1
|
Felix JA, Stevenson PC, Barsoum N, Koricheva J. Stand Diversity Does Not Mitigate Increased Herbivory on Climate-Matched Oaks in an Assisted Migration Experiment. PLANT, CELL & ENVIRONMENT 2025; 48:3620-3631. [PMID: 39806928 PMCID: PMC11963489 DOI: 10.1111/pce.15383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Assisted migration is a tree-planting method where tree species or populations are translocated with the aim of establishing more climate-resilient forests. However, this might potentially increase the susceptibility of translocated trees to herbivory. Stand diversification through planting trees in species or genotypic mixtures may reduce the amount of damage by insect pests, but its effectiveness in mitigation of excess herbivory on climate-matched trees has seldom been explored. Using the Climate Match Experiment which manipulates both tree climatic provenance and stand diversity, we compared growth, insect herbivory and leaf traits of pedunculate oaks (Quercus robur) of local and Italian provenances in monocultures, provenance mixtures or species mixtures. Additionally, we investigated whether tree apparency and light availability cause variation in leaf traits and herbivory and tested whether these factors were influenced by stand diversity. We found that Italian oaks were subject to greater herbivore damage than those of local English provenance regardless of stand diversity and that insect herbivory in Italian oaks was higher on more apparent trees. Italian oaks also had lower concentrations of hydrolysable tannins than English oaks, but tannin concentrations were poor predictors of herbivory. Additionally, we show that leaf trait variation is strongly associated with differences in light availability.
Collapse
Affiliation(s)
- Juri A. Felix
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
- Royal Botanic GardensKewUK
| | - Philip C. Stevenson
- Royal Botanic GardensKewUK
- Natural Resources InstituteUniversity of GreenwichChathamUK
| | | | - Julia Koricheva
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| |
Collapse
|
2
|
Valdés-Correcher E, Kadiri Y, Bourdin A, Mrazova A, Bălăcenoiu F, Branco M, Bogdziewicz M, Bjørn MC, Damestoy T, Dobrosavljević J, Faticov M, Gripenberg S, Gossner MM, de Groot M, Hagge J, Hoopen JT, Lövei GL, Milanović S, Musolin DL, Mäntylä E, Moreira X, Piotti A, Rodríguez VM, Saez-Asensio C, Sallé A, Sam K, Sobral M, Tack AJM, Varela Z, Castagneyrol B. Effects of climate on leaf phenolics, insect herbivory, and their relationship in pedunculate oak (Quercus robur) across its geographic range in Europe. Oecologia 2025; 207:61. [PMID: 40186748 PMCID: PMC11972190 DOI: 10.1007/s00442-025-05696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
An increase in biotic interactions towards lower latitudes is one of the most consistent patterns in ecology. Higher temperatures and more stable climatic conditions at low latitudes are thought to enhance biotic interactions, accelerating biological evolution and leading to stronger anti-herbivore defences in plants. However, some studies report contradictory findings, highlighting the need for further investigation into the underlying mechanisms. We used a combination of field observations and feeding trials in controlled environments to investigate the effect of climate on chemical defences and insect herbivory in pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe, while controlling for physical defences. The concentration of lignin, flavonoids, and total phenolics increased significantly with temperature, whereas both field herbivory and weight of spongy moth (Lymantria dispar L.) larvae were negatively influenced by temperature. Lignin concentration positively influenced the weight of spongy moth larvae whereas it had no effect on field herbivory. We found no evidence of strong positive relationships between insect herbivory and larvae growth with leaf defences. Our study underscores the complexity of plant-herbivore interactions along climatic gradients and highlights the need for further research to disentangle these intricate relationships.
Collapse
Affiliation(s)
- Elena Valdés-Correcher
- Integrative Ecology Group, Estación Biológica de Doñana, Seville, Spain.
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France.
| | - Yasmine Kadiri
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France
- INRAE UE Ferlus, 86000, Lusignan, France
| | | | - Anna Mrazova
- Univ. Bordeaux, INRAE, BIOGECO, Cestas, France
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
| | - Flavius Bălăcenoiu
- National Institute for Research and Development in Forestry "Marin Drăcea", Voluntari, Romania
| | - Manuela Branco
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Michal Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| | - Mona Chor Bjørn
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg, Denmark
| | - Thomas Damestoy
- UniLaSalle, AGHYLE, UP.2018.C101, FR-60026, Beauvais, France
| | - Jovan Dobrosavljević
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Maria Faticov
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sofia Gripenberg
- School of Biological Sciences, University of Reading, Reading, UK
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| | - Maarten de Groot
- Department of Forest Protection, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Jonas Hagge
- Northwest German Forest Research Institute, Forest Nature Conservation, Prof.-Oelkers-Str. 6, 34346, Hann. Münden, Germany
- University of Göttingen, Forest Nature Conservation, Büsgenweg 3, 37077, Göttingen, Germany
| | | | - Gabor L Lövei
- Department of Agroecology, Aarhus University, Flakkebjerg ResearchCentre, 4200, Slagelse, Denmark
- HUN-REN-DU Anthropocene Ecology Research Group, University of Debrecen, 4010, Debrecen, Hungary
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 3, 613 00, Brno, Czech Republic
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization (EPPO), 21 Boulevard Richard Lenoir, 75011, Paris, France
| | - Elina Mäntylä
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Andrea Piotti
- Institute of Biosciences and BioResources, National Research Council of Italy, Sesto Fiorentino, Italy
| | - Víctor M Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | - Cristina Saez-Asensio
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080, Pontevedra, Galicia, Spain
| | | | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05, České Budějovice, Czech Republic
| | - Mar Sobral
- Department of Geography, University of Santiago de Compostela, Praza da Universidade, 1, 15703, Santiago de Compostela, Spain
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Zulema Varela
- CRETUS, Ecology Unit, Department Functional Biology, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | |
Collapse
|
3
|
Moreira X, Hervella P, Lago-Núñez B, Galmán A, de la Fuente M, Covelo F, Marquis RJ, Vázquez-González C, Abdala-Roberts L. Biotic and abiotic factors associated with genome size evolution in oaks. Ecology 2024; 105:e4417. [PMID: 39319753 DOI: 10.1002/ecy.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/16/2024] [Indexed: 09/26/2024]
Abstract
The evolutionary processes that underlie variation in plant genome size have been much debated. Abiotic factors are thought to have played an important role, with negative and positive correlations between genome size and seasonal or stressful climatic conditions being reported in several systems. In turn, variation in genome size may influence plant traits which affect interactions with other organisms, such as herbivores. The mechanisms underlying evolutionary linkages between plant genome size and biotic and abiotic factors nonetheless remain poorly understod. To address this gap, we conducted phylogenetically controlled analyses testing for associations between genome size, climatic variables, plant traits (defenses and nutrients), and herbivory across 29 oak (Quercus) species. Genome size is significantly associated with both temperature and precipitation seasonality, whereby oak species growing in climates with lower and less variable temperatures but more variable rainfall had larger genomes. In addition, we found a negative association between genome size and leaf nutrient concentration (found to be the main predictor of herbivory), which in turn led to an indirect effect on herbivory. A follow-up test suggested that the association between genome size and leaf nutrients influencing herbivory was mediated by variation in plant growth, whereby species with larger genomes have slower growth rates, which in turn are correlated with lower nutrients. Collectively, these findings reveal novel associations between plant genome size and biotic and abiotic factors that may influence life history evolution and ecological dynamics in this widespread tree genus.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Andrea Galmán
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | | | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | | | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
4
|
Broad GR. The genome sequence of the Dark Crimson Underwing moth, Catocala sponsa Linnaeus, 1767. Wellcome Open Res 2024; 9:412. [PMID: 39315356 PMCID: PMC11417456 DOI: 10.12688/wellcomeopenres.22759.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
We present a genome assembly from an individual female Catocala sponsa (the Dark Crimson Underwing; Arthropoda; Insecta; Lepidoptera; Erebidae). The genome sequence spans 803.70 megabases. Most of the assembly is scaffolded into 32 chromosomal pseudomolecules, including the Z and W sex chromosomes. The mitochondrial genome has also been assembled and is 15.57 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,493 protein-coding genes.
Collapse
|
5
|
Kariñho-Betancourt E, Vázquez-Lobo A, Núñez-Farfán J. Effect of Plant Defenses and Plant Nutrients on the Performance of Specialist and Generalist Herbivores of Datura: A Macroevolutionary Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:2611. [PMID: 37514225 PMCID: PMC10384791 DOI: 10.3390/plants12142611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Macroevolutionary patterns in the association between plant species and their herbivores result from ecological divergence promoted by, among other factors, plants' defenses and nutritional quality, and herbivore adaptations. Here, we assessed the performance of the herbivores Lema trilineata daturaphila, a trophic specialist on Datura, and Spodoptera frugiperda, a polyphagous pest herbivore, when fed with species of Datura. We used comparative phylogenetics and multivariate methods to examine the effects of Datura species' tropane alkaloids, leaf trichomes, and plant macronutrients on the two herbivores´ performances (amount of food consumed, number of damaged leaves, larval biomass increment, and larval growth efficiency). The results indicate that species of Datura do vary in their general suitability as food host for the two herbivores. Overall, the specialist performs better than the generalist herbivore across Datura species, and performance of both herbivores is associated with suites of plant defenses and nutrient characteristics. Leaf trichomes and major alkaloids of the Datura species are strongly related to herbivores' food consumption and biomass increase. Although hyoscyamine better predicts the key components of the performance of the specialist herbivore, scopolamine better predicts the performance of the generalist; however, only leaf trichomes are implicated in most performance components of the two herbivores. Nutrient quality more widely predicts the performance of the generalist herbivore. The contrasting effects of plant traits and the performances of herbivores could be related to adaptive differences to cope with plant toxins and achieve nutrient balance and evolutionary trade-offs and synergisms between plant traits to deal with a diverse community of herbivores.
Collapse
Affiliation(s)
- Eunice Kariñho-Betancourt
- Laboratorio de Genética Ecológica y Evolución, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Alejandra Vázquez-Lobo
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Juan Núñez-Farfán
- Laboratorio de Genética Ecológica y Evolución, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
6
|
The impact of polyphenolic compounds on the in vitro growth of oak-associated foliar endophytic and saprotrophic fungi. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
Broad GR. The genome sequence of the Grey Dagger, Acronicta psi (Linnaeus, 1758). Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18711.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present a genome assembly from an individual male Acronicta psi (the Grey Dagger; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 405 megabases in span. The whole assembly is scaffolded into 31 chromosomal pseudomolecules, including the assembled Z sex chromosome. The mitochondrial genome has also been assembled and is 15.4 kilobases long.
