1
|
Omondi MA, Kamassa EH, Katawa G, Tchopba CN, Vogelbusch C, Parcina M, Tchadié EP, Amessoudji OM, Arndts K, Karou SD, Ameyapoh Y, Kolou M, Hoerauf A, Layland LE, Horsnell WGC, Ritter M. Hookworm infection associates with a vaginal Type 1/Type 2 immune signature and increased HPV load. Front Immunol 2022; 13:1009968. [PMID: 36330509 PMCID: PMC9623172 DOI: 10.3389/fimmu.2022.1009968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Helminth infection-driven changes to immunity in the female reproductive tract (FRT) is an immune axis that is currently understudied but can have major implications for the control of FRT infections. Here we address how human hookworm infection associates with vaginal immune profile and risk of Human papillomavirus (HPV) infection. Stool, blood, cervical swabs and vaginal flushes were collected from women from the Central region of Togo to screen for hookworms (Ancylostoma duodenale) and high carcinogenic risk HPV types, via Kato Katz and PCR, respectively. Cytokine, chemokine and immunoglobulin levels were analysed in cervicovaginal lavages and plasma samples. A pronounced mixed Type 1/Type 2 immune response was detected in the vaginal fluids of women with hookworm infection and this immune signature was a notable feature in hookworm-HPV co-infected women. Moreover, hookworm infection is positively associated with increased risk and load of HPV infection. These findings highlight helminth infection as a significant risk factor for acquiring a sexually transmitted viral infection and potentially raising the risk of subsequent pathology.
Collapse
Affiliation(s)
- Millicent A. Omondi
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Eya H. Kamassa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
- *Correspondence: Manuel Ritter, ; William G. C. Horsnell, ; Laura E. Layland, ; Gnatoulma Katawa,
| | - Christèle N. Tchopba
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Celina Vogelbusch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Edlom P. Tchadié
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Oukoe M. Amessoudji
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Simplice D. Karou
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Yaovi Ameyapoh
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Malewé Kolou
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Universite de Lomé, Lomé, Togo
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), Neglected Tropical Disease, Partner site Bonn-Cologne, Bonn, Germany
| | - Laura E. Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Centre for Infection Research (DZIF), Neglected Tropical Disease, Partner site Bonn-Cologne, Bonn, Germany
- *Correspondence: Manuel Ritter, ; William G. C. Horsnell, ; Laura E. Layland, ; Gnatoulma Katawa,
| | - William G. C. Horsnell
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Manuel Ritter, ; William G. C. Horsnell, ; Laura E. Layland, ; Gnatoulma Katawa,
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- *Correspondence: Manuel Ritter, ; William G. C. Horsnell, ; Laura E. Layland, ; Gnatoulma Katawa,
| |
Collapse
|
2
|
Harkins AL, Kopec AL, Keeler AM. Regulatory T Cell Therapeutics for Neuroinflammatory Disorders. Crit Rev Immunol 2022; 42:1-27. [PMID: 37017285 PMCID: PMC11465901 DOI: 10.1615/critrevimmunol.2022045080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A delicate balance of immune regulation exists in the central nervous system (CNS) that is often dysreg-ulated in neurological diseases, making them complicated to treat. With altered immune surveillance in the diseased or injured CNS, signals that are beneficial in the homeostatic CNS can be disrupted and lead to neuroinflammation. Recent advances in niche immune cell subsets have provided insight into the complicated cross-talk between the nervous system and the immune system. Regulatory T cells (Tregs) are a subset of T cells that are capable of suppressing effector T-cell activation and regulating immune tolerance, and play an important role in neuroprotection. Tregs have been shown to be effective therapies in a variety of immune-related disorders including, graft-versus-host disease (GVHD), type 1 diabetes (T1D), and inflammatory bowel disease (IBD), as well as within the CNS. Recently, significant advancements in engineering T cells, such as chimeric antigen receptor (CAR) T cells, have led to several approved therapies suggesting the safety and efficacy for similar engineered Treg therapies. Further, as understanding of the immune system's role in neuroinflammation has progressed, Tregs have recently become a potential therapeutic in the neurology space. In this review, we discuss Tregs and their evolving role as therapies for neuroinflammatory related disorders.
Collapse
Affiliation(s)
- Ashley L. Harkins
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA
| | | | - Allison M. Keeler
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences
- Horae Gene Therapy Center
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
3
|
Shalash AO, Hussein WM, Skwarczynski M, Toth I. Hookworm infection: Toward development of safe and effective peptide vaccines. J Allergy Clin Immunol 2021; 148:1394-1419.e6. [PMID: 34872650 DOI: 10.1016/j.jaci.2021.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Hookworms are hematophagous nematode parasites that have infected a billion people worldwide. Anthelmintic drugs have limited efficacy and do not prevent reinfection. Therefore, prophylactic vaccines are in high demand. Whole parasite vaccines are allergic and unsafe; thus, research into subunit vaccines has been warranted. A comprehensive overview of protein or peptide subunit vaccines' safety, protective efficacy, and associated immune responses is provided herein. The differences between the immune responses against hookworm infection by patients from epidemic versus nonepidemic areas are discussed in detail. Moreover, the different immunologic mechanisms of protection are discussed, including those that rely on allergic and nonallergic humoral and antibody-dependent cellular responses. The allergic and autoimmune potential of hookworm antigens is also explored, as are the immunoregulatory responses induced by the hookworm secretome. The potential of oral mucosal immunizations has been overlooked. Oral immunity against hookworms is a long-lived and safer immune response that is associated with elimination of infection and protective against reinfections. However, the harsh conditions of the gastrointestinal environment necessitates special oral delivery systems to unlock vaccines' protective potential. The potential for development of safer and more effective peptide- and protein-based anthelmintic vaccines is explored herein.
