1
|
Claros MG, Bullones A, Castro AJ, Lima-Cabello E, Viruel MÁ, Suárez MF, Romero-Aranda R, Fernández-Pozo N, Veredas FJ, Belver A, Alché JDD. Multi-Omic Advances in Olive Tree ( Olea europaea subsp. europaea L.) Under Salinity: Stepping Towards 'Smart Oliviculture'. BIOLOGY 2025; 14:287. [PMID: 40136543 PMCID: PMC11939856 DOI: 10.3390/biology14030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Soil salinisation is threatening crop sustainability worldwide, mainly due to anthropogenic climate change. Molecular mechanisms developed to counteract salinity have been intensely studied in model plants. Nevertheless, the economically relevant olive tree (Olea europaea subsp. europaea L.), being highly exposed to soil salinisation, deserves a specific review to extract the recent genomic advances that support the known morphological and biochemical mechanisms that make it a relative salt-tolerant crop. A comprehensive list of 98 olive cultivars classified by salt tolerance is provided, together with the list of available olive tree genomes and genes known to be involved in salt response. Na+ and Cl- exclusion in leaves and retention in roots seem to be the most prominent adaptations, but cell wall thickening and antioxidant changes are also required for a tolerant response. Several post-translational modifications of proteins are emerging as key factors, together with microbiota amendments, making treatments with biostimulants and chemical compounds a promising approach to enable cultivation in already salinised soils. Low and high-throughput transcriptomics and metagenomics results obtained from salt-sensitive and -tolerant cultivars, and the future advantages of engineering specific metacaspases involved in programmed cell death and autophagy pathways to rapidly raise salt-tolerant cultivars or rootstocks are also discussed. The overview of bioinformatic tools focused on olive tree, combined with machine learning approaches for studying plant stress from a multi-omics perspective, indicates that the development of salt-tolerant cultivars or rootstocks adapted to soil salinisation is progressing. This could pave the way for 'smart oliviculture', promoting more productive and sustainable practices under salt stress.
Collapse
Affiliation(s)
- Manuel Gonzalo Claros
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-UMA-CSIC), 29010 Malaga, Spain; (A.B.); (M.Á.V.); (R.R.-A.); (N.F.-P.)
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29071 Malaga, Spain;
| | - Amanda Bullones
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-UMA-CSIC), 29010 Malaga, Spain; (A.B.); (M.Á.V.); (R.R.-A.); (N.F.-P.)
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29071 Malaga, Spain;
| | - Antonio Jesús Castro
- Department of Stress, Development and Signaling of Plants, Plant Reproductive Biology and Advanced Microscopy Laboratory (BReMAP), Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (A.B.); (J.d.D.A.)
| | - Elena Lima-Cabello
- Department of Stress, Development and Signaling of Plants, Plant Reproductive Biology and Advanced Microscopy Laboratory (BReMAP), Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (A.B.); (J.d.D.A.)
| | - María Ángeles Viruel
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-UMA-CSIC), 29010 Malaga, Spain; (A.B.); (M.Á.V.); (R.R.-A.); (N.F.-P.)
| | - María Fernanda Suárez
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, 29071 Malaga, Spain;
| | - Remedios Romero-Aranda
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-UMA-CSIC), 29010 Malaga, Spain; (A.B.); (M.Á.V.); (R.R.-A.); (N.F.-P.)
| | - Noé Fernández-Pozo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM La Mayora-UMA-CSIC), 29010 Malaga, Spain; (A.B.); (M.Á.V.); (R.R.-A.); (N.F.-P.)
| | - Francisco J. Veredas
- Department of Computer Science and Programming Languages, Universidad de Málaga, 29071 Malaga, Spain;
| | - Andrés Belver
- Department of Stress, Development and Signaling of Plants, Plant Reproductive Biology and Advanced Microscopy Laboratory (BReMAP), Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (A.B.); (J.d.D.A.)
| | - Juan de Dios Alché
- Department of Stress, Development and Signaling of Plants, Plant Reproductive Biology and Advanced Microscopy Laboratory (BReMAP), Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (A.J.C.); (E.L.-C.); (A.B.); (J.d.D.A.)
- University Institute of Research on Olive Grove and Olive Oils (INUO), Universidad de Jaén, 23071 Jaen, Spain
| |
Collapse
|
2
|
Bakhtiari ES, Mousavi A, Yadegari M, Haghighati B, Martínez-García PJ. Physiological and Biochemical Responses of Almond ( Prunus dulcis) Cultivars to Drought Stress in Semi-Arid Conditions in Iran. PLANTS (BASEL, SWITZERLAND) 2025; 14:734. [PMID: 40094674 PMCID: PMC11902175 DOI: 10.3390/plants14050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Identifying and selecting almond cultivars with drought tolerance traits is crucial for developing more resilient cultivars, especially in regions prone to water scarcity or facing changing climate conditions. In this study, the physiological and biochemical responses of different almond cultivars to water stress were evaluated using a randomized complete block design (RCBD) with three replications at the Agricultural and Natural Resources Research Center of Chaharmahal and Bakhtiari Province, Shahrekord, Iran, during the 2020 and 2021 growing seasons. During each season, the drought stress treatments were applied for four months prior to the collection of leaf tissue and assessment of the physiological and biochemical traits of the treated trees. In general, significant differences were observed for the different effects considered in the fitted model (years, repetitions, cultivars, drought treatments). The relative water content, as well as the chlorophyll a and b contents in the leaves of the evaluated cultivars, significantly decreased with increasing stress intensity. However, the total phenol content and the activities of antioxidant enzymes increased in response to drought stress. There were considerable differences in the studied cultivars' responses to increasing drought intensity. According to the results, cultivars "Shahrood 8", "Garnem", and "Shahrood 12" demonstrated a high antioxidant capacity and the highest resistance, as observed through a smaller reduction in the relative water content under severe drought stress compared with the other cultivars. These results provide valuable insights that contribute to the development of more resilient almond cultivars and rootstocks, particularly in regions susceptible to water scarcity or those experiencing changing climatic conditions.
Collapse
Affiliation(s)
- Esmaeil Safavi Bakhtiari
- Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord 8813733395, Iran;
| | - Asghar Mousavi
- Horticulture Crops Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord 8813657351, Iran;
| | - Mehrab Yadegari
- Research Center of Nutrition and Organic Products (R.C.N.O.P), Shahrekord Branch, Islamic Azad University, Shahrekord 8813733395, Iran;
| | - Bijan Haghighati
- Soil and Water Research Department, Chaharmahal and Bakhtiari Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shahrekord 8813657351, Iran;
| | - Pedro José Martínez-García
- Department of Plant Breeding, Centre of Edaphology and Applied Biology of Segura, Spanish National Research Council (CEBAS-CSIC), 30100 Murcia, Spain
| |
Collapse
|
3
|
Wojtaczka P, Ciarkowska A, Krawczak M, Kęsy J, Flores Castellanos J, Fettke J, Ostrowski M. Biochemical and proteomic approaches to investigating effects of IAA-aspartate in pea (Pisum sativum L.) seedlings during osmotic shock. PHYTOCHEMISTRY 2025; 230:114332. [PMID: 39547494 DOI: 10.1016/j.phytochem.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024]
Abstract
Osmotic shock is the first step of high salt or drought action that involves biochemical and molecular changes during plant response to these unfavorable conditions. Indole-3-acetyl-aspartate (IAA-aspartate, IAA-Asp) is the main amide conjugate of auxin in pea (Pisum sativum L.) tissues. Although the exact molecular mechanism of the IAA-Asp action is unknown, this conjugate's indole-3-acetic acid (IAA)-independent biological activity has been observed during physiological and stress conditions. In this work, we investigated the effect of IAA-Asp alone, as well as in combination with NaCl or polyethylene glycol (PEG) (osmotic shock) on reduced/oxidized glutathione (GSH/GSSG) ratio, activities of enzymes modulating glutathione concentration, protein S-glutathionylation, and IAA homeostasis. We did not observe the hydrolysis of IAA-Asp to IAA in pea seedlings, which, together with other results, suggests that IAA-Asp modulates plant response to abiotic stimuli independently of IAA. Moreover, despite the effect of IAA-Asp on the enzymes responsible for IAA conjugation, no changes in this phytohormone level were visible. Furthermore, 3h plant treatment with IAA-Asp increased the activity of glutathione reductase (GR), which correlates with an elevated GSH/GSSG ratio. On the contrary, more extended (48h) incubation with IAA-Asp diminished the GSH/GSSG ratio and increased the activity of glutathione peroxidase (GPX). IAA-Asp reduced GR activity during salt treatment but did not affect the GSH/GSSG ratio. Similarly, under plant incubation with PEG, IAA-Asp did not change the GSH/GSSG ratio but increased glutathione S-transferase (GST) activity. We also analyzed the effect of IAA-Asp on pea protein S-glutathionylation. Increased S-glutathionylation of heat shock 70 kDa protein (HSP70) was observed after plant treatment with IAA-Asp, PEG, or IAA-Asp combined with PEG. The proteomic analysis also revealed that IAA-Asp diminished S-glutathionylation of lipoxygenase during plant incubation with PEG. Thus, we suggest that IAA-Asp modulates redox status in pea during oxidative stress and under normal physiological conditions.
Collapse
Affiliation(s)
- Patrycja Wojtaczka
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
| | - Anna Ciarkowska
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Marta Krawczak
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Junio Flores Castellanos
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 20, 14476, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 20, 14476, Potsdam-Golm, Germany
| | - Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
4
|
Li S, Hou S, Sun Y, Sun M, Sun Y, Li X, Li Y, Wang L, Cai Q, Guo B, Zhang J. Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Lipoxygenase Gene Family in Maize ( Zea mays). Genes (Basel) 2025; 16:99. [PMID: 39858646 PMCID: PMC11765052 DOI: 10.3390/genes16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Abiotic stresses impose significant constraints on crop growth, development, and yield. However, the comprehensive characterization of the maize (Zea mays) lipoxygenase (LOX) gene family under stress conditions remains limited. LOXs play vital roles in plant stress responses by mediating lipid oxidation and signaling pathways. Methods: In this study, 13 ZmLOX genes were identified in maize and characterized to explore their functions under abiotic stresses. Results: Phylogenetics revealed that ZmLOX genes share evolutionary origins with LOX genes in Arabidopsis and rice. Promoter analysis identified cis-acting elements associated with growth, light response, hormone signaling, and stress response, indicating their diverse biological roles. Gene Ontology (GO) and KEGG enrichment analyses showed that ZmLOX genes are involved in jasmonic acid metabolism, lipid signaling, and photosynthetic processes, while protein-protein interaction (PPI) analysis positioned ZmLOX proteins as central hubs in stress-related regulatory networks. Differential expression and qRT-PCR analyses revealed stress-specific (including heat, drought, salt, and cold) expression patterns, with ZmLOX2 and ZmLOX13 showing key roles in drought and cold tolerance, respectively. Conclusions: These findings provide new insights into the regulatory functions of ZmLOX genes, offering potential targets for enhancing maize resilience to abiotic stresses and improving agricultural productivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jianguo Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (S.L.)