Collapse
|
8
|
Fyllas NM, Chrysafi D, Avtzis DN, Moreira X. Photosynthetic and defensive responses of two Mediterranean oaks to insect leaf herbivory. TREE PHYSIOLOGY 2022; 42:2282-2293. [PMID: 35766868 PMCID: PMC9832970 DOI: 10.1093/treephys/tpac067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Insect herbivory is a dominant interaction across virtually all ecosystems globally and has dramatic effects on plant function such as reduced photosynthesis activity and increased levels of defenses. However, most previous work assessing the link between insect herbivory, photosynthesis and plant defenses has been performed on cultivated model plant species, neglecting a full understanding of patterns in natural systems. In this study, we performed a field experiment to investigate the effects of herbivory by a generalist foliar feeding insect (Lymantria dispar) and leaf mechanical damage on multiple leaf traits associated with defense against herbivory and photosynthesis activity on two sympatric oak species with contrasting leaf habit (the evergreen Quercus coccifera L. and the deciduous Quercus pubescens Willd). Our results showed that, although herbivory treatments and oak species did not strongly affect photosynthesis and dark respiration, these two factors exerted interactive effects. Insect herbivory and mechanical damage (vs control) decreased photosynthesis activity for Q. coccifera but not for Q. pubescens. Insect herbivory and mechanical damage tended to increase chemical (increased flavonoid and lignin concentration) defenses, but these effects were stronger for Q. pubescens. Overall, this study shows that two congeneric oak species with contrasting leaf habit differ in their photosynthetic and defensive responses to insect herbivory. While the evergreen oak species followed a more conservative strategy (reduced photosynthesis and higher physical defenses), the deciduous oak species followed a more acquisitive strategy (maintained photosynthesis and higher chemical defenses).
Collapse
Affiliation(s)
| | - Despina Chrysafi
- Biodiversity Conservation Lab, Department of Environment, University of the Aegean, Mytilene 81100, Greece
| | - Dimitrios N Avtzis
- Forest Research Institute, Hellenic Agricultural Organization, Thessaloniki 57006, Greece
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, Pontevedra, Galicia 36080, Spain
| |
Collapse
|
9
|
He F, Wu Z, Zhao Z, Chen G, Wang X, Cui X, Zhu T, Chen L, Yang P, Bi L, Lin T. Drought stress drives sex-specific differences in plant resistance against herbivores between male and female poplars through changes in transcriptional and metabolic profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157171. [PMID: 35809724 DOI: 10.1016/j.scitotenv.2022.157171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Drought stress poses adverse influence on plant growth and further alters plant-herbivore interactions. Such effect is enhanced as drought occurrence is reported to increase due to global warming. Although dioecious plant species have shown sex-specific response to drought stress through the changes in growth performance and stress tolerance, whether such changes will drive sex-specific differences in defense against herbivores between male and female plant conspecifics is barely studied. In the current study, female and male poplar full-siblings were submitted to moderate (75 % field water capacity) and severe drought (50 % field water capacity) stresses, followed by herbivore growth and feeding bioassays to test the effect of plant gender on herbivore growth and feeding performance of two specialist and two generalist leaf herbivores. The results showed that although the growth of both plant sexes was inhibited by the two drought levels, male plants performed better than female conspecifics. In the paired-choice bioassays, the specialist herbivores preferred female plants while the generalist herbivores fed more on the male plants without drought stress. Both the moderate and severe drought stresses reversed such preferences. In the triple-choice bioassays, the specialist herbivores preferred female control plants while the generalist herbivores fed more on female plants under severe drought. In addition, the specialist herbivores fed on female plants from severe drought stress grew the worst while the generalist herbivores gained the highest fresh weight. The transcriptomic and metabolomic profiling revealed that female plant leaves contained higher levels of flavonoids than males under control condition while severe drought stress remarkably reduced the levels of defensive metabolites such as flavonoids, isoflavonoids, neoflavonoids and alkaloids in female but not in male plant leaves.
Collapse
Affiliation(s)
- Fang He
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Zhengqin Wu
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Zhengbao Zhao
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China; College of Resources and Environmental Engineering, Sichuan Water Conservancy College, 611231 Chongzhou, China
| | - Gang Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Xuegui Wang
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Xinglei Cui
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Tianhui Zhu
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Lianghua Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Peng Yang
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Lingfeng Bi
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Tiantian Lin
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China.
| |
Collapse
|
10
|
Müller AT, Reichelt M, Cosio EG, Salinas N, Nina A, Wang D, Moossen H, Geilmann H, Gershenzon J, Köllner TG, Mithöfer A. Combined -omics framework reveals how ant symbionts benefit the Neotropical ant-plant Tococa quadrialata at different levels. iScience 2022; 25:105261. [PMID: 36274949 PMCID: PMC9579026 DOI: 10.1016/j.isci.2022.105261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 10/25/2022] Open
Abstract
Ant-plant defensive mutualism is a widely studied phenomenon, where ants protect their host plants (myrmecophytes) against herbivores in return for the provision of nesting sites and food. However, few studies addressed the influence of ant colonization and herbivory on the plant's metabolism. We chose the Amazonian plant Tococa quadrialata, living in association with Azteca cf. tonduzi ants for an ant-exclusion study to reveal the chemistry behind this symbiosis. We found that colonized plants did not only benefit from protection but also from increased amino acid and nitrogen content, enabling better performance even in an herbivore-free environment. In contrast, ant-deprived T. quadrialata plants accumulated more ellagitannins, a major class of constitutive defense compounds. Moreover, herbivory-induced jasmonate-mediated defense responses, including the upregulation of signaling and defense genes and the emission of volatiles irrespective of colonization status. Altogether, we show how ant-colonization can influence the general and defense-related metabolism and performance of myrmecophytes.
Collapse
Affiliation(s)
- Andrea T. Müller
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Michael Reichelt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
| | - Eric G. Cosio
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Norma Salinas
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Alex Nina
- Pontifical Catholic University of Peru, Institute for Nature Earth and Energy (INTE-PUCP), San Miguel, 15088 Lima, Peru
| | - Ding Wang
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
| | - Heiko Moossen
- Max Planck Institute for Biogeochemistry, Stable Isotope Laboratory (BGC-IsoLab), 07745 Jena, Germany
| | - Heike Geilmann
- Max Planck Institute for Biogeochemistry, Stable Isotope Laboratory (BGC-IsoLab), 07745 Jena, Germany
| | - Jonathan Gershenzon
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, 07745 Jena, Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, 07745 Jena, Germany
| | - Axel Mithöfer
- Max Planck Institute for Chemical Ecology, Research Group Plant Defense Physiology, 07745 Jena, Germany
| |
Collapse
|
11
|
Seifert CL, Strutzenberger P, Fiedler K. Ecological specialisation and range size determine intraspecific body size variation in a speciose clade of insect herbivores. OIKOS 2022. [DOI: 10.1111/oik.09338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlo L. Seifert
- Dept of Nature Forest Conservation, Georg‐August‐Univ. of Göttingen Göttingen Germany
| | | | - Konrad Fiedler
- Dept of Botany and Biodiversity Research, Univ. of Vienna Vienna Austria
| |
Collapse
|
12
|
Ekholm A, Faticov M, Tack AJM, Roslin T. Herbivory in a changing climate-Effects of plant genotype and experimentally induced variation in plant phenology on two summer-active lepidopteran herbivores and one fungal pathogen. Ecol Evol 2022; 12:e8495. [PMID: 35136555 PMCID: PMC8796927 DOI: 10.1002/ece3.8495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022] Open
Abstract
With climate change, spring warming tends to advance plant leaf-out. While the timing of leaf-out has been shown to affect the quality of leaves for herbivores in spring, it is unclear whether such effects extend to herbivores active in summer. In this study, we first examined how spring and autumn phenology of seven Quercus robur genotypes responded to elevated temperatures in spring. We then tested whether the performance of two summer-active insect herbivores (Orthosia gothica and Polia nebulosa) and infection by a pathogen (Erysiphe alphitoides) were influenced by plant phenology, traits associated with genotype or the interaction between these two. Warm spring temperatures advanced both bud development and leaf senescence in Q. robur. Plants of different genotype differed in terms of both spring and autumn phenology. Plant phenology did not influence the performance of two insect herbivores and a pathogen, while traits associated with oak genotype had an effect on herbivore performance. Weight gain for O. gothica and ingestion for P. nebulosa differed by a factor of 4.38 and 2.23 among genotypes, respectively. Herbivore species active in summer were influenced by traits associated with plant genotype but not by phenology. This suggest that plant attackers active in summer may prove tolerant to shifts in host plant phenology-a pattern contrasting with previously documented effects on plant attackers active in spring and autumn.
Collapse
Affiliation(s)
- Adam Ekholm
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Maria Faticov
- Department of EcologyEnvironment and Plant Sciences, Stockholm UniversityStockholmSweden
| | - Ayco J. M. Tack
- Department of EcologyEnvironment and Plant Sciences, Stockholm UniversityStockholmSweden
| | - Tomas Roslin
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
13
|
Volf M, Volfová T, Seifert CL, Ludwig A, Engelmann RA, Jorge LR, Richter R, Schedl A, Weinhold A, Wirth C, van Dam NM. A mosaic of induced and non-induced branches promotes variation in leaf traits, predation and insect herbivore assemblages in canopy trees. Ecol Lett 2021; 25:729-739. [PMID: 34958165 DOI: 10.1111/ele.13943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Forest canopies are complex and highly diverse environments. Their diversity is affected by pronounced gradients in abiotic and biotic conditions, including variation in leaf chemistry. We hypothesised that branch-localised defence induction and vertical stratification in mature oaks constitute sources of chemical variation that extend across trophic levels. To test this, we combined manipulation of plant defences, predation monitoring, food-choice trials with herbivores and sampling of herbivore assemblages. Both induction and vertical stratification affected branch chemistry, but the effect of induction was stronger. Induction increased predation in the canopy and reduced herbivory in bioassays. The effects of increased predation affected herbivore assemblages by decreasing their abundance, and indirectly, their richness. In turn, we show that there are multiple factors contributing to variation across canopies. Branch-localised induction, variation between tree individuals and predation may be the ones with particularly strong effects on diverse assemblages of insects in temperate forests.
