Reddy Pulliahgaru
- Pediatrics, People's Education Society (PES) Institute of Medical Sciences and Research, Kuppam, IND
| |
Collapse
|
16
|
Benevenuta C, Mussinatto I, Orsi C, Timeus FS. Secondary hemophagocytic lymphohistiocytosis in children (Review). Exp Ther Med 2023; 26:423. [PMID: 37602304 PMCID: PMC10433411 DOI: 10.3892/etm.2023.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/16/2023] [Indexed: 08/22/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening condition characterized by hyperinflammation in an uncontrolled and ineffective immune response. Despite great improvement in diagnosis and treatment, it still represents a challenge in clinical management, with poor prognosis in the absence of an aggressive therapeutic approach. The present literature review focuses on secondary HLH at pediatric age, which represents a heterogeneous group in terms of etiology and therapeutic approach. It summarizes the most recent evidence on epidemiology, pathophysiology, diagnosis, treatment and prognosis, and provides a detailed description and comparison of the major subtypes of secondary HLH. Finally, it addresses the open questions with a focus on diagnosis and new treatment insights.
Collapse
Affiliation(s)
- Chiara Benevenuta
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Ilaria Mussinatto
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Cecilia Orsi
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| | - Fabio S. Timeus
- Department of Pediatrics, Azienda Sanitaria Locale Torino 4, Chivasso Hospital, I-10034 Turin, Italy
| |
Collapse
|
17
|
Ren Q, Feng Y. A therapy that modulates T lymphocyte subsets in patients infected with Epstein-Barr virus: Ganciclovir combined with interferon atomization inhalation. Medicine (Baltimore) 2023; 102:e34946. [PMID: 37653833 PMCID: PMC10470752 DOI: 10.1097/md.0000000000034946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
To investigate the effect of ganciclovir combined with interferon atomization inhalation on T lymphocyte subsets in patients with Epstein-Barr virus (EBV) infection and its efficacy. Fifty patients with EBV infection who received ganciclovir combined with interferon atomization inhalation were selected as the observation group, and 50 healthy people were selected as the control group. The changes of T lymphocyte subsets in peripheral blood were detected by flow cytometry before treatment and at the 1st, 2nd, 3rd and 4th cycle after treatment. Before treatment, the CD3+, CD4+, CD4+/CD8+ indexes of the patients were significantly lower than those of the control group (P < .05), and the CD8+ level was significantly increased (P < .05). After one cycle of treatment, there was no significant difference in the changes of T lymphocyte subsets compared with those before treatment. After 2 and 3 cycles of treatment, CD3+, CD4+, CD4+/CD8+ values were higher than those before treatment (P > .05), and CD8+ index was lower than that before treatment (P < .05). After the 4th cycle of treatment, CD3+, CD4+, CD4+/CD8+ values were significantly improved (P < .05), and CD8+ index was significantly decreased (P < .05). Ganciclovir combined with interferon atomization inhalation can regulate the changes of T lymphocyte subsets in patients with EBV infection, improve the patient's condition, and has no obvious adverse reactions. Monitoring the changes of T lymphocyte subsets during treatment is more meaningful to predict the therapeutic effect of patients with EB virus infection.
Collapse
Affiliation(s)
- Qingguo Ren
- Department of Pediatrics, Xingtai People’s Hospital, Xiangdu District, Xingtai City, China
| | - Yanli Feng
- Department of Blood Transfusion, Xingtai People’s Hospital, Xiangdu District, Xingtai City, China
| |
Collapse
|
18
|
Yang L, Pu J, Cai F, Zhang Y, Gao R, Zhuang S, Liang Y, Wu Z, Pan S, Song J, Han F, Tang J, Wang X. Chronic Epstein-Barr virus infection: A potential junction between primary Sjögren's syndrome and lymphoma. Cytokine 2023; 168:156227. [PMID: 37244248 DOI: 10.1016/j.cyto.2023.156227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/29/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that targets exocrine glands, leading to exocrine dysfunction. Due to its propensity to infect epithelial and B cells, Epstein-Barr virus (EBV) is hypothesized to be related with pSS. Through molecular mimicry, the synthesis of specific antigens, and the release of inflammatory cytokines, EBV contributes to the development of pSS. Lymphoma is the most lethal outcome of EBV infection and the development of pSS. As a population-wide virus, EBV has had a significant role in the development of lymphoma in people with pSS. In the review, we will discuss the possible causes of the disease.
Collapse
Affiliation(s)
- Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Feiyang Cai
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada; Gerald Bronfman Department of Oncology, Segal Cancer Centre, Lady Davis Institute and Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shuqi Zhuang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
19
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
20
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
21
|
Liu M, Wang R, Xie Z. T cell-mediated immunity during Epstein-Barr virus infections in children. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 112:105443. [PMID: 37201619 DOI: 10.1016/j.meegid.2023.105443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Epstein-Barr virus (EBV) infection is extremely common worldwide, with approximately 90% of adults testing positive for EBV antibodies. Human are susceptible to EBV infection, and primary EBV infection typically occurs early in life. EBV infection can cause infectious mononucleosis (IM) as well as some severe non-neoplastic diseases, such as chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH), which can have a heavy disease burden. After primary EBV infection, individuals develop robust EBV-specific T cell immune responses, with EBV-specific CD8+ and part of CD4+ T cells functioning as cytotoxic T cells, defending against virus. Different proteins expressed during EBV's lytic replication and latent proliferation can cause varying degrees of cellular immune responses. Strong T cell immunity plays a key role in controlling infection by decreasing viral load and eliminating infected cells. However, the virus persists as latent infection in EBV healthy carriers even with robust T cell immune response. When reactivated, it undergoes lytic replication and then transmits virions to a new host. Currently, the relationship between the pathogenesis of lymphoproliferative diseases and the adaptive immune system is still not fully clarified and needs to be explored in the future. Investigating the T cell immune responses evoked by EBV and utilizing this knowledge to design promising prophylactic vaccines are urgent issues for future research due to the importance of T cell immunity.