| |
Collapse
|
5
|
Burchardt S, Czernicka M, Kućko A, Pokora W, Kapusta M, Domagalski K, Jasieniecka-Gazarkiewicz K, Karwaszewski J, Wilmowicz E. Exploring the response of yellow lupine (Lupinus luteus L.) root to drought mediated by pathways related to phytohormones, lipid, and redox homeostasis. BMC PLANT BIOLOGY 2024; 24:1049. [PMID: 39506671 PMCID: PMC11539565 DOI: 10.1186/s12870-024-05748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Yellow lupine (Lupinus luteus L.) is a high-protein crop of considerable economic and ecological significance. It has the ability to fix atmospheric nitrogen in symbiosis with Rhizobium, enriching marginal soils with this essential nutrient and reducing the need for artificial fertilizers. Additionally, lupine produces seeds with a high protein content, making it valuable for animal feed production. However, drought negatively affects lupine development, its mutualistic relationship with bacteria, and overall yield. To understand how lupine responds to this stress, global transcriptome sequencing was conducted, along with in-depth biochemical, chromatography, and microscopy analyses of roots subjected to drought. The results presented here contribute to strategies aimed at mitigating the effects of water deficit on lupine growth and development. RESULTS Based on RNA-seq, drought-specific genes were identified and annotated to biological pathways involved in phytohormone biosynthesis/signaling, lipid metabolism, and redox homeostasis. Our findings indicate that drought-induced disruption of redox balance characterized by the upregulation of reactive oxygen species (ROS) scavenging enzymes, coincided with the accumulation of lipid-metabolizing enzymes, such as phospholipase D (PLD) and lipoxygenase (LOX). This disruption also led to modifications in lipid homeostasis, including increased levels of triacylglycerols (TAG) and free fatty acids (FFA), along with a decrease in polar lipid content. Additionally, the stress response involved alterations in the transcriptional regulation of the linolenic acid metabolism network, resulting in changes in the composition of fatty acids containing 18 carbons. CONCLUSION The first comprehensive global transcriptomic profiles of lupine roots, combined with the identification of key stress-responsive molecules, represent a significant advancement in understanding lupine's responses to abiotic stress. The increased expression of the Δ12DESATURASE gene and enhanced PLD activity lead to higher level of linoleic acid (18:2), which is subsequently oxidized by LOX, resulting in membrane damage and malondialdehyde (MDA) accumulation. Oxidative stress elevates the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), while the conversion of FFAs into TAGs provides protection against ROS. This research offers valuable molecular and biochemical candidates with significant potential to enhance drought tolerance . It enables innovative strategies in lupine breeding and crop improvement to address critical agricultural challenges.
Collapse
Affiliation(s)
- Sebastian Burchardt
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120, Poland
| | - Agata Kućko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences- SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, 59 Wita Stwosza, Gdańsk, 80-308, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, University of Gdańsk, 59 Wita Stwosza, Gdańsk, 80-308, Poland
| | - Krzysztof Domagalski
- Department of Immunology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | | | - Jacek Karwaszewski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland
| | - Emilia Wilmowicz
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 1 Lwowska Street, Toruń, 87-100, Poland.
| |
Collapse
|
6
|
Parri S, Faleri C, Romi M, del Río JC, Rencoret J, Dias MCP, Anichini S, Cantini C, Cai G. Unravelling Different Water Management Strategies in Three Olive Cultivars: The Role of Osmoprotectants, Proteins, and Wood Properties. Int J Mol Sci 2024; 25:11059. [PMID: 39456839 PMCID: PMC11507519 DOI: 10.3390/ijms252011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Understanding the responses of olive trees to drought stress is crucial for improving cultivation and developing drought-tolerant varieties. Water transport and storage within the plant is a key factor in drought-tolerance strategies. Water management can be based on a variety of factors such as stomatal control, osmoprotectant molecules, proteins and wood properties. The aim of the study was to evaluate the water management strategy under drought stress from an anatomical and biochemical point of view in three young Italian olive cultivars (Giarraffa, Leccino and Maurino) previously distinguished for their physiological and metabolomic responses. For each cultivar, 15 individuals in pots were exposed or not to 28 days of water withholding. Every 7 days, the content of sugars (including mannitol), proline, aquaporins, osmotins, and dehydrins, in leaves and stems, as well as the chemical and anatomical characteristics of the wood of the three cultivars, were analyzed. 'Giarraffa' reduced glucose levels and increased mannitol production, while 'Leccino' accumulated more proline. Both 'Leccino' and 'Maurino' increased sucrose and aquaporin levels, possibly due to their ability to remove embolisms. 'Maurino' and 'Leccino' accumulated more dehydrins and osmotins. While neither genotype nor stress affected wood chemistry, 'Maurino' had a higher vessel-to-xylem area ratio and a larger hydraulic diameter, which allows it to maintain a high transpiration rate but may make it more susceptible to cavitation. The results emphasized the need for an integrated approach, highlighting the importance of the relative timing and sequence of each parameter analyzed, allowing, overall, to define a "strategy" rather than a "response" to drought of each cultivar.
Collapse
Affiliation(s)
- Sara Parri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| | - José C. del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, E-41012 Seville, Spain; (J.C.d.R.); (J.R.)
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Reina Mercedes 10, E-41012 Seville, Spain; (J.C.d.R.); (J.R.)
| | - Maria Celeste Pereira Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Sara Anichini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine, 18, 50144 Firenze, Italy
| | - Claudio Cantini
- Institute for BioEconomy (IBE), National Research Council (CNR), Strada Provinciale Aurelia Vecchia 49, 58022 Follonica, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (S.P.); (C.F.); (M.R.); (S.A.)
| |
Collapse
|
7
|
Villiers F, Suhail Y, Lee J, Hauser F, Hwang J, Bader JS, McKay JK, Peck SC, Schroeder JI, Kwak JM. Transcriptomic dynamics of ABA response in Brassica napus guard cells. STRESS BIOLOGY 2024; 4:43. [PMID: 39400760 PMCID: PMC11473748 DOI: 10.1007/s44154-024-00169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 10/15/2024]
Abstract
Drought has a significant, negative impact on crop production; and these effects are poised to increase with climate change. Plants acclimate to drought and water stress through diverse physiological responses, primarily mediated by the hormone abscisic acid (ABA). Because plants lose the majority of their water through stomatal pores on aerial surfaces of plants, stomatal closure is one of the rapid responses mediated by ABA to reduce transpirational water loss. The dynamic changes in the transcriptome of stomatal guard cells in response to ABA have been investigated in the model plant Arabidopsis thaliana. However, guard cell transcriptomes have not been analyzed in agronomically valuable crops such as a major oilseed crop, rapeseed. In this study, we investigated the dynamics of ABA-regulated transcriptomes in stomatal guard cells of Brassica napus and conducted comparison analysis with the transcriptomes of A. thaliana. We discovered changes in gene expression indicating alterations in a host of physiological processes, including stomatal movement, metabolic reprogramming, and light responses. Our results suggest the existence of both immediate and delayed responses to ABA in Brassica guard cells. Furthermore, the transcription factors and regulatory networks mediating these responses are compared to those identified in Arabidopsis. Our results imply the continuing evolution of ABA responses in Brassica since its divergence from a common ancestor, involving both protein-coding and non-coding nucleotide sequences. Together, our results will provide a basis for developing strategies for molecular manipulation of drought tolerance in crop plants.
Collapse
Affiliation(s)
- Florent Villiers
- Centre de Recherche de La Dargoire, Bayer CropScience, 69009, Lyon, France.
| | - Yasir Suhail
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jade Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Felix Hauser
- Division of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jaeung Hwang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - John K McKay
- Department of Bioagricultural Sciences, Colorado State University, Fort Collins, CO, 80523-1177, USA
| | - Scott C Peck
- Department of Biochemistry and Christopher S. Bond Life Sciences Center, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA, 92093, USA
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
8
|
Falcón-Piñeiro A, Zaguirre-Martínez J, Ibáñez-Hernández AC, Guillamón E, Santander K, Barrero-Domínguez B, López-Feria S, Garrido D, Baños A. Evaluation of the Biostimulant Activity and Verticillium Wilt Protection of an Onion Extract in Olive Crops ( Olea europaea). PLANTS (BASEL, SWITZERLAND) 2024; 13:2499. [PMID: 39273983 PMCID: PMC11397703 DOI: 10.3390/plants13172499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
The olive tree is crucial to the Mediterranean agricultural economy but faces significant threats from climate change and soil-borne pathogens like Verticillium dahliae. This study assesses the dual role of an onion extract formulation, rich in organosulfur compounds, as both biostimulant and antifungal agent. Research was conducted across three settings: a controlled climatic chamber with non-stressed olive trees; an experimental farm with olive trees under abiotic stress; and two commercial olive orchards affected by V. dahliae. Results showed that in the climatic chamber, onion extract significantly reduced MDA levels in olive leaves, with a more pronounced reduction observed when the extract was applied by irrigation compared to foliar spray. The treatment also increased root length by up to 37.1% compared to controls. In field trials, irrigation with onion extract increased the number of new shoots by 148% and the length of shoots by 53.5%. In commercial orchards, treated trees exhibited reduced MDA levels, lower V. dahliae density, and a 26.7% increase in fruit fat content. These findings suggest that the onion extract effectively reduces oxidative stress and pathogen colonization, while enhancing plant development and fruit fat content. This supports the use of the onion extract formulation as a promising, sustainable alternative to chemical treatments for improving olive crop resilience.
Collapse
Affiliation(s)
- Ana Falcón-Piñeiro
- DMC Research Center, Camino de Jayena 82, 18620 Alhendín, Granada, Spain
| | - Javier Zaguirre-Martínez
- Department of Plant Physiology, University of Granada, Fuentenueva s/n, 18071 Granada, Granada, Spain
| | | | - Enrique Guillamón
- DMC Research Center, Camino de Jayena 82, 18620 Alhendín, Granada, Spain
| | | | | | - Silvia López-Feria
- Dcoop Sociedad Cooperativa Andaluza, Carretera Córdoba s/n, 29200 Antequera, Málaga, Spain
| | - Dolores Garrido
- Department of Plant Physiology, University of Granada, Fuentenueva s/n, 18071 Granada, Granada, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena 82, 18620 Alhendín, Granada, Spain
| |
Collapse
|
9
|
El Yamani M, Cordovilla MDP. Tolerance Mechanisms of Olive Tree ( Olea europaea) under Saline Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2094. [PMID: 39124213 PMCID: PMC11314443 DOI: 10.3390/plants13152094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
The olive tree (Olea europaea L.) is an evergreen tree that occupies 19% of the woody crop area and is cultivated in 67 countries on five continents. The largest olive production region is concentrated in the Mediterranean basin, where the olive tree has had an enormous economic, cultural, and environmental impact since the 7th century BC. In the Mediterranean region, salinity stands out as one of the main abiotic stress factors significantly affecting agricultural production. Moreover, climate change is expected to lead to increased salinization in this region, threatening olive productivity. Salt stress causes combined damage by osmotic stress and ionic toxicity, restricting olive growth and interfering with multiple metabolic processes. A large variability in salinity tolerance among olive cultivars has been described. This paper aims to synthesize information from the published literature on olive adaptations to salt stress and its importance in salinity tolerance. The morphological, physiological, biochemical, and molecular mechanisms of olive tolerance to salt stress are reviewed.
Collapse
Affiliation(s)
- Mohamed El Yamani
- Laboratory of Applied Sciences for the Environment and Sustainable Development, Essaouira School of Technology, Cadi Ayyad University, B.P. 383, Essaouira 40000, Morocco
| | - María del Pilar Cordovilla
- Center for Advances Studies in Olive Grove and Olive Oils, Faculty of Experimental Science, University of Jaén, Paraje Las Lagunillas, E-23071 Jaén, Spain
| |
Collapse
|
10
|
Lamelas L, López-Hidalgo C, Valledor L, Meijón M, Cañal MJ. Like mother like son: Transgenerational memory and cross-tolerance from drought to heat stress are identified in chloroplast proteome and seed provisioning in Pinus radiata. PLANT, CELL & ENVIRONMENT 2024; 47:1640-1655. [PMID: 38282466 DOI: 10.1111/pce.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
How different stressors impact plant health and memory when they are imposed in different generations in wild ecosystems is still scarce. Here, we address how different environments shape heritable memory for the next generation in seeds and seedlings of Pinus radiata, a long-lived species with economic interest. The performance of the seedlings belonging to two wild clonal subpopulations (optimal fertirrigation vs. slightly stressful conditions) was tested under heat stress through physiological profiling and comparative time-series chloroplast proteomics. In addition, we explored the seeds conducting a physiological characterization and targeted transcriptomic profiling in both subpopulations. Our results showed differential responses between them, evidencing a cross-stress transgenerational memory. Seedlings belonging to the stressed subpopulation retained key proteins related to Photosystem II, chloroplast-to-nucleus signalling and osmoprotection which helped to overcome the applied heat stress. The seeds also showed a differential gene expression profile for targeted genes and microRNAs, as well as an increased content of starch and secondary metabolites, molecules which showed potential interest as biomarkers for early selection of primed plants. Thus, these finds not only delve into transgenerational cross-stress memory in trees, but also provide a new biotechnological tool for forest design.