Collapse
Affiliation(s)
- Ahmed O Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
4
|
Shutt-Phillips K, Pafčo B, Heistermann M, Kasim A, Petrželková KJ, Profousová-Pšenková I, Modrý D, Todd A, Fuh T, Dicky JF, Bopalanzognako JB, Setchell JM. Fecal glucocorticoids and gastrointestinal parasite infections in wild western lowland gorillas (Gorilla gorilla gorilla) involved in ecotourism. Gen Comp Endocrinol 2021; 312:113859. [PMID: 34298054 DOI: 10.1016/j.ygcen.2021.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Wildlife ecotourism can offer a source of revenue which benefits local development and conservation simultaneously. However, habituation of wildlife for ecotourism can cause long-term elevation of glucocorticoid hormones, which may suppress immune function and increase an animal's vulnerability to disease. We have previously shown that western lowland gorillas (Gorilla gorilla gorilla) undergoing habituation in Dzanga-Sangha Protected Areas, Central African Republic, have higher fecal glucocorticoid metabolite (FGCM) levels than both habituated and unhabituated gorillas. Here, we tested the relationship between FGCM levels and strongylid infections in the same gorillas. If high FGCM levels suppress the immune system, we predicted that FGCM levels will be positively associated with strongylid egg counts and that gorillas undergoing habituation will have the highest strongylid egg counts, relative to both habituated and unhabituated gorillas. We collected fecal samples over 12 months in two habituated gorilla groups, one group undergoing habituation and completely unhabituated gorillas. We established FGCM levels and fecal egg counts of Necator/Oesophagostomum spp. and Mammomonogamus sp. Controlling for seasonal variation and age-sex category in strongylid infections we found no significant relationship between FGCMs and Nectator/Oesophagostomum spp. or Mammomonogamus sp. egg counts in a within group comparison in either a habituated group or a group undergoing habituation. However, across groups, egg counts of Nectator/Oesophagostomum spp. were lowest in unhabituated animals and highest in the group undergoing habituation, matching the differences in FGCM levels among these gorilla groups. Our findings partially support the hypothesis that elevated glucocorticoids reduce a host's ability to control the extent of parasitic infections, and show the importance of non-invasive monitoring of endocrine function and parasite infection in individuals exposed to human pressure including habituation process and ecotourism.
Collapse
Affiliation(s)
- Kathryn Shutt-Phillips
- Department of Anthropology, Durham University, Durham, UK; UN Environment Programme World Conservation Monitoring Center, Cambridge, UK
| | - Barbora Pafčo
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Czech Republic.
| | | | - Adetayo Kasim
- Wolfson Research Institute for Health and Wellbeing, Durham University Queen's Campus University Boulevard, Thornaby, UK
| | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Liberec Zoo, Liberec, Czech Republic.
| | | | - David Modrý
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources/CINeZ, Czech University of Life Sciences, Prague, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Terence Fuh
- WWF-CAR, BP 1053 Bangui, Central African Republic
| | | | | | | |
Collapse
|
5
|
Tanasescu R, Tench CR, Constantinescu CS, Telford G, Singh S, Frakich N, Onion D, Auer DP, Gran B, Evangelou N, Falah Y, Ranshaw C, Cantacessi C, Jenkins TP, Pritchard DI. Hookworm Treatment for Relapsing Multiple Sclerosis: A Randomized Double-Blinded Placebo-Controlled Trial. JAMA Neurol 2021; 77:1089-1098. [PMID: 32539079 DOI: 10.1001/jamaneurol.2020.1118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance Studies suggest gut worms induce immune responses that can protect against multiple sclerosis (MS). To our knowledge, there are no controlled treatment trials with helminth in MS. Objective To determine whether hookworm treatment has effects on magnetic resonance imaging (MRI) activity and T regulatory cells in relapsing MS. Design, Setting, and Participants This 9-month double-blind, randomized, placebo-controlled trial was conducted between September 2012 and March 2016 in a modified intention-to-treat population (the data were analyzed June 2018) at the University of Nottingham, Queen's Medical Centre, a single tertiary referral center. Patients aged 18 to 61 years with relapsing MS without disease-modifying treatment were recruited from the MS clinic. Seventy-three patients were screened; of these, 71 were recruited (2 ineligible/declined). Interventions Patients were randomized (1:1) to receive either 25 Necator americanus larvae transcutaneously or placebo. The MRI scans were performed monthly during months 3 to 9 and 3 months posttreatment. Main Outcomes and Measures The primary end point was the cumulative number of new/enlarging T2/new enhancing T1 lesions at month 9. The secondary end point was the percentage of cluster of differentiation (CD) 4+CD25highCD127negT regulatory cells in peripheral blood. Results Patients (mean [SD] age, 45 [9.5] years; 50 women [71%]) were randomized to receive hookworm (35 [49.3%]) or placebo (36 [50.7%]). Sixty-six patients (93.0%) completed the trial. The median cumulative numbers of new/enlarging/enhancing lesions were not significantly different between the groups by preplanned Mann-Whitney U tests, which lose power with tied data (high number of zeroactivity MRIs in the hookworm group, 18/35 [51.4%] vs 10/36 [27.8%] in the placebo group). The percentage of CD4+CD25highCD127negT cells increased at month 9 in the hookworm group (hookworm, 32 [4.4%]; placebo, 34 [3.9%]; P = .01). No patients withdrew because of adverse effects. There were no differences in adverse events between groups except more application-site skin discomfort in the hookworm group (82% vs 28%). There were 5 relapses (14.3%) in the hookworm group vs 11 (30.6%) receiving placebo. Conclusions and Relevance Treatment with hookworm was safe and well tolerated. The primary outcome did not reach significance, likely because of a low level of disease activity. Hookworm infection increased T regulatory cells, suggesting an immunobiological effect of hookworm. It appears that a living organism can precipitate immunoregulatory changes that may affect MS disease activity. Trial Registration ClinicalTrials.gov Identifier: NCT01470521.