Collapse
Affiliation(s)
- Mengjia Liu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing 100045, China.
| |
Collapse
|
22
|
Chen Z, Huang Y, Wang B, Peng H, Wang X, Wu H, Chen W, Wang M. T cells: an emerging cast of roles in bipolar disorder. Transl Psychiatry 2023; 13:153. [PMID: 37156764 PMCID: PMC10167236 DOI: 10.1038/s41398-023-02445-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Bipolar disorder (BD) is a distinctly heterogeneous and multifactorial disorder with a high individual and social burden. Immune pathway dysregulation is an important pathophysiological feature of BD. Recent studies have suggested a potential role for T lymphocytes in the pathogenesis of BD. Therefore, greater insight into T lymphocytes' functioning in patients with BD is essential. In this narrative review, we describe the presence of an imbalance in the ratio and altered function of T lymphocyte subsets in BD patients, mainly in T helper (Th) 1, Th2, Th17 cells and regulatory T cells, and alterations in hormones, intracellular signaling, and microbiomes may be potential causes. Abnormal T cell presence explains the elevated rates of comorbid inflammatory illnesses in the BD population. We also update the findings on T cell-targeting drugs as potentially immunomodulatory therapeutic agents for BD disease in addition to classical mood stabilizers (lithium, valproic acid). In conclusion, an imbalance in T lymphocyte subpopulation ratios and altered function may be involved in the development of BD, and maintaining T cell immune homeostasis may provide an overall therapeutic benefit.
Collapse
Affiliation(s)
- Zhenni Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yiran Huang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Bingqi Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huanqie Peng
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaofan Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hongzheng Wu
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wanxin Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
23
|
Shen K, Wang J, Zhou K, Mu W, Zhang M, Deng X, Cai H, Zhang W, Huang W, Xiao M. CD137 deficiency because of two novel biallelic TNFRSF9 mutations in a patient presenting with severe EBV-associated lymphoproliferative disease. Clin Transl Immunology 2023; 12:e1448. [PMID: 37144041 PMCID: PMC10153300 DOI: 10.1002/cti2.1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
OBJECTIVES Increasing evidence indicates that some germline genetic mutations that impair pathways required for robust host immune surveillance against EBV infection may result in an extremely high susceptibility to EBV-associated lymphoproliferative disease (EBV+ LPD). TNFRSF9 encodes a vital costimulatory molecule that enhances CD8+ T-cell proliferation, survival and cytolytic activity. To date, no relevant case resulting from TNFRSF9 heterozygous mutations has been identified. METHODS Here, we report the first case of CD137 deficiency caused by two novel biallelic heterozygous TNFRSF9 mutations [NM_001561.5: c.208 + 1->AT and c.452C>A (p.T151K)] in a patient presenting with severe EBV+ LPD. Immunophenotyping and in vitro assays of lymphocyte function and NK cell activity were performed. RESULTS Biallelic TNFRSF9 mutations resulted in markedly reduced or abrogated expression of CD137 on activated T, B and NK cells. CD8+ T cells from the patient had impaired activation, reduced expression/release of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), perforin and granzyme B, and diminished cytotoxic activity. Functional experiments identified both variations were hypomorphic mutations and played a contributing role in CD137 deficiency and the development of EBV+ LPD. CONCLUSION Our study expands the genetic spectrum and clinical phenotype of patients with CD137 deficiency and provides additional evidence that the TNFRSF9 gene plays a critical role in host immune responses to EBV infection.
Collapse
Affiliation(s)
- Kefeng Shen
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jiachen Wang
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kuangguo Zhou
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Wei Mu
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Meilan Zhang
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xinyue Deng
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Haodong Cai
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Wei Zhang
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Wei Huang
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Min Xiao
- Department of Hematology, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
24
|
Arand A, Overholt K, Jacob SA, Belsky JA. Epstein-Barr Virus-Positive Hemophagocytic Lymphohistiocytosis Following COVID-19 Vaccination in a Pediatric Patient. Pediatr Blood Cancer 2023; 70:e30189. [PMID: 36632038 DOI: 10.1002/pbc.30189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Amanda Arand
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| | - Kathleen Overholt
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Hematology/Oncology, Riley Hospital for Children, Indianapolis, Indiana, USA
| | - Seethal A Jacob
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Hematology/Oncology, Riley Hospital for Children, Indianapolis, Indiana, USA
- Center for Pediatric and Adolescent Comparative Effectiveness Research, Indiana University, Indianapolis, Indiana, USA
| | - Jennifer A Belsky
- Indiana University School of Medicine, Indianapolis, Indiana, USA
- Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
- Division of Hematology/Oncology, Riley Hospital for Children, Indianapolis, Indiana, USA
| |
Collapse
|
25
|
Sacco KA, Notarangelo LD, Delmonte OM. When to suspect inborn errors of immunity in Epstein-Barr virus-related lymphoproliferative disorders. Clin Microbiol Infect 2023; 29:457-462. [PMID: 36209991 PMCID: PMC10066820 DOI: 10.1016/j.cmi.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND More than 95% of humans have been infected with Epstein-Barr virus (EBV) and develop anti-EBV IgG antibodies, conferring immunity. However, among specific populations, EBV may induce a range of B-cell lymphoproliferative disorders (LPDs). EBV may also contribute to T-cell and natural killer (NK)-cell lymphoproliferation. The immune system is essential to prevent infection and development of cancer. Inborn errors of immunity (IEIs) are a heterogenous group of more than 450 genetic disorders predisposing to severe and/or recurrent infection, autoimmunity, autoinflammation, or early-onset/severe neoplasia or lymphoproliferation. Monogenic disorders of T-cell and B-cell signalling are classic IEIs that predispose to EBV-associated LPDs. OBJECTIVES We aimed to outline the various clinical manifestations of EBV-associated LPDs and the underlying IEIs associated with such presentations and discuss the recommended management and therapeutic options pertaining to these disorders. SOURCES We searched PubMed, Embase, and Web of Science Core Collection on 30 September 2021. Clinical studies, systematic reviews, narrative reviews, and case reports were identified through search strategy and cross reference from primary literature. CONTENT Effective T-cell and NK-cell cytotoxicity towards EBV-infected B cells relies on intact MAGT1-dependent NKG2D pathways and signalling lymphocyte activation molecular-associated protein-dependent signalling lymphocyte activation molecular receptors. The interaction between CD27 and CD70 is also critical to drive the expansion of EBV-specific T cells. IEIs due to T-cell and B-cell signalling defects and/or impaired T-cell and NK-cell cytotoxicity predispose to EBV-related lymphoproliferation. This includes classic disorders such as X-linked lymphoproliferative disease 1 (due to SH2D1A mutations), X-linked lymphoproliferative disease 2 (XIAP), and other genetic diseases, such as ITK, MAGT1, CD27, CD70, CTPS1, RASGRP1, and CORO1A deficiencies. EBV-driven lymphoproliferation may manifest to a lesser degree in MST1/STK4, DOCK8, STIM1, CORO1A, IL21R, PIK3CD gain-of-function, and PI3KR1 deficiencies. IMPLICATIONS Early screening for IEIs is indicated in cases of EBV-related lymphoproliferation because different forms of IEIs have specific prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Keith A Sacco
