1
|
Davies JA. Kidney development and regeneration: An introduction to this volume in Current Topics in Developmental Biology. Curr Top Dev Biol 2025; 163:1-14. [PMID: 40254341 DOI: 10.1016/bs.ctdb.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Mechanistic studies of renal development arguably began 70 years ago, in 1955 when Clifford Grobstein identified an inductive interaction between ureteric bud and metanephric mesenchyme. As an introduction to a special volume of Current Topics in Developmental Biology, this review looks back over the decades since Grobstein's paper to ask how well we have now answered the mechanistic questions raised in his 'pre-molecular' age, and to highlight new questions that have emerged from an increasing understanding of how kidneys develop. I consider that some old questions, such as lineage, have been answered fairly comprehensively. Some questions such as the nature of inductive signalling have become much more complicated, as a notion of 'the signal' has been replaced by hundreds, or possibly thousands, of communications that coordinate renal development. Some old questions, particularly about morphogenesis, remain open. Others, such as metabolism, were ignored for decades but are now being studied again, very profitably. New topics, such as stem cell behaviour, self-organization, epigenetics and congenital abnormalities, join work on the old ones. We have undoubtedly learned much over the last 70 years but, strangely perhaps, the number of questions still to be answered now seems much larger than it did in decades long past.
Collapse
Affiliation(s)
- Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh.
| |
Collapse
|
2
|
Davies JA, Beadman R. Self-organization, error-correction and homeorhesis in renal development. Curr Top Dev Biol 2024; 163:105-128. [PMID: 40254342 DOI: 10.1016/bs.ctdb.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Development is often described as following a 'genetic programme', yet perturbations to normal development, whether applied by an experimenter, the environment, or a mutation affecting development of a nearby part of the body, show developmental biology to be remarkably adaptable. This paper examines the evidence for adaptability in kidney development, focusing specifically on error-correction, self-organization, and homeorhesis (the dynamic equivalent to homeostasis: return of a perturbed system to a standard developmental trajectory, rather than a return to a fixed state that is seen in homeostasis). We present evidence for self-organization of renal tissue from randomly-aggregated progenitor cells, and also for the limitations of this self-organization and how they can be transcended by experimentally-applied symmetry-breaking cues. We provide evidence for error-correcting systems, and some evidence in the literature, generally in papers devoted to other problems, for genuine homeorhesis in aspects of kidney development. This review is not intended to be a 'last word' on any of these topics, and certainly not on the last-mentioned, for which data are very scant. It is instead intended to stimulate research in these areas, particularly homeorhesis, partly to increase understanding of natural development and partly as an aid to renal tissue engineering.
Collapse
Affiliation(s)
- Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh.
| | | |
Collapse
|
3
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|
4
|
Schumacher A, Rookmaaker MB, Joles JA, Kramann R, Nguyen TQ, van Griensven M, LaPointe VLS. Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. NPJ Regen Med 2021; 6:45. [PMID: 34381054 PMCID: PMC8357940 DOI: 10.1038/s41536-021-00156-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
The kidney is among the most complex organs in terms of the variety of cell types. The cellular complexity of human kidneys is not fully unraveled and this challenge is further complicated by the existence of multiple progenitor pools and differentiation pathways. Researchers disagree on the variety of renal cell types due to a lack of research providing a comprehensive picture and the challenge to translate findings between species. To find an answer to the number of human renal cell types, we discuss research that used single-cell RNA sequencing on developing and adult human kidney tissue and compares these findings to the literature of the pre-single-cell RNA sequencing era. We find that these publications show major steps towards the discovery of novel cell types and intermediate cell stages as well as complex molecular signatures and lineage pathways throughout development. The variety of cell types remains variable in the single-cell literature, which is due to the limitations of the technique. Nevertheless, our analysis approaches an accumulated number of 41 identified cell populations of renal lineage and 32 of non-renal lineage in the adult kidney, and there is certainly much more to discover. There is still a need for a consensus on a variety of definitions and standards in single-cell RNA sequencing research, such as the definition of what is a cell type. Nevertheless, this early-stage research already proves to be of significant impact for both clinical and regenerative medicine, and shows potential to enhance the generation of sophisticated in vitro kidney tissue.
Collapse
Affiliation(s)
- A Schumacher
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - M B Rookmaaker
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - J A Joles
- Department of Nephrology, University Medical Center, Utrecht, The Netherlands
| | - R Kramann
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - T Q Nguyen
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - M van Griensven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands
| | - V L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
6
|
Abstract
The kidney plays an integral role in filtering the blood-removing metabolic by-products from the body and regulating blood pressure. This requires the establishment of large numbers of efficient and specialized blood filtering units (nephrons) that incorporate a system for vascular exchange and nutrient reabsorption as well as a collecting duct system to remove waste (urine) from the body. Kidney development is a dynamic process which generates these structures through a delicately balanced program of self-renewal and commitment of nephron progenitor cells that inhabit a constantly evolving cellular niche at the tips of a branching ureteric "tree." The former cells build the nephrons and the latter the collecting duct system. Maintaining these processes across fetal development is critical for establishing the normal "endowment" of nephrons in the kidney and perturbations to this process are associated both with mutations in integral genes and with alterations to the fetal environment.
Collapse
Affiliation(s)
- Ian M Smyth
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Li H, Hohenstein P, Kuure S. Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor. Genes (Basel) 2021; 12:genes12020318. [PMID: 33672414 PMCID: PMC7926385 DOI: 10.3390/genes12020318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The adult mammalian kidney is a poorly regenerating organ that lacks the stem cells that could replenish functional homeostasis similarly to, e.g., skin or the hematopoietic system. Unlike a mature kidney, the embryonic kidney hosts at least three types of lineage-specific stem cells that give rise to (a) a ureter and collecting duct system, (b) nephrons, and (c) mesangial cells together with connective tissue of the stroma. Extensive interest has been raised towards these embryonic progenitor cells, which are normally lost before birth in humans but remain part of the undifferentiated nephrogenic rests in the pediatric renal cancer Wilms tumor. Here, we discuss the current understanding of kidney-specific embryonic progenitor regulation in the innate environment of the developing kidney and the types of disruptions in their balanced regulation that lead to the formation of Wilms tumor.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-2941-59395
| |
Collapse
|
8
|
El Andalousi J, Khairallah H, Zhuang Y, Ryan AK, Gupta IR. Role of Claudins in Renal Branching Morphogenesis. Physiol Rep 2020; 8:e14492. [PMID: 32975899 PMCID: PMC7518295 DOI: 10.14814/phy2.14492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022] Open
Abstract
Claudins are a family of tight junction proteins that are expressed during mouse kidney development. They regulate paracellular transport of solutes along the nephron and contribute to the final composition of the urinary filtrate. To understand their roles during development, we used a protein reagent, a truncated version of the Clostridium perfringens enterotoxin (C-CPE), to specifically remove a subset of claudin family members from mouse embryonic kidney explants at embryonic day 12. We observed that treatment with C-CPE decreased the number and the complexity of ureteric bud tips that formed: there were more single and less bifid ureteric bud tips when compared to control-treated explants. In addition, C-CPE-treated explants exhibited ureteric bud tips with larger lumens when compared to control explants (p < .05). Immunofluorescent analysis revealed decreased expression and localization of Claudin-3, -4, -6, and -8 to tight junctions of ureteric bud tips following treatment with C-CPE. Interestingly, Claudin-7 showed higher expression in the basolateral membrane of the ureteric bud lineage and poor localization to the tight junctions of the ureteric bud lineage both in controls and in C-CPE-treated explants. Taken together, it appears that claudin proteins may play a role in ureteric bud branching morphogenesis through changes in lumen formation that may affect the efficiency by which ureteric buds emerge and branch.
