1
|
Ferreras-Colino E, de la Fuente J, Couto J, Golovchenko M, Antunes S, Sevilla IA, Domingos A, Rudenko N, Contreras M, Martínez-Camacho R, Gortazar C, Risalde MA. Immunostimulant effect of heat-inactivated Mycobacterium bovis in mice challenged with vector-borne pathogens. Vaccine 2025; 53:127076. [PMID: 40188566 DOI: 10.1016/j.vaccine.2025.127076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025]
Abstract
Trained immunity is defined as an enhanced state of the innate system which leads to an improved immune response against related or non-related pathogens. Bacillus Calmette-Guérin (BCG) vaccine, a live attenuated Mycobacterium bovis strain, is currently one of the main inductors of trained immunity. The objective of the present study was to evaluate the protective effects of heat-inactivated M. bovis (HIMB) against Plasmodium berghei and Borrelia burgdorferi and characterize the immunological mechanisms involved. BALB/c and C3H/HeN mice were randomly assigned in similar number to either immunized group receiving two oral doses of HIMB with a 4-week interval, or control group treated with PBS. All the BALB/c mice were intraperitoneally infected with P. berghei while the C3H/HeN mice were subcutaneously infected with B. burgdorferi. Pathogen burden was significantly reduced in both immunized groups when compared to controls. The number of macrophages significantly decreased in the liver or in the spleen of the mice that had been immunized prior to the challenge with P. berghei or B. burgdorferi, respectively. Furthermore, the immunized groups showed an apparent upregulation of IFN-γ, TNF-α and IL-1α in the liver (P. berghei challenge) or a significant increase in IL-1α producing cells in the spleen (B. burgdorferi challenge). Our findings suggest that oral immunization with heat-inactivated mycobacteria limits pathogen burden through stimulation of the innate immune response in two vector-borne diseases in mice.
Collapse
Affiliation(s)
- Elisa Ferreras-Colino
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | - José de la Fuente
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Iker A Sevilla
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM/IHMT NOVA), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Marinela Contreras
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain
| | - Rafael Martínez-Camacho
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14014, Córdoba, Spain
| | - Christian Gortazar
- SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC), Ciudad Real, Spain.
| | - María A Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, 14014, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Wunderlich F, Gerovska D, Delic D, Araúzo-Bravo MJ. Protective Vaccination of Mice Against Blood-Stage Malaria Impacts Hepatic Expression of Genes Encoding Acute-Phase Proteins and IL-6 Family Members. Int J Mol Sci 2025; 26:3173. [PMID: 40243929 PMCID: PMC11989154 DOI: 10.3390/ijms26073173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
In response to vaccination and/or infectious agents, the liver produces acute-phase proteins (APPs) driven by IL-6, which circulate in blood plasma as components of the humoral innate defense. This study investigates the liver of mice for possible effects of protective vaccination against primary blood-stage infections of Plasmodium chabaudi malaria on the expression of genes encoding APPs and IL-6 family members. Female Balb/c mice were vaccinated with a non-infectious vaccine prior to challenge with 106P. chabaudi-infected erythrocytes, resulting in about 80% survival of otherwise lethal infections. Gene expression microarrays were used to determine the relative transcript levels of genes in the livers of vaccinated and unvaccinated mice on days 0, 1, 4, 8, and 11 p.i. (post infectionem). Vaccination induced significant (p-value < 0.05) differences in the expression of malaria-responsive genes toward the end of crisis on day 11 p.i., when mice recovered from infections. These genes include Saa4, Apcs, Cp, and Crp, encoding APPs described to inhibitorily interact with parasitic blood stages; the genes F2, F7, F8, F9, F10, and F13b, and Plg, Plat, and Serpina5, encoding proteins balancing coagulation vs. fibrinolysis dysregulated by malaria, respectively; the genes Hc, C8a, C8b, C8g, and C9, encoding components of lytic complement membrane attack complex (MAC); and Cfh, Cfi, and C4bp, encoding complement-regulatory proteins. Vaccination accelerated, albeit differently, the malaria-induced activation of all three complement pathways, evidenced as higher transcript levels of C1qa, C1qb, C1qc, Fcna, Cfp, C3, Cfh, C8a, and C9 on day 4 p.i., C1ra, C1s, and C2 on day 1 p.i., and Serping1, encoding the multifunctional protease inhibitor C1INH, on day 0 p.i. Protective vaccination may also accelerate downregulation of the malaria-promoting lethality of IL-6 trans-signaling, which may contribute to an overall accelerated recovery of mice from otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain;
| | - Denis Delic
- Boehringer Ingelheim Pharma & Co., KG, 88400 Biberach, Germany
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
3
|
Mohammed AM, Olwal CO, Fossati A, Nyakoe NK, Fabius JM, Gordon M, Polacco BJ, Swaney DL, Awandare GA, Krogan NJ, Bouhaddou M, Bediako Y. Malaria exposure remodels the plasma proteome of Ghanaian children. BMC Infect Dis 2025; 25:157. [PMID: 39901099 PMCID: PMC11789395 DOI: 10.1186/s12879-025-10495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Malaria, caused by Plasmodium falciparum, remains a major public health burden causing ~ 200 million deaths annually, especially among children. Although the lack of an effective vaccine has hindered malaria elimination, studies have reported on individuals acquiring natural immunity to malaria in the context of high malaria exposure. However, the immune correlates of protection in these people who acquire natural immunity against malaria are poorly understood. METHODS Symptomatic children residing in high and low malaria transmission areas of Ghana were enrolled into the study and followed for 3 weeks from the day of malaria confirmation. The plasma proteome of these children was profiled using a mass spectrometry-based approach and putative protein-based biomarkers and predictors of immune tolerance to malaria were identified. RESULTS We identified several differentially abundant proteins in children living in high malaria transmission areas relative to children in low transmission areas. Differentially abundant proteins were enriched in immune response processes, including complement cascade activities and elevated platelet activation. We found IGKV3D-20 protein to be strongly associated with high malaria exposure. CONCLUSIONS Our findings confirm earlier reports and identify putative signature proteins implicated in immune tolerance to malaria. Further large-scale and more mechanistic studies will be needed to reveal the key components of the identified pathways that could explain naturally acquired immunity to malaria and possibly be exploited to develop novel therapeutics against P. falciparum.
Collapse
Affiliation(s)
- Aisha M Mohammed
- West African Centre for Cell Biology of Infectious, Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles Ochieng' Olwal
- West African Centre for Cell Biology of Infectious, Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Andrea Fossati
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Nancy K Nyakoe
- West African Centre for Cell Biology of Infectious, Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Jacqueline M Fabius
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Martin Gordon
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Danielle L Swaney
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious, Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
- Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
| | - Nevan J Krogan
- The J. David Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| | - Mehdi Bouhaddou
- Institute for Quantitative and Computational Biosciences (QCBio), University of California, Los Angeles, LA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics (MIMG), University of California, Los Angeles, LA, USA.
- Molecular Biology Institute, University of California, Los Angeles, LA, USA.
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious, Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.