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Desimio MG, Covino DA, Rivalta B, Cancrini C, Doria M. The Role of NK Cells in EBV Infection and Related Diseases: Current Understanding and Hints for Novel Therapies. Cancers (Basel) 2023; 15:cancers15061914. [PMID: 36980798 PMCID: PMC10047181 DOI: 10.3390/cancers15061914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous herpesvirus most often transmitted during infancy and infecting the vast majority of human beings. Usually, EBV infection is nearly asymptomatic and results in life-long persistency of the virus in a latent state under the control of the host immune system. Yet EBV can cause an acute infectious mononucleosis (IM), particularly in adolescents, and is associated with several malignancies and severe diseases that pose a serious threat to individuals with specific inborn error of immunity (IEI). While there is a general consensus on the requirement for functional CD8 T cells to control EBV infection, the role of the natural killer (NK) cells of the innate arm of immunity is more enigmatic. Here we provide an overview of the interaction between EBV and NK cells in the immunocompetent host as well as in the context of primary and secondary immunodeficiencies. Moreover, we report in vitro data on the mechanisms that regulate the capacity of NK cells to recognize and kill EBV-infected cell targets and discuss the potential of recently optimized NK cell-based immunotherapies for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Maria G Desimio
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daniela A Covino
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Beatrice Rivalta
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Caterina Cancrini
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Margherita Doria
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
27
|
Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein-Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol 2023; 19:160-171. [PMID: 36759741 DOI: 10.1038/s41582-023-00775-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/11/2023]
Abstract
Epidemiological studies have provided compelling evidence that multiple sclerosis (MS) is a rare complication of infection with the Epstein-Barr virus (EBV), a herpesvirus that infects more than 90% of the global population. This link was long suspected because the risk of MS increases markedly after infectious mononucleosis (symptomatic primary EBV infection) and with high titres of antibodies to specific EBV antigens. However, it was not until 2022 that a longitudinal study demonstrated that MS risk is minimal in individuals who are not infected with EBV and that it increases over 30-fold following EBV infection. Over the past few years, a number of studies have provided clues on the underlying mechanisms, which might help us to develop more targeted treatments for MS. In this Review, we discuss the evidence linking EBV to the development of MS and the mechanisms by which the virus is thought to cause the disease. Furthermore, we discuss implications for the treatment and prevention of MS, including the use of antivirals and vaccines.
Collapse
Affiliation(s)
- Kjetil Bjornevik
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Edwards-Hicks J, Apostolova P, Buescher JM, Maib H, Stanczak MA, Corrado M, Klein Geltink RI, Maccari ME, Villa M, Carrizo GE, Sanin DE, Baixauli F, Kelly B, Curtis JD, Haessler F, Patterson A, Field CS, Caputa G, Kyle RL, Soballa M, Cha M, Paul H, Martin J, Grzes KM, Flachsmann L, Mitterer M, Zhao L, Winkler F, Rafei-Shamsabadi DA, Meiss F, Bengsch B, Zeiser R, Puleston DJ, O'Sullivan D, Pearce EJ, Pearce EL. Phosphoinositide acyl chain saturation drives CD8 + effector T cell signaling and function. Nat Immunol 2023; 24:516-530. [PMID: 36732424 PMCID: PMC10908374 DOI: 10.1038/s41590-023-01419-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
How lipidome changes support CD8+ effector T (Teff) cell differentiation is not well understood. Here we show that, although naive T cells are rich in polyunsaturated phosphoinositides (PIPn with 3-4 double bonds), Teff cells have unique PIPn marked by saturated fatty acyl chains (0-2 double bonds). PIPn are precursors for second messengers. Polyunsaturated phosphatidylinositol bisphosphate (PIP2) exclusively supported signaling immediately upon T cell antigen receptor activation. In late Teff cells, activity of phospholipase C-γ1, the enzyme that cleaves PIP2 into downstream mediators, waned, and saturated PIPn became essential for sustained signaling. Saturated PIP was more rapidly converted to PIP2 with subsequent recruitment of phospholipase C-γ1, and loss of saturated PIPn impaired Teff cell fitness and function, even in cells with abundant polyunsaturated PIPn. Glucose was the substrate for de novo PIPn synthesis, and was rapidly utilized for saturated PIP2 generation. Thus, separate PIPn pools with distinct acyl chain compositions and metabolic dependencies drive important signaling events to initiate and then sustain effector function during CD8+ T cell differentiation.
Collapse
Affiliation(s)
- Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Petya Apostolova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Hannes Maib
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michal A Stanczak
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mauro Corrado
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Maria Elena Maccari
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Gustavo E Carrizo
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesc Baixauli
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Beth Kelly
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabian Haessler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Annette Patterson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Cameron S Field
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - George Caputa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ryan L Kyle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Melanie Soballa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Minsun Cha
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harry Paul
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacob Martin
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katarzyna M Grzes
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lea Flachsmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Mitterer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances Winkler
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - David Ali Rafei-Shamsabadi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frank Meiss
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel J Puleston
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Wu JY, Xu B, Zhu XJ, Ming X, Luo H, Mao X, Gu J, Zhou JF, Xiao Y. [PD-1 inhibitor in chronic active Epstein-Barr virus infection: a report of six cases and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:165-168. [PMID: 36948875 PMCID: PMC10033261 DOI: 10.3760/cma.j.issn.0253-2727.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 03/24/2023]
Affiliation(s)
- J Y Wu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - B Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - X J Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - X Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - H Luo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - X Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - J Gu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - J F Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Y Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
30
|
A Focused Review of Ras Guanine Nucleotide-Releasing Protein 1 in Immune Cells and Cancer. Int J Mol Sci 2023; 24:ijms24021652. [PMID: 36675167 PMCID: PMC9864139 DOI: 10.3390/ijms24021652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.