Collapse
Affiliation(s)
- Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Cristina López-Hidalgo
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology, Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
11
|
Teimouri Okhchlar R, Javadi A, Azadmard‐Damirchi S, Torbati M. Quality improvement of oil extracted from flaxseeds ( Linum usitatissimum L.) incorporated with olive leaves by cold press. Food Sci Nutr 2024; 12:3735-3744. [PMID: 38726418 PMCID: PMC11077233 DOI: 10.1002/fsn3.4044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 05/12/2024] Open
Abstract
Flaxseed oil has a high amount of α-linolenic acid (an ω3 essential fatty acid), but it is very prone to oxidation. Therefore, olive leaves were used as a rich source of phenolic compounds with flaxseeds upon oil extraction by cold press to enhance the oxidative stability of extracted oils. Oil from flaxseeds with unblanched leaves and blanched leaves at level of (0 [control sample], 2.5, 5, 7.5, and 10% w/w) was extracted by cold press. Quality of extracted oils was evaluated for 90 days of storage at room condition. Incorporation of unblanched olive leaves could increase the acid value of the extracted oils up to 2.0 (mg KOH/g oil) compared to the other samples. Oxidation of the flaxseed oil could be delayed by the addition of blanched olive leaves up to 5%. Oil extracted from flaxseeds incorporated with blanched olive leaves had higher content of carotenoids (up to 33.7 mg/kg oil), chlorophylls (up to 35.7 mg/kg oil), and phenolic compounds (up to 200 mg/kg oil). Also, oxidative stability of extracted oils was higher up to 7.5% of blanched olive leaves (11.4 h) compared to control sample (7.2 h) and other oil samples. Polyunsaturated fatty acids of the oil samples were well preserved by the incorporation of blanched olive leaves. Based on the obtained results, incorporation of suitable amount of blanched olive leaves (up to 7.5%) with flaxseeds before oil extraction by press can be an appropriate procedure to produce oils with high content of bioactive components and suitable oxidative stability.
Collapse
Affiliation(s)
- Ramin Teimouri Okhchlar
- Department of Food Science and Technology, Mamaghan BranchIslamic Azad UniversityMamaghanIran
| | - Afshin Javadi
- Department of Food Science and Technology, Mamaghan BranchIslamic Azad UniversityMamaghanIran
- Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical ScienceIslamic Azad UniversityTabrizIran
| | | | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
12
|
Morales M, Munné-Bosch S. Malondialdehyde Assays in Higher Plants. Methods Mol Biol 2024; 2798:79-100. [PMID: 38587737 DOI: 10.1007/978-1-0716-3826-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Malondialdehyde is a three-carbon dialdehyde produced as a byproduct of polyunsaturated fatty acid peroxidation widely used as a marker of the extent of lipid peroxidation in plants. There are several methodological approaches to quantify malondialdehyde contents in higher plants, ranging from the simplest, cheapest, and quickest spectrophotometric approaches to the more complex ones using tandem mass spectrometry. This chapter summarizes the advantages and limitations of approaches followed and provides brief protocols with some tips to facilitate the selection of the best method for each experimental condition and application.
Collapse
Affiliation(s)
- Melanie Morales
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Rico EI, de la Fuente GCM, Morillas AO, Ocaña AMF. Physiological and biochemical study of the drought tolerance of 14 main olive cultivars in the Mediterranean basin. PHOTOSYNTHESIS RESEARCH 2024; 159:1-16. [PMID: 37923970 DOI: 10.1007/s11120-023-01052-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/22/2023] [Indexed: 11/06/2023]
Abstract
A complete study of 14 olive cultivars of great economic importance was carried out. These cultivars are Arbequina, Arbosana, Chemlali, Cornicabra, Cornezuelo de Jaén, Empeltre, Frantoio, Hojiblanca, Koroneiki, Manzanilla de Sevilla, Martina, Picual, Sikitita1 and Sikitita 2. All of them are certified by the World Olive Germplasm Bank of Córdoba (Spain). They are predominant cultivars in the olive groves of different locations throughout the Mediterranean basin, and they were subjected to total water deficit for a minimum of 14 days and a maximum of 42 days in the present study. Data such as chlorophyll content, soil moisture and specific leaf area were gathered. Photosynthetic parameters measured at the respective saturation irradiance of each cultivar were also analysed: assimilation rate, transpiration, stomatal conductance, photosynthetic efficiency, photochemical and non-photochemical quenching, photonic flux density, electron transference ratio, efficient use of water and amount of proline and malondialdehyde as indicators of oxidative stress. In addition to the control, two different experimental conditions were analysed: moderate drought, after 14 days of lack of irrigation, and severe drought, after 28-42 days of total absence of irrigation, depending on the tolerance of each cultivar. Based on the results, the cultivars were characterised and divided into four groups according to their drought tolerance: tolerant, moderately tolerant, moderately sensitive and sensitive to drought. This work represents the first contribution of drought tolerance of a considerable number of olive cultivars, with all of them being subjected to the same criteria and experimental conditions for their classification.
Collapse
Affiliation(s)
- Elena Illana Rico
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Genoveva Carmen Martos de la Fuente
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Ainhoa Ortega Morillas
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain
| | - Ana Maria Fernández Ocaña
- Departamento de Biología Animal, Facultad de Ciencias Experimentales, Biología Vegetal y Ecología, Universidad de Jaén. Campus de Las Lagunillas S/N, 23071, Jaén, Spain.
| |
Collapse
|
14
|
Guo Y, Zhang L, Li Y, Chen Q, Wen J, Tang J, Song H, Liu T, Lv B, Kang D, Gao S, Chen Z. Integrated multi-omic data and analyses reveal the response pathways of to high-temperature stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14112. [PMID: 38148228 DOI: 10.1111/ppl.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
With the intensification of the greenhouse effect and the continuous rise of global temperature, high temperatures in summer seriously affect the growth of green onion (Allium fistulosum L.var.caespitosum Makino) and reduce its yield and quality. It is important to study the mechanism of heat tolerance in green onion for selecting and breeding new varieties with high-temperature tolerance. In this study, we used the heat-tolerant green onion variety AF60 and heat-sensitive green onion variety AF35 and measured their physiological indexes under different durations of heat stress. The results showed that high-temperature stress adversely affected the water content, protein composition and antioxidant system of green onion. In addition, a comprehensive analysis using transcriptomics and metabolomics showed that heat-tolerant green onions responded positively to heat stress by up-regulating the expression of heat shock proteins, whereas heat-sensitive green onions responded to heat stress by activating the galactose metabolic pathway and maintained normal physiological activities. This study revealed the physiological performance and high-temperature response pathways of different heat-tolerant green onion cultivars under heat stress. The results further deepen the understanding of the molecular mechanism of green onion's heat stress response.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Li Zhang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yang Li
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Qin Chen
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Junli Wen
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Juan Tang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huanzhong Song
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Touming Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Dexian Kang
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Zhendong Chen
- Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
15
|
Mir RA, Argal S, Ahanger MA, Jatav KS, Agarwal RM. Differential activity of wheat antioxidant defense system and alterations in the accumulation of osmolytes at different developmental stages as influenced by marigold ( Tagetes erecta L.) leachates. FRONTIERS IN PLANT SCIENCE 2022; 13:1001394. [PMID: 36531349 PMCID: PMC9751799 DOI: 10.3389/fpls.2022.1001394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Experiments were conducted to evaluate the effectivity of Tagetes erecta L. leachates on various growth, physiological, and biochemical parameters of wheat at different stages of growth. Results suggested that Triticum aestivum L. seedlings/plants when exposed to higher concentrations of marigold leachates (10%, 20%, and 30% w/v of fresh parts and 5% and 10% w/v of dry parts) exhibited enhanced lipid peroxidation along with an increase in the activity of protease and phenylalanine ammonia lyase. Treatment with higher concentrations of leachates of fresh (30% w/v) and dry (10% w/v) T. erecta upregulated the activity of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, glutathione S-transferase, and glutathione reductase and also increased the non-enzymatic components of antioxidant defense such as glutathione, ascorbic acid, and total phenols along with osmotic constituents comprising free proline, free sugars, and free amino acids in wheat. The growth and yield attributes of wheat exhibited a slight increase at treatments with lower concentrations (1% w/v) of dry leachates, whereas a decrease was recorded at higher concentrations (10% w/v). In general, treatments with flower leachates (higher concentrations) showed greater influence as compared with those with leaf leachates. Identification and understanding the mechanism of function of allelochemicals in these leachates may pave a way for further experimentation on Tagetes erecta L crop while it is cultivated and decomposed in the field.
Collapse
Affiliation(s)
| | - Surendra Argal
- School of Studies in Botany, Jiwaji University, Gwalior, India
| | | | | | | |
Collapse
|
16
|
Yan C, Jia K, Zhang J, Xiao Z, Sha X, Gao J, Yan H. Genome-wide identification and expression pattern analysis of lipoxygenase gene family in turnip ( Brassica rapa L. subsp. rapa). PeerJ 2022; 10:e13746. [PMID: 35898937 PMCID: PMC9310782 DOI: 10.7717/peerj.13746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/27/2022] [Indexed: 01/17/2023] Open
Abstract
Turnip (Brassica rapa L. subsp. rapa) is an important crop with edible and medicinal values, and various stresses, especially salt stress and drought stress, seriously threaten the yield of turnips. LOXs play important roles in regulating plant growth and development, signal transduction, and biotic and abiotic stress responses through secondary metabolites produced by the oxylipin metabolic pathway, and although the turnip genome has been published, however, the role of LOX family genes in various abiotic stress responses has not been systematically studied in turnips. In this study, a total of 15 LOX genes (BrrLOX) were identified in turnip, distributed on six chromosomes. Phylogenetic tree analysis classified these LOX genes into two classes: three 9-LOX proteins and 12 13-LOX type II proteins. Gene duplication analysis showed that tandem and segmental duplication were the main pathways for the expansion of the BrrLOX gene family. The Ka and Ks values of the duplicated genes indicate that the BrrLOX gene underwent strong purifying selection. Further analysis of the cis-acting elements of the promoters suggested that the expression of the BrrLOX gene may be influenced by stress and phytohormones. Transcriptome data analysis showed that 13 BrrLOX genes were expressed at one or more stages of turnip tuber development, suggesting that LOX genes may be involved in the formation of turnip fleshy roots. The qRT-PCR analysis showed that four stresses (salt stress, drought stress, cold stress, and heat stress) and three hormone treatments (methyl jasmonate, salicylic acid, and abscisic acid) affected the expression levels of BrrLOX genes and that different BrrLOX genes responded differently to these stresses. In addition, weighted gene co-expression network analysis (WGCNA) of BrrLOX revealed seven co-expression modules, and the genes in these co-expression modules are collectively involved in plant growth and development and stress response processes. Thus, our results provide valuable information for the functional identification and regulatory mechanisms of BrrLOX in turnip growth and development and stress response.