Collapse
Affiliation(s)
- Martin Volf
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Tereza Volfová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Carlo L Seifert
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Faculty of Forest Sciences and Forest Ecology, Department of Forest Nature Conservation, Georg-August-University, Göttingen, Germany
| | - Antonia Ludwig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Rolf A Engelmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany
| | - Leonardo Ré Jorge
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Ronny Richter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Geoinformatics and Remote Sensing, Institute for Geography, University of Leipzig, Leipzig, Germany
| | - Andreas Schedl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Alexander Weinhold
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute for Biology, University of Leipzig, Leipzig, Germany.,Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
14
|
Seifert CL, Jorge LR, Volf M, Wagner DL, Lamarre GPA, Miller SE, Gonzalez‐Akre E, Anderson‐Teixeira KJ, Novotný V. Seasonality affects specialisation of a temperate forest herbivore community. OIKOS 2021. [DOI: 10.1111/oik.08265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Carlo L. Seifert
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Leonardo R. Jorge
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
| | - David L. Wagner
- Dept of Ecology and Evolutionary Biology, Univ. of Connecticut Storrs CT USA
| | - Greg P. A. Lamarre
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
| | - Scott E. Miller
- National Museum of Natural History, Smithsonian Inst. Washington D.C. USA
| | - Erika Gonzalez‐Akre
- Conservation Ecology Center, Smithsonian Conservation Biology Inst. Front Royal VA USA
| | | | - Vojtěch Novotný
- Biology Centre of the Czech Academy of Sciences, Inst. of Entomology České Budějovice Czech Republic
- Faculty of Science, Univ. of South Bohemia České Budějovice Czech Republic
- ForestGEO, Smithsonian Tropical Research Inst. Balboa Ancon Panama
| |
Collapse
|
15
|
De La Pascua DR, Smith-Winterscheidt C, Dowell JA, Goolsby EW, Mason CM. Evolutionary trade-offs in the chemical defense of floral and fruit tissues across genus Cornus. AMERICAN JOURNAL OF BOTANY 2020; 107:1260-1273. [PMID: 32984956 DOI: 10.1002/ajb2.1540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Defense investment in plant reproductive structures is relatively understudied compared to the defense of vegetative organs. Here the evolution of chemical defenses in reproductive structures is examined in light of the optimal defense, apparency, and resource availability hypotheses within the genus Cornus using a phylogenetic comparative approach in relation to phenology and native habitat environmental data. METHODS Individuals representing 25 Cornus species were tracked for reproductive phenology over a full growing season at the Arnold Arboretum of Harvard University. Floral, fruit, and leaf tissue was sampled to quantify defensive chemistry as well as fruit nutritional traits relevant to bird dispersal. Native habitat environmental characteristics were estimated using locality data from digitized herbarium records coupled with global soil and climate data sets. RESULTS The evolution of later flowering was correlated with increased floral tannins, and the evolution of later fruiting was correlated with increased total phenolics. Leaves were found to contain the highest tannin activity, while inflorescences contained the highest total flavonoids. Multiple aspects of fruit defensive chemistry were correlated with fruit nutritional traits. Floral and fruit defensive chemistry were evolutionarily correlated with aspects of native habitat temperature, precipitation, and soil characteristics. CONCLUSIONS Results provide tentative support for the apparency hypothesis with respect to both flower and fruit phenology, while relative concentrations of secondary metabolites across organs provide mixed support for the optimal defense hypothesis. The evolution of reproductive defense with native habitat provides, at best, mixed support for the resource availability hypothesis.
Collapse
Affiliation(s)
| | | | - Jordan A Dowell
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Eric W Goolsby
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, 32816, USA
- Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
16
|
Compound Specific Trends of Chemical Defences in Ficus Along an Elevational Gradient Reflect a Complex Selective Landscape. J Chem Ecol 2020; 46:442-454. [PMID: 32314119 DOI: 10.1007/s10886-020-01173-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 03/16/2020] [Indexed: 01/20/2023]
Abstract
Elevational gradients affect the production of plant secondary metabolites through changes in both biotic and abiotic conditions. Previous studies have suggested both elevational increases and decreases in host-plant chemical defences. We analysed the correlation of alkaloids and polyphenols with elevation in a community of nine Ficus species along a continuously forested elevational gradient in Papua New Guinea. We sampled 204 insect species feeding on the leaves of these hosts and correlated their community structure to the focal compounds. Additionally, we explored species richness of folivorous mammals along the gradient. When we accounted for Ficus species identity, we found a general elevational increase in flavonoids and alkaloids. Elevational trends in non-flavonol polyphenols were less pronounced or showed non-linear correlations with elevation. Polyphenols responded more strongly to changes in temperature and humidity than alkaloids. The abundance of insect herbivores decreased with elevation, while the species richness of folivorous mammals showed an elevational increase. Insect community structure was affected mainly by alkaloid concentration and diversity. Although our results show an elevational increase in several groups of metabolites, the drivers behind these trends likely differ. Flavonoids may provide figs with protection against abiotic stressors. In contrast, alkaloids affect insect herbivores and may provide protection against mammalian herbivores and pathogens. Concurrent analysis of multiple compound groups alongside ecological data is an important approach for understanding the selective landscape that shapes plant defences.
Collapse
|
17
|
Visakorpi K, Riutta T, Malhi Y, Salminen JP, Salinas N, Gripenberg S. Changes in oak (Quercus robur) photosynthesis after winter moth (Operophtera brumata) herbivory are not explained by changes in chemical or structural leaf traits. PLoS One 2020; 15:e0228157. [PMID: 31978155 PMCID: PMC6980561 DOI: 10.1371/journal.pone.0228157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 11/24/2022] Open
Abstract
Insect herbivores have the potential to change both physical and chemical traits of their host plant. Although the impacts of herbivores on their hosts have been widely studied, experiments assessing changes in multiple leaf traits or functions simultaneously are still rare. We experimentally tested whether herbivory by winter moth (Operophtera brumata) caterpillars and mechanical leaf wounding changed leaf mass per area, leaf area, leaf carbon and nitrogen content, and the concentrations of 27 polyphenol compounds on oak (Quercus robur) leaves. To investigate how potential changes in the studied traits affect leaf functioning, we related the traits to the rates of leaf photosynthesis and respiration. Overall, we did not detect any clear effects of herbivory or mechanical leaf damage on the chemical or physical leaf traits, despite clear effect of herbivory on photosynthesis. Rather, the trait variation was primarily driven by variation between individual trees. Only leaf nitrogen content and a subset of the studied polyphenol compounds correlated with photosynthesis and leaf respiration. Our results suggest that in our study system, abiotic conditions related to the growth location, variation between tree individuals, and seasonal trends in plant physiology are more important than herbivory in determining the distribution and composition of leaf chemical and structural traits.
Collapse
Affiliation(s)
- Kristiina Visakorpi
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, England, United Kingdom
| | - Terhi Riutta
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, England, United Kingdom
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, England, United Kingdom
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, England, United Kingdom
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI Turku, Finland
| | - Norma Salinas
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, England, United Kingdom
- Seccion Química, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Sofia Gripenberg
- School of Biological Sciences, University of Reading, Reading, England, United Kingdom
| |
Collapse
|
18
|
Marsh KJ, Wallis IR, Kulheim C, Clark R, Nicolle D, Foley WJ, Salminen J. New approaches to tannin analysis of leaves can be used to explain in vitro biological activities associated with herbivore defence. THE NEW PHYTOLOGIST 2020; 225:488-498. [PMID: 31412143 PMCID: PMC6916633 DOI: 10.1111/nph.16117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 05/08/2023]
Abstract
Although tannins have been an important focus of studies of plant-animal interactions, traditional tannin analyses cannot differentiate between the diversity of structures present in plants. This has limited our understanding of how different mixtures of these widespread secondary metabolites contribute to variation in biological activity. We used UPLC-MS/MS to determine the concentration and broad composition of tannins and polyphenols in 628 eucalypt (Eucalyptus, Corymbia and Angophora) samples, and related these to three in vitro functional measures believed to influence herbivore defence: protein precipitation capacity, oxidative activity at high pH and capacity to reduce in vitro nitrogen (N) digestibility. Protein precipitation capacity was most strongly correlated with concentrations of procyanidin subunits in proanthocyanidins (PAs), and late-eluting ellagitannins. Capacity to reduce in vitro N digestibility was affected most by the subunit composition and mean degree of polymerisation (mDP) of PAs. Finally, concentrations of ellagitannins and prodelphinidin subunits of PAs were the strongest determinants of oxidative activity. The results illustrate why measures of total tannins rarely correlate with animal feeding responses. However, they also confirm that the analytical techniques utilised here could allow researchers to understand how variation in tannins influence the ecology of individuals and populations of herbivores, and, ultimately, other ecosystem processes.
Collapse
Affiliation(s)
- Karen J. Marsh
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Ian R. Wallis
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Carsten Kulheim
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Robert Clark
- Research School of FinanceActuarial Studies and StatisticsThe Australian National UniversityCanberraACT2601Australia
| | - Dean Nicolle
- Currency Creek ArboretumPO Box 808Melrose ParkSA5039Australia
| | - William J. Foley
- Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
| | - Juha‐Pekka Salminen
- Natural Chemistry Research GroupDepartment of ChemistryUniversity of TurkuTurkuFI‐20500Finland
| |
Collapse
|
19
|
Ekholm A, Tack AJM, Pulkkinen P, Roslin T. Host plant phenology, insect outbreaks and herbivore communities - The importance of timing. J Anim Ecol 2019; 89:829-841. [PMID: 31769502 DOI: 10.1111/1365-2656.13151] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/27/2019] [Indexed: 01/19/2023]
Abstract
Climate change may alter the dynamics of outbreak species by changing the phenological synchrony between herbivores and their host plants. As host plant phenology has a genotypic component that may interact with climate, infestation levels among genotypes might change accordingly. When the outbreaking herbivore is active early in the season, its infestation levels may also leave a detectable imprint on herbivores colonizing the plant later in the season. In this study, we first investigated how the spring phenology and genotype of Quercus robur influenced the density of the spring-active, outbreaking leaf miner Acrocercops brongniardellus. We then assessed how intraspecific density affected the performance of A. brongniardellus and how oak genotype and density of A. brongniardellus affected the insect herbivore community. We found that Q. robur individuals of late spring phenology were more strongly infested by A. brongniardellus. Conspecific pupae on heavily infested oaks tended to be lighter, and fewer heterospecific insect herbivores colonized the oak later in the season. Beyond its effects through phenology, plant genotype left an imprint on herbivore species richness and on two insect herbivores. Our results suggest a chain of knock-on effects from plant phenology, through the outbreaking species to the insect herbivore community. Given the finding of how phenological synchrony between the outbreak species and its host plant influences infestation levels, a shift in synchrony may then change outbreak dynamics and cause cascading effects on the insect community.