Collapse
|
31
|
Li Z, Mu W, Xiao M. Genetic lesions and targeted therapy in Hodgkin lymphoma. Ther Adv Hematol 2023; 14:20406207221149245. [PMID: 36654739 PMCID: PMC9841868 DOI: 10.1177/20406207221149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Hodgkin lymphoma is a special type of lymphoma in which tumor cells frequently undergo multiple genetic lesions that are associated with accompanying pathway abnormalities. These pathway abnormalities are dominated by active signaling pathways, such as the JAK-STAT (Janus kinase-signal transducer and activator of transcription) pathway and the NFκB (nuclear factor kappa-B) pathway, which usually result in hyperactive survival signaling. Targeted therapies often play an important role in hematologic malignancies, such as CAR-T therapy (chimeric antigen receptor T-cell immunotherapy) targeting CD19 and CD22 in diffuse large B-cell lymphoma, while in Hodgkin lymphoma, the main targets of targeted therapies are CD30 molecules and PD1 molecules. Drugs targeting other molecules are also under investigation. This review summarizes the actionable genetic lesions, current treatment options, clinical trials for Hodgkin lymphoma and the potential value of those genetic lesions in clinical applications.
Collapse
Affiliation(s)
- Zhe Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Hankou, Wuhan 430030, China
| |
Collapse
|
32
|
Hu X, Han Y, Liu J, Wang H, Tian Z, Zhang X, Zhang Y, Wang X. CTP synthase 2 predicts inferior survival and mediates DNA damage response via interacting with BRCA1 in chronic lymphocytic leukemia. Exp Hematol Oncol 2023; 12:6. [PMID: 36635772 PMCID: PMC9835321 DOI: 10.1186/s40164-022-00364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cytidine triphosphate synthase 2 (CTPS2) is an essential metabolic enzyme that catalyzes the biosynthesis of CTP. CTP synthases contribute to lymphocytes proliferation and tumorigenesis, but the role of CTPS2 in chronic lymphocytic leukemia (CLL) remains undefined. METHODS In silico analysis was performed to quantified the expression and clinical analysis of CTPS2 and BRCA1. The expression was then validated on the internal sets. Loss-and gain-of-function assays were conducted to investigate the physiological phenotypes in CLL. RNA-seq was employed to probe the molecular mechanism of CTPS2. RESULTS Herein, significant elevated expression of CTPS2 was observed in CLL patients compared to normal CD19 + B cells, which was verified in three independent cohorts. Furthermore, overexpression of CTPS2 was closely associated with undesired prognostic indicators, including unmutated IGHV status and chromosome 11q23 deletion. Additionally, elevated CTPS2 expression predicted adverse overall survival and treatment-free survival with independent prognostic significance. Downregulation of CTPS2 in CLL cells exhibited attenuated cell proliferation, arrested G2/M cell cycle and increased apoptosis. The addition of CTP or glutamine could reverse the above effects. Since RNA-seq showed the enrichment in DNA damage and response signaling, we subsequently found that silence of CTPS2 remarkably elevated DNA damage and decreased DNA repair. It was demonstrated that CTPS2 mediated DNA damage response via interacting with Breast Cancer 1 (BRCA1) protein in CLL through CoIP assays and rescued experiments. CONCLUSIONS Collectively, our study generated the novel findings that CTPS2 promoted CLL progression via DNA damage response and repair pathway. Targeting nucleotide metabolism potentially became an attractive strategy for treatment against CLL.
Collapse
Affiliation(s)
- Xinting Hu
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Yang Han
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Jiarui Liu
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Hua Wang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Zheng Tian
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Xin Zhang
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Ya Zhang
- grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| | - Xin Wang
- grid.27255.370000 0004 1761 1174Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,grid.460018.b0000 0004 1769 9639Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China ,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China ,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021 Shandong China ,grid.429222.d0000 0004 1798 0228National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006 China
| |
Collapse
|
33
|
Xu T, Xiong L, Tang L. Epstein-Barr virus-associated haemophagocytic lymphohistiocytosis complicated by neurological involvement in a patient with dermatomyositis: A case report and literature review. Mod Rheumatol Case Rep 2023; 7:293-297. [PMID: 35861298 DOI: 10.1093/mrcr/rxac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/29/2022] [Accepted: 06/20/2022] [Indexed: 01/07/2023]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) is an extremely high mortality condition that can occur at any age and lacks specific diagnostic characteristics. Despite its rarity, HLH is increasingly alarming because of the high mortality rate. It is a systemic hyperinflammatory immune response syndrome associated with abnormal activation of T cells and macrophages, which may be caused by genetic mutations or acquired factors, such as infection, autoimmune condition, and malignancy. Here, we present a fatal case of Epstein-Barr virus-associated HLH complicated by neurological involvement in a patient with dermatomyositis. We describe and discuss the pathological features, classification, and effective treatment options of HLH and discuss separately the special characteristics of Epstein-Barr virus-associated HLH and dermatomyositis-associated HLH.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Infectious Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijuan Xiong
- Department of Infectious Diseases, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections. J Med Virol 2023; 95:e27840. [PMID: 35524342 PMCID: PMC9790391 DOI: 10.1002/jmv.27840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV) are two persistent oncogenic γ-herpesviruses with an exclusive tropism for humans. They cause cancers of lymphocyte, epithelial and endothelial cell origin, such as Burkitt's and Hodgkin's lymphoma, primary effusion lymphoma, nasopharyngeal carcinoma, and Kaposi sarcoma. Mutations in immune-related genes but also adverse events during immune checkpoint inhibition in cancer patients have revealed molecular requirements for immune control of EBV and KSHV. These include costimulatory and coinhibitory receptors on T cells that are currently explored or already therapeutically targeted in tumor patients. This review discusses these co-receptors and their influence on EBV- and KSHV-associated diseases. The respective studies reveal surprising specificities of some of these receptors for immunity to these tumor viruses, benefits of their blockade for some but not other virus-associated diseases, and that EBV- and KSHV-specific immune control should be monitored during immune checkpoint inhibition to prevent adverse events that might be associated with their reactivation during treatment.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology Department, Institute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| |