Collapse
Affiliation(s)
- Cunyao Yan
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Kai Jia
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jing Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhonglin Xiao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiaomei Sha
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jie Gao
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Huizhuan Yan
- College of Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
17
|
Zhao H, Liu H, Jin J, Ma X, Li K. Physiological and Transcriptome Analysis on Diploid and Polyploid Populus ussuriensis Kom. under Salt Stress. Int J Mol Sci 2022; 23:ijms23147529. [PMID: 35886879 PMCID: PMC9319462 DOI: 10.3390/ijms23147529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022] Open
Abstract
Populus ussuriensis Kom. is a valuable forest regeneration tree species in the eastern mountainous region of Northeast China. It is known that diploid P. ussuriensis (CK) performed barely satisfactorily under salt stress, but the salt stress tolerance of polyploid (i.e., triploid (T12) and tetraploid (F20)) P. ussuriensis is still unknown. In order to compare the salt stress tolerance and salt stress response mechanism between diploid and polyploid P. ussuriensis, phenotypic observation, biological and biochemistry index detections, and transcriptome sequencing (RNA-seq) were performed on CK, T12, and F20. Phenotypic observation and leaf salt injury index analysis indicated CK suffered more severe salt injury than T12 and F20. SOD and POD activity detections indicated the salt stress response capacity of T12 was stronger than that of CK and F20. MDA content, proline content and relative electric conductivity detections indicated CK suffered the most severe cell-membrane damage, and T12 exhibited the strongest osmoprotective capacity under salt stress. Transcriptome analysis indicated the DEGs of CK, T12, and F20 under salt stress were different in category and change trend, and there were abundant WRKY, NAM, MYB and AP2/ERF genes among the DEGs in CK, T12, and F20 under salt stress. GO term enrichment indicated the basic growth progresses of CK, and F20 was obviously influenced, while T12 immediately launched more salt stress response processes in 36 h after salt stress. KEGG enrichment indicated the DEGs of CK mainly involved in plant−pathogen interaction, ribosome biogenesis in eukaryotes, protein processing in endoplasmic reticulum, degradation of aromatic compounds, plant hormone signal transduction, photosynthesis, and carbon metabolism pathways. The DEGs of T12 were mainly involved in plant−pathogen interaction, cysteine and methionine metabolism, phagosomes, biosynthesis of amino acids, phenylalanine, tyrosine and tryptophan biosynthesis, plant hormone signal transduction, and starch and sucrose metabolism pathways. The DEGs of F20 were mainly involved in plant hormone signal transduction, plant−pathogen interaction, zeatin biosynthesis, and glutathione metabolism pathways. In conclusion, triploid exhibited stronger salt stress tolerance than tetraploid and diploid P. ussuriensis (i.e., T12 > F20 > CK). The differences between the DEGs of CK, T12, and F20 probably are the key clues for discovering the salt stress response signal transduction network in P. Ussuriensis.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Huanzhen Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Jiaojiao Jin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Xiaoyu Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Z.); (H.L.); (J.J.); (X.M.)
- Correspondence:
| |
Collapse
|
18
|
Responses of Microstructure, Ultrastructure and Antioxidant Enzyme Activity to PEG-Induced Drought Stress in Cyclocarya paliurus Seedlings. FORESTS 2022. [DOI: 10.3390/f13060836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drought is one of the most important abiotic constraints on agricultural productivity, while global warming leads to the occurrence of more frequent drought events. Cyclocarya paliurus is a multiple-function tree species with medicinal value and timber production, but no information is available on its drought tolerance. In this hydroponic experiment, variations in leaf anatomical morphology, chloroplast ultrastructure, stomatal characteristics, and antioxidant enzyme activities were investigated under six levels of polyethylene glycol 6000 (PEG)-induced drought treatments to assess the drought adaption and physiological response of C. paliurus seedlings. The results showed that PEG-induced drought treatments reduced leaf epidermis, spongy tissue, leaf vein diameter, and spongy ratio, whereas the ratio of palisade tissue to spongy tissue, cell tense ratio, and vein protuberant degree all increased with enhancing the PEG6000 concentrations. Significant differences in stomatal width, stomatal aperture, and stomatal density existed among the treatments (p < 0.01). The stomatal aperture decreased significantly with the increase in PEG6000 concentrations, whereas the greatest stomatal density was observed in the 15% PEG6000 treatment. Compared with the control, higher drought stresses (20% and 25% PEG concentrations) caused damage at the cellular level and chloroplast lysis occurred. PEG6000 treatments also promoted the activities of SOD, POD, and CAT in C. paliurus seedlings, but this increase was insufficient to deal with the membrane lipid peroxidative damage under the high PEG concentrations. Correlation analysis indicated that in most cases there were significant relationships between leaf anatomical characteristics and antioxidant enzyme activities. Our results suggested that C. paliurus seedlings would not survive well when the PEG6000 concentration was over 15% (equal to soil water potential of −0.30 MPa).
Collapse
|
19
|
Basu S, Roychoudhury A. Transcript profiling of stress-responsive genes and metabolic changes during salinity in indica and japonica rice exhibit distinct varietal difference. PHYSIOLOGIA PLANTARUM 2021; 173:1434-1447. [PMID: 33905541 DOI: 10.1111/ppl.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
In the present study, we carried out comprehensive transcript profiling of diverse genes under salinity (200 mM NaCl) at different time points, accompanied by certain biochemical alterations of the indica (IR-64 and Pokkali) and japonica (Nipponbare and M-202) rice. The higher susceptibility of Nipponbare and IR-64 was reflected by lower relative water content, chlorophyll loss, higher malondialdehyde content, and accumulation of H2 O2 , and reduced nitrate reductase activity, compared to M-202 and Pokkali, where such changes were less pronounced. Enhanced levels of anthocyanins and reduced glutathione, together with elevated phenylalanine ammonia lyase activity, mainly conferred protection to Nipponbare and IR-64, while metabolites like phenolics, flavonoids, proline, and polyamines were more induced in M-202 and Pokkali. Varietal differences in the expression pattern of diverse groups of genes during different durations (6, 24, and 48 h) of stress were striking. A gene showing early induction for a particular variety exhibited a delayed induction in another variety or a gradually decreased expression with treatment time. Pokkali was clearly identified as the salt-tolerant genotype among the examined varieties based on increased antioxidant potential and enhanced expression of genes encoding for PAL, CHS, and membrane transporters like SOS3, NHX-1, and HKT-1. The results presented in this work provide insight into the complex varying regulation patterns for different genes across the investigated rice varieties in providing salt tolerance and highlights distinct differences in expression patterns between susceptible and tolerant indica and japonica rice.
Collapse
|
20
|
Zou J, Zhang Y, Li X, Ma X, Liu J, Peng X, Sun Z. Sexual differences in root growth and antioxidant characteristics in Salix viminalis exposed to cadmium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1466-1475. [PMID: 34033508 DOI: 10.1080/15226514.2021.1904825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salix viminalis, a dioecious shrub willow, has been widely used in phytoremediation, yet sexually differences in tolerance to cadmium of which remained unclear. This study focused on different responses to cadmium stress between roots of male and female S. viminalis. Results show that male plants of S. viminalis have stronger cadmium tolerance than female plants, which indicates male S. viminalis should be more considered to be applied for phytoremediation and ecological restoration of cadmium-accumulated soil considering cadmium tolerance characteristics. The findings can provide valuable evidence and insights for researches focused on phytoremediation with dioecious woody plants and sexual dimorphism under abiotic stress.
Collapse
Affiliation(s)
- Junzhu Zou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yixin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xia Li
- College of Agriculture and Bioengineering (Peony Institute), Heze University, Heze, China
| | - Xiaodong Ma
- Beijing Research and Development Center for Grass and Environment, Beijing, China
| | - Junxiang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xiangyong Peng
- College of Life Science, Qufu Normal University, Qufu, China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
21
|
Kapoor RT, Hasanuzzaman M. Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2125-2137. [PMID: 33268918 PMCID: PMC7688851 DOI: 10.1007/s12298-020-00894-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 10/10/2020] [Indexed: 05/11/2023]
Abstract
Salinity is one of the most vicious environmental constraints that hamper agricultural production. Experiments were done to explore the significant role of sole and synergistic supplementation of kinetin (100 µM KN) and putrescine (100 µM PUT) on Luffa acutangula in NaCl (100 mM) treatment. The harmful effects of salinity on growth were manifested by decreased seedling length, biomass, and pigment contents. We studied the effect of KN, and PUT in preventing salt (NaCl) induced physiological disorders and oxidative damages in 20-day-old Luffa acutangula seedlings. The individual application of KN and PUT increased growth and biochemical parameters, whereas combined KN + PUT treatment showed significant enhancement in growth, photosynthetic pigment content, and osmolyte accumulation in salt-affected plants. Application of KN and PUT also prevented hydrogen peroxide and superoxide production as confirmed by inhibition in electrolyte leakage and lipid peroxidation. Kinetin and PUT application upregulated the antioxidant defense system by enhancing antioxidant enzymes and non-enzymatic contents. Luffa seedlings treated with NaCl + KN + PUT showed 79, 26, 74, and 73% rise in superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase enzymes, respectively, in comparison to NaCl-stressed Luffa acutangula. Findings revealed that synergistic utilization of KN and PUT modulate growth and biochemical processes in seedlings efficaciously in comparison to the individual application under salt stress, and it may be due to a regulatory crosstalk mechanism.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University, Noida 201 313 Uttar Pradesh, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| |
Collapse
|
22
|
The Molecular and Functional Characterization of the Durum Wheat Lipoxygenase TdLOX2 Suggests Its Role in Hyperosmotic Stress Response. PLANTS 2020; 9:plants9091233. [PMID: 32962020 PMCID: PMC7570197 DOI: 10.3390/plants9091233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022]
Abstract
In plants, lipoxygenases (LOXs) are involved in various processes, such as growth, development, and response to stress cues. In the present study, the expression pattern of six durum wheat LOX-encoding genes (TdLpx-B1.1, TdLpx-B1.2, TdLpx-A2, TdLpx-B2, TdLpx-A3 and TdLpx-B3) under hyperosmotic stress was investigated. With osmotic (0.42 M mannitol) and salt (0.21 M NaCl) stress imposed at the early stages of seedling growth, a strong induction of the TdLpx-A2 gene expression in the shoots paralleled an equally strong increase in the LOX activity. Enhanced levels of malondialdehyde (MDA) and increased rates of superoxide anion generation were also observed as a result of the stress imposition. Sequence analysis of the TdLOX2 encoded by the TdLpx-A2 gene revealed that it belonged to the type-1 9-LOX group. When overexpressed in E. coli, TdLOX2 exhibited normal enzyme activity, high sensitivity to specific LOX inhibitors, with 76% and 99% inhibition by salicylhydroxamic and propyl gallate, respectively, and a preference for linoleic acid as substrate, which was converted exclusively to its corresponding 13-hydroperoxide. This unexpected positional specificity could be related to the unusual TV/K motif that in TdLOX2 replaces the canonical TV/R motif of 9-LOXs. Treatment of seedlings with propyl gallate strongly suppressed the increase in LOX activity induced by the hyperosmotic stress; the MDA accumulation was also reduced but less markedly, whereas the rate of superoxide anion generation was even more increased. Overall, our findings suggest that the up-regulation of the TdLpx-A2 gene is a component of the durum wheat response to hyperosmotic stress and that TdLOX2 may act by counteracting the excessive generation of harmful reactive oxygen species responsible for the oxidative damages that occur in plants under stress.