Collapse
Affiliation(s)
- Adam Ekholm
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Galmán A, Abdala-Roberts L, Covelo F, Rasmann S, Moreira X. Parallel increases in insect herbivory and defenses with increasing elevation for both saplings and adult trees of oak (Quercus) species. AMERICAN JOURNAL OF BOTANY 2019; 106:1558-1565. [PMID: 31724166 DOI: 10.1002/ajb2.1388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Herbivory is predicted to increase toward warmer and more stable climates found at lower elevations, and this increase should select for higher plant defenses. Still, a number of recent studies have reported either no evidence of such gradients or reverse patterns. One source of inconsistency may be that plant ontogenetic variation is usually not accounted for and may influence levels of plant defenses and herbivory. METHODS We tested for elevational gradients in insect leaf herbivory and leaf traits putatively associated with herbivore resistance across eight oak (Quercus, Fagaceae) species and compared these patterns for saplings and adult trees. To this end, we surveyed insect leaf herbivory and leaf traits (phenolic compounds, toughness and nutrients) in naturally occurring populations of each oak species at low-, mid- or high-elevation sites throughout the Iberian Peninsula. RESULTS Leaf herbivory and chemical defenses (lignins) were unexpectedly higher at mid- and high-elevation sites than at low-elevation sites. In addition, leaf chemical defenses (lignins and condensed tannins) were higher for saplings than adult trees, whereas herbivory did not significantly differ between ontogenetic stages. Overall, elevational variation in herbivory and plant chemical defenses were consistent across ontogenetic stages (i.e., elevational gradients were not contingent upon tree ontogeny), and herbivory and leaf traits were not associated across elevations. CONCLUSIONS These findings suggest disassociated patterns of elevational variation in herbivory and leaf traits, which, in turn, are independent of plant ontogenetic stage.
Collapse
Affiliation(s)
- Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080, Pontevedra, Galicia, Spain
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080, Pontevedra, Galicia, Spain
| |
Collapse
|
21
|
Moreira X, Vázquez-González C, Encinas-Valero M, Covelo F, Castagneyrol B, Abdala-Roberts L. Greater phylogenetic distance from native oaks predicts escape from insect leaf herbivores by non-native oak saplings. AMERICAN JOURNAL OF BOTANY 2019; 106:1202-1209. [PMID: 31449333 DOI: 10.1002/ajb2.1343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Non-native plant species have been hypothesized to experience lower herbivory in novel environments as a function of their phylogenetic distance from native plant species. Although recent work has found support for this prediction, the plant traits responsible for such patterns have been largely overlooked. METHODS In a common garden experiment in northwestern Spain, we tested whether oak species (Quercus spp.) not native to this region that are phylogenetically more distantly related to native species exhibit less insect leaf herbivory. In addition, we also investigated plant traits potentially correlated with any such effect of phylogenetic distance. RESULTS As expected, phylogenetic distance from native species negatively predicted insect leaf herbivory on non-native oaks. In addition, we found that the leaf traits, namely phosphorus and condensed tannins, were significantly associated with herbivory, suggesting that they are associated with the effect of phylogenetic distance on leaf herbivory on non-native oak species. CONCLUSIONS This study contributes to a better understanding of how evolutionary relationships (relatedness) between native and non-native plant species determine the latter's success in novel environments via locally shared enemies, and encourages more work investigating the plant traits that mediate the effects of phylogenetic distance on enemy escape.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, 36080, Pontevedra, Galicia, Spain
| | | | | | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km. 1, 41013, Sevilla, Spain
| | | | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000, Mérida, Yucatán, México
| |
Collapse
|
22
|
Visakorpi K, Riutta T, Martínez-Bauer AE, Salminen JP, Gripenberg S. Insect community structure covaries with host plant chemistry but is not affected by prior herbivory. Ecology 2019; 100:e02739. [PMID: 31006108 DOI: 10.1002/ecy.2739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/04/2019] [Accepted: 04/01/2019] [Indexed: 11/06/2022]
Abstract
By feeding on plant tissue, insect herbivores can change several characteristics of their hosts. These changes have the potential to alter the quality of the plant for other herbivore species, potentially altering the structure of the community of species attacking the plant at a later point in time. We tested whether herbivory early in the season changes host plant performance, polyphenol chemistry, and the community structure of sessile herbivores later in the season. We experimentally manipulated densities of early-season moth caterpillars on a set of young oak trees and measured tree growth, reproduction, leaf chemistry, and the abundance and community composition of leafmining and galling species later in the season. The experimental manipulations of early-season herbivores did not affect late-season leaf chemistry or tree performance. Early-season herbivores had a weak negative effect on the abundance of gallers and a positive, tree-dependent effect on the overall diversity of late-season sessile herbivores. The chemical composition of leaves covaried with the species composition of the late-season leafmining and galling community. Both the chemical composition of the host tree and the late-season insect community structure were strongly affected by the growth location of the tree. Our results suggest that plant-mediated indirect effects between herbivores might play a limited role in this system, whereas the underlying variation in plant chemistry is an important factor structuring the associated insect community. Our results emphasize that factors other than prior herbivory can be important determinants of plant chemistry and the community composition of herbivores.
Collapse
Affiliation(s)
- Kristiina Visakorpi
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, United Kingdom.,Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Terhi Riutta
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | | | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, FI-20500, Finland
| | - Sofia Gripenberg
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ, United Kingdom.,School of Biological Sciences, University of Reading, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
23
|
Heiling JM, Cook D, Lee ST, Irwin RE. Pollen and vegetative secondary chemistry of three pollen-rewarding lupines. AMERICAN JOURNAL OF BOTANY 2019; 106:643-655. [PMID: 31046151 DOI: 10.1002/ajb2.1283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Optimal defense theory predicts that selection should drive plants to disproportionally allocate resources for herbivore defense to tissues with high fitness values. Because pollen's primary role is the transport of gametes, plants may be expected to defend it from herbivory. However, for many animal-pollinated plants, pollen serves a secondary role as a pollinator reward. These dual roles may present a conflict between selection to defend pollen from herbivores and selection to reward pollinators. Here, we investigate whether pollen secondary chemistry in three pollen-rewarding Lupinus species better reflects the need to defend pollen or reward pollinators. METHODS Lupinus (Fabaceae) species are nectarless, pollen-rewarding, and produce defensive quinolizidine and/or piperidine alkaloids throughout their tissues. We used gas chromatography to identify and quantitate the alkaloids in four aboveground tissues (pollen, flower, leaf, stem) of three western North American lupines, L. argenteus, L. bakeri, and L. sulphureus, and compared alkaloid concentrations and composition among tissues within individuals. RESULTS In L. argenteus and L. sulphureus, pollen alkaloid concentrations were 11-35% of those found in other tissues. We detected no alkaloids in L. bakeri pollen, though they were present in other tissues. Alkaloid concentrations were not strongly correlated among tissues within individuals. We detected fewer alkaloids in pollen compared to other tissues, and pollen contained no unique alkaloids. CONCLUSIONS Our results are consistent with the hypothesis that, in these pollen-rewarding species, pollen secondary chemistry may reflect the need to attract and reward pollinators more than the need to defend pollen from herbivory.
Collapse
Affiliation(s)
- Jacob M Heiling
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
- Rocky Mountain Biological Laboratory, Gothic, CO, USA
| | - Daniel Cook
- USDA ARS Poisonous Plant Research Laboratory, Logan, UT, USA
| | - Stephen T Lee
- USDA ARS Poisonous Plant Research Laboratory, Logan, UT, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
- Rocky Mountain Biological Laboratory, Gothic, CO, USA
| |
Collapse
|
24
|
Morrison CR, Aubert C, Windsor DM. Variation in Host Plant Usage and Diet Breadth Predict Sibling Preference and Performance in the Neotropical Tortoise Beetle Chelymorpha alternans (Coleoptera: Chrysomelidae: Cassidinae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:382-394. [PMID: 30753405 DOI: 10.1093/ee/nvy194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 06/09/2023]
Abstract
Specialized interactions between insects and the plants that they consume are one of the most ubiquitous and consequential ecological associations on the plant. Decades of investigation suggest that a narrow diet favors an individual phytophagous insect's performance relative to a dietary generalist. However, this body of research has tended to approach questions of diet breadth and host usage from the perspective of temperate plant-insect associations. Relationships between diet breadth, host usage, and variation in tropical insect preference and performance remain largely uninvestigated. Here we characterize how variation in diet breadth and host usage affect oviposition preference, development, survival, and gain in mass of a Neotropical tortoise beetle Chelymorpha alternans Boheman 1854 (Coleoptera: Chrysomelidae), using a split-brood, sibling experimental design. Host performance was measured after splitting broods among four no-choice host diets. Groups consuming single hosts varied among themselves in developmental time and survival from larva to adult. Performance did not vary among groups consuming multiple and single hosts. Oviposition preference was measured in choice and no-choice tests. Females displayed preference for the original host in both experiments. Developmental time and survival of offspring sourced from the no-choice experiment was measured for two complete generations to explore correlations with female oviposition preference. Preference for the original host correlated with high survivorship and an intermediate developmental time. Survivorship and time to develop were also high on an alternative host that was less preferred. Departures from predictions of prevailing preference-performance hypotheses suggest that host usage presents C. alternans with fitness trade-offs.
Collapse
Affiliation(s)
- Colin R Morrison
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| | - Clément Aubert
- Département Biologie Écologie, Université de Montpellier, Montpellier, France
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| | - Donald M Windsor
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| |
Collapse
|
25
|
Damestoy T, Brachi B, Moreira X, Jactel H, Plomion C, Castagneyrol B. Oak genotype and phenolic compounds differently affect the performance of two insect herbivores with contrasting diet breadth. TREE PHYSIOLOGY 2019; 39:615-627. [PMID: 30668790 DOI: 10.1093/treephys/tpy149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 05/16/2023]
Abstract
Research on plant-herbivore interactions has long recognized that plant genetic variation plays a central role in driving insect abundance and herbivory, as well as in determining plant defense. However, how plant genes influence herbivore feeding performances, and which plant defensive traits mediate these effects, remain poorly understood. Here we investigated the feeding performances of two insect leaf chewers with contrasting diet breadth (the generalist Lymantria dispar L. and the specialist Thaumetopoea processionea L.) on different genotypes of pedunculate oak (Quercus robur L.) and tested the role of leaf phenolics. We used leaves from four clones of 30 Q. robur full-sibs grown in a common garden to estimate the performance of both herbivores in laboratory feeding trials and to quantify the concentration of constitutive chemical defences (phenolic compounds). We found that tree genetics influenced leaf consumption by T. processionea but not by L. dispar. However genetic variation among trees did not explain growth rate variation in either herbivore nor in leaf phenolics. Interestingly, all phenolic compounds displayed a positive relationship with L. dispar growth rate, and leaf consumption by both herbivores displayed a positive relationship with the concentrations of condensed tannins, suggesting that highly defended leaves could induce a compensatory feeding response. While genetic variation in oaks did not explain herbivore growth rate, we found positive genetic correlations between the two herbivores for leaf consumption and digestion. Overall, we found that oak genotype and phenolic compounds partly and independently contribute to variability in herbivore performance. We challenged the current view of plant-insect interaction and provided little support to the idea that the effect of plant genotype on associated organisms is driven by plant defences. Together, our results point to the existence of genetically determined resistance traits in oaks whose effects differ between herbivores and motivate further research on mechanisms governing oak-herbivore interactions.
