1
|
Srapyan S, Mkrtchyan M, Berlemont R, Grintsevich EE. Functional Differences Between Neuronal and Non-neuronal Isoforms of Drebrin. J Mol Biol 2025; 437:169015. [PMID: 39971265 DOI: 10.1016/j.jmb.2025.169015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Actin cytoskeleton is vital for neuronal function. Drebrin is a key F-actin binding protein in neurons which is linked to the filaments' stabilization. As mammalian brain develops, drebrin expression pattern switches from non-neuronal (drebrin E, Embryonic) to neuron-specific isoform (drebrin A, Adult), but the evolutionary need for such a switch is enigmatic. Prior in cellulo and in vivo work suggested a non-redundant role of drebrin isoforms in neuronal development and function, however, molecular level understanding of it is lacking. Here we used mutagenesis, bulk solution assays, and time-lapse TIRF microscopy to probe for functional differences between drebrin isoforms. We found that drebrin A and E are functionally distinct and differ in their ability to inhibit F-actin depolymerization. We showed that both isoforms act as permissive cappers of the barbed end of actin, however, drebrin A has a significantly stronger capping activity, compared to that of the non-neuronal drebrin E. Probing for the molecular level insights on the observed differences revealed that the adult-specific exon in neuronal drebrin A contains an actin binding interface which enhances its permissive capping activity. Strikingly, F-actin decoration by neuronal drebrin A confers significantly stronger resistance to cofilin-mediated severing compared to that of drebrin E. Our results provide novel molecular level insights on functional differences between drebrin isoforms, which deepen our understanding of cytoskeletal regulation in the neuronal context. Our results also helps interpreting the previously reported data related to the silencing or knockout of the neuronal drebrin isoform.
Collapse
Affiliation(s)
- Sargis Srapyan
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA
| | - Mikayel Mkrtchyan
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA
| | - Renaud Berlemont
- Department of Biological Sciences, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA
| | - Elena E Grintsevich
- Department of Chemistry and Biochemistry, California State University, Long Beach (CSULB), Long Beach, CA 90840, USA.
| |
Collapse
|
2
|
Silalai P, Teeyakasem P, Pruksakorn D, Saeeng R. Design and Synthesis of Mycophenolic Acid Analogues for Osteosarcoma Cancer Treatment. ACS BIO & MED CHEM AU 2025; 5:106-118. [PMID: 39990949 PMCID: PMC11843339 DOI: 10.1021/acsbiomedchemau.4c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 02/25/2025]
Abstract
Mycophenolic acid (MPA), a natural compound, was modified to new MPA analogues via the classical method of silylation and esterification. Their cytotoxicity was evaluated in vitro on four osteosarcoma cancer cell lines (MNNG/HOS, U2OS, 143B, and SaOS-2) and human normal cells (hFOB 1.19). The most potent silicon-containing compound 2d (R1 = TPS, R2 = H) exhibited good cytotoxic activity against all osteosarcoma cancer cell lines with IC50 values ranging from 0.64 to 2.27 μM and showing low cytotoxicity against normal cells. Further investigations revealed that compound 2d (R1 = TPS, R2 = H) displayed significant inhibition of IMPDH2 with K i app 1.8 μM. Furthermore, molecular modeling studies were performed to investigate the binding affinity of 2d (R1 = TPS, R2 = H) which can effectively bind to critical amino acids of three proteins (vascular endothelial growth factor receptor 2; VEGFR-2, cyclin-dependent kinase 2; CDK2, inosine-5'-monophosphate dehydrogenase; IMPDH) involved in cancer therapy. This finding suggests that triphenylsilyl-MPA (TPS-MPA) analogue could serve as a promising starting point for developing new anticancer drugs for osteosarcoma.
Collapse
Affiliation(s)
- Patamawadee Silalai
- Department
of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- The
Research Unit in Synthetic Compounds and Synthetic Analogues from
Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| | - Pimpisa Teeyakasem
- Musculoskeletal
Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center
of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal
Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center
of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty
of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Orthopedics, Faculty of Medicine, Chiang
Mai University, Chiang Mai 50200, Thailand
| | - Rungnapha Saeeng
- Department
of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131, Thailand
- The
Research Unit in Synthetic Compounds and Synthetic Analogues from
Natural Product for Drug Discovery (RSND), Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
3
|
Xiao X, Zhao F, DuBois DB, Liu Q, Zhang YL, Yao Q, Zhang GJ, Chen S. Nanozymes for the Therapeutic Treatment of Diabetic Foot Ulcers. ACS Biomater Sci Eng 2024; 10:4195-4226. [PMID: 38752382 DOI: 10.1021/acsbiomaterials.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430065, China
| | - Davida Briana DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Yu Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
4
|
Yu J, Yuan G, Sun X, Shan T, Zhang D, Liu C, Zhang J. EFFICACY OF VITRECTOMY COMBINED WITH INTRAVITREAL ANTIBIOTICS FOR SEVERE POST-TRAUMATIC ENDOPHTHALMITIS. Retina 2023; 43:2003-2009. [PMID: 37490780 DOI: 10.1097/iae.0000000000003887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
PURPOSE To explore clinical efficacy of vitrectomy combined with intravitreal antibiotics in treating severe endophthalmitis after open-globe trauma in patients. METHODS The records of all patients who received vitrectomy combined with intravitreal for the severe post-traumatic endophthalmitis with light perception or worse between 2010 and 2022 were retrospectively reviewed. Patients received vitrectomy combined with intravitreal antibiotics, repeated intravitreal antibiotics with or without vitreous aspiration, and retinal repair after the infection was controlled. Efficacy of severe post-traumatic endophthalmitis was analyzed. RESULTS One hundred and twenty-one patients (121 eyes) were included in this study. The mean BCVA improved from 4.03 ± 0.18 logarithm of the minimum angle of resolution to 1.75 ± 1.41 logarithm of the minimum angle of resolution ( P < 0.001) at the end of the follow-up period, which increased in 106 eyes (87.60%). Infection was successfully controlled in all eyes, 88 eyes within two operations. Pathogens including streptococci (odds ratio [OR] = 6.68, P < 0.001), fungi (OR = 15.23, P < 0.001), and mixed infection (OR = 6.67, P < 0.05) were related to the number of operations. Finally, 60 eyes (49.59%) received silicone oil filling, 25 received gas tamponade, and the remaining 36 received no tamponade; complete vitrectomy was performed in all eyes with intraocular tamponade. All eyes for gas tamponade and no tamponade had been remained stable without retinal detachment and proliferative vitreoretinopathy after 6-month follow-up. The rate of recurrent retinal detachment after silicone oil tamponade was 4.96% (six eyes), including 1.65% (two eyes) of proliferative vitreoretinopathy; these eyes underwent reoperation of retinal detachment repair. CONCLUSION Vitrectomy combined with intravitreal antibiotics may be an effective treatment option for severe post-traumatic endophthalmitis.