Collapse
|
35
|
Sedighi S, Gholizadeh O, Yasamineh S, Akbarzadeh S, Amini P, Favakehi P, Afkhami H, Firouzi-Amandi A, Pahlevan D, Eslami M, Yousefi B, Poortahmasebi V, Dadashpour M. Comprehensive Investigations Relationship Between Viral Infections and Multiple Sclerosis Pathogenesis. Curr Microbiol 2023; 80:15. [PMID: 36459252 PMCID: PMC9716500 DOI: 10.1007/s00284-022-03112-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Compared to other types of self-limiting myelin disorders, MS compartmentalizes and maintains chronic inflammation in the CNS. Even though the exact cause of MS is unclear, it is assumed that genetic and environmental factors play an important role in susceptibility to this disease. The progression of MS is triggered by certain environmental factors, such as viral infections. The most important viruses that affect MS are Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), human endogenous retrovirus (HERV), cytomegalovirus (CMV), and varicella zoster virus (VZV). These viruses all have latent stages that allow them to escape immune detection and reactivate after exposure to various stimuli. Furthermore, their tropism for CNS and immune system cells explains their possible deleterious function in neuroinflammation. In this study, the effect of viral infections on MS disease focuses on the details of viruses that can change the risk of the disease. Paying attention to the most recent articles on the role of SARS-CoV-2 in MS disease, laboratory indicators show the interaction of the immune system with the virus. Also, strategies to prevent viruses that play a role in triggering MS are discussed, such as EBV, which is one of the most important.
Collapse
Affiliation(s)
- Somayeh Sedighi
- Department of Immunology, Faculty of Medicine, Medical Science of Mashhad, Mashhad, Iran
| | - Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Parya Amini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parnia Favakehi
- Department of Microbiology, Falavargan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamed Afkhami
- Department of Bacteriology, Faculty of Medicine, Medical Science of Shahed, Tehran, Iran
| | - Akram Firouzi-Amandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Pahlevan
- Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
36
|
Zhang L, Lv G, Peng Y, Yang L, Chen J, An Y, Zhang Z, Tang X, Li Z, Zhao X. A Novel RAC2 Mutation Causing Combined Immunodeficiency. J Clin Immunol 2023; 43:229-240. [PMID: 36190591 DOI: 10.1007/s10875-022-01373-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/24/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Ras-related C3 botulinum toxin substrate 2 (RAC2) acts as a molecular switch and has crucial roles in cell signaling and actin dynamics. A broad spectrum of genetic RAC2 mutations can cause various types of primary immunodeficiency, with complete penetrance. Here, we report a novel heterozygous missense mutation in RAC2 with incomplete penetrance, and the associated phenotypes, in a Chinese family. METHODS Immunological phenotype was detected by flow cytometry. T cell receptor excision circles (TRECs) and K-deleting recombination excision circles (KRECs) were assessed by real-time quantitative PCR. Gene mutations were detected by whole-exome sequencing (WES) and confirmed by Sanger sequencing. RESULTS The proband was an 11-year-old girl who presented with recurrent respiratory infections, bronchiectasis, persistent Epstein-Barr virus viremia, infectious mononucleosis, encephalitis, and cutaneous human papillomavirus infections. Laboratory analyses revealed increased serum IgG and decreased IgM levels, reduced naïve CD4+ and CD8+ T cells, an inverted CD4+/CD8+ ratio, and low TREC and KREC numbers. The mutation resulted in increased production of reactive oxygen species, while impaired actin polarization in neutrophils; diminished proliferative responses, increased cytokine production and a dysregulated phenotype in T lymphocytes; as well as accelerated apoptosis and hyperactivity of AKT in HL-60 human leukemia cells. WES identified a c.44G > A mutation in RAC2 resulting in a p.G15D substitution. Despite sharing the same mutation as the proband, her father suffered from recurrent respiratory infections and bronchiectasis, and had similar immunological defects, whereas her sister was apparently healthy, other than cutaneous human papillomavirus infections, and only mild immunological defects were detected preliminarily. CONCLUSIONS Our findings broaden the clinical and genetic spectra of RAC2 mutations and underline the importance of RAC2 gain-of-function mutations with complete or incomplete penetrance.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha, Hunan, China
- The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ge Lv
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Peng
- The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Pediatrics Research Institute, Hunan Children's Hospital, Changsha, Hunan, China
| | - Lu Yang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Li
- Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha, Hunan, China.
- The School of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Xiaodong Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
37
|
Co-Infection of the Epstein-Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus. Viruses 2022; 14:v14122709. [PMID: 36560713 PMCID: PMC9782805 DOI: 10.3390/v14122709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The two human tumor viruses, Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review provides readers with examples of refractory infections due to inborn errors of immunity, highlighting how they may be successfully treated by deducing and targeting the underlying immunodeficiency. RECENT FINDINGS The use of host-directed immunotherapy to treat infectious disease in inborn errors of immunity is currently limited but growing. Different strategies include depleting the cellular reservoir for pathogens with restricted cell-tropism; augmenting the diminished effector response; and restoring molecular equipoise. The immunotherapies illustrated are existing drugs that have been re-purposed and rationally used, depending on the molecular or cellular impact of the mutation. As more biologic response modifiers and molecular targeted therapies are developed for other indications, they open the avenues for their use in inborn errors of immunity. Conversely, as more molecular pathways underlying defective immune responses and refractory infections are elucidated, they lend themselves to tractability with these emerging therapies. SUMMARY Infections that fail appropriate antimicrobial therapy are a harbinger of underlying inborn errors of immunity. Dissecting the mechanism by which the immune system fails provides opportunities to target the host response and make it succeed.