Collapse
Affiliation(s)
- Radu Tanasescu
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England.,Department of Neurology, Nottingham University Hospitals National Health Service Trust, Nottingham, England.,Division of Clinical Neurosciences, University of Medicine and Pharmacy Carol Davila Bucharest, Bucharest, Romania.,Department of Neurology, Colentina Hospital, Bucharest, Romania
| | - Christopher R Tench
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England.,National Institute of Health Research Nottingham BRC, Nottingham, England
| | - Cris S Constantinescu
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England.,Department of Neurology, Nottingham University Hospitals National Health Service Trust, Nottingham, England
| | - Gary Telford
- Immune Regulation Research Group, University of Nottingham, Nottingham, England
| | - Sonika Singh
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England
| | - Nanci Frakich
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England
| | - David Onion
- Flow Cytometry Facilities, School of Life Sciences, University of Nottingham, Nottingham, England
| | - Dorothee P Auer
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England.,National Institute of Health Research Nottingham BRC, Nottingham, England.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, England
| | - Bruno Gran
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England.,Department of Neurology, Nottingham University Hospitals National Health Service Trust, Nottingham, England
| | - Nikos Evangelou
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England.,Department of Neurology, Nottingham University Hospitals National Health Service Trust, Nottingham, England
| | - Yasser Falah
- Division of Clinical Neuroscience, University of Nottingham, Nottingham, England.,Department of Neurology, Nottingham University Hospitals National Health Service Trust, Nottingham, England
| | - Colin Ranshaw
- Immune Regulation Research Group, University of Nottingham, Nottingham, England
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, England
| | - Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, England
| | - David I Pritchard
- Immune Regulation Research Group, University of Nottingham, Nottingham, England
| |
Collapse
|
6
|
Mourão Dias Magalhães L, Silva Araújo Passos L, Toshio Fujiwara R, Lacerda Bueno L. Immunopathology and modulation induced by hookworms: From understanding to intervention. Parasite Immunol 2020; 43:e12798. [PMID: 33012113 DOI: 10.1111/pim.12798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
Hookworm infection is considered the most prevalent human soil-transmitted helminth infection affecting approximately 500 million people and accounting for 3.2 million disability-adjusted life years lost annually. As with many other neglected tropical diseases, no international surveillance mechanisms that show accurate data on the prevalence of hookworm infection are in place, thus hindering strategies to control parasite transmission. In this review, we unravel the current knowledge in immunopathology and immunoregulation of hookworm infection and present discoveries in drug therapies based on the capability of hookworms to regulate inflammation to treat allergic, inflammatory and metabolic diseases. Additionally, we highlight potential vaccine development and treatments and propose avenues for further inquiry.
Collapse
Affiliation(s)
| | - Livia Silva Araújo Passos
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian Lacerda Bueno
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Maple PAC, Gran B, Tanasescu R, Pritchard DI, Constantinescu CS. An Absence of Epstein-Barr Virus Reactivation and Associations with Disease Activity in People with Multiple Sclerosis Undergoing Therapeutic Hookworm Vaccination. Vaccines (Basel) 2020; 8:vaccines8030487. [PMID: 32872342 PMCID: PMC7564729 DOI: 10.3390/vaccines8030487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Epstein–Barr virus (EBV) infection is strongly associated with multiple sclerosis (MS). Helminth infection can downregulate antiviral immune responses, potentially protecting against MS, but with a theoretical risk for reactivating latent EBV infection. Objective: To investigate parameters of EBV infection and their relationship with disease activity in people with MS (PwMS) therapeutically vaccinated with Necator americanus (hookworm). Methods: Sequential serum samples from 51 PwMS; 26 therapeutically infected (25 larvae) with N. americanus and 25 controls were tested for EBV virus capsid antigen (VCA) IgG and IgM, EBV nuclear antigen-1 (EBNA-1) IgG, and EBV early antigen (EA) IgG. Disease activity was assessed by periodic MRI. Significance was set at p < 0.05. Results: All PwMS were EBV VCA IgG and EBNA-1 IgG positive, and 35.2% were EBV EA IgG positive. EBV antibody levels were generally stable, and EBV reactivation in PwMS was not demonstrated by significant increases in IgG titre over 12 months. Disease activity was most frequent in PwMS possessing high levels of EBV VCA IgG (>600 units/mL) or EBNA-1 IgG (>150 units/mL); however, there was no association with hookworm treatment. Interpretation: Therapeutic hookworm vaccination was not associated with EBV reactivation. Multiple sclerosis disease activity was associated with high levels of EBV VCA IgG or EBNA-1 IgG.
Collapse
Affiliation(s)
- Peter A. C. Maple
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine; Queen’s Medical Centre, Nottingham NG7 2UH, UK; (B.G.); (R.T.); (C.S.C.)
- Correspondence: ; Tel.: +44-115-8231443; Fax: +44-115-9709738
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine; Queen’s Medical Centre, Nottingham NG7 2UH, UK; (B.G.); (R.T.); (C.S.C.)
- Department of Neurology, Nottingham University Hospitals NHS Trust; Queen’s Medical Centre, Nottingham NG7 2UH, UK
| | - Radu Tanasescu
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine; Queen’s Medical Centre, Nottingham NG7 2UH, UK; (B.G.); (R.T.); (C.S.C.)
- Department of Neurology, Nottingham University Hospitals NHS Trust; Queen’s Medical Centre, Nottingham NG7 2UH, UK
- Department of Neurosciences, University of Medicine and Pharmacy Carol Davila, 021172 Bucharest, Romania
- Department of Neurology, Colentina Hospital, 021172 Bucharest, Romania
| | - David I. Pritchard
- Immune Regulation Research Group (D.P.), University of Nottingham, Nottingham NG7 2UH, UK;
| | - Cris S. Constantinescu
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine; Queen’s Medical Centre, Nottingham NG7 2UH, UK; (B.G.); (R.T.); (C.S.C.)