Collapse
Affiliation(s)
- Jiaxuan Yu
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; and
| | - Gongqiang Yuan
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; and
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong Province, China
| | - Xiaolei Sun
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; and
| | - Tianhui Shan
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; and
| | - Dawei Zhang
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; and
| | - Chunli Liu
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; and
| | - Jingjing Zhang
- Eye Hospital of Shandong First Medical University, Jinan, Shandong, China
- School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China; and
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, Shandong Province, China
| |
Collapse
|
5
|
Xu Y, Yu J, Hu J, Sun K, Lu W, Zeng F, Chen J, Liu M, Cai Z, He X, Wei W, Sun B. Tumor-Targeting Near-Infrared Dimeric Heptamethine Cyanine Photosensitizers With an Aromatic Diphenol Linker for Imaging-Guided Cancer Phototherapy. Adv Healthc Mater 2023:e2203080. [PMID: 36745881 DOI: 10.1002/adhm.202203080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/22/2023] [Indexed: 02/08/2023]
Abstract
Phototherapy is considered a promising alternative to conventional tumor treatments due to its noninvasive modality and effective therapeutic effect. However, designing a photosensitizer with satisfactory therapeutic effect and high security remains a considerable challenge. Herein, a series of dimeric heptamethine cyanine photosensitizers with an aromatic diphenol linker at the meso position is developed to improve the photothermal conversion efficiency (PCE). Thanks to the extended conjugate system and high steric hindrance, the screened 26NA-NIR and 44BP-NIR exhibit high PCE (≈35%), bright near-infrared (NIR) fluorescence, excellent reactive oxygen species (ROS) generation capability, and improved photostability. Furthermore, their outstanding performance on imaging-guided PDT-PTT synergistic therapy is demonstrated by in vivo and in vitro experiments. In conclusion, this study designs a series of dimeric heptamethine cyanine photosensitizers and presents two compounds for potential clinical applications. The strategy provides a new method to design NIR photosensitizers for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Yang Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Wenjun Lu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Fenglian Zeng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Wanying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210000, China
| |
Collapse
|
6
|
Xiao M, Jia X, Wang N, Kang J, Hu X, Goff HD, Cui SW, Ding H, Guo Q. Therapeutic potential of non-starch polysaccharides on type 2 diabetes: from hypoglycemic mechanism to clinical trials. Crit Rev Food Sci Nutr 2022; 64:1177-1210. [PMID: 36036965 DOI: 10.1080/10408398.2022.2113366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-starch polysaccharides (NSPs) have been reported to exert therapeutic potential on managing type 2 diabetes mellitus (T2DM). Various mechanisms have been proposed; however, several studies have not considered the correlations between the anti-T2DM activity of NSPs and their molecular structure. Moreover, the current understanding of the role of NSPs in T2DM treatment is mainly based on in vitro and in vivo data, and more human clinical trials are required to verify the actual efficacy in treating T2DM. The related anti-T2DM mechanisms of NSPs, including regulating insulin action, promoting glucose metabolism and regulating postprandial blood glucose level, anti-inflammatory and regulating gut microbiota (GM), are reviewed. The structure-function relationships are summarized, and the relationships between NSPs structure and anti-T2DM activity from clinical trials are highlighted. The development of anti-T2DM medication or dietary supplements of NSPs could be promoted with an in-depth understanding of the multiple regulatory effects in the treatment/intervention of T2DM.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Nifei Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinzhong Hu
- College of Food Engineering & Nutrition Science, Shaanxi Normal University, Shaanxi, China
| | | | - Steve W Cui
- Guelph Research and Development Centre, AAFC, Guelph, Ontario, Canada
| | | | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
7
|
Wu J, Hu T, GuopingZhao, Li A, Liang R. Two-dimensional transition metal chalcogenide nanomaterials for cancer diagnosis and treatment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Conversion of Plastic Waste into Supports for Nanostructured Heterogeneous Catalysts: Application in Environmental Remediation. SURFACES 2021. [DOI: 10.3390/surfaces5010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastics are ubiquitous in our society and are used in many industries, such as packaging, electronics, the automotive industry, and medical and health sectors, and plastic waste is among the types of waste of higher environmental concern. The increase in the amount of plastic waste produced daily has increased environmental problems, such as pollution by micro-plastics, contamination of the food chain, biodiversity degradation and economic losses. The selective and efficient conversion of plastic waste for applications in environmental remediation, such as by obtaining composites, is a strategy of the scientific community for the recovery of plastic waste. The development of polymeric supports for efficient, sustainable, and low-cost heterogeneous catalysts for the treatment of organic/inorganic contaminants is highly desirable yet still a great challenge; this will be the main focus of this work. Common commercial polymers, like polystyrene, polypropylene, polyethylene therephthalate, polyethylene and polyvinyl chloride, are addressed herein, as are their main physicochemical properties, such as molecular mass, degree of crystallinity and others. Additionally, we discuss the environmental and health risks of plastic debris and the main recycling technologies as well as their issues and environmental impact. The use of nanomaterials raises concerns about toxicity and reinforces the need to apply supports; this means that the recycling of plastics in this way may tackle two issues. Finally, we dissert about the advances in turning plastic waste into support for nanocatalysts for environmental remediation, mainly metal and metal oxide nanoparticles.