Collapse
Affiliation(s)
- Jasmine El Andalousi
- Research Institute of McGill University Health CentreMontreal Children's HospitalMontréalQuébecCanada
| | - Halim Khairallah
- Department of Human GeneticsMcGill UniversityMontréalQuébecCanada
| | - Yuan Zhuang
- Department of Human GeneticsMcGill UniversityMontréalQuébecCanada
| | - Aimee K. Ryan
- Department of Human GeneticsMcGill UniversityMontréalQuébecCanada
- Department of PediatricsMontreal Children's HospitalMcGill UniversityMontréalQuébecCanada
| | - Indra R. Gupta
- Department of Human GeneticsMcGill UniversityMontréalQuébecCanada
- Department of PediatricsMontreal Children's HospitalMcGill UniversityMontréalQuébecCanada
| |
Collapse
|
9
|
Short KM, Smyth IM. Branching morphogenesis as a driver of renal development. Anat Rec (Hoboken) 2020; 303:2578-2587. [PMID: 32790143 DOI: 10.1002/ar.24486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
Branching morphogenesis is an integral developmental mechanism central to the formation of a range of organs including the kidney, lung, pancreas and mammary gland. The ramified networks of epithelial tubules it establishes are critical for the processes of secretion, excretion and exchange mediated by these tissues. In the kidney, branching serves to establish the collecting duct system that transports urine from the nephrons into the renal pelvis, ureter and finally the bladder. Generally speaking, the formation of these networks in different organs begins with the specification and differentiation of simple bud-like organ anlage, which then undergo a process of elaboration, typically by bifurcation. This process is often governed by the interaction of progenitor cells at the tips of the epithelia with neighboring mesenchymal cell populations which direct the branching process and which often themselves differentiate to form part of the adult organ. In the kidney, the tips of ureteric bud elaborate through a dynamic cell signaling relationship with overlying nephron progenitor cell populations. These cells sequentially commit to differentiation and the resulting nephrons reintegrate with the ureteric epithelium as development progresses. This review will describe recent advances in understanding the how the elaboration of the ureteric bud is patterned and consider the extent to which this process is shared with other organs.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Hilliard SA, Li Y, Dixon A, El-Dahr SS. Mdm4 controls ureteric bud branching via regulation of p53 activity. Mech Dev 2020; 163:103616. [PMID: 32464196 DOI: 10.1016/j.mod.2020.103616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
The antagonism between Mdm2 and its close homolog Mdm4 (also known as MdmX) and p53 is vital for embryogenesis and organogenesis. Previously, we demonstrated that targeted disruption of Mdm2 in the Hoxb7+ ureteric bud (Ub) lineage, which gives rise to the renal collecting system, causes renal hypodysplasia culminating in perinatal lethality. In this study, we examine the unique role of Mdm4 in establishing the collecting duct system of the murine kidney. Hoxb7Cre driven loss of Mdm4 in the Ub lineage (UbMdm4-/-) disrupts branching morphogenesis and triggers UB cell apoptosis. UbMdm4-/- kidneys exhibit abnormally dilated Ub tips while the medulla is hypoplastic. These structural alterations result in secondary depletion of nephron progenitors and nascent nephrons. As a result, newborn UbMdm4-/- mice have hypo-dysplastic kidneys. Transcriptional profiling revealed downregulation of the Ret-tyrosine kinase pathway components, Gdnf, Wnt11, Sox8, Etv4 and Cxcr4 in the UbMdm4-/- mice relative to controls. Moreover, the expression levels of the canonical Wnt signaling members Axin2 and Wnt9b are downregulated. Mdm4 deletion upregulated p53 activity and p53-target gene expression including Cdkn1a (p21), Gdf15, Ccng1, PERP, and Fas. Germline loss of p53 in UbMdm4-/- mice largely rescues kidney development and terminal differentiation of the collecting duct. We conclude that Mdm4 plays a unique and vital role in Ub branching morphogenesis and collecting system development.
Collapse
Affiliation(s)
- Sylvia A Hilliard
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Yuwen Li
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Angelina Dixon
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America
| | - Samir S El-Dahr
- Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America.
| |
Collapse
|
11
|
Rutledge EA, Parvez RK, Short KM, Smyth IM, McMahon AP. Morphogenesis of the kidney and lung requires branch-tip directed activity of the Adamts18 metalloprotease. Dev Biol 2019; 454:156-169. [PMID: 31242448 DOI: 10.1016/j.ydbio.2019.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Adamts18 encodes a secreted metalloprotease restricted to branch-tip progenitor pools directing the morphogenesis of multiple mammalian organs. Adamts18 was targeted to explore a potential role in branching morphogenesis. In the kidney, an arborized collecting system develops through extensive branching morphogenesis of an initial epithelial outgrowth of the mesonephric duct, the ureteric bud. Adamts18 mutants displayed a weakly penetrant phenotype: duplicated ureteric outgrowths forming enlarged, bi-lobed kidneys with an increased nephron endowment. In contrast, Adamts18 mutants showed a fully penetrant lung phenotype: epithelial growth was markedly reduced and early secondary branching scaled to the reduced length of the primary airways. Furthermore, there was a pronounced delay in the appearance of differentiated cell types in both proximal and distally positions of the developing airways. Adamts18 is closely related to Adamts16. In the kidney but not the lung, broad epithelial Adamts16 expression overlaps Adamts18 in branch tips. However, compound Adamts16/18 mutants displayed a comparable low penetrance duplicated ureteric phenotype, ruling out a possible role for Adamts16 as a functional modifier of the Adamts18 kidney phenotype. Given the predicted action of secreted Adamts18 metalloprotease, and broad expression of Adamts18 in branching organ systems, these findings suggest distinct requirements for matrix modelling in the morphogenesis of epithelial networks.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Kieran M Short
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia; Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA.
| |
Collapse
|
12
|
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci 2019; 20:E1779. [PMID: 30974877 PMCID: PMC6479953 DOI: 10.3390/ijms20071779] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects derived from abnormalities in renal differentiation during embryogenesis. CAKUT is the major cause of end-stage renal disease and chronic kidney diseases in children, but its genetic causes remain largely unresolved. Here we discuss advances in the understanding of how mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity contributes to the regulation of ureteric bud branching morphogenesis, which dictates the final size, shape, and nephron number of the kidney. Recent studies also demonstrate that the MAPK/ERK pathway is directly involved in nephrogenesis, regulating both the maintenance and differentiation of the nephrogenic mesenchyme. Interestingly, aberrant MAPK/ERK signaling is linked to many cancers, and recent studies suggest it also plays a role in the most common pediatric renal cancer, Wilms' tumor.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
13
|
Development of the urogenital system is regulated via the 3'UTR of GDNF. Sci Rep 2019; 9:5302. [PMID: 30923332 PMCID: PMC6438985 DOI: 10.1038/s41598-019-40457-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022] Open
Abstract
Mechanisms controlling ureter lenght and the position of the kidney are poorly understood. Glial cell-line derived neurotrophic factor (GDNF) induced RET signaling is critical for ureteric bud outgrowth, but the function of endogenous GDNF in further renal differentiation and urogenital system development remains discursive. Here we analyzed mice where 3′ untranslated region (UTR) of GDNF is replaced with sequence less responsive to microRNA-mediated regulation, leading to increased GDNF expression specifically in cells naturally transcribing Gdnf. We demonstrate that increased Gdnf leads to short ureters in kidneys located in an abnormally caudal position thus resembling human pelvic kidneys. High GDNF levels expand collecting ductal progenitors at the expense of ureteric trunk elongation and result in expanded tip and short trunk phenotype due to changes in cell cycle length and progenitor motility. MEK-inhibition rescues these defects suggesting that MAPK-activity mediates GDNF’s effects on progenitors. Moreover, Gdnf hyper mice are infertile likely due to effects of excess GDNF on distal ureter remodeling. Our findings suggest that dysregulation of GDNF levels, for example via alterations in 3′UTR, may account for a subset of congenital anomalies of the kidney and urinary tract (CAKUT) and/or congenital infertility cases in humans and pave way to future studies.
Collapse
|
14
|
Tham MS, Smyth IM. Cellular and molecular determinants of normal and abnormal kidney development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e338. [DOI: 10.1002/wdev.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ming S. Tham
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| | - Ian M. Smyth
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
- Department of Biochemistry and Molecular Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| |
Collapse
|
15
|
Kurtzeborn K, Cebrian C, Kuure S. Regulation of Renal Differentiation by Trophic Factors. Front Physiol 2018; 9:1588. [PMID: 30483151 PMCID: PMC6240607 DOI: 10.3389/fphys.2018.01588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022] Open
Abstract
Classically, trophic factors are considered as proteins which support neurons in their growth, survival, and differentiation. However, most neurotrophic factors also have important functions outside of the nervous system. Especially essential renal growth and differentiation regulators are glial cell line-derived neurotrophic factor (GDNF), bone morphogenetic proteins (BMPs), and fibroblast growth factors (FGFs). Here we discuss how trophic factor-induced signaling contributes to the control of ureteric bud (UB) branching morphogenesis and to maintenance and differentiation of nephrogenic mesenchyme in embryonic kidney. The review includes recent advances in trophic factor functions during the guidance of branching morphogenesis and self-renewal versus differentiation decisions, both of which dictate the control of kidney size and nephron number. Creative utilization of current information may help better recapitulate renal differentiation in vitro, but it is obvious that significantly more basic knowledge is needed for development of regeneration-based renal therapies.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
| | - Cristina Cebrian
- Developmental Biology Division, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Medicum, University of Helsinki, Helsinki, Finland
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Sivakumar A, Kurpios NA. Transcriptional regulation of cell shape during organ morphogenesis. J Cell Biol 2018; 217:2987-3005. [PMID: 30061107 PMCID: PMC6122985 DOI: 10.1083/jcb.201612115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/11/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
The emerging field of transcriptional regulation of cell shape changes aims to address the critical question of how gene expression programs produce a change in cell shape. Together with cell growth, division, and death, changes in cell shape are essential for organ morphogenesis. Whereas most studies of cell shape focus on posttranslational events involved in protein organization and distribution, cell shape changes can be genetically programmed. This review highlights the essential role of transcriptional regulation of cell shape during morphogenesis of the heart, lungs, gastrointestinal tract, and kidneys. We emphasize the evolutionary conservation of these processes across different model organisms and discuss perspectives on open questions and research avenues that may provide mechanistic insights toward understanding birth defects.