Collapse
Affiliation(s)
- Thomas Damestoy
- BIOGECO, INRA, Univ. Bordeaux, 69 route d'Arcachon, Cestas Cedex, France
| | - Benjamin Brachi
- BIOGECO, INRA, Univ. Bordeaux, 69 route d'Arcachon, Cestas Cedex, France
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - Hervé Jactel
- BIOGECO, INRA, Univ. Bordeaux, 69 route d'Arcachon, Cestas Cedex, France
| | - Christophe Plomion
- BIOGECO, INRA, Univ. Bordeaux, 69 route d'Arcachon, Cestas Cedex, France
| | | |
Collapse
|
26
|
Marsh KJ, Saraf I, Hocart CH, Youngentob K, Singh IP, Foley WJ. Occurrence and distribution of unsubstituted B-ring flavanones in Eucalyptus foliage. PHYTOCHEMISTRY 2019; 160:31-39. [PMID: 30682682 DOI: 10.1016/j.phytochem.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
A group of plant specialised metabolites (PSMs) collectively known as unsubstituted B-ring flavanones (UBFs) have previously been found in the foliage of some species from the genus Eucalyptus L'Hér. (Myrtaceae), specifically from the subgenus Eucalyptus (monocalypts). Captive feeding studies using artificial diets suggest that these compounds may potentially influence the feeding preferences of marsupial folivores, such as koalas. Understanding natural variation in the composition and concentration of UBFs in eucalypt foliage is a first step to deciding whether, through their effects on herbivory, they might have broader effects on ecosystem dynamics. We used ESI-LCMS/MS and HPLC to characterise and quantify UBFs in 351 individual trees from 25 monocalypt species. We found large variation in the total UBF concentration both between and within species. For example, the mean concentration of UBFs in Eucalyptus muelleriana was 0.2 mg g-1 dry wt, whereas it was 105.7 mg g-1 dry wt, with a range of 78.2-141.3 mg g-1 dry wt, in Eucalyptus mediocris. Different eucalypt species contained different subsets of ten UBFs, and three species showed potential chemotypic variation between individuals within species. Our results suggest that UBFs naturally vary between monocalypt species and individuals at concentrations that could realistically be expected to affect the feeding dynamics of marsupial eucalypt folivores. UBFs could be measured relatively rapidly and cheaply in future studies using near-infrared reflectance (NIR) spectroscopy, as we were able to successfully predict the total UBF concentration of samples from their NIR spectra, with an r2 value of 0.98 and a standard error of prediction (SEP) of 6.07. This work further solidifies NIR spectroscopy as a powerful tool enabling ecologists to analyse the chemical composition of large numbers of samples.
Collapse
Affiliation(s)
- Karen J Marsh
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| | - Isha Saraf
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Charles H Hocart
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia; School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Long Shuo Rd, Wei Yang District, Xi'an, Shaanxi 710021, People's Republic of China
| | - Kara Youngentob
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Inder-Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - William J Foley
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
27
|
Galmán A, Petry WK, Abdala-Roberts L, Butrón A, de la Fuente M, Francisco M, Kergunteuil A, Rasmann S, Moreira X. Inducibility of chemical defences in young oak trees is stronger in species with high elevational ranges. TREE PHYSIOLOGY 2019; 39:606-614. [PMID: 30597091 DOI: 10.1093/treephys/tpy139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Elevational gradients have been highly useful for understanding the underlying forces driving variation in plant traits and plant-insect herbivore interactions. A widely held view from these studies has been that greater herbivory under warmer and less variable climatic conditions found at low elevations has resulted in stronger herbivore selection on plant defences. However, this prediction has been called into question by conflicting empirical evidence, which could be explained by a number of causes such as an incomplete assessment of defensive strategies (ignoring other axes of defence such as defence inducibility) or unaccounted variation in abiotic factors along elevational clines. We conducted a greenhouse experiment testing for inter-specific variation in constitutive leaf chemical defences (phenolic compounds) and their inducibility in response to feeding by gypsy moth larvae (Lymantria dispar L., Lepidoptera) using saplings of 18 oak (Quercus, Fagaceae) species. These species vary in their elevational distribution and together span >2400 m in elevation, therefore allowing us to test for among-species elevational clines in defences based on the elevational range of each species. In addition, we further tested for elevational gradients in the correlated expression of constitutive defences and their inducibility and for associations between defences and climatic factors potentially underlying elevational gradients in defences. Our results showed that oak species with high elevational ranges exhibited a greater inducibility of phenolic compounds (hydrolysable tannins), but this gradient was not accounted for by climatic predictors. In contrast, constitutive defences and the correlated expression of constitutive phenolics and their inducibility did not exhibit elevational clines. Overall, this study builds towards a more robust and integrative understanding of how multivariate plant defensive phenotypes vary along ecological gradients and their underlying abiotic drivers.
Collapse
Affiliation(s)
- Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - William K Petry
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 16, Zurich, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, Mérida, Yucatán, México
| | - Ana Butrón
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - María de la Fuente
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| | - Alan Kergunteuil
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, Switzerland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, Pontevedra, Galicia, Spain
| |
Collapse
|
28
|
Anstett DN, Cheval I, D'Souza C, Salminen JP, Johnson MTJ. Ellagitannins from the Onagraceae Decrease the Performance of Generalist and Specialist Herbivores. J Chem Ecol 2018; 45:86-94. [PMID: 30511298 DOI: 10.1007/s10886-018-1038-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/11/2018] [Accepted: 11/25/2018] [Indexed: 02/03/2023]
Abstract
Phenolics have a role in defenses against herbivores, but the defensive functions of specific groups of phenolics are still poorly understood. For example, ellagitannins (a type of hydrolyzable tannin) are predicted to decrease insect herbivore performance, but the effect of different types of ellagitannins on generalist and specialist herbivores has rarely been assessed. Here, we test the effects of the dominant oligomeric ellagitannins of Oenothera biennis and other Onagraceae on herbivore performance. We fed artificial diets containing between 1 and 100 mg/g of polyphenol fractions comprised of varying amounts and compositions of dimeric oenothein B, the trimeric oenothein A and larger oligomers, to one generalist (Spodoptera exigua) and one specialist (Schinia florida) insect herbivore species. We compared the effects of these ellagitannin fractions on herbivore performance to the effects of artificial diet containing total phenolic extracts from O. biennis, which contained these ellagitannins as well as many additional phenolic metabolites including flavonoid glycosides and caffeic acid derivatives. Both the ellagitannin fractions and O. biennis phenolic extracts had strong negative effects on S. exigua and S. florida performance, with stronger effects on the generalist herbivore. Differences between the effects of the various ellagitannin fractions were small and depended on insect life stage. The defensive effects of these ellagitannins were large, with lethal concentrations as low as 0.1% of the diet. These results highlight the important defensive function of ellagitannins against specialist and generalist herbivores and the need to characterize the effects of these understudied phenolics.
Collapse
Affiliation(s)
- Daniel N Anstett
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada.
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Iris Cheval
- AgroSup Dijon, 21000, Dijon, Burgundy, France
| | - Caitlyn D'Souza
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | | | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
29
|
Moreira X, Abdala-Roberts L, Berny Mier y Teran JC, Covelo F, de la Mata R, Francisco M, Hardwick B, Pires RM, Roslin T, Schigel DS, ten Hoopen JPJG, Timmermans BGH, van Dijk LJA, Castagneyrol B, Tack AJM. Impacts of urbanization on insect herbivory and plant defences in oak trees. OIKOS 2018. [DOI: 10.1111/oik.05497] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, ES-36080 Pontevedra; Galicia Spain
| | - Luis Abdala-Roberts
- Depto de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Univ; Autόnoma de Yucatán Mérida Yucatán México
| | | | - Felisa Covelo
- Depto de Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide; Sevilla Spain
| | - Raúl de la Mata
- Research Inst. of Food Technology and Agriculture-IRTA; Caldes de Montbui Spain
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apdo. 28, ES-36080 Pontevedra; Galicia Spain
| | - Bess Hardwick
- Dept of Agricultural Sciences, Univ. of Helsinki; Helsinki Finland
| | - Ricardo Matheus Pires
- Inst. de Botânica de São Paulo, Núcleo de Pesquisa em Micologia; São Paulo SP Brasil
| | - Tomas Roslin
- Dept of Agricultural Sciences, Univ. of Helsinki; Helsinki Finland
- Dept of Ecology, Swedish Univ. of Agricultural Sciences; Uppsala Sweden
| | - Dmitry S. Schigel
- Dept of Biosciences, Faculty of Biological and Environmental Sciences, Univ. of Helsinki; Helsinki Finland
| | | | | | - Laura J. A. van Dijk
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ; Stockholm Sweden
| | | | - Ayco J. M. Tack
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ; Stockholm Sweden
| |
Collapse
|
30
|
Anstett DN, Ahern JR, Johnson MTJ, Salminen JP. Testing for latitudinal gradients in defense at the macroevolutionary scale. Evolution 2018; 72:2129-2143. [PMID: 30101976 DOI: 10.1111/evo.13579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 08/02/2018] [Indexed: 01/29/2023]
Abstract
Plant defenses against herbivores are predicted to evolve to be greater in warmer climates, such as lower latitudes where herbivore pressure is also thought to be higher. Instead, recent findings are often inconsistent with this expectation, suggesting alternative hypotheses are needed. We tested for latitudinal gradients in plant defense evolution at the macroevolutionary scale by characterizing plant chemical defenses across 80 species of the evening primroses, spanning both North and South America. We quantified phenolics in leaves, flowers, and fruits, using advanced analytical chemistry techniques. Dominant individual ellagitannin compounds, total concentrations of ellagitannins, flavonoids, total phenolics, and compound diversity were quantified. Variation in these compounds was predicted with latitude, temperature, precipitation, and continent using phylogenetic generalized least squares (PGLS) multiple regression models. Latitude did not strongly explain variation in chemical defenses. Instead, fruit total ellagitannins, oenothein A, and total phenolics were greater in species inhabiting regions with colder climates. Using analytical chemistry and 80 species in two continents, we show that contrary to classic predictions, concentrations of secondary metabolites are not greater at lower latitudes or in warmer regions. We propose higher herbivore pressure in colder climates and gradients in resource availability as potential drivers of the observed patterns in Oenothera.