Collapse
|
9
|
Alfarsi LH, El Ansari R, Masisi BK, Parks R, Mohammed OJ, Ellis IO, Rakha EA, Green AR. Integrated Analysis of Key Differentially Expressed Genes Identifies DBN1 as a Predictive Marker of Response to Endocrine Therapy in Luminal Breast Cancer. Cancers (Basel) 2020; 12:cancers12061549. [PMID: 32545448 PMCID: PMC7352383 DOI: 10.3390/cancers12061549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Abstract
Endocrine therapy is the mainstay of adjuvant treatment for patients with luminal breast cancer. Despite ongoing advances in endocrine therapy to date, a proportion of patients ultimately develop endocrine resistance, resulting in failure of therapy and poor prognosis. Therefore, as part of the growing concept of personalised medicine, the need for identification of predictive markers of endocrine therapy response at an early stage, is recognised. The METABRIC series was used to identify differentially expressed genes (DEGs) in term of response to adjuvant endocrine therapy. Drebrin 1 (DBN1) was identified as a key DEG associated with response to hormone treatment. Next, large, well-characterised cohorts of primary luminal breast cancer with long-term follow-up were assessed at the mRNA and protein levels for the value of DBN1 as a prognostic marker in luminal breast cancer, as well as its potential for predicting the benefit of endocrine therapy. DBN1 positivity was associated with aggressive clinicopathological variables and poor patient outcomes. Importantly, high DBN1 expression predicted relapse patients who were subject to adjuvant endocrine treatment. Our results further demonstrate that DBN1 is an independent prognostic marker in luminal breast cancer. Its association with the response to endocrine therapy and outcome provides evidence for DBN1 as a potential biomarker in luminal breast cancer, particularly for the benefit of endocrine treatment. Further functional investigations into the mechanisms underlying sensitivity to endocrine therapy is required.
Collapse
Affiliation(s)
- Lutfi H. Alfarsi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Rokaya El Ansari
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Brendah K. Masisi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Ruth Parks
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
| | - Ian O. Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Emad A. Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
- Cellular Pathology, Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Hucknall Road, Nottingham NG5 1PB, UK
| | - Andrew R. Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (L.H.A.); (R.E.A.); (B.K.M.); (R.P.); (O.J.M.); (I.O.E.); (E.A.R.)
- Correspondence: ; Tel.: +44-115-8231407
| |
Collapse
|
10
|
The cell-cell junctions of mammalian testes: II. The lamellar smooth muscle monolayer cells of the peritubular wall are laterally connected by vertical adherens junctions-a novel architectonic cell-cell junction system. Cell Tissue Res 2018; 375:451-482. [PMID: 30591979 DOI: 10.1007/s00441-018-2968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
The testes of sexually mature males of six mammalian species (men, bulls, boars, rats, mice, guinea pigs) have been studied using biochemical as well as light and electron microscopical techniques, in particular immunolocalizations. In these tissues, the peritubular walls represent lamellar encasement structures wrapped around the seminiferous tubules as a bandage system of extracellular matrix layers, alternating with monolayers of very flat polyhedral "lamellar smooth muscle cells" (LSMCs), the number of which varies in different species from 1 to 5 or 6. These LSMCs are complete SMCs containing smooth muscle α-actin (SMA), myosin light and heavy chains, α-actinin, tropomyosin, smoothelin, intermediate-sized filament proteins desmin and/or vimentin, filamin, talin, dystrophin, caldesmon, calponin, and protein SM22α, often also cytokeratins 8 and 18. In the monolayers, the LSMCs are connected by adherens junctions (AJs) based on cadherin-11, in some species also with P-cadherin and/or E-cadherin, which are anchored in cytoplasmic plaques containing β-catenin and other armadillo proteins, in some species also striatin family proteins, protein myozap and/or LUMA. The LSMC cytoplasm is rich in myofilament bundles, which in many regions are packed in paracrystalline arrays, as well as in "dense bodies," "focal adhesions," and caveolae. In addition to some AJ-like end-on-end contacts, the LSMCs are laterally connected by numerous vertical AJ-like junctions located in variously sized and variously shaped, overlapping (alter super alterum) lamelliform cell protrusions. Consequently, the LSMCs of the peritubular wall monolayers are SMCs sensu stricto which are laterally connected by a novel architectonic system of arrays of vertical AJs located in overlapping cell protrusions.