- Yemaachi Biotech, Accra, Ghana.
| |
Collapse
|
4
|
Su XZ, Xu F, Stadler RV, Teklemichael AA, Wu J. Malaria: Factors affecting disease severity, immune evasion mechanisms, and reversal of immune inhibition to enhance vaccine efficacy. PLoS Pathog 2025; 21:e1012853. [PMID: 39847577 PMCID: PMC11756774 DOI: 10.1371/journal.ppat.1012853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement. Some issues associated with the difficulties in developing a sterile vaccine include high antigenic diversity, switching expression of the immune targets, and inhibition of immune pathways. Current vaccine research focuses on identifying conserved and protective epitopes, developing multivalent vaccines (including the whole parasite), and using more powerful adjuvants. However, overcoming the systematic immune inhibition and immune cell dysfunction/exhaustion may be required before high titers of protective antibodies can be achieved. Increased expression of surface molecules such as CD86 and MHC II on antigen-presenting cells and blocking immune checkpoint pathways (interactions of PD-1 and PD-L1; CTLA-4 and CD80) using small molecules could be a promising approach for enhancing vaccine efficacy. This assay reviews the factors affecting the disease severity, the genetics of host-parasite interaction, immune evasion mechanisms, and approaches potentially to improve host immune response for vaccine development.
Collapse
Affiliation(s)
- Xin-zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Rachel V. Stadler
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Awet Alem Teklemichael
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
5
|
Harris AW, Kurtovic L, Nogueira J, Bouzas I, Opi DH, Wines BD, Lee WS, Hogarth PM, Poumbourios P, Drummer HE, Valim C, Porto LC, Beeson JG. Induction of Fc-dependent functional antibodies against different variants of SARS-CoV-2 varies by vaccine type and prior infection. COMMUNICATIONS MEDICINE 2024; 4:273. [PMID: 39702507 DOI: 10.1038/s43856-024-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND SARS-CoV-2 transmission and COVID-19 disease severity is influenced by immunity from natural infection and/or vaccination. Population-level immunity is complicated by the emergence of viral variants. Antibody Fc-dependent effector functions are as important mediators in immunity. However, their induction in populations with diverse infection and/or vaccination histories and against variants remains poorly defined. METHODS We evaluated Fc-dependent functional antibodies following vaccination with two widely used vaccines, AstraZeneca (AZ) and Sinovac (SV), including antibody binding of Fcγ-receptors and complement-fixation in vaccinated Brazilian adults (n = 222), some of who were previously infected with SARS-CoV-2, as well as adults with natural infection only (n = 200). IgG, IgM, IgA, and IgG subclasses were also quantified. RESULTS AZ induces greater Fcγ-receptor-binding (types I, IIa, and IIIa/b) antibodies than SV or natural infection. Previously infected individuals have significantly greater vaccine-induced responses compared to naïve counterparts. Fcγ-receptor-binding is highest among AZ vaccinated individuals with a prior infection, for all receptor types, and substantial complement-fixing activity is only seen among this group. SV induces higher IgM than AZ, but this does not drive better complement-fixing activity. Some SV responses are associated with subject age, whereas AZ responses are not. Importantly, functional antibody responses are well retained against the Omicron BA.1 S protein, being best retained for Fcγ-receptor-1 binding, and are higher for AZ than SV. CONCLUSIONS Hybrid immunity, from combined natural exposure and vaccination, generates strong Fc-mediated antibody functions which may contribute to immunity against evolving SARS-CoV-2 variants. Understanding determinants of Fc-mediated functions may enable future vaccines with greater efficacy against different variants.
Collapse
Affiliation(s)
- Alexander W Harris
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Jeane Nogueira
- Immunogenic and Histocompatibility Laboratory, Technologic Core for Tissue repair and Histocompatibility, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Isabel Bouzas
- Health Research Support Facility Center (CAPCS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - D Herbert Opi
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Departments of Medicine, The University of Melbourne, Melbourne, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Pantelis Poumbourios
- Burnet Institute, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Heidi E Drummer
- Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Clarissa Valim
- Boston University School of Public Health, Boston University, Boston, USA
| | - Luís Cristóvão Porto
- Immunogenic and Histocompatibility Laboratory, Technologic Core for Tissue repair and Histocompatibility, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Health Research Support Facility Center (CAPCS), Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.
- Department of Immunology, Monash University, Melbourne, Australia.
- Departments of Medicine, The University of Melbourne, Melbourne, Australia.
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
6
|
Tang WK, Salinas ND, Kolli SK, Xu S, Urusova DV, Kumar H, Jimah JR, Subramani PA, Ogbondah MM, Barnes SJ, Adams JH, Tolia NH. Multistage protective anti-CelTOS monoclonal antibodies with cross-species sterile protection against malaria. Nat Commun 2024; 15:7487. [PMID: 39209843 PMCID: PMC11362571 DOI: 10.1038/s41467-024-51701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
CelTOS is a malaria vaccine antigen that is conserved in Plasmodium and other apicomplexan parasites and plays a role in cell-traversal. The structural basis and mechanisms of CelTOS-induced protective immunity to parasites are unknown. Here, CelTOS-specific monoclonal antibodies (mAbs) 7g7 and 4h12 demonstrated multistage activity, protecting against liver infection and preventing parasite transmission to mosquitoes. Both mAbs demonstrated cross-species activity with sterile protection against in vivo challenge with transgenic parasites containing either P. falciparum or P. vivax CelTOS, and with transmission reducing activity against P. falciparum. The mAbs prevented CelTOS-mediated pore formation providing insight into the protective mechanisms. X-ray crystallography and mutant-library epitope mapping revealed two distinct broadly conserved neutralizing epitopes. 7g7 bound to a parallel dimer of CelTOS, while 4h12 bound to a novel antiparallel dimer architecture. These findings inform the design of antibody therapies and vaccines and raise the prospect of a single intervention to simultaneously combat P. falciparum and P. vivax malaria.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Animals
- Plasmodium falciparum/immunology
- Plasmodium vivax/immunology
- Malaria Vaccines/immunology
- Antibodies, Protozoan/immunology
- Mice
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Malaria, Falciparum/parasitology
- Crystallography, X-Ray
- Epitopes/immunology
- Malaria, Vivax/prevention & control
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Antigens, Protozoan/immunology
- Humans
- Female
- Epitope Mapping
- Malaria/immunology
- Malaria/prevention & control
- Malaria/parasitology
- Mice, Inbred BALB C
- Protozoan Proteins/immunology
- Protozoan Proteins/chemistry
Collapse
Affiliation(s)
- Wai Kwan Tang
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nichole D Salinas
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Surendra Kumar Kolli
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Shulin Xu
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Darya V Urusova
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hirdesh Kumar
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Jimah
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pradeep Annamalai Subramani
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Madison M Ogbondah
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Samantha J Barnes
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - John H Adams
- Center of Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Niraj H Tolia
- Host‒Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genotype-environment associations reveal genes potentially linked to avian malaria infection in populations of an endemic island bird. Mol Ecol 2024; 33:e17329. [PMID: 38533805 DOI: 10.1111/mec.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.