Collapse
|
23
|
Feng Y, Lin X, Qian L, Hu N, Kuang C, Li X, Li Z, Huang L, Liu M. Morphological and physiological variations of Cyclocarya paliurus under different soil water capacities. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1663-1674. [PMID: 32801494 PMCID: PMC7415069 DOI: 10.1007/s12298-020-00849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Soil water capacity (SWC) is a very important factor for the artificial cultivation and production of seedling in Cyclocarya paliurus. To understand SWC requirement for seedling cultivation and to investigate morphological and physiological changes under different SWCs, a 100-day SWC treatment was conducted during artificial cultivation; four treatments were 10-20 wt% SWC (W1), 30-40 wt% SWC (W2), 50-60 wt% SWC (W3), and 70-80 wt% SWC (W4). The result showed that W3 was suitable for seedling cultivation. Compared with W3, growth biomass decreased and water content increased at W1, W2 and W4; K, Ca, and Mg content increased under W1, while Na content increased under W4; SOD, PPO, POD, and CAT activity in leaf significantly increased under W1 and W4, of which SOD activity was the highest, and MDA content reached its maximum under W1. W1 and W4 had negative effects on seedling growth, and seedlings adapt to unfavorable water condition by morphological and physiological responses. Our research would be useful for artificial cultivation and management of Cyclocarya species.
Collapse
Affiliation(s)
- Ying Feng
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Xiulian Lin
- Huizhou Engineering Vocational College, Huizhou, Guangdong China
| | - Lianwen Qian
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Nengjing Hu
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Chunfeng Kuang
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Xiaofeng Li
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Zheng Li
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Liangrui Huang
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| | - Mingming Liu
- School of Resource and Environmental Science, Quanzhou Normal University, Donghai Street, Fengze Area, Quanzhou, Fujian China
| |
Collapse
|
24
|
Lin YJ, Yu XZ, Li YH, Yang L. Inhibition of the mitochondrial respiratory components (Complex I and Complex III) as stimuli to induce oxidative damage in Oryza sativa L. under thiocyanate exposure. CHEMOSPHERE 2020; 243:125472. [PMID: 31995896 DOI: 10.1016/j.chemosphere.2019.125472] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 05/24/2023]
Abstract
Repression of the electron transport in mitochondria can result in an increase of reactive oxygen species (ROS) in plant cells. This study was to clarify inhibition of the mitochondrial respiratory components (Complex I and Complex III) as stimuli to induce oxidative damage in Oryza sativa L. under exogenous SCN- exposure with special emphasis on lipid peroxidation, protein modification, and DNA damage at the biochemical and molecular levels. Our results showed that enzymatic activity and gene expression of cytochrome c reductase (Complex III) in roots and shoots of rice seedlings were significantly repressed by SCN- exposure, where significant inhibition of NADH dehydrogenase (Complex I) was only detected in shoots, suggesting that Complex III was the main target attacked by SCN- ligand in rice roots, and both components were arrested in shoots. ROS analysis in tissues indicated that SCN- exposure caused significant accumulation of H2O2 and O2-•, increased malondialdehyde (MDA) and carbonyl content in rice materials in a dose-dependent manner. Similarly, a remarkable elevation of electrolyte leakage was observed in rice tissue samples. The comet assay indicated a positive correlation between DNA damage and external SCN- exposure. In conclusion, oxidative burst generated from the inhibitions of the electron transport in mitochondria in rice seedlings under SCN- exposure can cause lipid peroxidation, protein modification and DNA damage, eventually decreasing fresh weight of rice seedlings.
Collapse
Affiliation(s)
- Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| | - Yan-Hong Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Li Yang
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| |
Collapse
|
25
|
Li H, Liu X, Wassie M, Chen L. Selenium supplementation alleviates cadmium-induced damages in tall fescue through modulating antioxidant system, photosynthesis efficiency, and gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9490-9502. [PMID: 31919821 DOI: 10.1007/s11356-019-06628-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is beneficial for plant growth under different stressful conditions. In this study, we investigated the protective effects of Se supply from Cd-induced damages in tall fescue under Cd stress. Tall fescue seedlings (40 days old) were treated with Cd (30 mg/L, as CdSO4·8/3 H2O) and Se (0.1 mg/L, as Na2SeO3) individually and in combination using 1/2 Hoagland's solution system for 7 days. Various physiological parameters, photosynthetic behaviors, and gene expressions were measured. The results showed that Cd-stressed plants displayed obvious toxicity symptoms such as leaf yellowing, decreasing plant height, and root length. Cd stress significantly increased the malondialdehyde (MDA) content and electrolyte leakage (EL), and remarkably reduced the chlorophyll and soluble protein content, antioxidant enzyme activities, and photosynthetic efficiency. Cd stress significantly inhibited the expression of two photosynthesis-related genes (psbB and psbC), but not psbA. In addition, it significantly inhibited the expression of antioxidant system-related genes such as ChlCu/ZnSOD, CytCu/ZnSOD, GPX, and pAPX, but significantly increased the expression of GR. However, Se improved the overall physiological and photosynthetic behaviors of Cd-stressed plants. Se significantly enhanced the chlorophyll and soluble protein content and CAT and SOD activities, but decreased MDA contents, EL, and Cd content and translocation in tall fescue under Cd stress. Furthermore, under Cd stress, Se increased the expression of psbA, psbB psbC, ChlCu/ZnSOD, CytCu/ZnSOD, GPx, and PAPx. The result suggests that Se alleviated the deleterious effects of Cd and improved Cd resistance in tall fescue through upregulating the antioxidant system, photosynthesis activities, and gene expressions.
Collapse
Affiliation(s)
- Huiying Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiaofei Liu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
26
|
De la Rosa L, Zambrana E, Ramirez-Parra E. Molecular bases for drought tolerance in common vetch: designing new molecular breeding tools. BMC PLANT BIOLOGY 2020; 20:71. [PMID: 32054459 PMCID: PMC7020375 DOI: 10.1186/s12870-020-2267-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/27/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Common vetch (Vicia sativa L.) is a forage grain legume of high protein content and high nitrogen fixation, relevant in sustainable agriculture systems. Drought is the main limiting factor of this crop yield. Genetic resources collections are essential to provide genetic variability for breeding. The analysis of drought associated parameters has allowed us to identify drought tolerant and sensitive ecotypes in a vetch core collection. RESULTS To understand the mechanisms involved in drought response we analysed transcriptomic differences between tolerant and sensitive accessions. Polymorphic variants (SNPs and SSRs) in these differential expressed genes (DEGs) have also been analysed for the design of drought-associated markers. A total of 1332 transcripts were commonly deregulated in both genotypes under drought. To know the drought adaptive response, we also analysed DEGs between accessions. A total of 2646 transcripts are DEG between sensitive and tolerant ecotypes, in watered and drought conditions, including important genes involved in redox homeostasis, cell wall modifications and stress-response. The integration of this functional and genetic information will contribute to understand the molecular mechanisms of drought response and the adaptive mechanisms of drought tolerance in common vetch. The identification of polymorphic variants in these DEGs has also been screened for the design of drought-associated markers that could be used in future breeding program strategies. CONCLUSIONS Our studies shed light for the first time in common vetch about the genes and pathways associated with drought tolerance. In addition, we identify over 100 potential drought associated polymorphism, as SNPs or SSRs, which are differently present in drought and tolerant genotypes. The use of these molecular markers for trait prediction would enable the development of genomic tools for future engineering strategies by screening of germplasm crop collections for traits related with crop drought resilience, adaptability or yield in vetch.
Collapse
Affiliation(s)
- Lucía De la Rosa
- Centro Nacional de Recursos Fitogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28800 Alcalá de Henares, Spain
| | - Encarnación Zambrana
- Centro Nacional de Recursos Fitogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28800 Alcalá de Henares, Spain
| | - Elena Ramirez-Parra
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
27
|
Ahanger MA, Mir RA, Alyemeni MN, Ahmad P. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:31-42. [PMID: 31838316 DOI: 10.1016/j.plaphy.2019.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 05/08/2023]
Abstract
Salinity stress reduces growth and yield productivity of most crop plants. Potentiality of kinetin (Kn) and epi-brassinolide (EBL), either individually or combinedly in preventing the salinity (100 mM NaCl) stress mediated oxidative damage and photosynthetic inhibition was studied in Solanum lycopersicum. Combined application of Kn and EBL imparted much prominent impact on the growth, photosynthesis and metabolism of antioxidants, osmolytes and secondary metabolites. Synthesis of chlorophylls and carotenoids increased and the photosynthetic parameters like stomatal conductance, intercellular CO2 concentration and net photosynthesis were significantly improved due to application of Kn and EBL. Photosystem II functioning (Fv/Fm), photochemical quenching and electron transport rate (ETR) improved significantly in Kn and EBL treated plants imparting significant decline in salinity induced non-photochemical quenching. Exogenous Kn and EBL effectively prevented the oxidative damage by significantly declining the generation of hydrogen peroxide and superoxide under saline and non-saline conditions as reflected in lowered lipid peroxidation and electrolyte leakage. Reduced oxidative damage in Kn and EBL treated plants was accompanied down-regulation of protease and lipoxygenase concomitant with up-regulation of the antioxidant system and the accumulation of compatible osmolytes. Treatment of Kn and EBL proved effective in enhancing the contents of redox homeostasis, ascorbic acid and reduced glutathione, and the secondary metabolites assisting the enzymatic antioxidant system in combating the salinity stress efficiently. Results suggest that combined application of Kn and EBL regulate growth and photosynthesis in tomato more effectively than their individual application through a probable regulatory crosstalk mechanism.
Collapse
Affiliation(s)
| | - Rayees Ahmad Mir
- School of Studies in Botany, Jiwaji University, Gwalior, MP, India
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
28
|
Baccari S, Elloumi O, Chaari-Rkhis A, Fenollosa E, Morales M, Drira N, Ben Abdallah F, Fki L, Munné-Bosch S. Linking Leaf Water Potential, Photosynthesis and Chlorophyll Loss With Mechanisms of Photo- and Antioxidant Protection in Juvenile Olive Trees Subjected to Severe Drought. FRONTIERS IN PLANT SCIENCE 2020; 11:614144. [PMID: 33362839 PMCID: PMC7759475 DOI: 10.3389/fpls.2020.614144] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/23/2020] [Indexed: 05/14/2023]
Abstract
The identification of drought-tolerant olive tree genotypes has become an urgent requirement to develop sustainable agriculture in dry lands. However, physiological markers linking drought tolerance with mechanistic effects operating at the cellular level are still lacking, in particular under severe stress, despite the urgent need to develop these tools in the current frame of global change. In this context, 1-year-old olive plants growing in the greenhouse and with a high intra-specific variability (using various genotypes obtained either from cuttings or seeds) were evaluated for drought tolerance under severe stress. Growth, plant water status, net photosynthesis rates, chlorophyll contents and the extent of photo- and antioxidant defenses (including the de-epoxidation state of the xanthophyll cycle, and the contents of carotenoids and vitamin E) were evaluated under well-watered conditions and severe stress (by withholding water for 60 days). Plants were able to continue photosynthesizing under severe stress, even at very low leaf water potential of -4 to -6 MPa. This ability was achieved, at least in part, by the activation of photo- and antioxidant mechanisms, including not only increased xanthophyll cycle de-epoxidation, but also enhanced α-tocopherol contents. "Zarrazi" (obtained from seeds) and "Chemlali" (obtained from cuttings) showed better performance under severe water stress compared to the other genotypes, which was associated to their ability to trigger a higher antioxidant protection. It is concluded that (i) drought tolerance among the various genotypes tested is associated with antioxidant protection in olive trees, (ii) the extent of xanthophyll cycle de-epoxidation is strongly inversely related to photosynthetic rates, and (iii) vitamin E accumulation is sharply induced upon severe chlorophyll degradation.