Collapse
|
11
|
The Structure of the ZMYND8/Drebrin Complex Suggests a Cytoplasmic Sequestering Mechanism of ZMYND8 by Drebrin. Structure 2017; 25:1657-1666.e3. [DOI: 10.1016/j.str.2017.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 11/18/2022]
|
12
|
Drebrin's Role in the Maintenance of Endothelial Integrity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:347-360. [PMID: 28865031 DOI: 10.1007/978-4-431-56550-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The human endothelium forms a permeable barrier between the blood stream and surrounding tissues, strictly governing the passage of immune cells, fluids and metabolites. The regulation of cell-cell contact dynamics between endothelial cells is essential for this function and thus for the maintenance of vascular integrity. Intercellular adhesion within the endothelium is mainly dependent on adherens junctions, composed of cell-cell adhesion proteins such as VE-cadherin and nectin, and their associated proteins. Recent research points to a critical role of the actin cytoskeleton in endothelial integrity, by providing anchorage of adhesion complexes to the cell cortex. We could show that the F-actin-binding protein drebrin is a critical regulator of endothelial integrity, by linking nectin to the cortical actin cytoskeleton. In particular, the knockdown of drebrin leads to functional impairment of endothelial cells, characterized by rupturing of endothelial monolayers cultured under conditions mimicking vascular flow. This weakening of cell-cell contacts upon drebrin depletion is based on the destabilization of nectin at adherens junctions, followed by internalization and degradation in lysosomes. Conducting interaction studies, we showed that drebrin binds to nectin's interaction partner afadin, thus linking the nectin/afadin system to the cortical F-actin network. Drebrin, containing binding sites for both afadin and F-actin, is thus uniquely equipped to stabilize nectin at adherens junctions, thereby preserving endothelial integrity. Collectively, these results contribute to the current understanding of cell-cell junction regulation, introducing a new function of drebrin as a stabilizer of endothelial integrity.
Collapse
|
13
|
Dart AE, Worth DC, Muir G, Chandra A, Morris JD, McKee C, Verrill C, Bryant RJ, Gordon-Weeks PR. The drebrin/EB3 pathway drives invasive activity in prostate cancer. Oncogene 2017; 36:4111-4123. [PMID: 28319065 PMCID: PMC5537610 DOI: 10.1038/onc.2017.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/13/2017] [Accepted: 02/02/2017] [Indexed: 02/06/2023]
Abstract
Prostate cancer is the most common cancer in men and the metastatic form of the disease is incurable. We show here that the drebrin/EB3 pathway, which co-ordinates dynamic microtubule/actin filament interactions underlying cell shape changes in response to guidance cues, plays a role in prostate cancer cell invasion. Drebrin expression is restricted to basal epithelial cells in benign human prostate but is upregulated in luminal epithelial cells in foci of prostatic malignancy. Drebrin is also upregulated in human prostate cancer cell lines and co-localizes with actin filaments and dynamic microtubules in filopodia of pseudopods of invading cells under a chemotactic gradient of the chemokine CXCL12. Disruption of the drebrin/EB3 pathway using BTP2, a small molecule inhibitor of drebrin binding to actin filaments, reduced the invasion of prostate cancer cell lines in 3D in vitro assays. Furthermore, gain- or loss-of-function of drebrin or EB3 by over-expression or siRNA-mediated knockdown increases or decreases invasion of prostate cancer cell lines in 3D in vitro assays, respectively. Finally, expression of a dominant-negative construct that competes with EB3 binding to drebrin, also inhibited invasion of prostate cancer cell lines in 3D in vitro assays. Our findings show that co-ordination of dynamic microtubules and actin filaments by the drebrin/EB3 pathway drives prostate cancer cell invasion and is therefore implicated in disease progression.
Collapse
Affiliation(s)
- A E Dart
- The MRC Centre for Developmental Neurobiology, King's College London, New Hunts House, Guy's Campus, London, UK
| | - D C Worth
- The MRC Centre for Developmental Neurobiology, King's College London, New Hunts House, Guy's Campus, London, UK
| | - G Muir
- Urology, King's College Hospital, London, UK
| | - A Chandra
- Cellular Pathology, 2nd floor North Wing, St. Thomas' Hospital, London, UK
| | - J D Morris
- Division of Cancer Studies, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - C McKee
- Oxford Institute for Radiation Oncology, Churchill Hospital, University of Oxford, Oxford, UK
| | - C Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - R J Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - P R Gordon-Weeks
- The MRC Centre for Developmental Neurobiology, King's College London, New Hunts House, Guy's Campus, London, UK
| |
Collapse
|
14
|
Abstract
Adhesion, segregation, and cellular plasticity are regulated by actin filaments anchored at the plaques of adherens junctions, sites of mechanical stabilization, and interfaces of multiple signaling networks. Drebrins were originally identified in neuronal cells, but the isoform drebrin E was also detected at adherens junctions of a wide range of non-neuronal cells, including polarized epithelia, endothelia, and fibroblasts. Here the protein is enriched at actin filament bundles associated with junctional plaques. Polarized epithelial cells contain two types of actin-associated complexes, one comprising drebrin but not vinculin and the other involving vinculin, but not drebrin. At gap junctions drebrin interacts with connexin 43, stabilizes this protein at membranes, and links it to the actin cytoskeleton. In vivo drebrin is widespread in diverse non-neuronal tissues of epithelial, endothelial, and smooth muscle origin, but not ubiquitous. In intestinal cells it is involved in cell compaction, linking of actin filaments to microtubules and formation and stabilization of the terminal web. Upregulation of drebrin was noted in several types of cancers, e.g., basal cell carcinomas for which it may serve as marker, liver metastases of colon carcinomas, and bladder cancer, suggesting that it is involved in regulating actin dynamics during tumor development, progression, and metastasis.