Collapse
Affiliation(s)
- Aravind Sivakumar
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
17
|
Liao YJ, Huang RS, Lai WJ, Liu F, Ma L, Xie YS, Salerno S, Li Y, Fu P. Effects of Cyclosporine A on the Development of Metanephros in the Pregnant BALB/c Mice. Chin Med J (Engl) 2018; 130:2156-2162. [PMID: 28875951 PMCID: PMC5598326 DOI: 10.4103/0366-6999.213971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Cyclosporine A (CsA) is a commonly used clinical immunosuppressant. However, CsA exposure in rabbits during the gestation period was shown to cause a postnatal decrease in the number of nephrons, with the effects remaining unknown. In this study, we aimed to explore the effects of CsA on metanephros development in the pregnant BALB/c mice. Methods: Pregnant mice were randomly divided into two groups, and CsA (10 mg·kg−1·d−1) was subcutaneously injected from gestation day 10.5 to day 16.5 in the CsA group, whereas a comparable volume of normal saline was given to the control group. All of the mice were sacrificed on gestation day 17.5 and serum CsA concentration was measured. The fetuses were removed and weighed, and their kidneys were prepared for histological assessment and polymerase chain reaction assay. In an in vitro experiment, embryo kidneys of fetal mice on gestation day 12.5 were used, and CsA (10 μmol/L) was added in the culture of the CsA group. The growth pattern of the ureteric bud and nephrons was assessed by lectin staining. Results: No significant differences in the weight of embryo (4.54 ± 1.22 vs. 3.26 ± 1.09 mg) were observed between the CsA and control groups, the thickness of the cortical (510.0 ± 30.3 vs. 350.0 ± 29.7 μm, P < 0.05) and nephrogenic zone (272.5 ± 17.2 vs. 173.3 ± 24.0 μm, P < 0.05), and the number of glomeruli (36.5 ± 0.7 vs. 27.5 ± 2.1, P < 0.05) were reduced in the CsA group when compared to the control group. The cell proliferation of Ki-67 positive index between control and CsA group (307.0 ± 20.0 vs. 219.0 ± 25.0, P < 0.05) in the nephrogenic zone was decreased with the increase of apoptotic cells (17.0 ± 2.0 vs. 159.0 ± 33.0, P < 0.05). The mRNA expression of WT-1, Pax2, and Pax8 was downregulated by CsA treatment. As for the in vitro CsA group, the branch number of the ureteric bud was decreased in the CsA-treated group with the nephrons missing in contrast to control after the incubation for 24 h and 72 h (all P < 0.0001). Conclusion: Treatment of CsA suppressed metanephros development in the pregnant mice; however, the potential action of mechanism needs to be further investigated.
Collapse
Affiliation(s)
- Yu-Jie Liao
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rong-Shuang Huang
- Department of Internal Medicine, Division of Nephrology, West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Wei-Jing Lai
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuan-Sheng Xie
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Stephen Salerno
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yi Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ping Fu
- Kidney Research Institute, West China Hospital of Sichuan University, Chengdu 610041; Department of Internal Medicine, Division of Nephrology, West China School of Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Phelep A, Laouari D, Bharti K, Burtin M, Tammaccaro S, Garbay S, Nguyen C, Vasseur F, Blanc T, Berissi S, Langa-Vives F, Fischer E, Druilhe A, Arnheiter H, Friedlander G, Pontoglio M, Terzi F. MITF - A controls branching morphogenesis and nephron endowment. PLoS Genet 2017; 13:e1007093. [PMID: 29240767 PMCID: PMC5746285 DOI: 10.1371/journal.pgen.1007093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/28/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Congenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown. Here, we identified a specific isoform of MITF (MITF-A), a bHLH-Zip transcription factor, as a novel regulator of the final nephron number. We showed that overexpression of MITF-A leads to a substantial increase of nephron number and bigger kidneys, whereas Mitfa deficiency results in reduced nephron number. Furthermore, we demonstrated that MITF-A triggers ureteric bud branching, a phenotype that is associated with increased ureteric bud cell proliferation. Molecular studies associated with an in silico analyses revealed that amongst the putative MITF-A targets, Ret was significantly modulated by MITF-A. Consistent with the key role of this network in kidney morphogenesis, Ret heterozygosis prevented the increase of nephron number in mice overexpressing MITF-A. Collectively, these results uncover a novel transcriptional network that controls branching morphogenesis during kidney development and identifies one of the first modifier genes of nephron endowment. The number of nephrons, the functional unit of kidney, varies widely among humans. Indeed, it has been shown that kidneys may contain from 0.3 to more than 2 million of nephrons. Nephrons are formed during development via a coordinated morphogenetic program in which the metanephric mesenchyme reciprocally and recursively interacts with the ureteric bud. The fine-tuning of this cross-talk determines the final number of nephrons. Strong evidence indicates that suboptimal nephron endowment is associated with an increased risk of hypertension and chronic kidney disease, a major healthcare burden. Indeed, chronic kidney disease is characterized by the progressive decline of renal function towards end stage renal disease, which occurs once a critical number of nephrons has been lost. Elucidating the molecular mechanisms that control nephron endowment is, therefore, a critical issue for public health. However, little is known about the factors that determine the final number of nephrons in the healthy population. Our data showed that nephron endowment is genetically predetermined and identified Mitfa, a bHLH transcription factor, as one of the first modifiers of nephron formation during kidney development. By generating an allelic series of transgenic mice expressing different levels of MITF-A, we discovered that MITF-A promotes final nephron endowment. In addition, we elucidated the molecular mechanisms by which MITF-A promotes nephron formation and identified RET as one of the critical effectors.
Collapse
Affiliation(s)
- Aurélie Phelep
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Denise Laouari
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Kapil Bharti
- Unit on Ocular and Stem Cells Translational Research National Eye Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Martine Burtin
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Salvina Tammaccaro
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Serge Garbay
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Clément Nguyen
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Florence Vasseur
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Thomas Blanc
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Sophie Berissi
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | | | - Evelyne Fischer
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Anne Druilhe
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Heinz Arnheiter
- Scientist Emeritus, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD, United States of America
| | - Gerard Friedlander
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| | - Marco Pontoglio
- INSERM U1016-CNRS UMR 8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Fabiola Terzi
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, Institut Necker Enfants Malades, Département « Croissance et Signalisation », Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
19
|
Troy/TNFRSF19 marks epithelial progenitor cells during mouse kidney development that continue to contribute to turnover in adult kidney. Proc Natl Acad Sci U S A 2017; 114:E11190-E11198. [PMID: 29237753 DOI: 10.1073/pnas.1714145115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During kidney development, progressively committed progenitor cells give rise to the distinct segments of the nephron, the functional unit of the kidney. Similar segment-committed progenitor cells are thought to be involved in the homeostasis of adult kidney. However, markers for most segment-committed progenitor cells remain to be identified. Here, we evaluate Troy/TNFRSF19 as a segment-committed nephron progenitor cell marker. Troy is expressed in the ureteric bud during embryonic development. During postnatal nephrogenesis, Troy+ cells are present in the cortex and papilla and display an immature tubular phenotype. Tracing of Troy+ cells during nephrogenesis demonstrates that Troy+ cells clonally give rise to tubular structures that persist for up to 2 y after induction. Troy+ cells have a 40-fold higher capacity than Troy- cells to form organoids, which is considered a stem cell property in vitro. In the adult kidney, Troy+ cells are present in the papilla and these cells continue to contribute to collecting duct formation during homeostasis. The number of Troy-derived cells increases after folic acid-induced injury. Our data show that Troy marks a renal stem/progenitor cell population in the developing kidney that in adult kidney contributes to homeostasis, predominantly of the collecting duct, and regeneration.