Collapse
Affiliation(s)
- Sahar Baccari
- Laboratoire LR16IO01, Institut de l’Olivier (IO), University of Sfax, Sfax, Tunisia
- Laboratory of Plant Biotechnology (LR01ES21), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Olfa Elloumi
- Laboratoire LR16IO01, Institut de l’Olivier (IO), University of Sfax, Sfax, Tunisia
| | - Anissa Chaari-Rkhis
- Laboratoire LR16IO01, Institut de l’Olivier (IO), University of Sfax, Sfax, Tunisia
| | - Erola Fenollosa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Melanie Morales
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Noureddine Drira
- Laboratory of Plant Biotechnology (LR01ES21), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Ferjani Ben Abdallah
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Area, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Lotfi Fki
- Laboratory of Plant Biotechnology (LR01ES21), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- *Correspondence: Sergi Munné-Bosch,
| |
Collapse
|
29
|
Bielsa B, Sanz MÁ, Rubio-Cabetas MJ. Uncovering early response to drought by proteomic, physiological and biochemical changes in the almond × peach rootstock 'Garnem'. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:994-1008. [PMID: 31526467 DOI: 10.1071/fp19050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
Abstract
Drought affects growth and metabolism in plants. To investigate the changes in root protein function involved in the early response to drought stress, a proteomic analysis in combination to a physiological and biochemical analysis was performed in plants of 'Garnem', an almond × peach hybrid rootstock, subjected to short-term drought stress. Abscisic acid (ABA) accumulation levels increased during the drought exposure, which induced stomatal closure, and thus, minimised water losses. These effects were reflected in stomatal conductance and leaf water potential levels. However, 'Garnem' was able to balance water content and maintain an osmotic adjustment in cell membranes, suggesting a dehydration avoidance strategy. The proteomic analysis revealed significant abundance changes in 29 and 24 spots after 2 and 24 h of drought stress respectively. Out of these, 15 proteins were identified by LC-ESI-MS/MS. The abundance changes of these proteins suggest the influence in drought-responsive mechanisms present in 'Garnem', allowing its adaptation to drought conditions. Overall, our study improves existing knowledge on the root proteomic changes in the early response to drought. This will lead to a better understanding of dehydration avoidance and tolerance strategies, and finally, help in new drought-tolerance breeding approaches.
Collapse
Affiliation(s)
- Beatriz Bielsa
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059, Zaragoza, Spain
| | - María Á Sanz
- Área de Laboratorios de Análisis y Asistencia Tecnológica, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Av. Montañana 930, 50059, Zaragoza, Spain
| | - María J Rubio-Cabetas
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) - IA2 (CITA-Universidad de Zaragoza), Av. Montañana 930, 50059, Zaragoza, Spain; and Corresponding author.
| |
Collapse
|
30
|
Iquebal MA, Sharma P, Jasrotia RS, Jaiswal S, Kaur A, Saroha M, Angadi UB, Sheoran S, Singh R, Singh GP, Rai A, Tiwari R, Kumar D. RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep 2019; 9:13917. [PMID: 31558740 PMCID: PMC6763491 DOI: 10.1038/s41598-019-49915-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/12/2019] [Indexed: 01/08/2023] Open
Abstract
Drought is one of the major impediments in wheat productivity. Traditional breeding and marker assisted QTL introgression had limited success. Available wheat genomic and RNA-seq data can decipher novel drought tolerance mechanisms with putative candidate gene and marker discovery. Drought is first sensed by root tissue but limited information is available about how roots respond to drought stress. In this view, two contrasting genotypes, namely, NI5439 41 (drought tolerant) and WL711 (drought susceptible) were used to generate ~78.2 GB data for the responses of wheat roots to drought. A total of 45139 DEGs, 13820 TF, 288 miRNAs, 640 pathways and 435829 putative markers were obtained. Study reveals use of such data in QTL to QTN refinement by analysis on two model drought-responsive QTLs on chromosome 3B in wheat roots possessing 18 differentially regulated genes with 190 sequence variants (173 SNPs and 17 InDels). Gene regulatory networks showed 69 hub-genes integrating ABA dependent and independent pathways controlling sensing of drought, root growth, uptake regulation, purine metabolism, thiamine metabolism and antibiotics pathways, stomatal closure and senescence. Eleven SSR markers were validated in a panel of 18 diverse wheat varieties. For effective future use of findings, web genomic resources were developed. We report RNA-Seq approach on wheat roots describing the drought response mechanisms under field drought conditions along with genomic resources, warranted in endeavour of wheat productivity.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Amandeep Kaur
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Monika Saroha
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - U B Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - G P Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, 132001, India.
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, PUSA, New Delhi, 110012, India.
| |
Collapse
|
31
|
Brito C, Dinis LT, Ferreira H, Coutinho J, Moutinho-Pereira J, Correia CM. Salicylic acid increases drought adaptability of young olive trees by changes on redox status and ionome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:315-324. [PMID: 31207492 DOI: 10.1016/j.plaphy.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/15/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Different SA concentrations (10, 100 and 1000 μM) were applied in young olive trees (Olea europaea L.) subjected to drought and rewatering. Plants treated with 10 μM exhibited a close behavior to SA-starved plants. Although both 100 and 1000 μM improved the balance between ROS production and scavenging, 100 μM was more efficient. During drought, 100 μM improved ROS detoxification and scavenging by the maintenance or overaccumulation of soluble proteins. During recovery, soluble proteins return to well-watered values and increased the investment in non-enzymatic antioxidants. 100 μM was also the most effective in plant ionome regulation, improving macro and micronutrients uptake, namely P, Fe, Mn and Zn, and changing mineral allocation patterns. Therefore, 100 μM also countered the drought-induced decline in total plant biomass accumulation. The application of suitable SA concentrations is an efficient tool to improve cellular homeostasis and growth of plants subjected to recurrent drought episodes.
Collapse
Affiliation(s)
- Cátia Brito
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Lia-Tânia Dinis
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Helena Ferreira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - João Coutinho
- CQVR - Chemistry Center, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - José Moutinho-Pereira
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Carlos M Correia
- CITAB - Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| |
Collapse
|
32
|
Montemurro C, Dambruoso G, Bottalico G, Sabetta W. Self-Incompatibility Assessment of Some Italian Olive Genotypes ( Olea europaea L.) and Cross-Derived Seedling Selection by SSR Markers on Seed Endosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:451. [PMID: 31031787 PMCID: PMC6473062 DOI: 10.3389/fpls.2019.00451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The morphology of olive flowers allows either self- or cross-pollination that could partially explain the existence of both reproductive features in this species. However, a high degree of self-incompatibility is reported for many olive genotypes, that could be an important reproductive barrier influencing olive yield. Due to the strong environmental influence, results of compatibility tests are often contradictory, making cultivar classification quite imprecise. In this study, the self-incompatibility value has been determined for four olive genotypes (Bella di Spagna, Coratina, Leccino, and Ogliarola barese) widespread in the Mediterranean basin. Moreover, the incompatibility relationships of cultivar Coratina with some suitable pollinizers (Leccino, Oliastro, and Picholine) have been studied in controlled crosses: the in vitro germination potential of progenies has been evaluated and the selection of cross-derived embryos has been indirectly performed by the molecular characterization of the corresponding endosperm. The results increase knowledge on factors affecting self-compatibility in olive. Moreover, they provide useful information to farmers about the most effective cultivars for the set-up of new olive grove or for graft planning. Finally, they provide a new strategy and procedure based on endosperm analysis by SSRs for an accurate, fast, and relatively cheap screening of embryos/seedlings.
Collapse
Affiliation(s)
- Cinzia Montemurro
- Department of Soil, Plants and Food Sciences, Faculty of Agricultural Science, University of Bari “Aldo Moro,”, Bari, Italy
- SINAGRI S.r.l. – Spin off University of Bari, Bari, Italy
| | - Giovanni Dambruoso
- Department of Soil, Plants and Food Sciences, Faculty of Agricultural Science, University of Bari “Aldo Moro,”, Bari, Italy
| | - Giovanna Bottalico
- Department of Soil, Plants and Food Sciences, Faculty of Agricultural Science, University of Bari “Aldo Moro,”, Bari, Italy
- SINAGRI S.r.l. – Spin off University of Bari, Bari, Italy
| | - Wilma Sabetta
- Department of Soil, Plants and Food Sciences, Faculty of Agricultural Science, University of Bari “Aldo Moro,”, Bari, Italy
- SINAGRI S.r.l. – Spin off University of Bari, Bari, Italy
| |
Collapse
|
33
|
Xalxo R, Keshavkant S. Hydrolytic enzymes mediated lipid-DNA catabolism and altered gene expression of antioxidants under combined application of lead and simulated acid rain in Fenugreek (Trigonella foenum graecum L.) seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1404-1413. [PMID: 30406895 DOI: 10.1007/s10646-018-1996-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Understanding ill effects of simultaneous existence of various abiotic stresses, commonly observed due to various anthropogenic activities and global climate change these days, over plants growth, metabolic activity and yield responses are important for continued agricultural productivity and food security. In the present study, seedlings of Fenugreek (Trigonella foenum graecum L.) were subjected to lead (Pb, 1200 ppm) and/or simulated acid rain (SAR, pH 3.5) for 30 days, and were then analysed. The results revealed reduced growth, and total lipid and DNA contents, while enhanced Pb accumulation, biological concentration factor, biological accumulation coefficient, translocation factor, lipase activity, and levels of free fatty acid, conjugated diene, lipid hydroperoxide, DNA oxidation and DNase activity under Pb and/or SAR exposure. Additionally, activities and gene expression levels of antioxidants (superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase) were enhanced in response to applied treatments. The results also suggested that inhibitions/ accelerations determined under joint addition of Pb and SAR were comparatively more profound than those measured under their single application. Additionally, root was more sensitive to Pb treatment, compared to both leaf and shoot. Hence, under simultaneous presence of two or more number of abiotic stresses, the strategy opted by plants for survival is chiefly governed by the interaction between prevailing stressors, which is then conceived by plants as a new state of stress.
Collapse
Affiliation(s)
- Roseline Xalxo
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010, India.
| |
Collapse
|
34
|
Silva S, Santos C, Serodio J, Silva AMS, Dias MC. Physiological performance of drought-stressed olive plants when exposed to a combined heat-UV-B shock and after stress relief. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1233-1240. [PMID: 32291013 DOI: 10.1071/fp18026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/17/2018] [Indexed: 05/24/2023]
Abstract
Climate change scenarios increase the frequency of combined episodes of drought, heat and high UV radiation, particularly in the Mediterranean region where dryland farming of olive (Olea europaea L.) orchards remains a common practice. Nonirrigated olive plants (drought treatment) were subjected to an episode of heat plus UV-B radiation shock (DH+UV-B treatment) for 2 days. After the treatments, plants were allowed to grow under irrigated conditions (recovery). Compared with irrigated plants, drought treatment induced lower relative water content but this status was not aggravated when DH+UV-B shock was applied. Additionally, the effective quantum yield of PSII was similar in the drought-stressed and DH+UV-B treatments. Interestingly, the DH+UV-B treatment produced higher photosynthetic pigment contents than drought-stressed plants. Concerning oxidative status, the DH+UV-B treatment induced similar lipid peroxidation levels and only cell membrane permeability was higher than in drought-stressed plants. On other hand, drought-stressed plants showed higher levels of anthocyanins and proline. Our data suggest that plants grown under dryland conditions modulated some tolerance mechanisms that may prevent cumulative damages by other stressors. Moreover, drought-stressed and DH+UV-B plants were able to recover their physiological performance in a similar way. These data represent an important contribution to understanding how dryland -grown olive plants will cope with climate change.