Collapse
|
15
|
|
16
|
The Role of Drebrin in Cancer Cell Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:375-389. [DOI: 10.1007/978-4-431-56550-5_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
|
18
|
Cofilin-1 and Other ADF/Cofilin Superfamily Members in Human Malignant Cells. Int J Mol Sci 2016; 18:ijms18010010. [PMID: 28025492 PMCID: PMC5297645 DOI: 10.3390/ijms18010010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Identification of actin-depolymerizing factor homology (ADF-H) domains in the structures of several related proteins led first to the formation of the ADF/cofilin family, which then expanded to the ADF/cofilin superfamily. This superfamily includes the well-studied cofilin-1 (Cfl-1) and about a dozen different human proteins that interact directly or indirectly with the actin cytoskeleton, provide its remodeling, and alter cell motility. According to some data, Cfl-1 is contained in various human malignant cells (HMCs) and is involved in the formation of malignant properties, including invasiveness, metastatic potential, and resistance to chemotherapeutic drugs. The presence of other ADF/cofilin superfamily proteins in HMCs and their involvement in the regulation of cell motility were discovered with the use of various OMICS technologies. In our review, we discuss the results of the study of Cfl-1 and other ADF/cofilin superfamily proteins, which may be of interest for solving different problems of molecular oncology, as well as for the prospects of further investigations of these proteins in HMCs.
Collapse
|
19
|
Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS One 2016; 11:e0157073. [PMID: 27280719 PMCID: PMC4900556 DOI: 10.1371/journal.pone.0157073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
Gap junctions are membrane specialization domains identified in most tissue types where cells abut each other. The connexin channels found in these membrane domains are conduits for direct cell-to-cell transfer of ions and molecules. Connexin43 (Cx43) is the most ubiquitous connexin, with critical roles in heart, skin, and brain. Several studies described the interaction between Cx43 and the cytoskeleton involving the actin binding proteins Zonula occludens (ZO-1) and drebrin, as well as with tubulin. However, a direct interaction has not been identified between drebrin and Cx43. In this study, co-IP and NMR experiments were used to demonstrate that the Cx43-CT directly interacts with the highly conserved N-terminus region of drebrin. Three Cx43-CT areas were found to be involved in drebrin binding, with residues 264–275 being critical for the interaction. Mimicking Src phosphorylation within this region (Y265) significantly disrupted the interaction between the Cx43-CT and drebrin. Immunofluorescence showed colocalization of Cx43, drebrin, and F-actin in astrocytes and Vero cells membrane, indicating that Cx43 forms a submembrane protein complex with cytoskeletal and scaffolding proteins. The co-IP data suggest that Cx43 indirectly interacts with F-actin through drebrin. Along with the known interaction of the Cx43-CT with ZO-1 and tubulin, the data presented here for drebrin indicate non-overlapping and separated binding sites for all three proteins for which simultaneous binding could be important in regulating cytoskeleton rearrangements, especially for neuronal migration during brain development.
Collapse
|
20
|
Sonego M, Oberoi M, Stoddart J, Gajendra S, Hendricusdottir R, Oozeer F, Worth DC, Hobbs C, Eickholt BJ, Gordon-Weeks PR, Doherty P, Lalli G. Drebrin regulates neuroblast migration in the postnatal mammalian brain. PLoS One 2015; 10:e0126478. [PMID: 25945928 PMCID: PMC4422745 DOI: 10.1371/journal.pone.0126478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/02/2015] [Indexed: 01/13/2023] Open
Abstract
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.
Collapse
Affiliation(s)
- Martina Sonego
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Michelle Oberoi
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Jake Stoddart
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Sangeetha Gajendra
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Rita Hendricusdottir
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Fazal Oozeer
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Daniel C. Worth
- MRC Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Britta J. Eickholt
- Cluster of Excellence NeuroCure and Institute of Biochemistry, Charité —Universitätsmedizin Berlin, Berlin, Germany
| | | | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
García-Ponce A, Citalán-Madrid AF, Velázquez-Avila M, Vargas-Robles H, Schnoor M. The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 2014; 113:20-36. [PMID: 25183310 DOI: 10.1160/th14-04-0298] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/01/2014] [Indexed: 01/19/2023]
Abstract
The endothelial barrier of the vasculature is of utmost importance for separating the blood stream from underlying tissues. This barrier is formed by tight and adherens junctions (TJ and AJ) that form intercellular endothelial contacts. TJ and AJ are integral membrane structures that are connected to the actin cytoskeleton via various adaptor molecules. Consequently, the actin cytoskeleton plays a crucial role in regulating the stability of endothelial cell contacts and vascular permeability. While a circumferential cortical actin ring stabilises junctions, the formation of contractile stress fibres, e. g. under inflammatory conditions, can contribute to junction destabilisation. However, the role of actin-binding proteins (ABP) in the control of vascular permeability has long been underestimated. Naturally, ABP regulate permeability via regulation of actin remodelling but some actin-binding molecules can also act independently of actin and control vascular permeability via various signalling mechanisms such as activation of small GTPases. Several studies have recently been published highlighting the importance of actin-binding molecules such as cortactin, ezrin/radixin/moesin, Arp2/3, VASP or WASP for the control of vascular permeability by various mechanisms. These proteins have been described to regulate vascular permeability under various pathophysiological conditions and are thus of clinical relevance as targets for the development of treatment strategies for disorders that are characterised by vascular hyperpermeability such as sepsis. This review highlights recent advances in determining the role of ABP in the control of endothelial cell contacts and vascular permeability.