Collapse
Affiliation(s)
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo, University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
8
|
Little JS, Oakley MS, Thorner AR, Johnston D, Majam V, Liakos AD, Novack LA, Zheng H, Meredith S, Chou CK, Newton BR, Soiffer RJ, Krause PJ, Baden LR, Kumar S. Immune Control in Repeated Babesia microti Infection in a Patient With B-Cell Deficiency. Open Forum Infect Dis 2024; 11:ofad568. [PMID: 38213635 PMCID: PMC10783156 DOI: 10.1093/ofid/ofad568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024] Open
Abstract
The immunology of human babesiosis is poorly investigated. We present a comprehensive investigation of a 75-year-old man with B-cell deficiency who experienced 3 episodes of babesiosis over a 6-year period. Slowly evolving clinical immunity was observed, as evidenced by milder clinical symptoms and lower peak parasite burden after each subsequent babesiosis episode. The patient exhibited several striking immunologic findings. First, the patient had exceptionally high Babesia microti-specific antibodies despite very few circulating B cells, which predominantly coexpressed CD27 (memory marker) and CD95 (death receptor). Second, we demonstrated the presence of long-lasting NK cells and expansion of T memory stem cells. Third, levels of the IP-10 cytokine directly correlated with parasite burden. These results raise fundamental questions on the priming, maintenance, and location of a B-cell population that produces high antibody levels in the face of severe B-cell deficiency. Our results should invoke interest among researchers to study the immunology and pathogenesis of human babesiosis.
Collapse
Affiliation(s)
- Jessica S Little
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Miranda S Oakley
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anna R Thorner
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Demerise Johnston
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Victoria Majam
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Alexis D Liakos
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lewis A Novack
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Zheng
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Scott Meredith
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Benjamin R Newton
- Section of Medical Oncology, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert J Soiffer
- Harvard Medical School, Boston, Massachusetts, USA
- Stem Cell Transplant and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peter J Krause
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut, USA
| | - Lindsey R Baden
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sanjai Kumar
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Jamwal A, Constantin CF, Hirschi S, Henrich S, Bildl W, Fakler B, Draper SJ, Schulte U, Higgins MK. Erythrocyte invasion-neutralising antibodies prevent Plasmodium falciparum RH5 from binding to basigin-containing membrane protein complexes. eLife 2023; 12:e83681. [PMID: 37796723 PMCID: PMC10569788 DOI: 10.7554/elife.83681] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Basigin is an essential host receptor for invasion of Plasmodium falciparum into human erythrocytes, interacting with parasite surface protein PfRH5. PfRH5 is a leading blood-stage malaria vaccine candidate and a target of growth-inhibitory antibodies. Here, we show that erythrocyte basigin is exclusively found in one of two macromolecular complexes, bound either to plasma membrane Ca2+-ATPase 1/4 (PMCA1/4) or to monocarboxylate transporter 1 (MCT1). PfRH5 binds to each of these complexes with a higher affinity than to isolated basigin ectodomain, making it likely that these are the physiological targets of PfRH5. PMCA-mediated Ca2+ export is not affected by PfRH5, making it unlikely that this is the mechanism underlying changes in calcium flux at the interface between an erythrocyte and the invading parasite. However, our studies rationalise the function of the most effective growth-inhibitory antibodies targeting PfRH5. While these antibodies do not reduce the binding of PfRH5 to monomeric basigin, they do reduce its binding to basigin-PMCA and basigin-MCT complexes. This indicates that the most effective PfRH5-targeting antibodies inhibit growth by sterically blocking the essential interaction of PfRH5 with basigin in its physiological context.
Collapse
Affiliation(s)
- Abhishek Jamwal
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | | | - Stephan Hirschi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | - Sebastian Henrich
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSFreiburgGermany
| | - Simon J Draper
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSFreiburgGermany
| | - Matthew K Higgins
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
10
|
Tiberti N, Longoni SS, Combes V, Piubelli C. Host-Derived Extracellular Vesicles in Blood and Tissue Human Protozoan Infections. Microorganisms 2023; 11:2318. [PMID: 37764162 PMCID: PMC10536481 DOI: 10.3390/microorganisms11092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Blood and tissue protozoan infections are responsible for an enormous burden in tropical and subtropical regions, even though they can also affect people living in high-income countries, mainly as a consequence of migration and travel. These pathologies are responsible for heavy socio-economic issues in endemic countries, where the lack of proper therapeutic interventions and effective vaccine strategies is still hampering their control. Moreover, the pathophysiological mechanisms associated with the establishment, progression and outcome of these infectious diseases are yet to be fully described. Among all the players, extracellular vesicles (EVs) have raised significant interest during the last decades due to their capacity to modulate inter-parasite and host-parasite interactions. In the present manuscript, we will review the state of the art of circulating host-derived EVs in clinical samples or in experimental models of human blood and tissue protozoan diseases (i.e., malaria, leishmaniasis, Chagas disease, human African trypanosomiasis and toxoplasmosis) to gain novel insights into the mechanisms of pathology underlying these conditions and to identify novel potential diagnostic markers.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Valéry Combes
- Microvesicles and Malaria Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| |
Collapse
|
11
|
Matos ADS, Soares IF, Baptista BDO, de Souza HADS, Chaves LB, Perce-da-Silva DDS, Riccio EKP, Albrecht L, Totino PRR, Rodrigues-da-Silva RN, Daniel-Ribeiro CT, Pratt-Riccio LR, Lima-Junior JDC. Construction, Expression, and Evaluation of the Naturally Acquired Humoral Immune Response against Plasmodium vivax RMC-1, a Multistage Chimeric Protein. Int J Mol Sci 2023; 24:11571. [PMID: 37511330 PMCID: PMC10380678 DOI: 10.3390/ijms241411571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.