Collapse
|
20
|
Spurlin JW, Nelson CM. Building branched tissue structures: from single cell guidance to coordinated construction. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0527. [PMID: 28348257 DOI: 10.1098/rstb.2015.0527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/15/2022] Open
Abstract
Branched networks are ubiquitous throughout nature, particularly found in tissues that require large surface area within a restricted volume. Many tissues with a branched architecture, such as the vasculature, kidney, mammary gland, lung and nervous system, function to exchange fluids, gases and information throughout the body of an organism. The generation of branched tissues requires regulation of branch site specification, initiation and elongation. Branching events often require the coordination of many cells to build a tissue network for material exchange. Recent evidence has emerged suggesting that cell cooperativity scales with the number of cells actively contributing to branching events. Here, we compare mechanisms that regulate branching, focusing on how cell cohorts behave in a coordinated manner to build branched tissues.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
Collapse
Affiliation(s)
- James W Spurlin
- Departments of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Departments of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA .,Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
21
|
Desgrange A, Heliot C, Skovorodkin I, Akram SU, Heikkilä J, Ronkainen VP, Miinalainen I, Vainio SJ, Cereghini S. HNF1B controls epithelial organization and cell polarity during ureteric bud branching and collecting duct morphogenesis. Development 2017; 144:4704-4719. [PMID: 29158444 DOI: 10.1242/dev.154336] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022]
Abstract
Kidney development depends crucially on proper ureteric bud branching giving rise to the entire collecting duct system. The transcription factor HNF1B is required for the early steps of ureteric bud branching, yet the molecular and cellular events regulated by HNF1B are poorly understood. We report that specific removal of Hnf1b from the ureteric bud leads to defective cell-cell contacts and apicobasal polarity during the early branching events. High-resolution ex vivo imaging combined with a membranous fluorescent reporter strategy show decreased mutant cell rearrangements during mitosis-associated cell dispersal and severe epithelial disorganization. Molecular analysis reveals downregulation of Gdnf-Ret pathway components and suggests that HNF1B acts both upstream and downstream of Ret signaling by directly regulating Gfra1 and Etv5 Subsequently, Hnf1b deletion leads to massively mispatterned ureteric tree network, defective collecting duct differentiation and disrupted tissue architecture, which leads to cystogenesis. Consistently, mRNA-seq analysis shows that the most impacted genes encode intrinsic cell-membrane components with transporter activity. Our study uncovers a fundamental and recurring role of HNF1B in epithelial organization during early ureteric bud branching and in further patterning and differentiation of the collecting duct system in mouse.
Collapse
Affiliation(s)
- Audrey Desgrange
- Sorbonne Universités, UPMC Université Paris 06, IBPS - UMR7622, F-75005 Paris, France .,CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Developmental Biology Laboratory, F-75005 Paris, France
| | - Claire Heliot
- Sorbonne Universités, UPMC Université Paris 06, IBPS - UMR7622, F-75005 Paris, France.,CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Developmental Biology Laboratory, F-75005 Paris, France
| | - Ilya Skovorodkin
- Faculty of Biochemistry and Molecular Medicine, Biocenter, University of Oulu; Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Saad U Akram
- Center for Machine Vision Research and Signal Analysis (CMVS), University of Oulu, FIN-90014, Oulu, Finland
| | - Janne Heikkilä
- Center for Machine Vision Research and Signal Analysis (CMVS), University of Oulu, FIN-90014, Oulu, Finland
| | | | | | - Seppo J Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter, University of Oulu; Laboratory of Developmental Biology, Biocenter Oulu and InfoTech, Department of Medical Biochemistry and Molecular Medicine, Oulu Center for Cell Matrix Research, 90220 Oulu, Finland
| | - Silvia Cereghini
- Sorbonne Universités, UPMC Université Paris 06, IBPS - UMR7622, F-75005 Paris, France .,CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Developmental Biology Laboratory, F-75005 Paris, France
| |
Collapse
|
22
|
Rutledge EA, Benazet JD, McMahon AP. Cellular heterogeneity in the ureteric progenitor niche and distinct profiles of branching morphogenesis in organ development. Development 2017; 144:3177-3188. [PMID: 28705898 DOI: 10.1242/dev.149112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/10/2017] [Indexed: 12/26/2022]
Abstract
Branching morphogenesis creates arborized epithelial networks. In the mammalian kidney, an epithelial progenitor pool at ureteric branch tips (UBTs) creates the urine-transporting collecting system. Using region-specific mouse reporter strains, we performed an RNA-seq screen, identifying tip- and stalk-enriched gene sets in the developing collecting duct system. Detailed in situ hybridization studies of tip-enriched predictions identified UBT-enriched gene sets conserved between the mouse and human kidney. Comparative spatial analysis of their UBT niche expression highlighted distinct patterns of gene expression revealing novel molecular heterogeneity within the UBT progenitor population. To identify kidney-specific and shared programs of branching morphogenesis, comparative expression studies on the developing mouse lung were combined with in silico analysis of the developing mouse salivary gland. These studies highlight a shared gene set with multi-organ tip enrichment and a gene set specific to UBTs. This comprehensive analysis extends our current understanding of the ureteric branch tip niche.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Denis Benazet
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.,Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA 94143, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol 2017; 216:559-570. [PMID: 28174204 PMCID: PMC5350520 DOI: 10.1083/jcb.201610048] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by "budding" or "clefting." Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied roles in driving budding versus clefting in different organs. Elongation of the newly formed branch and final maturation of the tip involve cellular mechanisms that include cell elongation, intercalation, convergent extension, proliferation, and differentiation. New methodologies such as high-resolution live imaging, tension sensors, and force-mapping techniques are providing exciting new opportunities for future research into branching morphogenesis.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - William P Daley
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
24
|
In Vitro Propagation and Branching Morphogenesis from Single Ureteric Bud Cells. Stem Cell Reports 2017; 8:401-416. [PMID: 28089670 PMCID: PMC5311471 DOI: 10.1016/j.stemcr.2016.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/10/2023] Open
Abstract
A method to maintain and rebuild ureteric bud (UB)-like structures from UB cells in vitro could provide a useful tool for kidney regeneration. We aimed in our present study to establish a serum-free culture system that enables the expansion of UB progenitor cells, i.e., UB tip cells, and reconstruction of UB-like structures. We found that fibroblast growth factors or retinoic acid (RA) was sufficient for the survival of UB cells in serum-free condition, while the proliferation and maintenance of UB tip cells required glial cell-derived neurotrophic factor together with signaling from either WNT-β-catenin pathway or RA. The activation of WNT-β-catenin signaling in UB cells by endogenous WNT proteins required R-spondins. Together with Rho kinase inhibitor, our culture system facilitated the expansion of UB tip cells to form UB-like structures from dispersed single cells. The UB-like structures thus formed retained the original UB characteristics and integrated into the native embryonic kidneys. FGFs and RA signaling sustain UB cell survival in serum-free culture condition WNT-β-catenin and RA signaling maintain the expansion of UB tip cells WNT proteins in UB cells activate WNT-β-catenin signaling through R-spondins Single UB cells form UB-like structures in vitro that integrate into native kidneys
Collapse
|
25
|
Xu J, Ke Z, Xia J, He F, Bao B. Change of body height is regulated by thyroid hormone during metamorphosis in flatfishes and zebrafish. Gen Comp Endocrinol 2016; 236:9-16. [PMID: 27340040 DOI: 10.1016/j.ygcen.2016.06.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/17/2016] [Accepted: 06/19/2016] [Indexed: 11/15/2022]
Abstract
Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone (T4 and T3) and its receptors showed distribution or gene expression patterns similar to those seen for the cell proliferation. 2-Mercapto-1-methylimidazole, an inhibitor of endogenous thyroid hormone synthesis, inhibited cell proliferation and decreased body height, suggesting that the change in body shape was dependent on the local concentration of thyroid hormone to induce cell proliferation. In addition, after treatment with 2-mercapto-1-methylimidazole, zebrafish larvae were also shown to develop a slimmer body shape. These findings enrich our knowledge of the role of thyroid hormone during flatfish metamorphosis, and the role of thyroid hormone during the change of body height during post-hatching development should help us to understand better the biology of metamorphosis in fishes.