Collapse
Affiliation(s)
| | | | | | | | - Michael Schnoor
- Dr. Michael Schnoor, CINVESTAV del IPN, Department for Molecular Biomedicine, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360 Mexico City, Mexico, Tel.: +52 55 5747 3321, Fax: +52 55 5747 3938, E-mail:
| |
Collapse
|
22
|
Lin Q, Tan HT, Lim TK, Khoo A, Lim KH, Chung MCM. iTRAQ analysis of colorectal cancer cell lines suggests Drebrin (DBN1) is overexpressed during liver metastasis. Proteomics 2014; 14:1434-43. [PMID: 24610677 DOI: 10.1002/pmic.201300462] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Qifeng Lin
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Hwee Tong Tan
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences; Faculty of Science; National University of Singapore; Singapore
| | - Avery Khoo
- Department of Pathology; Singapore General Hospital; Singapore
| | - Kiat Hon Lim
- Department of Pathology; Singapore General Hospital; Singapore
| | - Maxey C. M. Chung
- Department of Biochemistry; Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- Department of Biological Sciences; Faculty of Science; National University of Singapore; Singapore
| |
Collapse
|
23
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 PMCID: PMC3973613 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
24
|
Gordón-Alonso M, Rocha-Perugini V, Álvarez S, Ursa Á, Izquierdo-Useros N, Martinez-Picado J, Muñoz-Fernández MA, Sánchez-Madrid F. Actin-binding protein drebrin regulates HIV-1-triggered actin polymerization and viral infection. J Biol Chem 2013; 288:28382-97. [PMID: 23926103 DOI: 10.1074/jbc.m113.494906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HIV-1 contact with target cells triggers F-actin rearrangements that are essential for several steps of the viral cycle. Successful HIV entry into CD4(+) T cells requires actin reorganization induced by the interaction of the cellular receptor/co-receptor complex CD4/CXCR4 with the viral envelope complex gp120/gp41 (Env). In this report, we analyze the role of the actin modulator drebrin in HIV-1 viral infection and cell to cell fusion. We show that drebrin associates with CXCR4 before and during HIV infection. Drebrin is actively recruited toward cell-virus and Env-driven cell to cell contacts. After viral internalization, drebrin clustering is retained in a fraction of the internalized particles. Through a combination of RNAi-based inhibition of endogenous drebrin and GFP-tagged expression of wild-type and mutant forms, we establish drebrin as a negative regulator of HIV entry and HIV-mediated cell fusion. Down-regulation of drebrin expression promotes HIV-1 entry, decreases F-actin polymerization, and enhances profilin local accumulation in response to HIV-1. These data underscore the negative role of drebrin in HIV infection by modulating viral entry, mainly through the control of actin cytoskeleton polymerization in response to HIV-1.
Collapse
Affiliation(s)
- Mónica Gordón-Alonso
- From the Servicio de Inmunología, Instituto de Investigación Sanitaria de la Princesa, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rehm K, Panzer L, van Vliet V, Genot E, Linder S. Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. J Cell Sci 2013; 126:3756-69. [DOI: 10.1242/jcs.129437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Regulation of cell-cell contacts is essential for integrity of the vascular endothelium. Here, a critical role of the F-actin binding protein drebrin in maintaining endothelial integrity is revealed under conditions mimicking vascular flow. Drebrin knockdown leads to weakening of cell-cell contacts, characterized by loss of nectin from adherens junctions and its subsequent lysosomal degradation. Immunoprecipitation, FRAP and mitochondrial retargeting experiments show that nectin stabilization occurs through a chain of interactions: drebrin binding to F-actin, interaction of drebrin and afadin through their polyproline and PR1-2 regions, and recruitment of nectin through afadin's PDZ region. Key elements are drebrin's modules that confer binding to afadin and F-actin. Evidence is provided by constructs containing afadin's PDZ region coupled to drebrin's F-actin binding region or to lifeact, which restore junctional nectin under knockdown of drebrin or of both drebrin and afadin. Drebrin, containing binding sites for both afadin and F-actin, is thus uniquely equipped to stabilize nectin at endothelial junctions and to preserve endothelial integrity under vascular flow.
Collapse
|
26
|
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet been fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility.
Collapse
|
27
|
Milli A, Perego P, Beretta GL, Corvo A, Righetti PG, Carenini N, Corna E, Zuco V, Zunino F, Cecconi D. Proteomic Analysis of Cellular Response to Novel Proapoptotic Agents Related to Atypical Retinoids in Human IGROV-1 Ovarian Carcinoma Cells. J Proteome Res 2010; 10:1191-207. [DOI: 10.1021/pr100963n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alberto Milli
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Giovanni L. Beretta
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Alice Corvo
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Pier Giorgio Righetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Nives Carenini
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Elisabetta Corna
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Valentina Zuco
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Franco Zunino
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Daniela Cecconi
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
28
|
Pérez-Martínez M, Gordón-Alonso M, Cabrero JR, Barrero-Villar M, Rey M, Mittelbrunn M, Lamana A, Morlino G, Calabia C, Yamazaki H, Shirao T, Vázquez J, González-Amaro R, Veiga E, Sánchez-Madrid F. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse. J Cell Sci 2010; 123:1160-70. [DOI: 10.1242/jcs.064238] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.