Collapse
Affiliation(s)
- Sónia Silva
- Department of Chemistry & QOPNA - Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences and LAQV/REQUIMTE - Laboratório Associado para a Química Verde/ Rede de Química e Tecnologia, University of Porto, Rua do Campo Alegre 4169-007, Porto, Portugal
| | - João Serodio
- CESAM - Center for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Artur M S Silva
- Department of Chemistry & QOPNA - Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Maria Celeste Dias
- Department of Chemistry & QOPNA - Organic Chemistry, Natural Products and Food Stuffs, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| |
Collapse
|
35
|
Xu Y, Huang B. Comparative transcriptomic analysis reveals common molecular factors responsive to heat and drought stress in Agrostis stolonifera. Sci Rep 2018; 8:15181. [PMID: 30315246 PMCID: PMC6185948 DOI: 10.1038/s41598-018-33597-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/19/2018] [Indexed: 02/08/2023] Open
Abstract
Heat and drought stress are primary abiotic stresses confining growth of cool-season grass species during summer. The objective of this study was to identify common molecular factors and metabolic pathways associated with heat and drought responses in creeping bentgrass (Agrostis stolonifera) by comparative analysis of transcriptomic profiles between plants exposed to heat and drought stress. Plants were exposed to heat stress (35/30 °C day/night temperature) or drought stress by withholding irrigation for 21 d in growth chambers. Transcriptomic profiling by RNA-seq in A. stolonifera (cv. 'Penncross') found 670 commonly up-regulated and 812 commonly down-regulated genes by heat and drought stress. Transcriptional up-regulations of differentially expressed genes (DEGs) due to heat and drought stress include genes that were highly enriched in oxylipin biosynthetic process and proline biosynthetic process. Transcriptional down-regulations of genes under heat and drought stress were highly enriched and involved in thiamine metabolic process and calcium sensing receptor. These commonly-regulated genes by heat and drought stress identified in A. stolonifera suggested that drought and heat responses shared such common molecular factors and pathways, which could be potential candidate genes for genetic modification of improving plant tolerance to the combined heat and drought stress.
Collapse
Affiliation(s)
- Yi Xu
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
36
|
Cotrozzi L, Remorini D, Pellegrini E, Guidi L, Nali C, Lorenzini G, Massai R, Landi M. Living in a Mediterranean city in 2050: broadleaf or evergreen 'citizens'? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:8161-8173. [PMID: 28616738 DOI: 10.1007/s11356-017-9316-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 05/27/2023]
Abstract
The predicted effects of global change (GC) will be exacerbated in the more densely populated cities of the future, especially in the Mediterranean basin where some environmental cues, such as drought and tropospheric ozone (O3) pollution, already mine seriously plant survival. Physiological and biochemical responses of a Mediterranean, evergreen, isohydric plant species (Quercus ilex) were compared to those of a sympatric, deciduous, anisohydric species (Q. pubescens) under severe drought (20% of the effective daily evapotranspiration) and/or chronic O3 exposure (80 ppb for 5 h day-1 for 28 consecutive days) to test which one was more successful in those highly limiting conditions. Results show that (i) the lower reduction of total leaf biomass of Q. ilex as compared to Q. pubescens when subjected to drought and drought × O3 (on average -59 vs -70%, respectively); (ii) the steeper decline of photosynthesis found in Q. pubescens under drought (-87 vs -81%) and drought × O3 (-69 vs -59%, respectively); (iii) the increments of malondialdehyde (MDA) by-products found only in drought-stressed Q. pubescens; (iv) the impact of O3, found only in Q. pubescens leaves and MDA, can be considered the best probes of the superiority of Q. ilex to counteract the effect of mild-severe drought and O3 stress. Also, an antagonistic effect was found when drought and O3 were applied simultaneously, as usually happens during typical Mediterranean summers. Our dataset suggests that on future, the urban greening should be wisely pondered on the ability of trees to cope the most impacting factors of GC, and in particular their simultaneity.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
37
|
Tolley JP, Nagashima Y, Gorman Z, Kolomiets MV, Koiwa H. Isoform-specific subcellular localization of Zea mays lipoxygenases and oxo-phytodienoate reductase 2. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.plgene.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Alyemeni MN, Ahanger MA, Wijaya L, Alam P, Bhardwaj R, Ahmad P. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. PROTOPLASMA 2018; 255:459-469. [PMID: 28900731 DOI: 10.1007/s00709-017-1162-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/29/2017] [Indexed: 05/08/2023]
Abstract
Pot experiments were conducted to investigate the role of selenium in alleviating cadmium stress in Solanum lycopersicum seedlings. Cadmium (150 mg L-1) treatment caused a significant reduction in growth in terms of height and biomass accumulation and affected chlorophyll pigments, gas exchange parameters, and chlorophyll fluorescence. Selenium (10 μM) application mitigated the adverse effects of cadmium on growth, chlorophyll and carotenoid contents, leaf relative water content, and other physiological attributes. Lipid peroxidation and electrolyte leakage increased because of cadmium treatment and selenium-treated plants exhibited considerable reduction because of the decreased production of hydrogen peroxide in them. Cadmium-treated plants exhibited enhanced activity of antioxidant enzymes that protected cellular structures by neutralizing reactive free radicals. Supplementation of selenium to cadmium-treated plants (Cd + Se) further enhanced the activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) by 19.69, 31.68, 33.14, and 54.47%, respectively. Osmolytes, including proline and glycine betaine, increased with selenium application, illustrating their role in improving the osmotic stability of S. lycopersicum under cadmium stress. More importantly, selenium application significantly reduced cadmium uptake. From these results, it is clear that application of selenium alleviates the negative effects of cadmium stress in S. lycopersicum through the modifications of osmolytes and antioxidant enzymes.
Collapse
Affiliation(s)
- Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | | | - Leonard Wijaya
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Pravej Alam
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Kingdom of Saudi Arabia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia.
- Department of Botany, S.P. College, Srinagar, Jammu and Kashmir, 190001, India.
| |
Collapse
|
39
|
Ben Abdallah M, Trupiano D, Polzella A, De Zio E, Sassi M, Scaloni A, Zarrouk M, Ben Youssef N, Scippa GS. Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:83-95. [PMID: 29161576 DOI: 10.1016/j.jplph.2017.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 05/26/2023]
Abstract
Olive (Olea europaea L.) is an economically important crop for the Mediterranean basin, where prolonged drought and soil salinization may occur. This plant has developed a series of mechanisms to tolerate and grow under these adverse conditions. By using an integrated approach, we described in Chétoui olive cultivar the changes in plant growth, oxidative damage and osmolyte accumulation in leaves, in combination with corresponding changes in physiological parameters and proteome. Our results showed, under both stress conditions, a greater growth reduction of the aboveground plant organs than of the underground counterparts. This was associated with a reduction of all photosynthetic parameters, the integrity of photosystem II and leaf nitrogen content, and corresponding representation of photosynthetic apparatus proteins, Calvin-Benson cycle and nitrogen metabolism. The most significant changes were observed under the salinity stress condition. Oxidative stress was also observed, in particular, lipid peroxidation, which could be tentatively balanced by a concomitant photoprotective/antioxidative increase of carotenoid levels. At the same time, various compensative mechanisms to cope with nitrogen source demands and to control plant cell osmolarity were also shown by olive plants under these stresses. Taken together, these findings suggest that the Chétoui variety is moderately sensitive to both drought and salt stress, although it has greater ability to tolerate water depletion.
Collapse
Affiliation(s)
- Mariem Ben Abdallah
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia
| | - Dalila Trupiano
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy.
| | - Antonella Polzella
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy
| | - Elena De Zio
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy
| | - Mauro Sassi
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Mokhtar Zarrouk
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia
| | - Nabil Ben Youssef
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia; Department of Biology, College of Sciences, University of Dammam, 31451 Dammam, Saudi Arabia
| | | |
Collapse
|
40
|
Chandrakar V, Parkhey S, Dubey A, Keshavkant S. Modulation in arsenic-induced lipid catabolism in Glycine max using proline, 24-epibrassinolide and diphenylene iodonium. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
41
|
Sun X, Wang Y, Xu L, Li C, Zhang W, Luo X, Jiang H, Liu L. Unraveling the Root Proteome Changes and Its Relationship to Molecular Mechanism Underlying Salt Stress Response in Radish ( Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1192. [PMID: 28769938 PMCID: PMC5509946 DOI: 10.3389/fpls.2017.01192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/23/2017] [Indexed: 05/08/2023]
Abstract
To understand the molecular mechanism underlying salt stress response in radish, iTRAQ-based proteomic analysis was conducted to investigate the differences in protein species abundance under different salt treatments. In total, 851, 706, and 685 differential abundance protein species (DAPS) were identified between CK vs. Na100, CK vs. Na200, and Na100 vs. Na200, respectively. Functional annotation analysis revealed that salt stress elicited complex proteomic alterations in radish roots involved in carbohydrate and energy metabolism, protein metabolism, signal transduction, transcription regulation, stress and defense and transport. Additionally, the expression levels of nine genes encoding DAPS were further verified using RT-qPCR. The integrative analysis of transcriptomic and proteomic data in conjunction with miRNAs was further performed to strengthen the understanding of radish response to salinity. The genes responsible for signal transduction, ROS scavenging and transport activities as well as several key miRNAs including miR171, miR395, and miR398 played crucial roles in salt stress response in radish. Based on these findings, a schematic genetic regulatory network of salt stress response was proposed. This study provided valuable insights into the molecular mechanism underlying salt stress response in radish roots and would facilitate developing effective strategies toward genetically engineered salt-tolerant radish and other root vegetable crops.
Collapse
Affiliation(s)
- Xiaochuan Sun
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuai'an, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Chao Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Haiyan Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| |
Collapse
|
42
|
Ben Abdallah M, Methenni K, Nouairi I, Zarrouk M, Youssef NB. Drought priming improves subsequent more severe drought in a drought-sensitive cultivar of olive cv. Chétoui. SCIENTIA HORTICULTURAE 2017; 221:43-52. [PMID: 28713194 PMCID: PMC5465943 DOI: 10.1016/j.scienta.2017.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 05/21/2023]
Abstract
Drought is a major factor limiting crop production worldwide. The objective of this study was to test whether pre-exposure to drought can enhance the subsequent drought response of a drought-sensitive variety of olive cv. Chétoui. Seven-months old olive plants were grown in a controlled conditions and divided into control plants (irrigated daily), primed plants (PP, primed by exposure to drought for 21 days, re-watered for 60 days and then exposed to water depletion for 30 days) and non-primed plants (NPP, well watered for 81 days and immediately followed by intermediate drought as PP). Compared to the non-primed plants, primed plants showed an improvement in biomass production and healthy values of photosynthesis parameters with a higher accumulation of photosynthetic pigments. Additionally, the data of chlorophyll fluorescence were significantly similar to those of control, implying that no photodamage was occurred. Moreover, primed plants exhibited high accumulation of total sugar and proline which lead to the better water status maintenance. The lower level of oxidative status measured in term of hydrogen peroxide (H2O2), malondiadehyde (MDA) and electrolyte leakage (EC) in primed plants confirmed the alleviation of oxidative stress. Furthermore, the primed plants possessed more effective oxygen scavenging systems as exemplified by the increased activities of CAT, SOD, GP and high accumulation of polyphenols, resulting in a better maintenance in homeostasis of ROS production. Our investigation is indicative of the result of the benefit memory effects caused by stress pre-exposure in young olive plants cv.'Chétoui' to overcome subsequent stress.