Collapse
Affiliation(s)
- Juan Xu
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Zhonghe Ke
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Jianhong Xia
- Shanghai Science & Technology Museum, Shanghai 200127, China
| | - Fang He
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Baolong Bao
- The Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China.
| |
Collapse
|
26
|
Matsumoto S, Kurimoto T, Taketo MM, Fujii S, Kikuchi A. The WNT/MYB pathway suppresses KIT expression to control the timing of salivary proacinar differentiation and duct formation. Development 2016; 143:2311-24. [PMID: 27161149 DOI: 10.1242/dev.134486] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/04/2016] [Indexed: 01/08/2023]
Abstract
Growth factor signaling is involved in the development of various organs, but how signaling regulates organ morphogenesis and differentiation in a coordinated manner remains to be clarified. Here, we show how WNT signaling controls epithelial morphogenetic changes and differentiation using the salivary gland as a model. Experiments using genetically manipulated mice and organ cultures revealed that WNT signaling at an early stage (E12-E15) of submandibular salivary gland (SMG) development inhibits end bud morphogenesis and differentiation into proacini by suppressing Kit expression through the upregulation of the transcription factor MYB, and concomitantly increasing the expression of distal progenitor markers. In addition, WNT signaling at the early stage of SMG development promoted end bud cell proliferation, leading to duct formation. WNT signaling reduction at a late stage (E16-E18) of SMG development promoted end bud maturation and suppressed duct formation. Thus, WNT signaling controls the timing of SMG organogenesis by keeping end bud cells in an undifferentiated bipotent state.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kurimoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - M Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo, Kyoto 606-8501, Japan
| | - Shinsuke Fujii
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Leclerc K, Costantini F. Mosaic analysis of cell rearrangements during ureteric bud branching in dissociated/reaggregated kidney cultures and in vivo. Dev Dyn 2016; 245:483-96. [PMID: 26813041 PMCID: PMC4803602 DOI: 10.1002/dvdy.24387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Cell rearrangements mediated by GDNF/Ret signaling underlie the formation of the ureteric bud (UB) tip domain during kidney development. Whether FGF signaling also influences these rearrangements is unknown. Chimeric embryos are a powerful tool for examining the genetic controls of cellular behaviors, but generating chimeras by traditional methods is expensive and laborious. Dissociated fetal kidney cells can reorganize to form complex structures including branching UB tubules, providing an easier method to generate renal chimeras. RESULTS Cell behaviors in normal or chimeric kidney cultures were investigated using time-lapse imaging. In Spry1(-/-) ↔ wild-type chimeras, cells lacking Spry1 (a negative regulator of Ret and FGF receptor signaling) preferentially occupied the UB tips, as previously observed in traditional chimeras, thus validating this experimental system. In Fgfr2(UB-/-) ↔ wild-type chimeras, the wild-type cells preferentially occupied the tips. Independent evidence for a role of Fgfr2 in UB tip formation was obtained using Mosaic mutant Analysis with Spatial and Temporal control of Recombination (MASTR). CONCLUSIONS Dissociation and reaggregation of fetal kidney cells of different genotypes, with suitable fluorescent markers, provides an efficient way to analyze cell behaviors in chimeric cultures. FGF/Fgfr2 signaling promotes UB cell rearrangements that form the tip domain, similarly to GDNF/Ret signaling.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168 Street, New York, NY 10032
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168 Street, New York, NY 10032
| |
Collapse
|
28
|
Kunche S, Yan H, Calof AL, Lowengrub JS, Lander AD. Feedback, Lineages and Self-Organizing Morphogenesis. PLoS Comput Biol 2016; 12:e1004814. [PMID: 26989903 PMCID: PMC4798729 DOI: 10.1371/journal.pcbi.1004814] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/15/2016] [Indexed: 01/31/2023] Open
Abstract
Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities.
Collapse
Affiliation(s)
- Sameeran Kunche
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Huaming Yan
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
| | - Anne L. Calof
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (ALC); (JSL); (ADL)
| | - John S. Lowengrub
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (ALC); (JSL); (ADL)
| | - Arthur D. Lander
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (ALC); (JSL); (ADL)
| |
Collapse
|
29
|
Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis. PLoS Biol 2016; 14:e1002382. [PMID: 26894589 PMCID: PMC4760680 DOI: 10.1371/journal.pbio.1002382] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
Branching morphogenesis of the epithelial ureteric bud forms the renal collecting duct system and is critical for normal nephron number, while low nephron number is implicated in hypertension and renal disease. Ureteric bud growth and branching requires GDNF signaling from the surrounding mesenchyme to cells at the ureteric bud tips, via the Ret receptor tyrosine kinase and coreceptor Gfrα1; Ret signaling up-regulates transcription factors Etv4 and Etv5, which are also critical for branching. Despite extensive knowledge of the genetic control of these events, it is not understood, at the cellular level, how renal branching morphogenesis is achieved or how Ret signaling influences epithelial cell behaviors to promote this process. Analysis of chimeric embryos previously suggested a role for Ret signaling in promoting cell rearrangements in the nephric duct, but this method was unsuited to study individual cell behaviors during ureteric bud branching. Here, we use Mosaic Analysis with Double Markers (MADM), combined with organ culture and time-lapse imaging, to trace the movements and divisions of individual ureteric bud tip cells. We first examine wild-type clones and then Ret or Etv4 mutant/wild-type clones in which the mutant and wild-type sister cells are differentially and heritably marked by green and red fluorescent proteins. We find that, in normal kidneys, most individual tip cells behave as self-renewing progenitors, some of whose progeny remain at the tips while others populate the growing UB trunks. In Ret or Etv4 MADM clones, the wild-type cells generated at a UB tip are much more likely to remain at, or move to, the new tips during branching and elongation, while their Ret-/- or Etv4-/- sister cells tend to lag behind and contribute only to the trunks. By tracking successive mitoses in a cell lineage, we find that Ret signaling has little effect on proliferation, in contrast to its effects on cell movement. Our results show that Ret/Etv4 signaling promotes directed cell movements in the ureteric bud tips, and suggest a model in which these cell movements mediate branching morphogenesis.
Collapse
Affiliation(s)
- Paul Riccio
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Cristina Cebrian
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Simon Hippenmeyer
- Developmental Neurobiology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Frank Costantini
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| |
Collapse
|
30
|
Systematic stereoscopic analyses for cloacal development: The origin of anorectal malformations. Sci Rep 2015; 5:13943. [PMID: 26354024 PMCID: PMC4564729 DOI: 10.1038/srep13943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022] Open
Abstract
The division of the embryonic cloaca is the most essential event for the formation of digestive and urinary tracts. The defective development of the cloaca results in anorectal malformations (ARMs; 2–5 per 10,000 live births). However, the developmental and pathogenic mechanisms of ARMs are unclear. In the current study, we visualized the epithelia in the developing cloaca and nephric ducts (NDs). Systemic stereoscopic analyses revealed that the ND-cloaca connection sites shifted from the lateral-middle to dorsal-anterior part of the cloaca during cloacal division from E10.5 to E11.5 in mouse embryos. Genetic cell labeling analyses revealed that the cells in the ventral cloacal epithelium in the early stages rarely contributed to the dorsal part. Moreover, we revealed the possible morphogenetic movement of endodermal cells within the anterior part of the urogenital sinus and hindgut. These results provide the basis for understanding both cloacal development and the ARM pathogenesis.
Collapse
|
31
|
Nagalakshmi VK, Yu J. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning. Mol Reprod Dev 2015; 82:151-66. [PMID: 25783232 DOI: 10.1002/mrd.22462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/12/2015] [Indexed: 01/03/2023]
Abstract
The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney.
Collapse
Affiliation(s)
- Vidya K Nagalakshmi
- Department of Cell Biology and Division of Center of Immunity, Inflammation and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
32
|
Abstract
The mammalian kidney forms via cell-cell interactions between an epithelial outgrowth of the nephric duct and the surrounding nephrogenic mesenchyme. Initial morphogenetic events include ureteric bud branching to form the collecting duct (CD) tree and mesenchymal-to-epithelial transitions to form the nephrons, requiring reciprocal induction between adjacent mesenchyme and epithelial cells. Within the tips of the branching ureteric epithelium, cells respond to mesenchyme-derived trophic factors by proliferation, migration, and mitosis-associated cell dispersal. Self-inhibition signals from one tip to another play a role in branch patterning. The position, survival, and fate of the nephrogenic mesenchyme are regulated by ECM and secreted signals from adjacent tip and stroma. Signals from the ureteric tip promote mesenchyme self-renewal and trigger nephron formation. Subsequent fusion to the CDs, nephron segmentation and maturation, and formation of a patent glomerular basement membrane also require specialized cell-cell interactions. Differential cadherin, laminin, nectin, and integrin expression, as well as intracellular kinesin and actin-mediated regulation of cell shape and adhesion, underlies these cell-cell interactions. Indeed, the capacity for the kidney to form via self-organization has now been established both via the recapitulation of expected morphogenetic interactions after complete dissociation and reassociation of cellular components during development as well as the in vitro formation of 3D kidney organoids from human pluripotent stem cells. As we understand more about how the many cell-cell interactions required for kidney formation operate, this enables the prospect of bioengineering replacement structures based on these self-organizing properties.