Collapse
Affiliation(s)
- Ada da Silva Matos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Barbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Lana Bitencourt Chaves
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Imunologia Básica e Aplicada, Centro Universitário Arthur Sá Earp Neto/Faculdade de Medicina de Petrópolis (UNIFASE/FMP), Petrópolis 25680-120, RJ, Brazil
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Curitiba 81350-010, PR, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Nunes Rodrigues-da-Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
12
|
Vyas VK, Shukla T, Sharma M. Medicinal chemistry approaches for the discovery of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. Future Med Chem 2023; 15:1295-1321. [PMID: 37551689 DOI: 10.4155/fmc-2023-0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Malaria is a severe human disease and a global health problem because of drug-resistant strains. Drugs reported to prevent the growth of Plasmodium parasites target various phases of the parasites' life cycle. Antimalarial drugs can inhibit key enzymes that are responsible for the cellular growth and development of parasites. Plasmodium falciparum dihydroorotate dehydrogenase is one such enzyme that is necessary for de novo pyrimidine biosynthesis. This review focuses on various medicinal chemistry approaches used for the discovery and identification of selective P. falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. This comprehensive review discusses recent advances in the selective therapeutic activity of distinct chemical classes of compounds as P. falciparum dihydroorotate dehydrogenase inhibitors and antimalarial drugs.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Tanvi Shukla
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
13
|
B-Cell Epitope Mapping of the Plasmodium falciparum Malaria Vaccine Candidate GMZ2.6c in a Naturally Exposed Population of the Brazilian Amazon. Vaccines (Basel) 2023; 11:vaccines11020446. [PMID: 36851323 PMCID: PMC9966924 DOI: 10.3390/vaccines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The GMZ2.6c malaria vaccine candidate is a multi-stage P. falciparum chimeric protein that contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, an asexual-stage vaccine construction consisting of the N-terminal region of the glutamate-rich protein (GLURP) and the C-terminal region of the merozoite surface protein-3 (MSP-3). Previous studies showed that GMZ2.6c is widely recognized by antibodies from Brazilian exposed individuals and that its components are immunogenic in natural infection by P. falciparum. In addition, anti-GMZ2.6c antibodies increase with exposure to infection and may contribute to parasite immunity. Therefore, identifying epitopes of proteins recognized by antibodies may be an important tool for understanding protective immunity. Herein, we identify and validate the B-cell epitopes of GMZ2.6c as immunogenic and immunodominant in individuals exposed to malaria living in endemic areas of the Brazilian Amazon. Specific IgG antibodies and subclasses against MSP-3, GLURP, and Pfs48/45 epitopes were detected by ELISA using synthetic peptides corresponding to B-cell epitopes previously described for MSP-3 and GLURP or identified by BepiPred for Pfs48/45. The results showed that the immunodominant epitopes were P11 from GLURP and MSP-3c and DG210 from MSP-3. The IgG1 and IgG3 subclasses were preferentially induced against these epitopes, supporting previous studies that these proteins are targets for cytophilic antibodies, important for the acquisition of protective immunity. Most individuals presented detectable IgG antibodies against Pfs48/45a and/or Pfs48/45b, validating the prediction of linear B-cell epitopes. The higher frequency and antibody levels against different epitopes from GLURP, MSP-3, and Pfs48/45 provide additional information that may suggest the relevance of GMZ2.6c as a multi-stage malaria vaccine candidate.
Collapse
|
14
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
15
|
Dénou A, Togola A, Inngjerdingen KT, Moussavi N, Rise F, Zou YF, Dafam DG, Nep EI, Ahmed A, Alemika TE, Diallo D, Sanogo R, Paulsen BS. Isolation, characterisation and complement fixation activity of acidic polysaccharides from Argemone mexicana used as antimalarials in Mali. PHARMACEUTICAL BIOLOGY 2022; 60:1278-1285. [PMID: 35797701 PMCID: PMC9272928 DOI: 10.1080/13880209.2022.2089691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Global studies on Argemone mexicana L. (Papaveraceae) traditionally used against malaria in Mali are limited to its low-mass compounds activities, and little information on its bioactive polysaccharides is available. OBJECTIVE This study determines the structure and the immunomodulatory activity of polysaccharides from aerial parts of A. mexicana. MATERIALS AND METHODS Acidic polysaccharides from this plant material named HMAmA1 and HMAmA2 were isolated from water extracts. Their monosaccharide composition was determined by gas chromatography. Glycosidic linkages were determined using GC-MS. NMR was also applied. The polymers were tested for effects on the human complement system in vitro at different doses. RESULTS The monosaccharide composition showed that the two polysaccharides contained in different amounts the following monomers: arabinose, rhamnose, galactose, and galacturonic acid. Overall structural analysis showed the presence of a low ratio of 1,2-linked rhamnose compared to 1,4-linked galacturonic acid with arabinogalactans substituted on position 4 of rhamnose. NMR data showed the presence of galacturonans alternated by rhamnogalacturonans bearing arabinose and galactose units. α-Linkages were found for l-arabinose, l-rhamnose and d-galacturonic acid, while β-linkages were found for d-galactose. The two polysaccharides exhibited strong complement fixation activities, with HMAmA1 being the highest potent fraction. ICH50 value of HMAmA1 was 5 µg/mL, compared to the control BPII being 15.9 µg/mL. DISCUSSION AND CONCLUSIONS Polysaccharides form A. mexicana presented a complement fixation effect. The complement system is an important part of the immune defense, and compounds acting on the cascade are of interest. Therefore, these polymers may be useful as immunodulatory agents.
Collapse
Affiliation(s)
- Adama Dénou
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Adiaratou Togola
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Nastaran Moussavi
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Yuan Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P.R. China
| | - Dalen G. Dafam
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Elijah I. Nep
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Abubakar Ahmed
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Taiwo E. Alemika
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Drissa Diallo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Rokia Sanogo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Berit Smestad Paulsen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The Defensive Interactions of Prominent Infectious Protozoan Parasites: The Host's Complement System. Biomolecules 2022; 12:1564. [PMID: 36358913 PMCID: PMC9687244 DOI: 10.3390/biom12111564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 12/30/2023] Open
Abstract
The complement system exerts crucial functions both in innate immune responses and adaptive humoral immunity. This pivotal system plays a major role dealing with pathogen invasions including protozoan parasites. Different pathogens including parasites have developed sophisticated strategies to defend themselves against complement killing. Some of these strategies include the employment, mimicking or inhibition of host's complement regulatory proteins, leading to complement evasion. Therefore, parasites are proven to use the manipulation of the complement system to assist them during infection and persistence. Herein, we attempt to study the interaction´s mechanisms of some prominent infectious protozoan parasites including Plasmodium, Toxoplasma, Trypanosoma, and Leishmania dealing with the complement system. Moreover, several crucial proteins that are expressed, recruited or hijacked by parasites and are involved in the modulation of the host´s complement system are selected and their role for efficient complement killing or lysis evasion is discussed. In addition, parasite's complement regulatory proteins appear as plausible therapeutic and vaccine targets in protozoan parasitic infections. Accordingly, we also suggest some perspectives and insights useful in guiding future investigations.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein 38811, Iran
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein 38811, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| |
Collapse
|
17
|
Kim MJ, Chu KB, Kang HJ, Yoon KW, Eom GD, Mao J, Lee SH, Subbiah J, Kang SM, Moon EK, Quan FS. Protective Immunity Induced by Immunization with Baculovirus, Virus-like Particle, and Vaccinia Virus Expressing the AMA1 of Plasmodium berghei. Biomedicines 2022; 10:biomedicines10092289. [PMID: 36140395 PMCID: PMC9496152 DOI: 10.3390/biomedicines10092289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Heterologous prime–boost immunization regimens using various vaccine platforms demonstrated promising results against infectious diseases. Here, mice were sequentially immunized with the recombinant baculovirus (rBV), virus-like particle (VLP), and recombinant vaccinia virus (rVV) vaccines expressing the Plasmodium berghei apical membrane antigen 1 (AMA1) for protective efficacy evaluation. The rBV_V_rVV heterologous immunization regimen elicited high levels of parasite-specific IgG, IgG2a, and IgG2b antibody responses in sera. Upon P. berghei challenge infection, proliferations of germinal center B cells in the inguinal lymph nodes, as well as blood CD4+ and CD8+ T cells were induced. More importantly, rBV_V_rVV immunization significantly diminished the parasitemia and prevented drastic bodyweight loss in mice post-challenge infection with P. berghei. Our findings revealed that immunization with rBV, VLP, and rVV expressing the AMA1 conferred protection against P. berghei infection, providing evidence for the potential implementation of this strategy.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ki-Back Chu
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Hwa Lee
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jeeva Subbiah
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Kyung Moon
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
18
|
The impact of human complement on the clinical outcome of malaria infection. Mol Immunol 2022; 151:19-28. [PMID: 36063583 DOI: 10.1016/j.molimm.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022]
Abstract
The tropical disease malaria remains a major cause of global morbidity. Once transmitted to the human by a blood-feeding mosquito, the unicellular malaria parasite comes into contact with the complement system and continues to interact with human complement during its intraerythrocytic replication cycles. In the course of infection, both the classical and the alternative pathway of complement are activated, leading to parasite opsonization and lysis as well as the induction of complement-binding antibodies. While complement activity can be linked to the severity of malaria, it remains to date unclear, whether human complement is beneficial for protective immunity or if extensive complement reactions may rather enhance pathogenesis. In addition, the parasite has evolved molecular strategies to circumvent attack by human complement and has even developed means to utilize complement factors as mediators of host cell infection. In this review, we highlight current knowledge on the role of human complement for the progression of malaria infection. We discuss the various types of interactions between malaria parasites and complement factors with regard to immunity and infection outcome and set a special emphasis on the dual role of complement in the context of parasite fitness.