Collapse
Affiliation(s)
- Daniel N Anstett
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Current Address: Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jeffrey R Ahern
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
31
|
Moreira X, Abdala-Roberts L, Galmán A, Francisco M, Fuente MDL, Butrón A, Rasmann S. Assessing the influence of biogeographical region and phylogenetic history on chemical defences and herbivory in Quercus species. PHYTOCHEMISTRY 2018; 153:64-73. [PMID: 29886158 DOI: 10.1016/j.phytochem.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 06/08/2023]
Abstract
Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints. We conducted a phylogenetically-controlled experiment testing for differences in constitutive leaf chemical defences and their inducibility between Palearctic and Nearctic oak species (Quercus, total 18 species). We induced defences in one-year old plants by inflicting damage by gypsy moth larvae (Lymantria dispar), estimated the amount of leaf area consumed, and quantified various groups of phenolic compounds. There was no detectable phylogenetic signal for constitutive or induced levels of most defensive traits except for constitutive condensed tannins, as well as no phylogenetic signal in leaf herbivory. We did, however, find marked differences in defence levels between oak species from each region: Palearctic species had higher levels of constitutive condensed tannins, but less constitutive lignins and less constitutive and induced hydrolysable tannins compared with Nearctic species. Additionally, Palearctic species had lower levels of leaf damage compared with Nearctic species. These differences in leaf damage, lignins and hydrolysable (but not condensed) tannins were lost after accounting for phylogeny, suggesting that geographical structuring of phylogenetic relationships mediated biogeographical differences in defences and herbivore resistance. Together, these findings suggest that historical processes and large-scale drivers have shaped differences in allocation to constitutive defences (and in turn resistance) between Palearctic and Nearctic oaks. Moreover, although evidence of phylogenetic conservatism in the studied traits is rather weak, shared evolutionary history appears to mediate some of these biogeographical patterns in allocation to chemical defences.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Galicia, Spain.
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000 Mérida, Yucatán, Mexico
| | - Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Galicia, Spain
| | - Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Galicia, Spain
| | - María de la Fuente
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Galicia, Spain
| | - Ana Butrón
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Galicia, Spain
| | - Sergio Rasmann
- Institute of Biology, Laboratory of Functional Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
32
|
Abdala-Roberts L, Galmán A, Petry WK, Covelo F, de la Fuente M, Glauser G, Moreira X. Interspecific variation in leaf functional and defensive traits in oak species and its underlying climatic drivers. PLoS One 2018; 13:e0202548. [PMID: 30125315 PMCID: PMC6101385 DOI: 10.1371/journal.pone.0202548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/06/2018] [Indexed: 11/19/2022] Open
Abstract
Plants exhibit a diverse set of functional traits and ecological strategies which reflect an adaptation process to the biotic and abiotic components of the environment. The Plant Economic Spectrum organizes these traits along a continuum from conservative to acquisitive resource use strategies and shows how the abiotic environment governs a species' position along the continuum. However, this framework does not typically account for leaf traits associated with herbivore resistance, despite fundamental metabolic links (and therefore co-variance) between resource use traits and defensive traits. Here we analyzed a suite of leaf traits associated with either resource use (specific leaf area [SLA], nutrients and water content) or defenses (phenolic compounds) for saplings of 11 species of oaks (Quercus spp.), and further investigated whether climatic variables underlie patterns of trait interspecific variation. An ordination of leaf traits revealed the primary axis of trait variation to be leaf economic spectrum traits associated with resource use (SLA, nitrogen, water content) in conjunction with a defensive trait (condensed tannins). Secondary and tertiary axes of trait variation were mainly associated with other defensive traits (lignins, flavonoids, and hydrolysable tannins). Within the primary axis we found a trade-off between resource use traits and both water content and condensed tannins; species with high SLA and leaf N values invested less in condensed tannins and viceversa. Moreover, temperature and precipitation mediated the trait space occupied by species, such that species distributed in warmer and drier climates had less leaf N, lower SLA, and more defenses (condensed tannins, lignins and flavonoids), whereas opposite values were observed for species distributed in colder and wetter climates. These results emphasize the role of abiotic controls over all-inclusive axes of trait variation and contribute to a more complete understanding of interspecific variation in plant functional strategies.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Itzimná, Mérida, Yucatán, México
| | - Andrea Galmán
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - William K. Petry
- Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Universitätstrasse 16, Zurich, Switzerland
| | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
- * E-mail:
| |
Collapse
|
33
|
Diet breadth modulates preference - performance relationships in a phytophagous insect community. Sci Rep 2017; 7:16934. [PMID: 29208939 PMCID: PMC5717236 DOI: 10.1038/s41598-017-17231-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/18/2017] [Indexed: 11/24/2022] Open
Abstract
In most phytophagous insects, larvae are less mobile than adults and their fitness depends on the plant chosen by their mother. To maximize fitness, adult preference and larval performance should thus be correlated. This correlation is not always apparent and seems to increase with the level of specialisation, i.e. specialists have a stronger preference for high quality host plant species compared to generalists. The aim of this study was to test whether the relationship between female preference and larval performance was stronger for specialists than for generalists within a community of fruit flies (Diptera: Tephritidae). A total of six fruit fly species was used, including four generalists, and two specialists co-existing in La Reunion island (France). We estimated oviposition preference through the number of eggs laid and larval performance through the larval survival on 29 different host plants species belonging to 15 families in the laboratory and evaluated the relationship between these two traits. Preference-performance relationship differed according to the degree of specialisation with a strong positive correlation for specialists and no relationship for generalists. These results substantiate the theory that choosing high quality hosts is more important for specialists that are adapted to survive on fewer host plants than for generalists.
Collapse
|
34
|
Marsh KJ, Kulheim C, Blomberg SP, Thornhill AH, Miller JT, Wallis IR, Nicolle D, Salminen JP, Foley WJ. Genus-wide variation in foliar polyphenolics in eucalypts. PHYTOCHEMISTRY 2017; 144:197-207. [PMID: 28957714 DOI: 10.1016/j.phytochem.2017.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Many studies quantify total phenolics or total tannins, but understanding the ecological role of polyphenolic secondary metabolites requires at least an understanding of the diversity of phenolic groups present. We used UPLC-MS/MS to measure concentrations of different polyphenol groups - including the four most common tannin groups, the three most common flavonoid groups, and quinic acid derivatives - in foliage from 628 eucalypts from the genera Eucalyptus, Angophora and Corymbia. We also tested for phylogenetic signal in each of the phenolic groups. Many eucalypts contained high concentrations of polyphenols, particularly ellagitannins, which have been relatively poorly studied, but may possess strong oxidative activity. Because the biosynthetic pathways of many phenolic compounds share either precursors or enzymes, we found negative correlations between the concentrations of several of the constituents that we measured, including proanthocyanidins (PAs) and hydrolysable tannins (HTs), HTs and flavonol derivatives, and HTs and quinic acid derivatives. We observed moderate phylogenetic signal in all polyphenol constituents, apart from the concentration of the prodelphinidin subunit of PAs and the mean degree of polymerisation of PAs. These two traits, which have previously been shown to be important in determining plants' protein precipitation capacity, may have evolved under selection, perhaps in response to climate or herbivore pressure. Hence, the signature of evolutionary history appears to have been erased for these traits. This study is an important step in moving away from analysing "totals" to a better understanding of how phylogenetic effects influence phenolic composition, and how this in turn influences ecological processes.
Collapse
Affiliation(s)
- Karen J Marsh
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| | - Carsten Kulheim
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon P Blomberg
- School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Andrew H Thornhill
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections, GPO Box 1600, Canberra, ACT, 2601, Australia; Australian Tropical Herbarium, James Cook University, Cairns, QLD, 4870, Australia
| | - Joseph T Miller
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections, GPO Box 1600, Canberra, ACT, 2601, Australia; Office of International Science and Engineering, National Science Foundation, Arlington, VA, 22230, USA
| | - Ian R Wallis
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Dean Nicolle
- Currency Creek Arboretum, PO Box 808, Melrose Park, SA, 5039, Australia
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, FI-20500, Turku, Finland
| | - William J Foley
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
35
|
Segar ST, Volf M, Isua B, Sisol M, Redmond CM, Rosati ME, Gewa B, Molem K, Dahl C, Holloway JD, Basset Y, Miller SE, Weiblen GD, Salminen JP, Novotny V. Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proc Biol Sci 2017; 284:20171803. [PMID: 29118136 PMCID: PMC5698651 DOI: 10.1098/rspb.2017.1803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022] Open
Abstract
A long-term goal in evolutionary ecology is to explain the incredible diversity of insect herbivores and patterns of host plant use in speciose groups like tropical Lepidoptera. Here, we used standardized food-web data, multigene phylogenies of both trophic levels and plant chemistry data to model interactions between Lepidoptera larvae (caterpillars) from two lineages (Geometridae and Pyraloidea) and plants in a species-rich lowland rainforest in New Guinea. Model parameters were used to make and test blind predictions for two hectares of an exhaustively sampled forest. For pyraloids, we relied on phylogeny alone and predicted 54% of species-level interactions, translating to 79% of all trophic links for individual insects, by sampling insects from only 15% of local woody plant diversity. The phylogenetic distribution of host-plant associations in polyphagous geometrids was less conserved, reducing accuracy. In a truly quantitative food web, only 40% of pair-wise interactions were described correctly in geometrids. Polyphenol oxidative activity (but not protein precipitation capacity) was important for understanding the occurrence of geometrids (but not pyraloids) across their hosts. When both foliar chemistry and plant phylogeny were included, we predicted geometrid-plant occurrence with 89% concordance. Such models help to test macroevolutionary hypotheses at the community level.
Collapse
Affiliation(s)
- Simon T Segar
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Martin Volf
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Brus Isua
- New Guinea Binatang Research Center, PO Box 604 Madang, Madang, Papua New Guinea
| | - Mentap Sisol
- New Guinea Binatang Research Center, PO Box 604 Madang, Madang, Papua New Guinea
| | - Conor M Redmond
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Margaret E Rosati
- National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA
| | - Bradley Gewa
- New Guinea Binatang Research Center, PO Box 604 Madang, Madang, Papua New Guinea
| | - Kenneth Molem
- New Guinea Binatang Research Center, PO Box 604 Madang, Madang, Papua New Guinea
| | - Chris Dahl
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Jeremy D Holloway
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Yves Basset
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Panama City, Republic of Panama
| | - Scott E Miller
- National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA
| | - George D Weiblen
- Bell Museum of Natural History and Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN 55108-1095, USA
| | - Juha-Pekka Salminen
- Department of Chemistry, University of Turku, Vatselankatu 2, FI-20500 Turku, Finland
| | - Vojtech Novotny
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
36
|
Abstract
Plant ontogenetic stage and features of surrounding plant neighbourhoods can strongly influence herbivory and defences on focal plants. However, the effects of both factors have been assessed independently in previous studies. Here we tested for the independent and interactive effects of neighbourhood type (low vs. high frequency of our focal plant species in heterospecific stands) and ontogeny on leaf herbivory, physical traits and chemical defences of the English oak Quercus robur. We further tested whether plant traits were associated with neighbourhood and ontogenetic effects on herbivory. We found that leaf herbivory decreased in stands with a low frequency of Q. robur, and that saplings received less herbivory than adult trees. Interestingly, we also found interactive effects of these factors where a difference in damage between saplings and adult trees was only observed in stands with a high frequency of Q. robur. We also found strong ontogenetic differences in leaf traits where saplings had more defended leaves than adult trees, and this difference in turn explained ontogenetic differences in herbivory. Plant trait variation did not explain the neighbourhood effect on herbivory. This study builds towards a better understanding of the concurrent effects of plant individual- and community-level characteristics influencing plant-herbivore interactions.