Collapse
|
33
|
Okazawa M, Murashima A, Harada M, Nakagata N, Noguchi M, Morimoto M, Kimura T, Ornitz DM, Yamada G. Region-specific regulation of cell proliferation by FGF receptor signaling during the Wolffian duct development. Dev Biol 2015; 400:139-47. [PMID: 25678108 PMCID: PMC4382079 DOI: 10.1016/j.ydbio.2015.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 02/01/2023]
Abstract
The Wolffian duct (WD) is a primordium of the male reproductive tract and kidney collecting duct system. Fibroblast growth factor receptors (FGFRs), members of the receptor tyrosine kinase (RTK) family, are essential for kidney development. Although the functions of FGFR signaling in kidney morphogenesis have been analyzed, their function in WD development has not been comprehensively investigated. Here, we demonstrate that Fgfr2 is the major Fgfr gene expressed throughout the WD epithelia and that it is essential for the maintenance of the WD, specifically in the caudal part of the WD. Hoxb7-Cre mediated inactivation of Fgfr2 in the mouse WD epithelia resulted in the regression of the caudal part of the WD and abnormal male reproductive tract development. Cell proliferation and expression of the downstream target genes of RTK signaling (Etv4 and Etv5) were decreased in the caudal part of the WD epithelia in the mutant embryos. Cranial (rostral) WD formation and ureteric budding were not affected. Ret, Etv4, and Etv5 expression were sustained in the ureteric bud of the mutant embryos. Taken together, these data suggest region-specific requirements for FGFR2 signaling in the developing caudal WD epithelia.
Collapse
Affiliation(s)
- Mika Okazawa
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Aki Murashima
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Masayo Harada
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo, Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku 113-8519, Tokyo, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Masafumi Noguchi
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe 650-0047, Hyogo, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe 650-0047, Hyogo, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| |
Collapse
|
34
|
Lindström NO, Chang CH, Valerius MT, Hohenstein P, Davies JA. Node retraction during patterning of the urinary collecting duct system. J Anat 2014; 226:13-21. [PMID: 25292187 PMCID: PMC4299504 DOI: 10.1111/joa.12239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2014] [Indexed: 11/28/2022] Open
Abstract
This report presents a novel mechanism for remodelling a branched epithelial tree. The mouse renal collecting duct develops by growth and repeated branching of an initially unbranched ureteric bud: this mechanism initially produces an almost fractal form with young branches connected to the centre of the kidney via a sequence of nodes (branch points) distributed widely throughout the developing organ. The collecting ducts of a mature kidney have a different form: from the nephrons in the renal cortex, long, straight lengths of collecting duct run almost parallel to one another through the renal medulla, and open together to the renal pelvis. Here we present time-lapse studies of E11.5 kidneys growing in culture: after about 5 days, the collecting duct trees show evidence of ‘node retraction’, in which the node of a ‘Y’-shaped branch moves downwards, shortening the stalk of the ‘Y’, lengthening its arms and narrowing their divergence angle so that the ‘Y’ becomes a ‘V’. Computer simulation suggests that node retraction can transform a spread tree, like that of an early kidney, into one with long, almost-parallel medullary rays similar to those seen in a mature real kidney.
Collapse
|
35
|
Stewart K, Bouchard M. Coordinated cell behaviours in early urogenital system morphogenesis. Semin Cell Dev Biol 2014; 36:13-20. [PMID: 25220017 DOI: 10.1016/j.semcdb.2014.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
The elaboration of functional kidneys during embryonic development proceeds in a stepwise manner, starting with the formation of the embryonic pro- and mesonephros, followed by the induction and growth of the final metanephric kidney. These early stages of urinary tract development are critical for the embryo as a failure in pro/mesonephros morphogenesis leads to major developmental defects, often incompatible with life. The formation of the pro/mesonephros and its central component the nephric duct, is also interesting as it offers a relatively simple system to study cell biological behaviours underlying tissue morphogenesis. This system is especially well adapted to study the questions of cell lineage specification, epithelial integrity and plasticity, tissue interactions, collective cell migration/guidance and programmed cell death. In this review, we establish the link between these cell behaviours, their molecular regulators and early genitourinary tract development.
Collapse
Affiliation(s)
- Katherine Stewart
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, 1160 Pine Avenue W., Montreal, QC, Canada H3A 1A3
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, 1160 Pine Avenue W., Montreal, QC, Canada H3A 1A3.
| |
Collapse
|
36
|
Abstract
Branching morphogenesis is the developmental program that builds the ramified epithelial trees of various organs, including the airways of the lung, the collecting ducts of the kidney, and the ducts of the mammary and salivary glands. Even though the final geometries of epithelial trees are distinct, the molecular signaling pathways that control branching morphogenesis appear to be conserved across organs and species. However, despite this molecular homology, recent advances in cell lineage analysis and real-time imaging have uncovered surprising differences in the mechanisms that build these diverse tissues. Here, we review these studies and discuss the cellular and physical mechanisms that can contribute to branching morphogenesis.
Collapse
Affiliation(s)
- Victor D Varner
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
37
|
Blake J, Rosenblum ND. Renal branching morphogenesis: morphogenetic and signaling mechanisms. Semin Cell Dev Biol 2014; 36:2-12. [PMID: 25080023 DOI: 10.1016/j.semcdb.2014.07.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022]
Abstract
The human kidney is composed of an arborized network of collecting ducts, calyces and urinary pelvis that facilitate urine excretion and regulate urine composition. The renal collecting system is formed in utero, completed by the 34th week of gestation in humans, and dictates final nephron complement. The renal collecting system arises from the ureteric bud, a derivative of the intermediate-mesoderm derived nephric duct that responds to inductive signals from adjacent tissues via a process termed ureteric induction. The ureteric bud subsequently undergoes a series of iterative branching and remodeling events in a process called renal branching morphogenesis. Altered signaling that disrupts patterning of the nephric duct, ureteric induction, or renal branching morphogenesis leads to varied malformations of the renal collecting system collectively known as congenital anomalies of the kidney and urinary tract (CAKUT) and is the most frequently detected congenital renal aberration in infants. Here, we describe critical morphogenetic and cellular events that govern nephric duct specification, ureteric bud induction, renal branching morphogenesis, and cessation of renal branching morphogenesis. We also highlight salient molecular signaling pathways that govern these processes, and the investigative techniques used to interrogate them.
Collapse
Affiliation(s)
- Joshua Blake
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada; Department of Physiology, University of Toronto, Canada
| | - Norman D Rosenblum
- Division of Nephrology, Department of Paediatrics, The Hospital for Sick Children, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Canada; Department of Physiology, University of Toronto, Canada.
| |
Collapse
|
38
|
Weavers H, Skaer H. Tip cells: master regulators of tubulogenesis? Semin Cell Dev Biol 2014; 31:91-9. [PMID: 24721475 PMCID: PMC4071413 DOI: 10.1016/j.semcdb.2014.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Single tip cells or groups of leading cells develop at the forefront of growing tissues. Tip cells regulate tubule growth and morphogenesis. Tip cells develop distinctive patterns of gene expression and specialised characteristics. Tip cells are required for health and may be involved in the progression of cancer.
The normal development of an organ depends on the coordinated regulation of multiple cell activities. Focusing on tubulogenesis, we review the role of specialised cells or groups of cells that are selected from within tissue primordia and differentiate at the outgrowing tips or leading edge of developing tubules. Tip or leading cells develop distinctive patterns of gene expression that enable them to act both as sensors and transmitters of intercellular signalling. This enables them to explore the environment, respond to both tissue intrinsic signals and extrinsic cues from surrounding tissues and to regulate the behaviour of their neighbours, including the setting of cell fate, patterning cell division, inducing polarity and promoting cell movement and cell rearrangements by neighbour exchange. Tip cells are also able to transmit mechanical tension to promote tissue remodelling and, by interacting with the extracellular matrix, they can dictate migratory pathways and organ shape. Where separate tubular structures fuse to form networks, as in the airways of insects or the vascular system of vertebrates, specialised fusion tip cells act to interconnect disparate elements of the developing network. Finally, we consider their importance in the maturation of mature physiological function and in the development of disease.