Collapse
|
19
|
Chan JA, Loughland JR, de la Parte L, Okano S, Ssewanyana I, Nalubega M, Nankya F, Musinguzi K, Rek J, Arinaitwe E, Tipping P, Bourke P, Andrew D, Dooley N, SheelaNair A, Wines BD, Hogarth PM, Beeson JG, Greenhouse B, Dorsey G, Kamya M, Hartel G, Minigo G, Feeney M, Jagannathan P, Boyle MJ. Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children. Nat Commun 2022; 13:4159. [PMID: 35851033 PMCID: PMC9293980 DOI: 10.1038/s41467-022-31880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/08/2022] [Indexed: 01/29/2023] Open
Abstract
T-follicular helper (Tfh) cells are key drivers of antibodies that protect from malaria. However, little is known regarding the host and parasite factors that influence Tfh and functional antibody development. Here, we use samples from a large cross-sectional study of children residing in an area of high malaria transmission in Uganda to characterize Tfh cells and functional antibodies to multiple parasites stages. We identify a dramatic re-distribution of the Tfh cell compartment with age that is independent of malaria exposure, with Th2-Tfh cells predominating in early childhood, while Th1-Tfh cell gradually increase to adult levels over the first decade of life. Functional antibody acquisition is age-dependent and hierarchical acquired based on parasite stage, with merozoite responses followed by sporozoite and gametocyte antibodies. Antibodies are boosted in children with current infection, and are higher in females. The children with the very highest antibody levels have increased Tfh cell activation and proliferation, consistent with a key role of Tfh cells in antibody development. Together, these data reveal a complex relationship between the circulating Tfh compartment, antibody development and protection from malaria.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica R Loughland
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | | | - Satomi Okano
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Mayimuna Nalubega
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Peta Tipping
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | - Peter Bourke
- Division of Medicine, Cairns Hospital, Manunda, QLD, Australia
| | - Dean Andrew
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas Dooley
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Griffith University, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Grant Dorsey
- University of California San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gunter Hartel
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
- College of Health and Human Sciences, Charles Darwin University, Darwin, NT, Australia
| | - Margaret Feeney
- University of California San Francisco, San Francisco, CA, USA
| | | | - Michelle J Boyle
- Burnet Institute, Melbourne, VIC, Australia.
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia.
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
20
|
Wahl I, Wardemann H. How to induce protective humoral immunity against Plasmodium falciparum circumsporozoite protein. J Exp Med 2022; 219:212951. [PMID: 35006242 PMCID: PMC8754000 DOI: 10.1084/jem.20201313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.
Collapse
Affiliation(s)
- Ilka Wahl
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hedda Wardemann
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
21
|
Siddiqui AJ, Bhardwaj J, Hamadou WS, Goyal M, Jahan S, Ashraf SA, Jamal A, Sharma P, Sachidanandan M, Badraoui R, Snoussi M, Adnan M. Impact of chemoprophylaxis immunisation under halofantrine (CPS-HF) drug cover in Plasmodium yoelii Swiss mice malaria model. Folia Parasitol (Praha) 2022; 69. [PMID: 35145048 DOI: 10.14411/fp.2022.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/28/2021] [Indexed: 11/19/2022]
Abstract
In the present study, we have investigated the role of antimalarial drug halofantrine (HF) in inducing the sterile protection against challenges with sporozoites of the live infectious Plasmodium yoelii (Killick-Kendrick, 1967) in Swiss mice malaria model. We observed that during the first to third sequential sporozoite inoculation cycles, blood-stage patency remains the same in the control and chemoprophylaxis under HF drug cover (CPS-HF) groups. However, a delayed blood-stage infection was observed during the fourth and fifth sporozoite challenges and complete sterile protection was produced following the sixth sporozoite challenge in CPS-HF mice. We also noticed a steady decline in liver stage parasite load after 3th to 6th sporozoite challenge cycle in CPS-HF mice. CPS-HF immunisation results in a significant up-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-12 and iNOS) and down-regulation of anti-inflammatory cytokines (IL-10 and TGF-β) mRNA expression in hepatic mononuclear cells (HMNC) and spleen cells in the immunised CPS-HF mice (after 6th sporozoite challenge) compared to control. Overall, our study suggests that the repetitive sporozoite inoculation under HF drug treatment develops a strong immune response that confers protection against subsequent challenges with sporozoites of P. yoelii.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia.,Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Both authors have contributed equally to this work and share first authorship.,Corresponding author
| | - Jyoti Bhardwaj
- Indiana University, School of Medicine, Indianapolis, Indiana, United States.,Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Both authors have contributed equally to this work and share first authorship
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Pankaj Sharma
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, U.S.A
| | | | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
22
|
de Almeida MEM, Alves KCS, de Vasconcelos MGS, Pinto TS, Glória JC, Chaves YO, Neves WLL, Tarragô AM, de Souza Neto JN, Astolfi-Filho S, Pontes GS, da Silva Balieiro AA, Isticato R, Ricca E, Mariúba LAM. Bacillus subtilis spores as delivery system for nasal Plasmodium falciparum circumsporozoite surface protein immunization in a murine model. Sci Rep 2022; 12:1531. [PMID: 35087102 PMCID: PMC8795416 DOI: 10.1038/s41598-022-05344-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Malaria remains a widespread public health problem in tropical and subtropical regions around the world, and there is still no vaccine available for full protection. In recent years, it has been observed that spores of Bacillus subtillis can act as a vaccine carrier and adjuvant, promoting an elevated humoral response after co-administration with antigens either coupled or integrated to their surface. In our study, B. subtillis spores from the KO7 strain were used to couple the recombinant CSP protein of P. falciparum (rPfCSP), and the nasal humoral-induced immune response in Balb/C mice was evaluated. Our results demonstrate that the spores coupled to rPfCSP increase the immunogenicity of the antigen, which induces high levels of serum IgG, and with balanced Th1/Th2 immune response, being detected antibodies in serum samples for 250 days. Therefore, the use of B. subtilis spores appears to be promising for use as an adjuvant in a vaccine formulation.