- Department of Neurology, Nottingham University Hospitals NHS Trust; Queen’s Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
8
|
Persson G, Ekmann JR, Hviid TVF. Reflections upon immunological mechanisms involved in fertility, pregnancy and parasite infections. J Reprod Immunol 2019; 136:102610. [PMID: 31479960 DOI: 10.1016/j.jri.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
During a pregnancy, the mother accepts her semi-allogeneic fetus with no signs of immunological rejection. Therefore, some modulation of the maternal immune system must occur. Similarly, changes in the host's immune system occurs during infections with parasites. In a study conducted in an endemic area in Bolivia, it has been reported that women infected with either the helminthic parasite roundworm or hookworm were estimated to give birth to either two more, or three fewer, children than uninfected, endemic women, respectively. Immune regulation by helminthic parasites is a rather well-researched concept, but there are few reports on the effects on human fecundity. The current review focuses on mechanisms of possible importance for especially the increased fertility rates in women infected with roundworm. The host immune response to roundworm has been hypothesized to be more favourable for a successful pregnancy because it bears resemblance to the anti-inflammatory immunological responses observed in pregnancy, steering the immunological response away from a pro-inflammatory state that seem to suppress fecundity. Further research into parasitic worm interactions, fertility, and the molecular mechanisms that they unfold may widen our understanding of the immunomodulatory pathways in both helminthic infections and in fertility and pregnancy.
Collapse
Affiliation(s)
- Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark
| | - Josephine Roth Ekmann
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark.
| |
Collapse
|
9
|
Martin RK, Damle SR, Valentine YA, Zellner MP, James BN, Lownik JC, Luker AJ, Davis EH, DeMeules MM, Khandjian LM, Finkelman FD, Urban JF, Conrad DH. B1 Cell IgE Impedes Mast Cell-Mediated Enhancement of Parasite Expulsion through B2 IgE Blockade. Cell Rep 2019; 22:1824-1834. [PMID: 29444434 PMCID: PMC5832064 DOI: 10.1016/j.celrep.2018.01.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 12/05/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Helminth infection is known for generating large amounts of poly-specific IgE. Here we demonstrate that innate-like B1 cells are responsible for this IgE production during infection with the nematode parasites Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. In vitro analysis of B1 cell immunoglobulin class switch recombination to IgE demonstrated a requirement for anti-CD40 and IL-4 that was further enhanced when IL-5 was added or when the B1 source was helminth infected mice. An IL-25-induced upregulation of IgE in B1 cells was also demonstrated. In T cell-reconstituted RAG1−/− mice, N. brasiliensis clearance was enhanced with the addition of B2 cells in an IgE-dependent manner. This enhanced clearance was impeded by reconstitution with IgE sufficient B1 cells. Mucosal mast cells mediated the B2 cell enhancement of clearance in the absence of B1 cells. The data support B1 cell IgE secretion as a regulatory response exploited by the helminth.
Collapse
Affiliation(s)
- Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yolander A Valentine
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Matthew P Zellner
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Briana N James
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph C Lownik
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Clinical and Translational Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrea J Luker
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elijah H Davis
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Martha M DeMeules
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Laura M Khandjian
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Fred D Finkelman
- Division of Immunology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Medicine Service, Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
10
|
Abstract
Gluten is known to be the main triggering factor for celiac disease (CeD), an immune-mediated disorder. CeD is therefore managed using a strict and lifelong gluten-free diet (GFD), the only effective treatment available currently. However, the GFD is restrictive. Hence, efforts are being made to explore alternative therapies. Based on their mechanisms of action on various molecular targets involved in the pathogenesis of CeD, these therapies may be classified into one of the following five broad approaches. The first approach focuses on decreasing the immunogenic content of gluten, using strategies like genetically modified wheat, intra-intestinal gluten digestion using glutenases, microwave thermal treatment of hydrated wheat kernels, and gluten pretreatment with either bacterial/ fungal derived endopeptidases or microbial transglutaminase. The second approach involves sequestering gluten in the gut lumen before it is digested into immunogenic peptides and absorbed, using binder drugs like polymer p(HEMA-co-SS), single chain fragment variable (scFv), and anti- gluten antibody AGY. The third approach aims to prevent uptake of digested gluten through intestinal epithelial tight junctions, using a zonulin antagonist. The fourth approach involves tissue transglutaminase (tTG) inhibitors to prevent the enhancement of immunogenicity of digested gluten by the intestinal tTG enzyme. The fifth approach seeks to prevent downstream immune activation after uptake of gluten immunogenic peptides through the intestinal mucosal epithelial layer. Examples include HLA-DQ2 blockers that prevent presentation of gluten derived- antigens by dendritic cells to T cells, immune- tolerizing therapies like the vaccine Nexvax2 and TIMP-Glia, cathepsin inhibitors, immunosuppressants like corticosteroids, azathioprine etc., and anti-cytokine agents targeting TNF-α and interleukin-15. Apart from these approaches, research is being done to evaluate the effectiveness of probiotics/prebiotics, helminth therapy using Necator americanus, low FODMAP diet, and pancreatic enzyme supplementation in CeD symptom control; however, the mechanisms by which they play a beneficial role in CeD are yet to be clearly established. Overall, although many therapies being explored are still in the pre-clinical phase, some like the zonulin antagonist, immune tolerizing therapies and glutenases have reached phase II/III clinical trials. While these potential options appear exciting, currently they may at best be used to supplement rather than supplant the GFD.
Collapse
Affiliation(s)
| | - Govind K. Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Lello J, McClure SJ, Tyrrell K, Viney ME. Predicting the effects of parasite co-infection across species boundaries. Proc Biol Sci 2019. [PMID: 29540516 PMCID: PMC5879626 DOI: 10.1098/rspb.2017.2610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is normal for hosts to be co-infected by parasites. Interactions among co-infecting species can have profound consequences, including changing parasite transmission dynamics, altering disease severity and confounding attempts at parasite control. Despite the importance of co-infection, there is currently no way to predict how different parasite species may interact with one another, nor the consequences of those interactions. Here, we demonstrate a method that enables such prediction by identifying two nematode parasite groups based on taxonomy and characteristics of the parasitological niche. From an understanding of the interactions between the two defined groups in one host system (wild rabbits), we predict how two different nematode species, from the same defined groups, will interact in co-infections in a different host system (sheep), and then we test this experimentally. We show that, as predicted, in co-infections, the blood-feeding nematode Haemonchus contortus suppresses aspects of the sheep immune response, thereby facilitating the establishment and/or survival of the nematode Trichostrongylus colubriformis; and that the T. colubriformis-induced immune response negatively affects H. contortus This work is, to our knowledge, the first to use empirical data from one host system to successfully predict the specific outcome of a different co-infection in a second host species. The study therefore takes the first step in defining a practical framework for predicting interspecific parasite interactions in other animal systems.