Collapse
Affiliation(s)
- Manuel Pérez-Martínez
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Mónica Gordón-Alonso
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - José Román Cabrero
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Marta Barrero-Villar
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Mercedes Rey
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - María Mittelbrunn
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Amalia Lamana
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Giulia Morlino
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Carmen Calabia
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Jesús Vázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Esteban Veiga
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| |
Collapse
|
29
|
Rickelt S, Franke WW, Doerflinger Y, Goerdt S, Brandner JM, Peitsch WK. Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherens junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins. Cell Tissue Res 2008; 334:401-22. [PMID: 18975006 DOI: 10.1007/s00441-008-0704-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Abstract
In the tissue integration of melanocytes and melanoma cells, an important role is attributed to cell adhesion molecules, notably the cadherins. In cultured melanoma cells, we have previously described a more heterogeneous repertoire of cadherins than normal, including some melanoma subtypes synthesizing the desmosomal cadherin, desmoglein 2, out of the desmosomal context. Using biochemical and immunological characterization of junctional molecules, confocal laser scanning, and electron and immunoelectron microscopy, we now demonstrate homo- and heterotypic cell-cell adhesions of normal epidermal melanocytes. In human epidermis, both in situ and in cell culture, melanocytes and keratinocytes are connected by closely aligned membranes that are interspersed by small puncta adhaerentia containing heterotypic complexes of E- and P-cadherin. Moreover, melanocytes growing in culture often begin to synthesize desmoglein 2, which is dispersed over extended areas of intimate adhesive cell-cell associations. As desmoglein 2 is not found in melanocytes in situ, we hypothesize that its synthesis is correlated with cell proliferation. Indeed, in tissue microarrays, desmoglein 2 has been demonstrated in a sizable subset of nevi and primary melanomas. The biological meanings of these cell-cell adhesion molecule arrangements, the possible diagnostic and prognostic significance of these findings, and the implications of the heterogeneity types of melanomas are discussed.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Roesli C, Mumprecht V, Neri D, Detmar M. Identification of the surface-accessible, lineage-specific vascular proteome by two-dimensional peptide mapping. FASEB J 2008; 22:1933-44. [PMID: 18180333 DOI: 10.1096/fj.07-100529] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The formation of blood vessels (angiogenesis) and of lymphatic vessels (lymphangiogenesis) actively contributes to cancer progression and inflammation. Thus, there has been a quest for identifying the molecular mechanisms that control lymphatic and blood vessel formation and function. Membrane and extracellular matrix proteins can serve as suitable targets for imaging and/or therapeutic targeting; however, conventional proteomic technologies often fail to identify them systematically due to insolubility in water and low abundance of membrane proteins. To circumvent this problem, we applied a gel-free proteomics methodology termed two-dimensional peptide mapping (2D-PM) to cultured blood vascular (BECs) and lymphatic (LECs) endothelial cells. 2D-PM comprises biotinylation of surface-accessible proteins, their selective enrichment, separation by HPLC, and analysis by mass spectrometry. We identified 184 proteins that were specifically or predominantly expressed by LECs and 185 proteins specifically expressed by BECs, whereas 377 additional proteins were equally detected in both cell types. For representative proteins, the differential, lineage-specific expression was confirmed by Western analyses of cultured cells and by differential immunofluorescence analyses of tissue samples. Our results identify the surface-accessible, vascular lineage-specific proteome, and they also reveal 2D-PM as a powerful technology for the large-scale screening of lineage-specific protein expression.
Collapse
Affiliation(s)
- Christoph Roesli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Wolfgang-Pauli-Str. 10, HCI H303, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
31
|
Usami M, Mitsunaga K, Nakazawa K, Doi O. Proteomic analysis of selenium embryotoxicity in cultured postimplantation rat embryos. ACTA ACUST UNITED AC 2008; 83:80-96. [DOI: 10.1002/bdrb.20145] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Schmitt CJ, Franke WW, Goerdt S, Falkowska-Hansen B, Rickelt S, Peitsch WK. Homo- and heterotypic cell contacts in malignant melanoma cells and desmoglein 2 as a novel solitary surface glycoprotein. J Invest Dermatol 2007; 127:2191-206. [PMID: 17495963 DOI: 10.1038/sj.jid.5700849] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During progression of melanomas, a crucial role has been attributed to alterations of cell-cell adhesions, specifically, to a "cadherin switch" from E- to N-cadherin (cad). We have examined the adhesion of melanoma cells to each other and to keratinocytes. When different human melanoma cell lines were studied by protein analysis and immunofluorescence microscopy, six of eight lines contained N-cad, three E-cad, and five P-cad, and some lines had more than one cad. Surprisingly, two N-cad-positive lines, MeWo and C32, also contained desmoglein 2 (Dsg2), a desmosomal cad previously not reported for melanomas, whereas other desmosome-specific proteins were absent. This finding was confirmed by reverse transcriptase-PCR, immunoprecipitation, and matrix-assisted laser desorption ionization-time of flight analyses. Double-label confocal and immunoelectron microscopy showed N-cad, alpha- and beta-catenin in plaque-bearing puncta adhaerentia, whereas Dsg2 was distributed rather diffusely over the cell surface. In cocultures with HaCaT keratinocytes Dsg2 was found in heterotypic cell contact regions. Correspondingly, immunohistochemistry revealed Dsg2 in five of 10 melanoma metastases. Together, we show that melanoma cell adhesions are more heterogeneous than expected and that certain cells devoid of desmosomes contain Dsg2 in a non-junction-restricted form. Future studies will have to clarify the diagnostic and prognostic significance of these different adhesion protein subtypes.