Collapse
|
37
|
Moreira X, Pearse IS. Leaf habit does not determine the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:354-359. [PMID: 28008702 DOI: 10.1111/plb.12537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Plant life-history strategies associated with resource acquisition and economics (e.g. leaf habit) are thought to be fundamental determinants of the traits and mechanisms that drive herbivore pressure, resource allocation to plant defensive traits, and the simultaneous expression (positive correlations) or trade-offs (negative correlations) between these defensive traits. In particular, it is expected that evergreen species - which usually grow slower and support constant herbivore pressure in comparison with deciduous species - will exhibit higher levels of both physical and chemical defences and a higher predisposition to the simultaneous expression of physical and chemical defensive traits. Here, by using a dataset which included 56 oak species (Quercus genus), we investigated whether leaf habit of plant species governs the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Our results showed that leaf habit does not determine the production of most leaf physical and chemical defences. Although evergreen oak species had higher levels of leaf toughness and specific leaf mass (physical defences) than deciduous oak species, both traits are essentially prerequisites for evergreenness. Similarly, our results also showed that leaf habit does not determine pair-wise correlations between defensive traits because most physical and chemical defensive traits were simultaneously expressed in both evergreen and deciduous oak species. Our findings indicate that leaf habit does not substantially contribute to oak species differences in plant defence investment.
Collapse
Affiliation(s)
- X Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - I S Pearse
- Illinois Natural History Survey, Champaign, IL, USA
| |
Collapse
|
38
|
Oxidizable Phenolic Concentrations Do Not Affect Development and Survival of Paropsis Atomaria Larvae Eating Eucalyptus Foliage. J Chem Ecol 2017; 43:411-421. [PMID: 28367596 DOI: 10.1007/s10886-017-0835-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
Insect folivores can cause extensive damage to plants. However, different plant species, and even individuals within species, can differ in their susceptibility to insect attack. Polyphenols that readily oxidize have recently gained attention as potential defenses against insect folivores. We tested the hypothesis that variation in oxidizable phenolic concentrations in Eucalyptus foliage influences feeding and survival of Paropsis atomaria (Eucalyptus leaf beetle) larvae. First we demonstrated that oxidizable phenolic concentrations vary both within and between Eucalyptus species, ranging from 0 to 61 mg.g-1 DM (0 to 81% of total phenolics), in 175 samples representing 13 Eucalyptus species. Foliage from six individuals from each of ten species of Eucalyptus were then offered to batches of newly hatched P. atomaria larvae, and feeding, instar progression and mortality of the first and second instar larvae were recorded. Although feeding and survival parameters differed dramatically between individual plants, they were not influenced by the oxidizable phenolic concentration of leaves, suggesting that P. atomaria larvae may have effective mechanisms to deal with oxidizable phenolics. Larvae feeding on plants with higher nitrogen (N) concentrations had higher survival rates and reached third instar earlier, but N concentrations did not explain most of the variation in feeding and survival. The cause of variation in eucalypt herbivory by P. atomaria larvae is therefore still unknown, although oxidizable phenolics could potentially defend eucalypt foliage against other insect herbivores.
Collapse
|
39
|
Ameline C, Puzin C, Bowden JJ, Lambeets K, Vernon P, Pétillon J. Habitat specialization and climate affect arthropod fitness: a comparison of generalist vs. specialist spider species in Arctic and temperate biomes. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Engström MT, Sun X, Suber MP, Li M, Salminen JP, Hagerman AE. The Oxidative Activity of Ellagitannins Dictates Their Tendency To Form Highly Stabilized Complexes with Bovine Serum Albumin at Increased pH. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8994-9003. [PMID: 27809509 DOI: 10.1021/acs.jafc.6b01571] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Many food and forage plants contain tannins, high molecular weight polyphenols that characteristically interact strongly with protein, forming complexes that affect taste, nutritional quality, and the health of the consumer. In the present study, the interaction between bovine serum albumin (BSA) and each of seven hydrolyzable tannins or epigallocatechin gallate was examined. The objective was to define the effect of tannin oxidation, measured as oxidative activity (browning) or as oxidizability (degradation monitored by HPLC), on the formation on highly stabilized tannin-protein complexes and to determine how the reaction depended on the pH conditions. Gel electrophoresis and MALDI-TOF-MS were used to assess the formation of tannin-protein complexes. The results showed that tannin oxidizability was directly correlated with the tendency of the tannins to form highly stabilized complexes with BSA at increased pH (7.6). However, at slightly lower pH (6.7), other tannin features, such as the size and flexibility of the tannin, appeared to dictate the formation of highly stabilized tannin-protein complexes.
Collapse
Affiliation(s)
- Marica T Engström
- Department of Chemistry, Laboratory of Organic Chemistry and Chemical Biology, University of Turku , FI-20014 Turku, Finland
| | - Xiaowei Sun
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Matthew P Suber
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Min Li
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Juha-Pekka Salminen
- Department of Chemistry, Laboratory of Organic Chemistry and Chemical Biology, University of Turku , FI-20014 Turku, Finland
| | - Ann E Hagerman
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
41
|
Biochemical Mechanisms for Geographical Adaptations to Novel Toxin Exposures in Butterflyfish. PLoS One 2016; 11:e0154208. [PMID: 27136924 PMCID: PMC4854401 DOI: 10.1371/journal.pone.0154208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Some species of butterflyfish have had preyed upon corals for millions of years, yet the mechanism of butterflyfish specialized coral feeding strategy remains poorly understood. Certain butterflyfish have the ability to feed on allelochemically rich soft corals, e.g. Sinularia maxima. Cytochrome P450 (CYP) is the predominant enzyme system responsible for the detoxification of dietary allelochemicals. CYP2-like and CYP3A-like content have been associated with butterflyfish that preferentially consumes allelochemically rich soft corals. To investigate the role of butterflyfish CYP2 and CYP3A enzymes in dietary preference, we conducted oral feeding experiments using homogenates of S. maxima and a toxin isolated from the coral in four species of butterflyfish with different feeding strategies. After oral exposure to the S. maxima toxin 5-episinulaptolide (5ESL), which is not normally encountered in the Hawaiian butterflyfish diet, an endemic specialist, Chaetodon multicinctus experienced 100% mortality compared to a generalist, Chaetodon auriga, which had significantly more (3–6 fold higher) CYP3A-like basal content and catalytic activity. The specialist, Chaetodon unimaculatus, which preferentially feed on S. maxima in Guam, but not in Hawaii, had 100% survival, a significant induction of 8–12 fold CYP3A-like content, and an increased ability (2-fold) to metabolize 5ESL over other species. Computer modeling data of CYP3A4 with 5ESL were consistent with microsomal transformation of 5ESL to a C15-16 epoxide from livers of C. unimaculatus. Epoxide formation correlated with CYP3A-like content, catalytic activity, induction, and NADPH-dependent metabolism of 5ESL. These results suggest a potentially important role for the CYP3A family in butterflyfish-coral diet selection through allelochemical detoxification.
Collapse
|
42
|
Mason CM, Bowsher AW, Crowell BL, Celoy RM, Tsai CJ, Donovan LA. Macroevolution of leaf defenses and secondary metabolites across the genus Helianthus. THE NEW PHYTOLOGIST 2016; 209:1720-33. [PMID: 26583880 DOI: 10.1111/nph.13749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/06/2015] [Indexed: 05/13/2023]
Abstract
Leaf defenses are widely recognized as key adaptations and drivers of plant evolution. Across environmentally diverse habitats, the macroevolution of leaf defenses can be predicted by the univariate trade-off model, which predicts that defenses are functionally redundant and thus trade off, and the resource availability hypothesis, which predicts that defense investment is determined by inherent growth rate and that higher defense will evolve in lower resource environments. Here, we examined the evolution of leaf physical and chemical defenses and secondary metabolites in relation to environmental characteristics and leaf economic strategy across 28 species of Helianthus (the sunflowers). Using a phylogenetic comparative approach, we found few evolutionary trade-offs among defenses and no evidence for defense syndromes. We also found that leaf defenses are strongly related to leaf economic strategy, with higher defense in more resource-conservative species, although there is little support for the evolution of higher defense in low-resource habitats. A wide variety of physical and chemical defenses predict resistance to different insect herbivores, fungal pathogens, and a parasitic plant, suggesting that most sunflower defenses are not redundant in function and that wild Helianthus represents a rich source of variation for the improvement of crop sunflower.
Collapse
Affiliation(s)
- Chase M Mason
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Alan W Bowsher
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Breanna L Crowell
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Rhodesia M Celoy
- Warnell School of Forestry and Natural Resources, and Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, and Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
43
|
Engström MT, Karonen M, Ahern JR, Baert N, Payré B, Hoste H, Salminen JP. Chemical Structures of Plant Hydrolyzable Tannins Reveal Their in Vitro Activity against Egg Hatching and Motility of Haemonchus contortus Nematodes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:840-51. [PMID: 26807485 DOI: 10.1021/acs.jafc.5b05691] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The use of synthetic drugs against gastrointestinal nematodes of ruminants has led to a situation where resistance to anthelmintics is widespread, and there is an urgent need for alternative solutions for parasite control. One promising approach is to use polyphenol-rich bioactive plants in animal feeds as natural anthelmintics. In the present work, the in vitro activity of a series of 33 hydrolyzable tannins (HTs) and their hydrolysis product, gallic acid, against egg hatching and motility of L1 and L2 stage Haemonchus contortus larvae was studied. The effect of the selected compounds on egg and larval structure was further studied by scanning electron microscopy. The results indicated clear relationships between HT structure and anthelmintic activity. While HT size, overall flexibility, the types and numbers of functional groups, together with the linkage types between monomeric HTs affected the activity differently, the optimal structure was found with pentagalloylglucose.