Collapse
Affiliation(s)
- Joanne Lello
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK .,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Trentino 38010, Italy.,Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Susan J McClure
- Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Kerri Tyrrell
- Division of Animal, Food and Health Sciences, CSIRO, Armidale, New South Wales 2350, Australia
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
12
|
Mutombo PN, Man NWY, Nejsum P, Ricketson R, Gordon CA, Robertson G, Clements ACA, Chacón-Fonseca N, Nissapatorn V, Webster JP, McLaws ML. Diagnosis and drug resistance of human soil-transmitted helminth infections: A public health perspective. ADVANCES IN PARASITOLOGY 2019; 104:247-326. [PMID: 31030770 DOI: 10.1016/bs.apar.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil-transmitted helminth (STH) infections represent a major public health problem globally, particularly among socio-economically disadvantaged populations. Detection of STH infections is often challenging, requiring a combination of diagnostic techniques to achieve acceptable sensitivity and specificity, particularly in low infection-intensity situations. The microscopy-based Kato-Katz remains the most widely used method but has low sensitivity in the detection of, for instance, Strongyloides spp. infections, among others. Antigen/antibody assays can be more sensitive but are parasite species-specific. Highly sensitive PCR methods have been developed to be multiplexed to allow multi-species detection. Novel diagnostic tests for all STH species are needed for effective monitoring, evaluation of chemotherapy programmes, and to assess the potential emergence of parasite resistance. This review discusses available diagnostic methods for the different stages of STH control programmes, which vary in sensitivity and spectrum of detection requirements, and tools to evaluate drug efficacy and resistance.
Collapse
Affiliation(s)
- Polydor Ngoy Mutombo
- School of Public Health and Community Medicine, UNSW Medicine, UNSW, Sydney, NSW, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.
| | - Nicola W Y Man
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Robert Ricketson
- Hale O'mana'o Biomedical Research, Division of Emerging Pathogens, Edmond, OK, United States
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gemma Robertson
- Public and Environmental Health, Forensic and Scientific Services, Department of Health, Brisbane, QLD, Australia
| | | | - Nathalie Chacón-Fonseca
- Soil-Transmitted Helminths Section, Tropical Medicine Institute, Tropical Medicine Department, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Mary-Louise McLaws
- School of Public Health and Community Medicine, UNSW Medicine, UNSW, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, Croese J, Bethony JM. Hookworm infection. Nat Rev Dis Primers 2016; 2:16088. [PMID: 27929101 DOI: 10.1038/nrdp.2016.88] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hookworms are soil-transmitted nematode parasites that can reside for many years in the small intestine of their human hosts; Necator americanus is the predominant infecting species. Adult worms feed on the blood of a host and can cause iron deficiency anaemia, especially in high-risk populations (children and women of childbearing age). Almost 500 million people in developing tropical countries are infected, and simulation models estimate that hookworm infection is responsible for >4 million disability-adjusted life years lost annually. Humans mount an immune response to hookworms, but it is mostly unsuccessful at removing adult worms from the bowel. Accordingly, the host switches to an immune-tolerant state that enables hookworms to reside in the gut for many years. Although anthelmintic drugs are available and widely used, their efficacy varies and the drugs do not prevent reinfection. Thus, other control strategies aimed at improving water quality, sanitation and hygiene are needed. In addition, efforts are underway to develop a human hookworm vaccine through public-private partnerships. However, hookworms could also be a resource; as hookworms have the capability to regulate the host's inflammation, researchers are experimentally infecting patients to treat some inflammatory diseases as an approach to discover new anti-inflammatory molecules. This area of endeavour might well yield new biotherapeutics for autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, Building E4, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia
| | - Peter J Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College Of Medicine, Houston, Texas, USA.,Sabin Vaccine Institute, Houston, Texas, USA.,Texas Children's Hospital Center for Vaccine Development, Houston, Texas, USA
| | - David Diemert
- Department of Microbiology, Tropical Medicine and Immunology, George Washington University, Washington DC, USA.,Sabin Vaccine Institute, Washington DC, USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - James S McCarthy
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | | | - John Croese
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, Building E4, James Cook University, McGregor Rd, Smithfield, Cairns, Queensland 4878, Australia.,Department of Gastroenterology, Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Jeffrey M Bethony
- Department of Microbiology, Tropical Medicine and Immunology, George Washington University, Washington DC, USA
| |
Collapse
|
14
|
Constantinoiu CC, Goullet MS, Constantinoiu EC, Scott JL. Mucosal tolerance of the hookwormAncylostoma caninumin the gut of naturally infected wild dogs. Parasite Immunol 2015. [DOI: 10.1111/pim.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- C. C. Constantinoiu
- College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville Qld Australia
| | | | - E. C. Constantinoiu
- College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville Qld Australia
| | - J. L. Scott
- College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville Qld Australia
| |
Collapse
|
15
|
Gaze S, Bethony JM, Periago MV. Immunology of experimental and natural human hookworm infection. Parasite Immunol 2014; 36:358-66. [PMID: 25337625 DOI: 10.1111/pim.12088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human hookworm infection is one amongst the most prevalent of the neglected tropical diseases. An informative experimental animal model, that is, one that parallels a human infection, is not available for the study of human hookworm infection. Much of our current understanding of the human immune response during hookworm infection relies on the studies from experimental infection of hookworm-naïve individuals or the natural infections from individuals residing in hookworm-endemic areas. The experimental human infections tend to be acute, dose-controlled infections, often with a low larval inoculum so that they are well tolerated by human volunteers. Natural hookworm infections usually occur in areas where hookworm transmission is constant and infection is chronic. In cases where there has been drug administration in an endemic area, re-infection often occurs quickly even amongst those who were treated. Hence, although many of the characteristics of experimental and natural hookworm infection differ, both models have elements in common: mainly an intense Th2 response with the production of total and specific IgE as well as elevated levels of eosinophilia, IL-5, IL-10 and TNF. While hookworm infection affects millions of individuals worldwide, much of the human immunology of this infection still needs to be studied and understood.