Collapse
Affiliation(s)
- Christian J Schmitt
- Department of Dermatology, Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Schlüter H, Moll I, Wolburg H, Franke WW. The different structures containing tight junction proteins in epidermal and other stratified epithelial cells, including squamous cell metaplasia. Eur J Cell Biol 2007; 86:645-55. [PMID: 17291627 DOI: 10.1016/j.ejcb.2007.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 12/21/2006] [Accepted: 01/02/2007] [Indexed: 12/28/2022] Open
Abstract
In stratified squamous epithelia constituent proteins of tight junctions (TJs) are not restricted to the zonula occludens-related structures of the uppermost living cell layer such as the stratum granulosum of the epidermis but TJ membrane proteins such as occludin and certain members of the claudin family as well as TJ plaque proteins, notably cingulin and protein ZO-1, have also been identified by immunofluorescence and immunoelectron microscopy in more basal layers where they form special cell-cell-connecting structures such as the "lamellated" and the "sandwich" junctions. In the present study, we describe another TJ protein-containing structure, the very small puncta occludentia ("stud junctions"), as the smallest identifiable TJ-like unit that occurs in most, perhaps all strata. We have also determined the specific distributions of TJ proteins in the cell layers of squamous cell metaplasias of the human bronchial tract. Moreover, we show that the occludin-related tetraspanin protein tricellulin-alpha connects and seals the membranes of adjacent "three corner" cell structures of the uppermost layer in keratinocytes growing in culture. We hypothesize the possible occurrence of tricellulin-beta in more basal cell layers of keratinocyte cultures and the general occurrence of different tricellulin splice forms in stratified epithelia in situ, and discuss the possible functions of TJ proteins in stratified epithelia and tumors derived therefrom.
Collapse
Affiliation(s)
- Holger Schlüter
- Division of Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Majoul I, Shirao T, Sekino Y, Duden R. Many faces of drebrin: from building dendritic spines and stabilizing gap junctions to shaping neurite-like cell processes. Histochem Cell Biol 2007; 127:355-61. [PMID: 17285341 DOI: 10.1007/s00418-007-0273-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2007] [Indexed: 01/03/2023]
Abstract
In this review we consider the multiple functions of developmentally regulated brain protein (drebrin), an actin-binding protein, in the formation of cellular polarity in different cell types. Drebrin has a well-established role in the morphogenesis, patterning and maintenance of dendritic spines in neurons. We have recently shown that drebrin also stabilizes Connexin-43 containing gap junctions at the plasma membrane. The latest literature and our own data suggest that drebrin may be broadly involved in shaping cell processes and in the formation of stabilized plasma membrane domains, an effect that is likely to be of crucial significance for formation of cell polarity in both neuronal and non-neuronal types.
Collapse
Affiliation(s)
- Irina Majoul
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
| | | | | | | |
Collapse
|
35
|
Peitsch WK, Bulkescher J, Spring H, Hofmann I, Goerdt S, Franke WW. Dynamics of the actin-binding protein drebrin in motile cells and definition of a juxtanuclear drebrin-enriched zone. Exp Cell Res 2006; 312:2605-18. [PMID: 16780834 DOI: 10.1016/j.yexcr.2006.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 12/19/2022]
Abstract
The actin-binding protein (ABP) drebrin, isoform E2, is involved in remodelling of the actin cytoskeleton and in formation of cell processes, but its role in cell migration has not yet been investigated. Therefore, we have studied the organization of drebrin in motile cultured cells such as murine B16F1 melanoma and human SV80 fibroblast cells, using live cell confocal microscopy. In cells overexpressing DNA constructs encoding drebrin linked to EGFP, numerous long, branched cell processes were formed which slowly retracted and extended, whereas forward movement was halted. In contrast, stably transfected B16F1 cells containing drebrin-EGFP at physiological levels displayed lamellipodia and were able to migrate on laminin. Surprisingly, in such cells, drebrin was absent from anterior lamellipodia but was enriched in a specific juxtanuclear zone, the "drebrin-enriched zone" (DZ), and in the tail. In leading edges of SV80 cells, characterized by pronounced actin microspikes, drebrin was specifically enriched along posterior portions of the microspikes, together with tropomyosin. Drebrin knock-down by small interfering RNAs did not impair movements of SV80 cells. Our results confirm the role of drebrin E2 in the formation of branching processes and further indicate that during cell migration, the protein contributes to retraction of the cell body and the tail but not to lamellipodia formation. In particular, the novel, sizable juxtanuclear DZ structure will have to be characterized in future experiments with respect to its molecular assembly and cell biological functions.
Collapse
Affiliation(s)
- Wiebke K Peitsch
- Department of Dermatology, Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Hämmerling B, Grund C, Boda-Heggemann J, Moll R, Franke WW. The complexus adhaerens of mammalian lymphatic endothelia revisited: a junction even more complex than hitherto thought. Cell Tissue Res 2005; 324:55-67. [PMID: 16372193 DOI: 10.1007/s00441-005-0090-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 09/22/2005] [Indexed: 12/21/2022]
Abstract
The significance of a special kind of VE-cadherin-based, desmoplakin- and plakoglobin-containing adhering junction, originally identified in certain endothelial cells of the mammalian lymphatic system (notably the retothelial cells of the lymph node sinus and a subtype of lining endothelial cells of peripheral lymphatic vessels), has been widely confirmed and its importance in the formation of blood and lymph vessels has been demonstrated in vivo and in vitro. We have recently extended the molecular and structural characterization of the complexus adhaerens and can now report that it represents a rare and special combination of components known from three other major types of cell junction. It comprises zonula adhaerens proteins (VE-cadherin, alpha- and beta-catenin, protein p120(ctn), and afadin), desmosomal plaque components (desmoplakin and plakoglobin), and tight-junction proteins (claudin-5 and ZO-1) and forms junctions that vary markedly in size and shape. The special character and the possible biological roles of the complexus adhaerens and its unique ensemble of molecules in angiogenesis, immunology, and oncology are discussed. The surprising finding of claudin-5 and protein ZO-1 in substructures of retothelial cell-cell bridges, i.e. structures that do not separate different tissues or cell layer compartments, suggests that such tight-junction molecules are involved in functions other than the "fence" and "barrier" roles of zonulae occludentes.
Collapse
Affiliation(s)
- Bettina Hämmerling
- Division of Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | | | | | | | | |
Collapse
|