Collapse
Affiliation(s)
- Maria Edilene M de Almeida
- Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil.
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil.
| | - Késsia Caroline Souza Alves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | - Juliane Corrêa Glória
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Walter Luiz Lima Neves
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, HEMOAM, Manaus, AM, Brazil
| | - Andrea Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM), Manaus, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, HEMOAM, Manaus, AM, Brazil
- Programa de Pós-Graduação Stricto Sensu em Ciências Aplicadas à Hematologia PPGH, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Júlio Nino de Souza Neto
- Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Spartaco Astolfi-Filho
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | | | - Antônio Alcirley da Silva Balieiro
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Programa de Pós-Graduação Stricto Sensu em Biologia Parasitária do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil
| | | | - Ezio Ricca
- Department of Biology, Federico II University, Naples, Italy
| | - Luis André M Mariúba
- Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular do Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro, RJ, Brazil.
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus, Brazil.
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil.
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal Do Amazonas (UFAM), Manaus, AM, Brazil.
| |
Collapse
|
23
|
Oyong DA, Loughland JR, Soon MSF, Chan JA, Andrew D, Wines BD, Hogarth PM, Olver SD, Collinge AD, Varelias A, Beeson JG, Kenangalem E, Price RN, Anstey NM, Minigo G, Boyle MJ. Adults with Plasmodium falciparum malaria have higher magnitude and quality of circulating T-follicular helper cells compared to children. EBioMedicine 2022; 75:103784. [PMID: 34968760 PMCID: PMC8718734 DOI: 10.1016/j.ebiom.2021.103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Protective malarial antibodies are acquired more rapidly in adults than children, independently of cumulative exposure, however the cellular responses mediating these differences are unknown. CD4 T-follicular helper (Tfh) cells have key roles in inducing antibodies, with Th2-Tfh cell activation associated with antibody development in malaria. Whether Tfh cell activation in malaria is age dependent is unknown and no studies have compared Tfh cell activation in children and adults with malaria. METHODS We undertook a comprehensive study of Tfh cells, along with B cells and antibody induction in children and adults with malaria. Activation and proliferation of circulating Tfh (cTfh) cell subsets was measured ex vivo and parasite-specific Tfh cell frequencies and functions studied with Activation Induced Marker (AIM) assays and intracellular cytokine staining. FINDINGS During acute malaria, the magnitude of cTfh cell activation was higher in adults than in children and occurred across all cTfh cell subsets in adults but was restricted only to the Th1-cTfh subset in children. Further, adults had higher levels of parasite-specific cTfh cells, and cTfh cells which produced more Th2-Tfh associated cytokine IL-4. Consistent with a role of higher Tfh cell activation in rapid immune development in adults, adults had higher activation of B cells during infection and higher induction of antibodies 7 and 28 days after malaria compared to children. INTERPRETATION Our data provide evidence that age impacts Tfh cell activation during malaria, and that these differences may influence antibody induction after treatment. Findings have important implications for vaccine development in children. FUNDING This word was supported by the National Health and Medical Research Council of Australia, Wellcome Trust, Charles Darwin University Menzies School of Health Research, Channel 7 Children's Research Foundation, and National Health Institute.
Collapse
Affiliation(s)
- Damian A Oyong
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Charles Darwin University, Darwin, NT, Australia
| | - Jessica R Loughland
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Medicine, University of Melbourne, VIC, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Stuart D Olver
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alika D Collinge
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, QLD, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, VIC, Australia; Department of Microbiology, Monash University, VIC, Australia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Charles Darwin University, Darwin, NT, Australia
| | - Michelle J Boyle
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Burnet Institute, Melbourne, VIC, Australia; Faculty of Medicine, The University of Queensland, QLD, Australia.
| |
Collapse
|
24
|
Kurtovic L, Drew DR, Dent AE, Kazura JW, Beeson JG. Antibody Targets and Properties for Complement-Fixation Against the Circumsporozoite Protein in Malaria Immunity. Front Immunol 2021; 12:775659. [PMID: 34925347 PMCID: PMC8671933 DOI: 10.3389/fimmu.2021.775659] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 01/02/2023] Open
Abstract
The Plasmodium falciparum circumsporozoite protein (CSP) forms the basis of leading subunit malaria vaccine candidates. However, the mechanisms and specific targets of immunity are poorly defined. Recent findings suggest that antibody-mediated complement-fixation and activation play an important role in immunity. Here, we investigated the regions of CSP targeted by functional complement-fixing antibodies and the antibody properties associated with this activity. We quantified IgG, IgM, and functional complement-fixing antibody responses to different regions of CSP among Kenyan adults naturally exposed to malaria (n=102) and using a series of rabbit vaccination studies. Individuals who acquired functional complement-fixing antibodies had higher IgG, IgM and IgG1 and IgG3 to CSP. Acquired complement-fixing antibodies targeted the N-terminal, central-repeat, and C-terminal regions of CSP, and positive responders had greater antibody breadth compared to those who were negative for complement-fixing antibodies (p<0.05). Using rabbit vaccinations as a model, we confirmed that IgG specific to the central-repeat and non-repeat regions of CSP could effectively fix complement. However, vaccination with near full length CSP in rabbits poorly induced antibodies to the N-terminal region compared to naturally-acquired immunity in humans. Poor induction of N-terminal antibodies was also observed in a vaccination study performed in mice. IgG and IgM to all three regions of CSP play a role in mediating complement-fixation, which has important implications for malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Damien R. Drew
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Arlene E. Dent
- Center for Global Health and Diseases, Case Western University, Cleveland, OH, United States
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western University, Cleveland, OH, United States
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
26
|
Opi DH, Boyle MJ, McLean ARD, Reiling L, Chan JA, Stanisic DI, Ura A, Mueller I, Fowkes FJI, Rogerson SJ, Beeson JG. Reduced risk of placental parasitemia associated with complement fixation on Plasmodium falciparum by antibodies among pregnant women. BMC Med 2021; 19:201. [PMID: 34425801 PMCID: PMC8383393 DOI: 10.1186/s12916-021-02061-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The pathogenesis of malaria in pregnancy (MiP) involves accumulation of P. falciparum-infected red blood cells (pRBCs) in the placenta, contributing to poor pregnancy outcomes. Parasite accumulation is primarily mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). Magnitude of IgG to pRBCs has been associated with reduced risk of MiP in some studies, but associations have been inconsistent. Further, antibody effector mechanisms are poorly understood, and the role of antibody complement interactions is unknown. METHODS Studying a longitudinal cohort of pregnant women (n=302) from a malaria-endemic province in Papua New Guinea (PNG), we measured the ability of antibodies to fix and activate complement using placental binding pRBCs and PfEMP1 recombinant domains. We determined antibody-mediated complement inhibition of pRBC binding to the placental receptor, chondroitin sulfate A (CSA), and associations with protection against placental parasitemia. RESULTS Some women acquired antibodies that effectively promoted complement fixation on placental-binding pRBCs. Complement fixation correlated with IgG1 and IgG3 antibodies, which dominated the response. There was, however, limited evidence for membrane attack complex activity or pRBC lysis or killing. Importantly, a higher magnitude of complement fixing antibodies was prospectively associated with reduced odds of placental infection at delivery. Using genetically modified P. falciparum and recombinant PfEMP1 domains, we found that complement-fixing antibodies primarily targeted a specific variant of PfEMP1 (known as VAR2CSA). Furthermore, complement enhanced the ability of antibodies to inhibit pRBC binding to CSA, which was primarily mediated by complement C1q protein. CONCLUSIONS These findings provide new insights into mechanisms mediating immunity to MiP and reveal potential new strategies for developing malaria vaccines that harness antibody-complement interactions.