Collapse
|
16
|
Mooney PD, Hadjivassiliou M, Sanders DS. Emerging drugs for coeliac disease. Expert Opin Emerg Drugs 2014; 19:533-44. [DOI: 10.1517/14728214.2014.959490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Abstract
In the last 50 years, environmental factors such as helminth infections have been proposed to explain why autoimmunity is less prevalent in the developing world; this proposal has been termed the hygiene or old friends hypothesis. The epidemiology of MS shows an inverse correlation with helminth infections. Positive effects of helminths in animal models of MS and observational studies in people with MS naturally infected with helminths suggest that those organisms can act as immune regulators and led to clinical trials of helminth therapy. The goal of helminth therapy is to introduce parasitic organisms into people with MS in a controlled and predictable fashion, and to prevent immune-mediated disease without increasing the risk of pathology with high parasite load. This chapter focuses on intestinal worms as they are the current choice as a therapeutic strategy in a number of autoimmune diseases, including MS. Here we review current data regarding the rationale and the current state of research in the field of helminth therapies in MS.
Collapse
|
18
|
Croese J, Gaze ST, Loukas A. Changed gluten immunity in celiac disease by Necator americanus provides new insights into autoimmunity. Int J Parasitol 2013; 43:275-82. [PMID: 23291460 DOI: 10.1016/j.ijpara.2012.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/09/2012] [Accepted: 12/12/2012] [Indexed: 12/26/2022]
Abstract
We recently completed clinical trials in people with diet-treated celiac disease who were purposefully infected with the ubiquitous human hookworm, Necator americanus. Hookworm infection elicited not only parasite-specific immunity but also modified the host's immune response to gluten. After infection, mucosal IL-1β and IL-22 responses were enhanced, but IFNγ and IL-17A levels and circulating regulatory T cells following gluten challenge were suppressed, and the adaptive response to gluten acquired a helper T cell type-2 profile. In this review, we briefly, (i) highlight the utility celiac disease offers autoimmune research, (ii) discuss safety and personal experience with N. americanus, (iii) summarise the direct and bystander impact that hookworm infection has on mucosal immunity to the parasite and gluten, respectively, and (iv) speculate why this hookworm's success depends on healing its host and how this might impact on a propensity to autoimmunity.
Collapse
Affiliation(s)
- John Croese
- The Department of Gastroenterology, The Townsville Hospital, Townsville, Australia.
| | | | | |
Collapse
|
19
|
The hookworm pharmacopoeia for inflammatory diseases. Int J Parasitol 2012; 43:225-31. [PMID: 23220091 DOI: 10.1016/j.ijpara.2012.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 01/18/2023]
Abstract
In the developed world, declining prevalence of parasitic infections correlates with increased incidence of allergic and autoimmune disorders. Current treatments for these chronic inflammatory conditions have little to no effect on their prevalence and are referred to as "controllers" rather than cures. There has been limited success in therapeutically targeting allergic and autoimmune pathways, leaving an unmet need for development of effective anti-inflammatories. We discuss the benefit of hookworm infections and the parasite's ability to condition the immune system to prevent allergic asthma and inflammatory bowel diseases. We then examine the immunomodulatory properties of selected hookworm-derived proteins in these two models of inflammation. While hookworm protein therapy has yet to be fully exploited, the identification of these proteins and the mechanisms by which they skew the immune system will provide new avenues for controlling and optimally reversing key pathological processes important in allergic and inflammatory bowel diseases.
Collapse
|
20
|
Periago MV, Bethony JM. Hookworm virulence factors: making the most of the host. Microbes Infect 2012; 14:1451-64. [DOI: 10.1016/j.micinf.2012.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/16/2012] [Accepted: 09/03/2012] [Indexed: 11/25/2022]
|
21
|
Nausch N, Louis D, Lantz O, Peguillet I, Trottein F, Chen IYD, Appleby LJ, Bourke CD, Midzi N, Mduluza T, Mutapi F. Age-related patterns in human myeloid dendritic cell populations in people exposed to Schistosoma haematobium infection. PLoS Negl Trop Dis 2012; 6:e1824. [PMID: 23029585 PMCID: PMC3459871 DOI: 10.1371/journal.pntd.0001824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 08/06/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Urogenital schistosomiasis is caused by the helminth parasite Schistosoma haematobium. In high transmission areas, children acquire schistosome infection early in life with infection levels peaking in early childhood and subsequently declining in late childhood. This age-related infection profile is thought to result from the gradual development of protective acquired immunity. Age-related differences in schistosome-specific humoral and cellular responses have been reported from several field studies. However there has not yet been a systematic study of the age-related changes in human dendritic cells, the drivers of T cell polarisation. METHODS Peripheral blood mononuclear cells were obtained from a cohort of 61 Zimbabwean aged 5-45 years with a S. haematobium prevalence of 47.5%. Two subsets of dendritic cells, myeloid and plasmacytoid dendritic cells (mDCs and pDCs), were analyzed by flow cytometry. FINDINGS In this population, schistosome infection levels peaked in the youngest age group (5-9 years), and declined in late childhood and adulthood (10+ years). The proportions of both mDCs and pDCs varied with age. However, for mDCs the age profile depended on host infection status. In the youngest age group infected people had enhanced proportions of mDCs as well as lower levels of HLA-DR on mDCs than un-infected people. In the older age groups (10-13 and 14-45 years) infected people had lower proportions of mDCs compared to un-infected individuals, but no infection status-related differences were observed in their levels of HLA-DR. Moreover mDC proportions correlated with levels of schistosome-specific IgG, which can be associated with protective immunity. In contrast proportions of pDCs varied with host age, but not with infection status. CONCLUSIONS Our results show that dendritic cell proportions and activation in a human population living in schistosome-endemic areas vary with host age reflecting differences in cumulative history of exposure to schistosome infection.