Collapse
Affiliation(s)
- Helen Weavers
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | - Helen Skaer
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
39
|
Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease. Pediatr Nephrol 2014; 29:609-20. [PMID: 24061643 DOI: 10.1007/s00467-013-2616-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/26/2022]
Abstract
Failure of normal branching morphogenesis of the ureteric bud (UB), a key ontogenic process that controls organogenesis of the metanephric kidney, leads to congenital anomalies of the kidney and urinary tract (CAKUT), the leading cause of end-stage kidney disease in children. Recent studies have revealed a central role of the renin-angiotensin system (RAS), the cardinal regulator of blood pressure and fluid/electrolyte homeostasis, in the control of normal kidney development. Mice or humans with mutations in the RAS genes exhibit a spectrum of CAKUT which includes renal medullary hypoplasia, hydronephrosis, renal hypodysplasia, duplicated renal collecting system and renal tubular dysgenesis. Emerging evidence indicates that severe hypoplasia of the inner medulla and papilla observed in angiotensinogen (Agt)- or angiotensin (Ang) II AT 1 receptor (AT 1 R)-deficient mice is due to aberrant UB branching morphogenesis resulting from disrupted RAS signaling. Lack of the prorenin receptor (PRR) in the UB in mice causes reduced UB branching, resulting in decreased nephron endowment, marked kidney hypoplasia, urinary concentrating and acidification defects. This review provides a mechanistic rational supporting the hypothesis that aberrant signaling of the intrarenal RAS during distinct stages of metanephric kidney development contributes to the pathogenesis of the broad phenotypic spectrum of CAKUT. As aberrant RAS signaling impairs normal renal development, these findings advocate caution for the use of RAS inhibitors in early infancy and further underscore a need to avoid their use during pregnancy and to identify the types of molecular processes that can be targeted for clinical intervention.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA, 70112, USA,
| |
Collapse
|
40
|
Ihermann-Hella A, Lume M, Miinalainen IJ, Pirttiniemi A, Gui Y, Peränen J, Charron J, Saarma M, Costantini F, Kuure S. Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion. PLoS Genet 2014; 10:e1004193. [PMID: 24603431 PMCID: PMC3945187 DOI: 10.1371/journal.pgen.1004193] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 01/06/2014] [Indexed: 12/30/2022] Open
Abstract
Although the growth factor (GF) signaling guiding renal branching is well characterized, the intracellular cascades mediating GF functions are poorly understood. We studied mitogen-activated protein kinase (MAPK) pathway specifically in the branching epithelia of developing kidney by genetically abrogating the pathway activity in mice lacking simultaneously dual-specificity protein kinases Mek1 and Mek2. Our data show that MAPK pathway is heterogeneously activated in the subset of G1- and S-phase epithelial cells, and its tissue-specific deletion results in severe renal hypodysplasia. Consequently to the deletion of Mek1/2, the activation of ERK1/2 in the epithelium is lost and normal branching pattern in mutant kidneys is substituted with elongation-only phenotype, in which the epithelium is largely unable to form novel branches and complex three-dimensional patterns, but able to grow without primary defects in mitosis. Cellular characterization of double mutant epithelium showed increased E-cadherin at the cell surfaces with its particular accumulation at baso-lateral locations. This indicates changes in cellular adhesion, which were revealed by electron microscopic analysis demonstrating intercellular gaps and increased extracellular space in double mutant epithelium. When challenged to form monolayer cultures, the mutant epithelial cells were impaired in spreading and displayed strong focal adhesions in addition to spiky E-cadherin. Inhibition of MAPK activity reduced paxillin phosphorylation on serine 83 while remnants of phospho-paxillin, together with another focal adhesion (FA) protein vinculin, were augmented at cell surface contacts. We show that MAPK activity is required for branching morphogenesis, and propose that it promotes cell cycle progression and higher cellular motility through remodeling of cellular adhesions.
Collapse
Affiliation(s)
| | - Maria Lume
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | - Yujuan Gui
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jean Charron
- Centre de Recherche en Cancérologie de l'Université Laval, CRCHUQ, Hôtel-Dieu de Québec, Québec, Canada
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Satu Kuure
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
41
|
Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:693-713. [PMID: 22942910 DOI: 10.1002/wdev.52] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian kidney, which at maturity contains thousands of nephrons joined to a highly branched collecting duct (CD) system, is an important model system for studying the development of a complex organ. Furthermore, congenital anomalies of the kidney and urinary tract, often resulting from defects in ureteric bud branching morphogenesis, are relatively common human birth defects. Kidney development is initiated by interactions between the nephric duct and the metanephric mesenchyme, leading to the outgrowth and repeated branching of the ureteric bud epithelium, which gives rise to the entire renal CD system. Meanwhile, signals from the ureteric bud induce the mesenchyme cells to form the nephron epithelia. This review focuses on development of the CD system, with emphasis on the mouse as an experimental system. The major topics covered include the origin and development of the nephric duct, formation of the ureteric bud, branching morphogenesis of the ureteric bud, and elongation of the CDs. The signals, receptors, transcription factors, and other regulatory molecules implicated in these processes are discussed. In addition, our current knowledge of cellular behaviors that are controlled by these genes and underlie development of the collecting system is reviewed.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Mort RL, Ford MJ, Sakaue-Sawano A, Lindstrom NO, Casadio A, Douglas AT, Keighren MA, Hohenstein P, Miyawaki A, Jackson IJ. Fucci2a: a bicistronic cell cycle reporter that allows Cre mediated tissue specific expression in mice. Cell Cycle 2014; 13:2681-96. [PMID: 25486356 PMCID: PMC4613862 DOI: 10.4161/15384101.2015.945381] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/04/2014] [Indexed: 01/01/2023] Open
Abstract
Markers of cell cycle stage allow estimation of cell cycle dynamics in cell culture and during embryonic development. The Fucci system incorporates genetically encoded probes that highlight G1 and S/G2/M phases of the cell cycle allowing live imaging. However the available mouse models that incorporate Fucci are beset by problems with transgene inactivation, varying expression level, lack of conditional potential and/or the need to maintain separate transgenes-there is no transgenic mouse model that solves all these problems. To address these shortfalls we re-engineered the Fucci system to create 2 bicistronic Fucci variants incorporating both probes fused using the Thosea asigna virus 2A (T2A) self cleaving peptide. We characterize these variants in stable 3T3 cell lines. One of the variants (termed Fucci2a) faithfully recapitulated the nuclear localization and cell cycle stage specific florescence of the original Fucci system. We go on to develop a conditional mouse allele (R26Fucci2aR) carefully designed for high, inducible, ubiquitous expression allowing investigation of cell cycle status in single cell lineages within the developing embryo. We demonstrate the utility of R26Fucci2aR for live imaging by using high resolution confocal microscopy of ex vivo lung, kidney and neural crest development. Using our 3T3 system we describe and validate a method to estimate cell cycle times from relatively short time-lapse sequences that we then apply to our neural crest data. The Fucci2a system and the R26Fucci2aR mouse model are compelling new tools for the investigation of cell cycle dynamics in cell culture and during mouse embryonic development.
Collapse
Key Words
- BrdU, 5-bromo-2′-deoxyuridine
- DAPI, 4′, 6-diamidino-2-phenylindole
- DMEM, Dulbeccos modified eagle medium
- ECACC, European Collection of Cell Cultures
- EMMA, European Mouse Mutant Archive
- FACS, Fluorescence-activated cell sorting
- Fucci
- Fucci, Fluorescent Ubiquitination-based Cell Cycle Indicator
- Fucci2
- Fucci2a
- GMEM, Glasgow minimum essential medium
- IRES, Internal ribosomal entry site
- LIF, leukemia inhibitory factor
- RBDB, Riken Bioresource Center DNA Bank
- T2A, Thosea asigna virus 2A peptide
- cell cycle
- hESC, Human embryonic stem cell
- kidney
- lung
- mAG, Monomeric Azami Green
- mESC, Mouse embryonic stem cell
- mKO2, Monomeric Kusabira Orange
- melanoblast
Collapse
Affiliation(s)
- Richard Lester Mort
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Matthew Jonathan Ford
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics; Advanced Technology Development Group; Brain Science Institute; RIKEN; Wako-city, Saitama, Japan
| | - Nils Olof Lindstrom
- The Roslin Institute; The University of Edinburgh; Easter Bush, Midlothian; Scotland, UK
| | - Angela Casadio
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Adam Thomas Douglas
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Margaret Anne Keighren
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
| | - Peter Hohenstein
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
- The Roslin Institute; The University of Edinburgh; Easter Bush, Midlothian; Scotland, UK
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics; Advanced Technology Development Group; Brain Science Institute; RIKEN; Wako-city, Saitama, Japan
| | - Ian James Jackson
- MRC Human Genetics Unit; MRC IGMM; University of Edinburgh; Western General Hospital Edinburgh; Scotland, UK
- The Roslin Institute; The University of Edinburgh; Easter Bush, Midlothian; Scotland, UK
| |
Collapse
|
43
|
Packard A, Georgas K, Michos O, Riccio P, Cebrian C, Combes AN, Ju A, Ferrer-Vaquer A, Hadjantonakis AK, Zong H, Little MH, Costantini F. Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev Cell 2013; 27:319-30. [PMID: 24183650 DOI: 10.1016/j.devcel.2013.09.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/26/2013] [Accepted: 09/03/2013] [Indexed: 10/26/2022]
Abstract
The ureteric bud is an epithelial tube that undergoes branching morphogenesis to form the renal collecting system. Although development of a normal kidney depends on proper ureteric bud morphogenesis, the cellular events underlying this process remain obscure. Here, we used time-lapse microscopy together with several genetic labeling methods to observe ureteric bud cell behaviors in developing mouse kidneys. We observed an unexpected cell behavior in the branching tips of the ureteric bud, which we term "mitosis-associated cell dispersal." Premitotic ureteric tip cells delaminate from the epithelium and divide within the lumen; although one daughter cell retains a basal process, allowing it to reinsert into the epithelium at the site of origin, the other daughter cell reinserts at a position one to three cell diameters away. Given the high rate of cell division in ureteric tips, this cellular behavior causes extensive epithelial cell rearrangements that may contribute to renal branching morphogenesis.