Collapse
Affiliation(s)
- D Herbert Opi
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Immunology, Monash University, Melbourne, Australia. .,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia.
| | - Michelle J Boyle
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Human Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Linda Reiling
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia
| | - Jo-Anne Chan
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Immunology, Monash University, Melbourne, Australia.,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Danielle I Stanisic
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Alice Ura
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Institute Pasteur, Paris, France
| | - Freya J I Fowkes
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, 3004, Australia. .,Department of Immunology, Monash University, Melbourne, Australia. .,Department of Medicine at the Doherty Institute, University of Melbourne, Melbourne, Australia. .,Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
27
|
Suscovich TJ, Fallon JK, Das J, Demas AR, Crain J, Linde CH, Michell A, Natarajan H, Arevalo C, Broge T, Linnekin T, Kulkarni V, Lu R, Slein MD, Luedemann C, Marquette M, March S, Weiner J, Gregory S, Coccia M, Flores-Garcia Y, Zavala F, Ackerman ME, Bergmann-Leitner E, Hendriks J, Sadoff J, Dutta S, Bhatia SN, Lauffenburger DA, Jongert E, Wille-Reece U, Alter G. Mapping functional humoral correlates of protection against malaria challenge following RTS,S/AS01 vaccination. Sci Transl Med 2021; 12:12/553/eabb4757. [PMID: 32718991 DOI: 10.1126/scitranslmed.abb4757] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Vaccine development has the potential to be accelerated by coupling tools such as systems immunology analyses and controlled human infection models to define the protective efficacy of prospective immunogens without expensive and slow phase 2b/3 vaccine studies. Among human challenge models, controlled human malaria infection trials have long been used to evaluate candidate vaccines, and RTS,S/AS01 is the most advanced malaria vaccine candidate, reproducibly demonstrating 40 to 80% protection in human challenge studies in malaria-naïve individuals. Although antibodies are critical for protection after RTS,S/AS01 vaccination, antibody concentrations are inconsistently associated with protection across studies, and the precise mechanism(s) by which vaccine-induced antibodies provide protection remains enigmatic. Using a comprehensive systems serological profiling platform, the humoral correlates of protection against malaria were identified and validated across multiple challenge studies. Rather than antibody concentration, qualitative functional humoral features robustly predicted protection from infection across vaccine regimens. Despite the functional diversity of vaccine-induced immune responses across additional RTS,S/AS01 vaccine studies, the same antibody features, antibody-mediated phagocytosis and engagement of Fc gamma receptor 3A (FCGR3A), were able to predict protection across two additional human challenge studies. Functional validation using monoclonal antibodies confirmed the protective role of Fc-mediated antibody functions in restricting parasite infection both in vitro and in vivo, suggesting that these correlates may mechanistically contribute to parasite restriction and can be used to guide the rational design of an improved vaccine against malaria.
Collapse
Affiliation(s)
- Todd J Suscovich
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | | | - Jishnu Das
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Allison R Demas
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan Crain
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Caitlyn H Linde
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Ashlin Michell
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Harini Natarajan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Claudia Arevalo
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Thomas Broge
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Thomas Linnekin
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Viraj Kulkarni
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Richard Lu
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Matthew D Slein
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | | | - Meghan Marquette
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra March
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Scott Gregory
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Yevel Flores-Garcia
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Fidel Zavala
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Elke Bergmann-Leitner
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jenny Hendriks
- Janssen Vaccines & Prevention B.V., 2333CN Leiden, Netherlands
| | - Jerald Sadoff
- Janssen Vaccines & Prevention B.V., 2333CN Leiden, Netherlands
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Broad Institute, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas A Lauffenburger
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Galit Alter
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Hietanen J, Chim-Ong A, Sattabongkot J, Nguitragool W. Naturally induced humoral response against Plasmodium vivax reticulocyte binding protein 2P1. Malar J 2021; 20:246. [PMID: 34082763 PMCID: PMC8173506 DOI: 10.1186/s12936-021-03784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background Plasmodium vivax is the most prevalent malaria parasite in many countries. A better understanding of human immunity to this parasite can provide new insights for vaccine development. Plasmodium vivax Reticulocyte Binding Proteins (RBPs) are key parasite proteins that interact with human proteins during erythrocyte invasion and are targets of the human immune response. The aim of this study is to characterize the human antibody response to RBP2P1, the most recently described member of the RBP family. Methods The levels of total IgG and IgM against RBP2P1 were measured using plasmas from 68 P. vivax malaria patients and 525 villagers in a malarious village of western Thailand. The latter group comprises asymptomatic carriers and healthy uninfected individuals. Subsets of plasma samples were evaluated for anti-RBP2P1 IgG subtypes and complement-fixing activity. Results As age increased, it was found that the level of anti-RBP2P1 IgG increased while the level of IgM decreased. The main anti-RBP2P1 IgG subtypes were IgG1 and IgG3. The IgG3-seropositive rate was higher in asymptomatic carriers than in patients. The higher level of IgG3 was correlated with higher in vitro RBP2P1-mediated complement fixing activity. Conclusions In natural infection, the primary IgG response to RBP2P1 was IgG1 and IgG3. The predominance of these cytophilic subtypes and the elevated level of IgG3 correlating with complement fixing activity, suggest a possible role of anti-RBP2P1 antibodies in immunity against P. vivax.
Collapse
Affiliation(s)
- Jenni Hietanen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Anongruk Chim-Ong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, 10400, Bangkok, Thailand.
| |
Collapse
|
29
|
Almeida MEMD, Vasconcelos MGSD, Tarragô AM, Mariúba LAM. Circumsporozoite Surface Protein-based malaria vaccines: a review. Rev Inst Med Trop Sao Paulo 2021; 63:e11. [PMID: 33533814 PMCID: PMC7845937 DOI: 10.1590/s1678-9946202163011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 12/03/2022] Open
Abstract
Malaria represents a serious public health problem, presenting with high rates of incidence, morbidity and mortality in tropical and subtropical regions of the world. According to the World Health Organization, in 2018 there were 228 million cases and 405 thousand deaths caused by this disease in the world, affecting mainly children and pregnant women in Africa. Despite the programs carried out to control this disease, drug resistance and invertebrate vector resistance to insecticides have generated difficulties. An efficient vaccine against malaria would be a strategy with a high impact on the eradication and control of this disease. Researches aimed at developing vaccines have focused on antigens of high importance for the survival of the parasite such as the Circumsporozoite Surface Protein, involved in the pre-erythrocytic cycle during parasites invasion in hepatocytes. Currently, RTS’S is the most promising vaccine for malaria and was constructed using CSP; its performance was evaluated using two types of adjuvants: AS01 and AS02. The purpose of this review was to provide a bibliographic survey of historical researches that led to the development of RTS’S and its performance analysis over the decade. The search for new adjuvants to be associated with this antigen seems to be a way to obtain higher percentages of protection for a future malaria vaccine.