Collapse
Affiliation(s)
- Norman Nausch
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Farid AS, Horii Y. Modulation of paraoxonases during infectious diseases and its potential impact on atherosclerosis. Lipids Health Dis 2012; 11:92. [PMID: 22824324 PMCID: PMC3457911 DOI: 10.1186/1476-511x-11-92] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/03/2012] [Indexed: 02/07/2023] Open
Abstract
The paraoxonase (PON) gene family includes three members, PON1, PON2 and PON3, aligned in tandem on chromosome 7 in humans and on chromosome 6 in mice. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. The major goal of this review is to highlight the modulation of each of the PONs by infective (bacterial, viral and parasitic) agents, which may shed a light on the interaction between infectious diseases and PONs activities in order to effectively reduce the risk of developing atherosclerosis.
Collapse
Affiliation(s)
- Ayman Samir Farid
- Laboratory of Parasitic Diseases, Faculty of Agriculture, University of Miyazaki, Gakuen-Kibanadai, Nishi 1-1, Miyazaki 889-2192, Japan
| | | |
Collapse
|
23
|
Brock PM, Hall AJ, Goodman SJ, Cruz M, Acevedo-Whitehouse K. Applying the tools of ecological immunology to conservation: a test case in the Galapagos sea lion. Anim Conserv 2012. [DOI: 10.1111/j.1469-1795.2012.00567.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - A. J. Hall
- Sea Mammal Research Unit; Scottish Ocean Institute; University of St. Andrews; Fife; UK
| | - S. J. Goodman
- Institute of Integrative and Comparative Biology; University of Leeds; Leeds; UK
| | - M. Cruz
- Galapagos Genetics; Epidemiology and Pathology Laboratory; Galapagos National Park & University of Guayaquil; Puerto Ayora; Galapagos Islands; Ecuador
| | | |
Collapse
|
24
|
Ramakrishna BS, Binder HJ, Subramanian V, Pugazhendhi S, Kabeerdoss J. Exposure to hookworms in patients with Crohn's disease: authors' reply. Aliment Pharmacol Ther 2011; 34:1250. [PMID: 22004257 DOI: 10.1111/j.1365-2036.2011.04868.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- B S Ramakrishna
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India.
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- M Shale
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, John Radcliffe Hospital, Oxford, UK.
| | | |
Collapse
|
26
|
Blood stage merozoite surface protein conjugated to nanoparticles induce potent parasite inhibitory antibodies. Vaccine 2011; 29:8898-908. [PMID: 21963870 DOI: 10.1016/j.vaccine.2011.09.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/23/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
In this proof-of-concept study we report the use of <15 nm, water soluble, inorganic nanoparticles as a vaccine delivery system for a blood stage malaria vaccine. The recombinant malarial antigen, Merozoite Surface Protein 1 (rMSP1) of Plasmodium falciparum served as the model vaccine. The rMSP1 was covalently conjugated to polymer-coated quantum dot CdSe/ZnS nanoparticles (QDs) via surface carboxyl groups, forming rMSP1-QDs. Anti-MSP1 antibody responses induced by rMSP1-QDs were found to have 2-3 log higher titers than those obtained with rMSP1 administered with the conventional adjuvants, Montanide ISA51 and CFA. Moreover, the immune responsiveness and the induction of parasite inhibitory antibodies were significantly superior in mice injected with rMSP1-QDs. The rMSP1-QDs delivered via intra-peritoneal (i.p.), intra-muscular (i.m.), and subcutaneous (s.c.) routes were equally efficacious. The high level of immunogenicity exhibited by the rMSP1-QDs was achieved without further addition of other adjuvant components. Bone marrow derived dendritic cells were shown to efficiently take up the nanoparticles leading to their activation and the expression/secretion of key cytokines, suggesting that this may be a mode of action for the enhanced immunogenicity. This study provides promising results for the use of water soluble, inorganic nanoparticles (<15 nm) as potent vehicles/platforms to enhance the immunogenicity of polypeptide antigens in adjuvant-free immunizations.
Collapse
|
27
|
Humphries D, Mosites E, Otchere J, Twum WA, Woo L, Jones-Sanpei H, Harrison LM, Bungiro RD, Benham-Pyle B, Bimi L, Edoh D, Bosompem K, Wilson M, Cappello M. Epidemiology of hookworm infection in Kintampo North Municipality, Ghana: patterns of malaria coinfection, anemia, and albendazole treatment failure. Am J Trop Med Hyg 2011; 84:792-800. [PMID: 21540391 DOI: 10.4269/ajtmh.2011.11-0003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A cross-sectional pilot study of hookworm infection was carried out among 292 subjects from 62 households in Kintampo North, Ghana. The overall prevalence of hookworm infection was 45%, peaking in those 11-20 years old (58.5%). In children, risk factors for hookworm infection included coinfection with malaria and increased serum immunoglobulin G reactivity to hookworm secretory antigens. Risk factors for infection in adults included poor nutritional status, not using a latrine, not wearing shoes, and occupation (farming). Although albendazole therapy was associated with an overall egg reduction rate of 82%, 37 subjects (39%) remained infected. Among those who failed therapy, treatment was not associated with a significant reduction in egg excretion, and nearly one-third had higher counts on repeat examination. These data confirm a high prevalence of low-intensity hookworm infection in central Ghana and its association with poor nutritional status. The high rate of albendazole failure raises concern about emerging resistance.