Collapse
Affiliation(s)
- Mariem Ben Abdallah
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, P.O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Kawther Methenni
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, P.O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Issam Nouairi
- Laboratory of Legumes, Biotechnology Center of Borj-Cedria, P.O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Mokhtar Zarrouk
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, P.O. Box 901, 2050, Hammam-Lif, Tunisia
| | - Nabil Ben Youssef
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, P.O. Box 901, 2050, Hammam-Lif, Tunisia
- Department of Biology, College of Sciences, University of Dammam, 31451, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Merz MA, Donahue RA, Poulson ME. Physiological Response of Garry Oak (Quercus garryana) Seedlings to Drought. NORTHWEST SCIENCE 2017. [DOI: 10.3955/046.091.0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthew A. Merz
- Matthew A. Merz, Raymon A. Donahue, and Mary E. Poulson, Department of Biological Sciences, Central Washington University, 400 East University Way Ellensburg, Washington 98926-7537
| | - Raymon A. Donahue
- Matthew A. Merz, Raymon A. Donahue, and Mary E. Poulson, Department of Biological Sciences, Central Washington University, 400 East University Way Ellensburg, Washington 98926-7537
| | - Mary E. Poulson
- Matthew A. Merz, Raymon A. Donahue, and Mary E. Poulson, Department of Biological Sciences, Central Washington University, 400 East University Way Ellensburg, Washington 98926-7537
| |
Collapse
|
44
|
Rossi L, Borghi M, Francini A, Lin X, Xie DY, Sebastiani L. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). JOURNAL OF PLANT PHYSIOLOGY 2016; 204:8-15. [PMID: 27497740 DOI: 10.1016/j.jplph.2016.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Olive tree (Olea europaea L.) is an important crop in the Mediterranean Basin where drought and salinity are two of the main factors affecting plant productivity. Despite several studies have reported different responses of various olive tree cultivars to salt stress, the mechanisms that convey tolerance and sensitivity remain largely unknown. To investigate this issue, potted olive plants of Leccino (salt-sensitive) and Frantoio (salt-tolerant) cultivars were grown in a phytotron chamber and treated with 0, 60 and 120mM NaCl. After forty days of treatment, growth analysis was performed and the concentration of sodium in root, stem and leaves was measured by atomic absorption spectroscopy. Phenolic compounds were extracted using methanol, hydrolyzed with butanol-HCl, and quercetin and kaempferol quantified via high performance liquid-chromatography-electrospray-mass spectrometry (HPLC-ESI-MS) and HPLC-q-Time of Flight-MS analyses. In addition, the transcripts levels of five key genes of the phenylpropanoid pathway were measured by quantitative Real-Time PCR. The results of this study corroborate the previous observations, which showed that Frantoio and Leccino differ in allocating sodium in root and leaves. This study also revealed that phenolic compounds remain stable or are strongly depleted under long-time treatment with sodium in Leccino, despite a strong up-regulation of key genes of the phenylpropanoid pathway was observed. Frantoio instead, showed a less intense up-regulation of the phenylpropanoid genes but overall higher content of phenolic compounds. These data suggest that Frantoio copes with the toxicity imposed by elevated sodium not only with mechanisms of Na+ exclusion, but also promptly allocating effective and adequate antioxidant compounds to more sensitive organs.
Collapse
Affiliation(s)
- Lorenzo Rossi
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, I-56127 Pisa, Italy; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Monica Borghi
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alessandra Francini
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, I-56127 Pisa, Italy
| | - Xiuli Lin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, I-56127 Pisa, Italy.
| |
Collapse
|
45
|
Patanè C, Scordia D, Testa G, Cosentino SL. Physiological screening for drought tolerance in Mediterranean long-storage tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:25-34. [PMID: 27297987 DOI: 10.1016/j.plantsci.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 05/18/2023]
Abstract
Long-storage tomato is a drought-tolerant plant traditionally cultivated under no water supply in semi-arid areas of Italy. In 2009, physiological traits of ten "long-storage" tomato lines cultivated under no irrigation were screened for low soil water tolerance. Leaf relative water content (RWC), proline content and leaf transpiration (E) were measured throughout the growing season. Instantaneous leaf water use efficiency was also calculated on a single date, as the ratio between net photosynthesis (A) and E. Close relationships were observed among the physiological parameters, positive for E vs. RWC and inverse for RWC and E vs. proline. Results indicate that the increase in proline concentration involves a water stress tolerance, and genotypes more sensitive to soil water deficit respond to drought stress through less proline in leaves. Close significant linear relationships (positive with RWC and E, negative with proline) were also found between fruit yield and all the physiological parameters examined. Among them, the most reliable indicator for yield prediction under water restriction was leaf transpiration rate as measured at the flowering stage. The study made it possible to understand the complex relationships between physiological processes, drought tolerance, and plant productivity in long-storage tomato, and to identify those traits that regulate plant physiology under low water availability.
Collapse
Affiliation(s)
- Cristina Patanè
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Valorizzazione del Legno e delle Specie Arboree (IVALSA), Sede Secondaria di Catania, Via P. Gaifami 18, 96126 Catania, Italy.
| | - Danilo Scordia
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy.
| | - Giorgio Testa
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy.
| | - Salvatore L Cosentino
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy.
| |
Collapse
|
46
|
Dbara S, Haworth M, Emiliani G, Ben Mimoun M, Gómez-Cadenas A, Centritto M. Partial Root-Zone Drying of Olive (Olea europaea var. 'Chetoui') Induces Reduced Yield under Field Conditions. PLoS One 2016; 11:e0157089. [PMID: 27315081 PMCID: PMC4912070 DOI: 10.1371/journal.pone.0157089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/24/2016] [Indexed: 12/02/2022] Open
Abstract
The productivity of olive trees in arid and semi-arid environments is closely linked to irrigation. It is necessary to improve the efficiency of irrigation techniques to optimise the amount of olive fruit produced in relation to the volume of water used. Partial root-zone drying (PRD) is a water saving irrigation technique that theoretically allows the production of a root-to-shoot signal that modifies the physiology of the above-ground parts of the plant; specifically reducing stomatal conductance (gs) and improving water use efficiency (WUE). Partial root-zone drying has been successfully applied under field conditions to woody and non-woody crops; yet the few previous trials with olive trees have produced contrasting results. Thirty year-old olive trees (Olea europaea 'var. Chetoui') in a Tunisian grove were exposed to four treatments from May to October for three-years: 'control' plants received 100% of the potential evapotranspirative demand (ETc) applied to the whole root-zone; 'PRD100' were supplied with an identical volume of water to the control plants alternated between halves of the root-zone every ten-days; 'PRD50' were given 50% of ETc to half of the root-system, and; 'rain-fed' plants received no supplementary irrigation. Allowing part of the root-zone to dry resulted in reduced vegetative growth and lower yield: PRD100 decreased yield by ~47% during productive years. During the less productive years of the alternate bearing cycle, irrigation had no effect on yield; this suggests that withholding of water during 'off-years' may enhance the effectiveness of irrigation over a two-year cycle. The amount and quality of oil within the olive fruit was unaffected by the irrigation treatment. Photosynthesis declined in the PRD50 and rain-fed trees due to greater diffusive limitations and reduced biochemical uptake of CO2. Stomatal conductance and the foliar concentration of abscisic acid (ABA) were not altered by PRD100 irrigation, which may indicate the absence of a hormonal root-to-shoot signal. Rain-fed and PRD50 treatments induced increased stem water potential and increased foliar concentrations of ABA, proline and soluble sugars. The stomata of the olive trees were relatively insensitive to super-ambient increases in [CO2] and higher [ABA]. These characteristics of 'hydro-passive' stomatal behaviour indicate that the 'Chetoui' variety of olive tree used in this study lacks the physiological responses required for the successful exploitation of PRD techniques to increase yield and water productivity. Alternative irrigation techniques such as partial deficit irrigation may be more suitable for 'Chetoui' olive production.
Collapse
Affiliation(s)
- Soumaya Dbara
- Centre Régional des Recherches en Horticulture et Agriculture Biologique, Chott Mariem, 4042, BP57, Tunisia
| | - Matthew Haworth
- Trees and Timber Institute, National Research Council (CNR—IVALSA), Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Giovani Emiliani
- Trees and Timber Institute, National Research Council (CNR—IVALSA), Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| | - Mehdi Ben Mimoun
- Institut National Agronomique de Tunisie, 43 Avenue Charles Nicolle, Tunis, 1082, Tunisia
| | - Aurelio Gómez-Cadenas
- Dept Ciencias Agrarias y del Medio Natural, Universitat Jaume I, campus Riu Sec, E-12071, Castellon, Spain
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council (CNR—IVALSA), Via Madonna del Piano 10, I-50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
47
|
Cicevan R, Al Hassan M, Sestras AF, Prohens J, Vicente O, Sestras RE, Boscaiu M. Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae). PeerJ 2016; 4:e2133. [PMID: 27326384 PMCID: PMC4911946 DOI: 10.7717/peerj.2133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/24/2016] [Indexed: 11/25/2022] Open
Abstract
Drought tolerance was evaluated in twelve cultivars of three ornamental Tagetes species (T. patula, T. tenuifolia and T. erecta). A stress treatment was performed by completely stopping watering of plants maintained in controlled greenhouse conditions. After three weeks, several plant growth parameters (stem length (SL), fresh weight (FW) and water content (WC)), photosynthetic pigments (chlorophylls and carotenoids (Car)), osmolytes (proline (Pro), glycine betaine (GB) and total soluble sugars (TSS)), an oxidative stress maker (malondialdehyde (MDA)) and antioxidants (total phenolic compounds (TPC) and total flavonoids (TF)) were measured. Considerable differences in the evaluated traits were found among the control and drought-stressed plants. Drought stress generally caused a marked reduction in plant growth and carotenoid pigments, and an increase in soluble solutes and oxidative stress. For most cultivars, proline levels in stressed plants increased between 30 and 70-fold compared to the corresponding controls. According to the different measured parameters, on average T. erecta proved to be more tolerant to drought than T. patula and T. tenuifolia. However, a considerable variation in the tolerance to drought was found within each species. The traits with greater association to drought tolerance as well as the most tolerant cultivars could be clearly identified in a principal components analysis (PCA). Overall, our results indicate that drought tolerant cultivars of Tagetes can be identified at early stages using a combination of plant growth and biochemical markers.
Collapse
Affiliation(s)
- Raluca Cicevan
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Mohamad Al Hassan
- Institute of Plant Molecular and Cellular Biology (IBMCP, UPV-CSIC), Departamento de Biotechnologia, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Adriana F. Sestras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Oscar Vicente
- Institute of Plant Molecular and Cellular Biology (IBMCP, UPV-CSIC), Departamento de Biotechnologia, Universitat Politècnica de València (UPV), Valencia, Spain
| | - Radu E. Sestras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Monica Boscaiu
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
48
|
Song X, Wang Y, Lv X. Responses of plant biomass, photosynthesis and lipid peroxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from North China Grasslands. Ecol Evol 2016; 6:1871-82. [PMID: 26933491 PMCID: PMC4760990 DOI: 10.1002/ece3.1982] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 11/12/2022] Open
Abstract
Influential factors of global change affect plant carbon uptake and biomass simultaneously. Although the effects from warming and precipitation change have been extensive studied separately, the responses of plant biomass, photosynthesis, and lipid peroxidation to the interaction of these factors are still not fully understood. In this study, we examined the physiological responses of two dominant plant species from grasslands of northern China with different functional traits to combinations of five simulated warming patterns and five simulated precipitation patterns in environment-controlled chambers. Our results showed that the biomass, net CO 2 assimilation rate (P n), maximal efficiency of photosystem II photochemistry (F v/F m), and chlorophyll content (Chl) of Stipa grandis and Leymus chinensis were enhanced by moderate warming and plus precipitation, but they declined drastically with high temperature and drought. High temperature and drought also led to significant malondialdehyde (MDA) accumulation, which had a negative correlation with leaf biomass. The lower level of lipid peroxidation in leaves of S. grandis suggests that this species is better protected from oxidative damage under heat stress, drought stress and their interactive conditions than L. chinensis. Using the subordinate function values method, we found S. grandis to be more sensitive to climate change than L. chinensis and the gross biomass and root biomass of S. grandis and the leaf biomass of L. chinensis were most sensitive to climate change. Furthermore, the P n of both S. grandis and L. chinensis had a significant linear relationship with F v/F m and Chl, indicating that carbon assimilation may be caused by nonstomatal limitations.
Collapse
Affiliation(s)
- Xiliang Song
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of ScienceBeijingChina
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of ScienceBeijingChina
| | - Xiaomin Lv
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of ScienceBeijingChina
| |
Collapse
|
49
|
Sofo A, Scopa A, Hashem A, Abd‐Allah EF. Lipid metabolism and oxidation in plants subjected to abiotic stresses. PLANT‐ENVIRONMENT INTERACTION 2016:205-213. [DOI: 10.1002/9781119081005.ch11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
50
|
|