Collapse
Affiliation(s)
- Maria Edilene Martins de Almeida
- Fiocruz Amazônia, Instituto Leônidas e Maria Deane, Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia, Amazonas, Manaus, Brazil.,Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Gabriella Santos de Vasconcelos
- Fiocruz Amazônia, Instituto Leônidas e Maria Deane, Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia, Amazonas, Manaus, Brazil.,Centro Universitário Fametro, Manaus, Amazonas, Brazil
| | - Andréa Monteiro Tarragô
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, Amazonas, Brazil.,Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
| | - Luís André Morais Mariúba
- Fiocruz Amazônia, Instituto Leônidas e Maria Deane, Laboratório de Diagnóstico e Controle de Doenças Infecciosas na Amazônia, Amazonas, Manaus, Brazil.,Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação Stricto Sensu em Biologia Celular e Molecular, Rio de Janeiro, Rio de Janeiro, Brazil.,Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada, Manaus, Amazonas, Brazil.,Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biotecnologia, Manaus, Amazonas, Brazil
| |
Collapse
|
30
|
A chemokine-fusion vaccine targeting immature dendritic cells elicits elevated antibody responses to malaria sporozoites in infant macaques. Sci Rep 2021; 11:1220. [PMID: 33441615 PMCID: PMC7807052 DOI: 10.1038/s41598-020-79427-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Infants and young children are the groups at greatest risk for severe disease resulting from Plasmodium falciparum infection. We previously demonstrated in mice that a protein vaccine composed of the chemokine macrophage inflammatory protein 3α genetically fused to the minimally truncated circumsporozoite protein of P. falciparum (MCSP) elicits high concentrations of specific antibody and significant reduction of liver sporozoite load in a mouse model system. In the current study, a squalene based adjuvant (AddaVax, InvivoGen, San Diego, Ca) equivalent to the clinically approved MF59 (Seqiris, Maidenhead, UK) elicited greater antibody responses in mice than the previously employed adjuvant polyinosinic:polycytidylic acid, ((poly(I:C), InvivoGen, San Diego, Ca) and the clinically approved Aluminum hydroxide gel (Alum, Invivogen, San Diego, Ca) adjuvant. Use of the AddaVax adjuvant also expanded the range of IgG subtypes elicited by mouse vaccination. Sera passively transferred into mice from MCSP/AddaVax immunized 1 and 6 month old macaques significantly reduced liver sporozoite load upon sporozoite challenge. Protective antibody concentrations attained by passive transfer in the mice were equivalent to those observed in infant macaques 18 weeks after the final immunization. The efficacy of this vaccine in a relevant non-human primate model indicates its potential usefulness for the analogous high risk human population.
Collapse
|
31
|
La-Beck NM, Islam MR, Markiewski MM. Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine. Front Immunol 2021; 11:603039. [PMID: 33488603 PMCID: PMC7819852 DOI: 10.3389/fimmu.2020.603039] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Nanoparticle-based anticancer medications were first approved for cancer treatment almost 2 decades ago. Patients benefit from these approaches because of the targeted-drug delivery and reduced toxicity, however, like other therapies, adverse reactions often limit their use. These reactions are linked to the interactions of nanoparticles with the immune system, including the activation of complement. This activation can cause well-characterized acute inflammatory reactions mediated by complement effectors. However, the long-term implications of chronic complement activation on the efficacy of drugs carried by nanoparticles remain obscured. The recent discovery of protumor roles of complement raises the possibility that nanoparticle-induced complement activation may actually reduce antitumor efficacy of drugs carried by nanoparticles. We discuss here the initial evidence supporting this notion. Better understanding of the complex interactions between nanoparticles, complement, and the tumor microenvironment appears to be critical for development of nanoparticle-based anticancer therapies that are safer and more efficacious.
Collapse
Affiliation(s)
- Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States.,Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Md Rakibul Islam
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
32
|
Role of Heat Shock Proteins in Immune Modulation in Malaria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:169-186. [PMID: 34569025 DOI: 10.1007/978-3-030-78397-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Malaria is one of the major parasitic killer diseases worldwide. Severe cases of malaria are mostly in children under the age of 5 years due to their naïve immune system and in pregnant women with weakened immune responses. Inflammatory immune responses against the parasite involve complement activation as well as the antibody and effector cell-mediated immune system. However, after an infection with Plasmodium falciparum (P. falciparum), the most dangerous malaria species, the host-derived immunity is often insufficient to completely inhibit the infection cycles of the parasite in red blood cells for yet unknown reasons. In the present chapter we aim to elucidate the role of the host's and the parasite's heat shock proteins (HSPs) in the development of a novel anti-malaria therapeutic approach.
Collapse
|
33
|
Kurtovic L, Beeson JG. Complement Factors in COVID-19 Therapeutics and Vaccines. Trends Immunol 2020; 42:94-103. [PMID: 33402318 PMCID: PMC7733687 DOI: 10.1016/j.it.2020.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Complement is integral to a healthy functioning immune system and orchestrates various innate and adaptive responses against viruses and other pathogens. Despite its importance, the potential beneficial role of complement in immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been overshadowed by reports of extensive complement activation in severe coronavirus disease 2019 (COVID-19) patients. Here, we hypothesize that complement may also have a protective role and could function to enhance virus neutralization by antibodies, promote virus phagocytosis by immune cells, and lysis of virus. These functions might be exploited in the development of effective therapeutics and vaccines against SARS-CoV-2. Complement has been implicated in playing some role in severe COVID-19 pathogenesis. However, the evidence to support this is largely inferred from case–control studies. The potential protective role of complement has been largely ignored, which might contribute to innate and adaptive immunity against SARS-CoV-2 infection. Immunity to many pathogens relies on complement to enhance antibody-mediated neutralization and mediate phagocytosis and lysis. These mechanisms might also contribute to immunity against SARS-CoV-2 infection, and complement might be potentially exploited in antibody-based therapeutics and vaccines. Careful selection of vaccine adjuvants and epitopes included in vaccine constructs can influence whether vaccine-induced antibodies activate complement. Mutations in monoclonal antibodies can be used to promote hexamer formation between antibodies, which can significantly improve complement binding and activation.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Australia; Central Clinical School and Department of Microbiology, Monash University, Melbourne, Australia; Department of Medicine, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
34
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
35
|
Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG. Complement in malaria immunity and vaccines. Immunol Rev 2019; 293:38-56. [PMID: 31556468 PMCID: PMC6972673 DOI: 10.1111/imr.12802] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody‐complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine‐induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | | | | - Alexander T Kennedy
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | | | - Jo-Anne Chan
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia.,Department of Medicine, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|