Collapse
Affiliation(s)
- M T Engström
- Department of Chemistry, Laboratory of Organic Chemistry and Chemical Biology, University of Turku , FI-20014 Turku, Finland
| | - M Karonen
- Department of Chemistry, Laboratory of Organic Chemistry and Chemical Biology, University of Turku , FI-20014 Turku, Finland
| | - J R Ahern
- Department of Chemistry, Laboratory of Organic Chemistry and Chemical Biology, University of Turku , FI-20014 Turku, Finland
| | - N Baert
- Department of Chemistry, Laboratory of Organic Chemistry and Chemical Biology, University of Turku , FI-20014 Turku, Finland
| | - B Payré
- Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse Rangueil, Université de Toulouse , 133, route de Narbonne, 31062 Toulouse Cedex 4, France
| | - H Hoste
- UMR 1225, INRA/DGER, Ecole Nationale Vétérinaire Toulouse , 23 Chemin des Capelles, 31076 Toulouse Cedex, France
- ENVT, Université de Toulouse , Toulouse F-31076, France
| | - J-P Salminen
- Department of Chemistry, Laboratory of Organic Chemistry and Chemical Biology, University of Turku , FI-20014 Turku, Finland
| |
Collapse
|
44
|
Fuentealba A, Bauce É. Interspecific variation in resistance of two host tree species to spruce budworm. ACTA OECOLOGICA 2016. [DOI: 10.1016/j.actao.2015.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Moilanen J, Koskinen P, Salminen JP. Distribution and content of ellagitannins in Finnish plant species. PHYTOCHEMISTRY 2015; 116:188-197. [PMID: 25819000 DOI: 10.1016/j.phytochem.2015.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/19/2015] [Accepted: 03/12/2015] [Indexed: 05/11/2023]
Abstract
The results of a screening study, in which a total of 82 Finnish plant species were studied for their ellagitannin composition and content, are presented. The total ellagitannin content was determined by HPLC-DAD, the detected ellagitannins were further characterized by HPLC-ESI-QTOF-MS and divided into four structurally different sub-groups. Thirty plant species were found to contain ellagitannins and the ellagitannin content in the crude extracts varied from few mgg(-1) to over a hundred mgg(-1). Plant families that were rich in ellagitannins (>90mgg(-1) of the crude extract) were Onagraceae, Lyhtraceae, Geraniaceae, Elaeagnaceae, Fagaceae and some species from Rosaceae. Plant species that contained moderate amounts of ellagitannins (31-89mgg(-1) of the crude extract) were representatives of the family Rosaceae. Plant species that contained low amounts of ellagitannins (1-30mgg(-1) of the crude extract) were representatives of the families Betulaceae and Myricaceae. The specific ellagitannin composition of the species allowed their chemotaxonomic classification and the comparison between the older Cronquist's classification and the nowadays preferred Angiosperm Phylogeny Group classification.
Collapse
Affiliation(s)
- Johanna Moilanen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20014 Turku, Finland.
| | - Piia Koskinen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Juha-Pekka Salminen
- Laboratory of Organic Chemistry and Chemical Biology, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
46
|
Cárdenas RE, Hättenschwiler S, Valencia R, Argoti A, Dangles O. Plant herbivory responses through changes in leaf quality have no effect on subsequent leaf-litter decomposition in a neotropical rain forest tree community. THE NEW PHYTOLOGIST 2015; 207:817-829. [PMID: 25771942 DOI: 10.1111/nph.13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
It is commonly accepted that plant responses to foliar herbivory (e.g. plant defenses) can influence subsequent leaf-litter decomposability in soil. While several studies have assessed the herbivory-decomposability relationship among different plant species, experimental tests at the intra-specific level are rare, although critical for a mechanistic understanding of how herbivores affect decomposition and its consequences at the ecosystem scale. Using 17 tree species from the Yasuní National Park, Ecuadorian Amazonia, and applying three different herbivore damage treatments, we experimentally tested whether the plant intra-specific responses to herbivory, through changes in leaf quality, affect subsequent leaf-litter decomposition in soil. We found no effects of herbivore damage on the subsequent decomposition of leaf litter within any of the species tested. Our results suggest that leaf traits affecting herbivory are different from those influencing decomposition. Herbivore damage showed much higher intra-specific than inter-specific variability, while we observed the opposite for decomposition. Our findings support the idea that interactions between consumers and their resources are controlled by different factors for the green and the brown food-webs in tropical forests, where herbivory may not necessarily generate any direct positive or negative feedbacks for nutrient cycling.
Collapse
Affiliation(s)
- Rafael E Cárdenas
- Museo de Zoología QCAZ, Laboratorio de Entomología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
- Institut de Recherche pour le Développement (IRD), UR 072, LEGS-CNRS, UPR 9034, CNRS, Gif-sur-Yvette, Cedex, 91198, France
- Université Paris-Sud 11, Orsay, Cedex, 91405, France
| | - Stephan Hättenschwiler
- Centre d'Écologie Fonctionnelle et Évolutive (CEFE UMR 5175 - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 route de Mende, 34293, Montpellier Cedex 5, France
| | - Renato Valencia
- Herbario QCA, Laboratorio de Ecología de Plantas, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Adriana Argoti
- Museo de Zoología QCAZ, Laboratorio de Entomología, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Apdo. 17-01-2184, Quito, Ecuador
| | - Olivier Dangles
- Institut de Recherche pour le Développement (IRD), UR 072, LEGS-CNRS, UPR 9034, CNRS, Gif-sur-Yvette, Cedex, 91198, France
- Université Paris-Sud 11, Orsay, Cedex, 91405, France
| |
Collapse
|
47
|
Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny. Oecologia 2014; 177:1053-66. [DOI: 10.1007/s00442-014-3177-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
|
48
|
Wardhaugh CW, Edwards W, Stork NE. The specialization and structure of antagonistic and mutualistic networks of beetles on rainforest canopy trees. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Carl W. Wardhaugh
- School of Marine and Tropical Biology; James Cook University; Cairns Campus McGregor Road Smithfield QLD 4870 Australia
| | - Will Edwards
- School of Marine and Tropical Biology; James Cook University; Cairns Campus McGregor Road Smithfield QLD 4870 Australia
- Centre for Tropical Environmental and Sustainability Science; James Cook University; Cairns QLD 4870 Australia
| | - Nigel E. Stork
- Environmental Futures Research Institute; Griffith School of Environment; Griffith University; Nathan Campus 170 Kessels Road Nathan QLD 4111 Australia
| |
Collapse
|
49
|
Moctezuma C, Hammerbacher A, Heil M, Gershenzon J, Méndez-Alonzo R, Oyama K. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides. J Chem Ecol 2014; 40:458-67. [PMID: 24809533 DOI: 10.1007/s10886-014-0431-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/08/2014] [Accepted: 04/09/2014] [Indexed: 12/25/2022]
Abstract
The role of plant polyphenols as defenses against insect herbivores is controversial. We combined correlative field studies across three geographic regions (Northern Mexico, Southern Mexico, and Costa Rica) with induction experiments under controlled conditions to search for candidate compounds that might play a defensive role in the foliage of the tropical oak, Quercus oleoides. We quantified leaf damage caused by four herbivore guilds (chewers, skeletonizers, leaf miners, and gall forming insects) and analyzed the content of 18 polyphenols (including hydrolyzable tannins, flavan-3-ols, and flavonol glycosides) in the same set of leaves using high performance liquid chromatography and mass spectrometry. Foliar damage ranged from two to eight percent per region, and nearly 90% of all the damage was caused by chewing herbivores. Damage due to chewing herbivores was positively correlated with acutissimin B, catechin, and catechin dimer, and damage by mining herbivores was positively correlated with mongolinin A. By contrast, gall presence was negatively correlated with vescalagin and acutissimin B. By using redundancy analysis, we searched for the combinations of polyphenols that were associated to natural herbivory: the combination of mongolinin A and acutissimin B had the highest association to herbivory. In a common garden experiment with oak saplings, artificial damage increased the content of acutissimin B, mongolinin A, and vescalagin, whereas the content of catechin decreased. Specific polyphenols, either individually or in combination, rather than total polyphenols, were associated with standing leaf damage in this tropical oak. Future studies aimed at understanding the ecological role of polyphenols can use similar correlative studies to identify candidate compounds that could be used individually and in biologically meaningful combinations in tests with herbivores and pathogens.
Collapse
Affiliation(s)
- Coral Moctezuma
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701 Col. Ex-Hacienda de San José de La Huerta, Morelia, Michoacán, 58190, Mexico,
| | | | | | | | | | | |
Collapse
|
50
|
Wardhaugh CW. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol Rev Camb Philos Soc 2014; 89:1021-41. [PMID: 24581118 DOI: 10.1111/brv.12094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 01/23/2023]
Abstract
Arguably the majority of species on Earth utilise tropical rainforest canopies, and much progress has been made in describing arboreal assemblages, especially for arthropods. The most commonly described patterns for tropical rainforest insect communities are host specificity, spatial specialisation (predominantly vertical stratification), and temporal changes in abundance (seasonality and circadian rhythms). Here I review the recurrent results with respect to each of these patterns and discuss the evolutionary selective forces that have generated them in an attempt to unite these patterns in a holistic evolutionary framework. I propose that species can be quantified along a generalist-specialist scale not only with respect to host specificity, but also other spatial and temporal distribution patterns, where specialisation is a function of the extent of activity across space and time for particular species. When all of these distribution patterns are viewed through the paradigm of specialisation, hypotheses that have been proposed to explain the evolution of host specificity can also be applied to explain the generation and maintenance of other spatial and temporal distribution patterns. The main driver for most spatial and temporal distribution patterns is resource availability. Generally, the distribution of insects follows that of the resources they exploit, which are spatially stratified and vary temporally in availability. Physiological adaptations are primarily important for host specificity, where nutritional and chemical variation among host plants in particular, but also certain prey species and fungi, influence host range. Physiological tolerances of abiotic conditions are also important for explaining the spatial and temporal distributions of some insect species, especially in drier forest environments where desiccation is an ever-present threat. However, it is likely that for most species in moist tropical rainforests, abiotic conditions are valuable indicators of resource availability, rather than physiologically limiting factors. Overall, each distribution pattern is influenced by the same evolutionary forces, but at differing intensities. Consequently, each pattern is linked and not mutually exclusive of the other distribution patterns. Most studies have examined each of these patterns in isolation. Future work should focus on examining the evolutionary drivers of these patterns in concert. Only then can the relative strength of resource availability and distribution, host defensive phenotypes, and biotic and abiotic interactions on insect distribution patterns be determined.
Collapse
Affiliation(s)
- Carl W Wardhaugh
- School of Marine and Tropical Biology, James Cook University, Cairns Campus, McGregor Road, Smithfield, Queensland, 4870, Australia
| |
Collapse
|