Collapse
Affiliation(s)
- Adam Packard
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Petrak D, Atefi E, Yin L, Chilian W, Tavana H. Automated, spatio-temporally controlled cell microprinting with polymeric aqueous biphasic system. Biotechnol Bioeng 2013; 111:404-12. [DOI: 10.1002/bit.25100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 02/02/2023]
Affiliation(s)
- David Petrak
- Department of Biomedical Engineering; The University of Akron; Akron Ohio 44325
| | - Ehsan Atefi
- Department of Biomedical Engineering; The University of Akron; Akron Ohio 44325
| | - Liya Yin
- Department of Integrative Medical Sciences, College of Medicine; Northeast Ohio Medical University; Rootstown Ohio
| | - William Chilian
- Department of Integrative Medical Sciences, College of Medicine; Northeast Ohio Medical University; Rootstown Ohio
| | - Hossein Tavana
- Department of Biomedical Engineering; The University of Akron; Akron Ohio 44325
| |
Collapse
|
45
|
Kim HY, Varner VD, Nelson CM. Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development 2013; 140:3146-55. [PMID: 23824575 DOI: 10.1242/dev.093682] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Branching morphogenesis sculpts the airway epithelium of the lung into a tree-like structure to conduct air and promote gas exchange after birth. In the avian lung, a series of buds emerges from the dorsal surface of the primary bronchus via monopodial branching to form the conducting airways; anatomically, these buds are similar to those formed by domain branching in the mammalian lung. Here, we show that monopodial branching is initiated by apical constriction of the airway epithelium, and not by differential cell proliferation, using computational modeling and quantitative imaging of embryonic chicken lung explants. Both filamentous actin and phosphorylated myosin light chain were enriched at the apical surface of the airway epithelium during monopodial branching. Consistently, inhibiting actomyosin contractility prevented apical constriction and blocked branch initiation. Although cell proliferation was enhanced along the dorsal and ventral aspects of the primary bronchus, especially before branch formation, inhibiting proliferation had no effect on the initiation of branches. To test whether the physical forces from apical constriction alone are sufficient to drive the formation of new buds, we constructed a nonlinear, three-dimensional finite element model of the airway epithelium and used it to simulate apical constriction and proliferation in the primary bronchus. Our results suggest that, consistent with the experimental results, apical constriction is sufficient to drive the early stages of monopodial branching whereas cell proliferation is dispensable. We propose that initial folding of the airway epithelium is driven primarily by apical constriction during monopodial branching of the avian lung.
Collapse
Affiliation(s)
- Hye Young Kim
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
46
|
Sun Y, Gui T, Shimokado A, Muragaki Y. The Role of Tricho-Rhino-Phalangeal Syndrome (TRPS) 1 in Apoptosis during Embryonic Development and Tumor Progression. Cells 2013; 2:496-505. [PMID: 24709795 PMCID: PMC3972667 DOI: 10.3390/cells2030496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/12/2022] Open
Abstract
TRPS1 is a GATA-type transcription factor that is closely related to human tricho-rhino-phalangeal syndrome (TRPS) types I and III, variants of an autosomal dominant skeletal disorder. During embryonic development, Trps1 represses Sox9 expression and regulates Wnt signaling pathways that determine the number of hair follicles and their normal morphogenesis. In the growth plate, Trps1 regulates chondrocytes condensation, proliferation, and maturation and phalangeal joint formation by functioning downstream of Gdf5 signaling and by targeting at Pthrp, Stat3 and Runx2. Also, Trps1 protein directly interacts with an activated form of Gli3. In embryonic kidneys, Trps1 functions downstream of BMP7 promoting the mesenchymal-to-epithelial transition, and facilitating tubule morphogenesis and ureteric bud branching. Moreover, Trps1 has been found to be closely related to tumorigenesis, invasion, and metastasis in prostate and breast cancers. It is interesting to note that during the development of hair follicles, bones, and kidneys, mutations in Trps1 cause, either directly or through crosstalk with other regulators, a notable change in cell proliferation and cell death. In this review, we will summarize the most recent studies on Trps1 and seek to elucidate the role for Trps1 in apoptotic regulation.
Collapse
Affiliation(s)
- Yujing Sun
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Ting Gui
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Aiko Shimokado
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Yasuteru Muragaki
- First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012, Japan.
| |
Collapse
|
47
|
Zygmunt T, Spagnoli FM. RhoGAP control of pancreas development: putting cells in the right place at the right time. Small GTPases 2013; 4:127-31. [PMID: 23511849 DOI: 10.4161/sgtp.24261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent evidences suggested that growth and differentiation of pancreatic cell lineages, including the insulin-producing β-cells, depend on proper tissue-architecture, epithelial remodeling and cell positioning within the branching pancreatic epithelium. We recently found that Rho GTPase and its regulator, Stard13 RhoGAP, coordinate morphogenesis with growth in the developing pancreas. Conditional mutation of Stard13 in the mouse pancreas hampers epithelial remodeling and distal tip domain formation, affecting proliferation and expansion of pancreatic progenitors. These defects eventually result in pancreatic hypoplasia at birth. Stard13 acts by regulating Rho signaling spatially and temporally during pancreas development. In line with this, pharmacological activation or inhibition of Rho mimics or rescues, respectively, the defects observed in Stard13-deficient embryos and pancreatic organ cultures. Furthermore, in the absence of Stard13 uninhibited Rho activity affects the actomyosin contractile network, disrupting its apical distribution and hampering coordinated cell-shape changes. These results unveil therefore the crucial role of actin cytoskeletal dynamics during the onset of pancreatic branching morphogenesis. Finally, our findings define a reciprocal interaction between the actin-MAL/SRF and the MAPK signaling to locally regulate progenitor cell proliferation in the pancreas.
Collapse
Affiliation(s)
- Tomasz Zygmunt
- Laboratory of Molecular and Cellular Basis of Embryonic Development, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
48
|
Tai G, Hohenstein P, Davies JA. FAK-Src signalling is important to renal collecting duct morphogenesis: discovery using a hierarchical screening technique. Biol Open 2013; 2:416-23. [PMID: 23616926 PMCID: PMC3625870 DOI: 10.1242/bio.20133780] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/21/2013] [Indexed: 01/08/2023] Open
Abstract
This report describes a hierarchical screening technique for identification of pathways that control the morphogenesis of the renal collecting duct system. The multi-step screen involves a first round using a 2-dimensional, cell-line-based scrape-healing assay, then a second round using a 3-dimensional tubulogenesis assay; both of these rounds use new cell lines described in this report. The final stage is ex vivo organ culture. We demonstrate the utility of the screen by using it to identify the FAK–Src-pathway signalling as being important for collecting duct development, specifically for the cell proliferation on which this development depends.
Collapse
Affiliation(s)
- Guangping Tai
- Centre for Integrative Physiology, University of Edinburgh , Edinburgh EH8 9XD , UK
| | | | | |
Collapse
|
49
|
Daley WP, Yamada KM. Cell–ECM Interactions and the Regulation of Epithelial Branching Morphogenesis. EXTRACELLULAR MATRIX IN DEVELOPMENT 2013. [DOI: 10.1007/978-3-642-35935-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Abstract
The mammalian ureter contains two main cell types: a multilayered water-tight epithelium called the urothelium, surrounded by smooth muscle layers that, by generating proximal to distal peristaltic waves, pump urine from the renal pelvis toward the urinary bladder. Here, we review the cellular mechanisms involved in the development of these tissues, and the molecules that control the process. We consider the relevance of these biologic findings for understanding the pathogenesis of human ureter malformations.
Collapse
Affiliation(s)
- Adrian S Woolf
- School of Biomedicine, University of Manchester, Manchester Academic Health Science Centre and Manchester Children's Hospital, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|