Collapse
|
39
|
Engelmann C, Schuhmachers P, Zdimerova H, Virdi S, Hauri-Hohl M, Pachlopnik Schmid J, Grundhoff A, Marsh RA, Wong WWL, Münz C. Epstein Barr virus-mediated transformation of B cells from XIAP-deficient patients leads to increased expression of the tumor suppressor CADM1. Cell Death Dis 2022; 13:892. [PMID: 36270981 PMCID: PMC9587222 DOI: 10.1038/s41419-022-05337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is either caused by loss of the SLAM-associated protein (SAP; XLP-1) or the X-linked inhibitor of apoptosis (XIAP; XLP-2). In both instances, infection with the oncogenic human Epstein Barr virus (EBV) leads to pathology, but EBV-associated lymphomas only emerge in XLP-1 patients. Therefore, we investigated the role of XIAP during B cell transformation by EBV. Using humanized mice, IAP inhibition in EBV-infected mice led to a loss of B cells and a tendency to lower viral titers and lymphomagenesis. Loss of memory B cells was also observed in four newly described patients with XIAP deficiency. EBV was able to transform their B cells into lymphoblastoid cell lines (LCLs) with similar growth characteristics to patient mothers' LCLs in vitro and in vivo. Gene expression analysis revealed modest elevated lytic EBV gene transcription as well as the expression of the tumor suppressor cell adhesion molecule 1 (CADM1). CADM1 expression on EBV-infected B cells might therefore inhibit EBV-associated lymphomagenesis in patients and result in the absence of EBV-associated malignancies in XLP-2 patients.
Collapse
Affiliation(s)
- Christine Engelmann
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Hana Zdimerova
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sanamjeet Virdi
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Mathias Hauri-Hohl
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- grid.412341.10000 0001 0726 4330Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Adam Grundhoff
- grid.418481.00000 0001 0665 103XVirus Genomics, Heinrich Pette Institute, Hamburg, Germany
| | - Rebecca A. Marsh
- grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati, Cincinnati, OH USA
| | - Wendy Wei-Lynn Wong
- grid.7400.30000 0004 1937 0650Cell Death and Regulation of Inflammation, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- grid.7400.30000 0004 1937 0650Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
40
|
Liang W, Li K, Zhang Q, Li K, Ai K, Zhang J, Jiao X, Li J, Wei X, Yang J. Interleukin-2 inducible T cell kinase (ITK) may participate in the anti-bacterial immune response of Nile tilapia via regulating T-cell activation. FISH & SHELLFISH IMMUNOLOGY 2022; 127:419-426. [PMID: 35779809 DOI: 10.1016/j.fsi.2022.06.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Interleukin-2 inducible T cell kinase (ITK) plays a predominant role in the T-cell receptor (TCR) signaling cascade to ensure valid T-cell activation and function. Nevertheless, whether it regulates T-cell response of early vertebrates remains unknown. Herein, we investigated the involvement of ITK in the lymphocyte-mediated adaptive immune response, and its regulation to T-cell activation in the Nile tilapia Oreochromis niloticus. Both sequence and structure of O. niloticus ITK (OnITK) were remarkably conserved with its homologues from other vertebrates, implying its potential conserved function. OnITK mRNA was extensively expressed in lymphoid-related tissues, and with the relative highest level in peripheral blood. Once Nile tilapia was infected by Edwardsiella piscicida, OnITK in splenic lymphocytes was significantly up-regulated on 7-day post infection at both transcription and translation levels, suggesting that OnITK might involve in the primary adaptive immune response of teleost. Furthermore, upon splenic lymphocytes were stimulated by T-cell specific mitogen PHA, OnITK mRNA and protein levels were dramatically elevated. More importantly, treatment of splenic lymphocytes with specific inhibitor significantly crippled OnITK expression, which in turn impaired the inducible expression of T-cell activation markers IFN-γ, IL-2 and CD122, indicating the critical roles of ITK in regulating T-cell activation of Nile tilapia. Taken together, our results suggest that ITK takes part in the lymphocyte-mediated adaptive immunity of tilapia, and is indispensable for T-cell activation of teleost. Our findings thus provide novel evidences for understanding the mechanism regulating T-cell immunity of early vertebrates, as well as the evolution of adaptive immune system.
Collapse
Affiliation(s)
- Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qian Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
41
|
Fournier B, Hoshino A, Bruneau J, Bachelet C, Fusaro M, Klifa R, Lévy R, Lenoir C, Soudais C, Picard C, Blanche S, Castelle M, Moshous D, Molina T, Defachelles AS, Neven B, Latour S. Inherited TNFSF9 deficiency causes broad Epstein-Barr virus infection with EBV+ smooth muscle tumors. J Exp Med 2022; 219:213262. [PMID: 35657354 PMCID: PMC9170382 DOI: 10.1084/jem.20211682] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Epstein-Barr virus (EBV) can infect smooth muscle cells causing smooth muscle tumors (SMTs) or leiomyoma. Here, we report a patient with a heterozygous 22q11.2 deletion/DiGeorge syndrome who developed a unique, broad, and lethal susceptibility to EBV characterized by EBV-infected T and B cells and disseminated EBV+SMT. The patient also harbored a homozygous missense mutation (p.V140G) in TNFSF9 coding for CD137L/4-1BBL, the ligand of the T cell co-stimulatory molecule CD137/4-1BB, whose deficiency predisposes to EBV infection. We show that wild-type CD137L was up-regulated on activated monocytes and dendritic cells, EBV-infected B cells, and SMT. The CD137LV140G mutant was weakly expressed on patient cells or when ectopically expressed in HEK and P815 cells. Importantly, patient EBV-infected B cells failed to trigger the expansion of EBV-specific T cells, resulting in decreased T cell effector responses. T cell expansion was recovered when CD137L expression was restored on B cells. Therefore, these results highlight the critical role of the CD137-CD137L pathway in anti-EBV immunity, in particular in the control of EBV+SMT.
Collapse
Affiliation(s)
- Benjamin Fournier
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Akihiro Hoshino
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France
| | - Julie Bruneau
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Camille Bachelet
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France
| | - Mathieu Fusaro
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Roman Klifa
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Romain Lévy
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Stéphane Blanche
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Martin Castelle
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Despina Moshous
- Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Thierry Molina
- Department of Pathology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | | | - Bénédicte Neven
- Paris Cité University, Imagine Institute, Paris, France,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Institut national de la santé et de la recherche médicale UMR 1163, Paris, France,Paris Cité University, Imagine Institute, Paris, France,Correspondence to Sylvain Latour:
| |
Collapse
|
42
|
Deng W, Xu Y, Yuan X. Clinical features and prognosis of acute lymphoblastic leukemia in children with Epstein-Barr virus infection. Transl Pediatr 2022; 11:642-650. [PMID: 35685069 PMCID: PMC9173871 DOI: 10.21037/tp-22-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/07/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is one of the most common malignant diseases of the hematopoietic system in children. Although the etiology of ALL is unknown, it has been reported that it may be associated with Epstein-Barr virus (EBV) infection. The aim of this study was to analyze the impact of EBV infection on the clinical features and prognosis of childhood ALL. METHODS A total of 162 children with ALL admitted to Heilongjiang Provincial Hospital from January 2018 to December 2020 were selected for this stud, and were divided into 2 groups, infected group and non-infected group, according to whether they had EBV infection. Differences in clinical characteristics between the 2 groups were analyzed by χ2 or t-test. The impact of EBV infection on the prognosis of children was analyzed by Kaplan-Meier survival and Cox regression analysis. RESULTS The 2 groups were statistically significantly different (P<0.05) according to comparison of characteristics such as first symptoms, karyotype, immunophenotyping, clinical risk, whether secondary infection occurred during chemotherapy, and lymphocyte subsets. Logistic regression results suggested that first symptoms, karyotype, immunophenotyping, clinical risk, the presence of secondary infection during chemotherapy, and lymphocyte subsets were independently associated with EBV infection in children with ALL (P<0.05). The complete remission rate at 46 days after chemotherapy, event-free survival (EFS), overall survival (OS), and survival rate were lower in the infected group than non-infected group, and the complete remission recurrence rate was higher than non-infected group (P<0.05). The EBV DNA levels were statistically lower in the good prognosis group (1.07±0.25×103 copies/L) than poor prognosis group (8.86±1.14 ×103 copies/L) (P<0.01). The area under the curve (AUC) for EBV to predict prognosis in children with ALL was 0.921, sensitivity and sensitivity were 86.57%, 80.16%. CONCLUSIONS Infection with EBV is associated with first symptoms, karyotype, immunophenotyping, clinical risk, secondary infection during chemotherapy, and lymphocyte subpopulation index levels in children with ALL, and children with EBV infection have a reduced clinical remission rate and poor prognosis. Therefore, the detection of EBV DNA is clinically important for assessing the prognosis of their disease.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal Medicine, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, China
| | - Yating Xu
- Department of Pediatrics, Huai'an Hospital of Huai'an City, Huai'an, China
| | - Xunling Yuan
- Department of Pediatrics, Heilongjiang Provincial Hospital, Harbin, China
| |
Collapse
|
43
|
Constantinescu C, Petrushev B, Rus I, Stefanescu H, Frasinariu O, Margarit S, Dima D, Tomuleasa C. Mechanistic Insights in Hemophagocytic Lymphohistiocytosis: Subsequent Acute Hepatic Failure in a Multiple Myeloma Patient following Therapy with Ixazomib-Lenalidomide-Dexamethasone. J Pers Med 2022; 12:jpm12050678. [PMID: 35629101 PMCID: PMC9145580 DOI: 10.3390/jpm12050678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/16/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare, elusive, and life-threatening condition that is characterized by the pathologic and uncontrolled secondary activation of the cytotoxic T-cells, natural killer cells (NK-cells), and macrophages of the innate immune system. This condition can develop in sporadic or familial contexts associated with hematological malignancies, as a paraneoplastic syndrome, or linked to an infection related to immune system deficiency. This leads to the systemic inflammation responsible for the overall clinical manifestations. Diagnosis should be thorough, and treatment should be initiated as soon as possible. In the current manuscript, we focus on classifying the HLH spectrum, describing the pathophysiology and the tools needed to search for and correctly identify HLH, and the current therapeutic opportunities. We also present the first case of a multiple myeloma patient that developed HLH following therapy with the ixazomib-lenalidomide-dexamethasone protocol.
Collapse
Affiliation(s)
- Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Intensive Care Unit, Emergency Hospital, 400006 Cluj-Napoca, Romania
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Bobe Petrushev
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Pathology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania;
| | - Ioana Rus
- Department of Pathology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania;
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400015 Cluj-Napoca, Romania;
| | - Horia Stefanescu
- Department of Gastroenterology, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400158 Cluj-Napoca, Romania;
- Department of Gastroenterology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Otilia Frasinariu
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Simona Margarit
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Intensive Care Unit, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, 400349 Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400015 Cluj-Napoca, Romania;
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400015 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
44
|
Cooke M, Kazanietz MG. Overarching roles of diacylglycerol signaling in cancer development and antitumor immunity. Sci Signal 2022; 15:eabo0264. [PMID: 35412850 DOI: 10.1126/scisignal.abo0264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diacylglycerol (DAG) is a lipid second messenger that is generated in response to extracellular stimuli and channels intracellular signals that affect mammalian cell proliferation, survival, and motility. DAG exerts a myriad of biological functions through protein kinase C (PKC) and other effectors, such as protein kinase D (PKD) isozymes and small GTPase-regulating proteins (such as RasGRPs). Imbalances in the fine-tuned homeostasis between DAG generation by phospholipase C (PLC) enzymes and termination by DAG kinases (DGKs), as well as dysregulation in the activity or abundance of DAG effectors, have been widely associated with tumor initiation, progression, and metastasis. DAG is also a key orchestrator of T cell function and thus plays a major role in tumor immunosurveillance. In addition, DAG pathways shape the tumor ecosystem by arbitrating the complex, dynamic interaction between cancer cells and the immune landscape, hence representing powerful modifiers of immune checkpoint and adoptive T cell-directed immunotherapy. Exploiting the wide spectrum of DAG signals from an integrated perspective could underscore meaningful advances in targeted cancer therapy.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, PA 19141, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
45
|
Münz C. Natural killer cell responses to human oncogenic γ-herpesvirus infections. Semin Immunol 2022; 60:101652. [PMID: 36162228 DOI: 10.1016/j.smim.2022.101652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 01/15/2023]
Abstract
The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Switzerland.
| |
Collapse
|
46
|
Host Defenses to Viruses: Lessons from Inborn Errors of Immunity. Medicina (B Aires) 2022; 58:medicina58020248. [PMID: 35208572 PMCID: PMC8879264 DOI: 10.3390/medicina58020248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 01/03/2023] Open
Abstract
The constant battle between viruses and their hosts leads to their reciprocal evolution. Viruses regularly develop survival strategies against host immunity, while their ability to replicate and disseminate is countered by the antiviral defense mechanisms that host mount. Although most viral infections are generally controlled by the host’s immune system, some viruses do cause overt damage to the host. The outcome can vary widely depending on the properties of the infecting virus and the circumstances of infection but also depends on several factors controlled by the host, including host genetic susceptibility to viral infections. In this narrative review, we provide a brief overview of host immunity to viruses and immune-evasion strategies developed by viruses. Moreover, we focus on inborn errors of immunity, these being considered a model for studying host response mechanisms to viruses. We finally report exemplary inborn errors of both the innate and adaptive immune systems that highlight the role of proteins involved in the control of viral infections.
Collapse
|
47
|
Costagliola G, Peroni DG, Consolini R. Beyond Infections: New Warning Signs for Inborn Errors of Immunity in Children. Front Pediatr 2022; 10:855445. [PMID: 35757131 PMCID: PMC9226481 DOI: 10.3389/fped.2022.855445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Patients with inborn errors of immunity (IEI) are susceptible to developing a severe infection-related clinical phenotype, but the clinical consequences of immune dysregulation, expressed with autoimmunity, atopy, and lymphoproliferation could represent the first sign in a significant percentage of patients. Therefore, during the diagnostic work-up patients with IEI are frequently addressed to different specialists, including endocrinologists, rheumatologists, and allergologists, often resulting in a delayed diagnosis. In this paper, the most relevant non-infectious manifestations of IEI are discussed. Particularly, we will focus on the potential presentation of IEI with autoimmune cytopenia, non-malignant lymphoproliferation, severe eczema or erythroderma, autoimmune endocrinopathy, enteropathy, and rheumatologic manifestations, including vasculitis and systemic lupus erythematosus. This paper aims to identify new warning signs to suspect IEI and help in the identification of patients presenting with atypical/non-infectious manifestations.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diego G Peroni
- Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
48
|
Münz C. Co-Stimulatory Molecules during Immune Control of Epstein Barr Virus Infection. Biomolecules 2021; 12:biom12010038. [PMID: 35053187 PMCID: PMC8774114 DOI: 10.3390/biom12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/17/2023] Open
Abstract
The Epstein Barr virus (EBV) is one of the prominent human tumor viruses, and it is efficiently immune-controlled in most virus carriers. Cytotoxic lymphocytes strongly expand during symptomatic primary EBV infection and in preclinical in vivo models of this tumor virus infection. In these models and patients with primary immunodeficiencies, antibody blockade or deficiencies in certain molecular pathways lead to EBV-associated pathologies. In addition to T, NK, and NKT cell development, as well as their cytotoxic machinery, a set of co-stimulatory and co-inhibitory molecules was found to be required for EBV-specific immune control. The role of CD27/CD70, 4-1BB, SLAMs, NKG2D, CD16A/CD2, CTLA-4, and PD-1 will be discussed in this review. Some of these have just been recently identified as crucial for EBV-specific immune control, and for others, their important functions during protection were characterized in in vivo models of EBV infection and its immune control. These insights into the phenotype of cytotoxic lymphocytes that mediate the near-perfect immune control of EBV-associated malignancies might also guide immunotherapies against other tumors in the future.
Collapse
Affiliation(s)
- Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| |
Collapse
|
49
|
Münz C. Modification of EBV-Associated Pathologies and Immune Control by Coinfections. Front Oncol 2021; 11:756480. [PMID: 34778072 PMCID: PMC8581224 DOI: 10.3389/fonc.2021.756480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
The oncogenic Epstein–Barr virus (EBV) persistently infects more than 95% of the human adult population. Even so it can readily transform human B cells after infection in vitro, it only rarely causes tumors in patients. A substantial proportion of the 1% of all human cancers that are associated with EBV occurs during coinfections, including those with the malaria parasite Plasmodium falciparum, the human immunodeficiency virus (HIV), and the also oncogenic and closely EBV-related Kaposi sarcoma-associated herpesvirus (KSHV). In this review, I will discuss how these infections interact with EBV, modify its immune control, and shape its tumorigenesis. The underlying mechanisms reveal new aspects of EBV-associated pathologies and point toward treatment possibilities for their prevention by the human immune system.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
50
|
Läderach F, Münz C. Epstein Barr Virus Exploits Genetic Susceptibility to Increase Multiple Sclerosis Risk. Microorganisms 2021; 9:2191. [PMID: 34835317 PMCID: PMC8625064 DOI: 10.3390/microorganisms9112191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) for which both genetic and environmental risk factors have been identified. The strongest synergy among them exists between the MHC class II haplotype and infection with the Epstein Barr virus (EBV), especially symptomatic primary EBV infection (infectious mononucleosis) and elevated EBV-specific antibodies. In this review, we will summarize the epidemiological evidence that EBV infection is a prerequisite for MS development, describe altered EBV specific immune responses in MS patients, and speculate about possible pathogenic mechanisms for the synergy between EBV infection and the MS-associated MHC class II haplotype. We will also discuss how at least one of these mechanisms might explain the recent success of B cell-depleting therapies for MS. While a better mechanistic understanding of the role of EBV infection and its immune control during MS pathogenesis is required and calls for the development of innovative experimental systems to test the proposed mechanisms, therapies targeting EBV-infected B cells are already starting to be explored in MS patients.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland; or
| |
Collapse
|