Collapse
Affiliation(s)
- Debbie Humphries
- School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Effect of hookworm infection on wheat challenge in celiac disease--a randomised double-blinded placebo controlled trial. PLoS One 2011; 6:e17366. [PMID: 21408161 PMCID: PMC3050888 DOI: 10.1371/journal.pone.0017366] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/31/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIMS The association between hygiene and prevalence of autoimmune disease has been attributed in part to enteric helminth infection. A pilot study of experimental infection with the hookworm Necator americanus was undertaken among a group of otherwise healthy people with celiac disease to test the potential of the helminth to suppress the immunopathology induced by gluten. METHODS In a 21-week, double-blinded, placebo-controlled study, we explored the effects of N. americanus infection in 20 healthy, helminth-naïve adults with celiac disease well controlled by diet. Staged cutaneous inoculations with 10 and 5 infective 3(rd) stage hookworm larvae or placebo were performed at week-0 and -12 respectively. At week-20, a five day oral wheat challenge equivalent to 16 grams of gluten per day was undertaken. Primary outcomes included duodenal Marsh score and quantification of the immunodominant α-gliadin peptide (QE65)-specific systemic interferon-γ-producing cells by ELISpot pre- and post-wheat challenge. RESULTS Enteric colonisation with hookworm established in all 10 cases, resulting in transiently painful enteritis in 5. Chronic infection was asymptomatic, with no effect on hemoglobin levels. Although some duodenal eosinophilia was apparent, hookworm-infected mucosa retained a healthy appearance. In both groups, wheat challenge caused deterioration in both primary and several secondary outcomes. CONCLUSIONS Experimental N. americanus infection proved to be safe and enabled testing its effect on a range of measures of the human autoimmune response. Infection imposed no obvious benefit on pathology. TRIAL REGISTRATION ClinicalTrials.gov NCT00671138.
Collapse
|
29
|
Souadkia N, Brown A, Leach L, Pritchard DI. Hookworm (Necator americanus) larval enzymes disrupt human vascular endothelium. Am J Trop Med Hyg 2010; 83:549-58. [PMID: 20810819 DOI: 10.4269/ajtmh.2010.09-0411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Knowledge of the molecular mechanisms used by Necator americanus larvae to penetrate the human skin and the vasculature would aid the development of effective vaccines against this important pathogen. In this work, the impact of N. americanus exsheathing fluid (EF) and excretory/secretory products (ES) on the endothelial barrier was examined using human umbilical vein endothelial cells (HUVEC). Cellular responses were assessed by investigating molecular changes at cell-cell junctions and by determining levels of secreted IL-6, IL-8, and vascular endothelial growth factor (VEGF) in the culture medium. It would appear that a repertoire of larval proteases caused a dose-related increase in endothelial permeability as characterized by a decrease in monolayer resistance with increased permeation of tracer-albumin. These barrier changes were associated with disruption of junctional vascular endothelial cadherin (VE-cadherin) and F-actin and an increase in endothelial secretion of IL-6 and IL-8. Our data suggest that larval proteases play an important role in negotiating the endothelium.
Collapse
Affiliation(s)
- Nahed Souadkia
- Division of Molecular and Cellular Science, Immune Modulation, Boots Science Building, School of Pharmacy, University of Nottingham, Nottingham, UK.
| | | | | | | |
Collapse
|
30
|
Quinnell RJ, Pullan RL, Breitling LP, Geiger SM, Cundill B, Correa-Oliveira R, Brooker S, Bethony JM. Genetic and household determinants of predisposition to human hookworm infection in a Brazilian community. J Infect Dis 2010; 202:954-61. [PMID: 20681887 DOI: 10.1086/655813] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Predisposition to heavy or light human hookworm infection is consistently reported in treatment-reinfection studies. A significant role for host genetics in determining hookworm infection intensity has also been shown, but the relationship between host genetics and predisposition has not been investigated. METHODS A treatment-reinfection study was conducted among 1302 individuals in Brazil. Bivariate variance components analysis was used to estimate heritability for pretreatment and reinfection intensity and to estimate the contribution of genetic and household correlations between phenotypes to the overall phenotypic correlation (ie, predisposition). RESULTS Heritability for hookworm egg count was 17% before treatment and 25% after reinfection. Predisposition to heavy or light hookworm infection was observed, with a phenotypic correlation of 0.34 between pretreatment and reinfection intensity. This correlation was reduced to 0.23 after including household and environmental covariates. Genetic and household correlations were 0.41 and 1, respectively, and explained 88% of the adjusted phenotypic correlation. CONCLUSIONS Predisposition to human hookworm infection in this area results from a combination of host genetics and consistent differences in exposure, with the latter explained by household and environmental factors. Unmeasured individual-specific differences in exposure did not contribute to predisposition.
Collapse
Affiliation(s)
- Rupert J Quinnell
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kocherscheidt L, Agossou A, Gantin RG, Hamm DM, Banla M, Soboslay PT. Cytokine and chemokine responses in adults, newborns and children exposed to Entamoeba histolytica/dispar, Onchocerca volvulus and Plasmodium falciparum. Pediatr Allergy Immunol 2010; 21:e756-63. [PMID: 20408971 DOI: 10.1111/j.1399-3038.2010.01048.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cytokine and chemokine response profiles were studied in newborns, 10-yr-old children and post partum mothers. All study groups were repeatedly exposed to Entamoeba histolytica, Onchocerca volvulus and Plasmodium falciparum infections as indicated by their Immunoglobulin (IgG) responses to parasite-specific antigens. As key indicators for regulatory and pro-inflammatory cytokine and chemokine responses, Interferon (IFN)gamma and regulatory IL-10 were investigated, along with the chemokines MIP-1 alpha/CCL3, MIP-1 beta/CCL4, MDC/CCL22 and TARC/CCL17. Entamoeba histolytica antigens (EhAg) strongly activated pro-inflammatory MIP-1 alpha/CCL3 and MIP-1 beta/CCL4 responses of similar magnitude in mothers, children and neonates alike. Plasmodium falciparum antigens (PfAg) enhanced MIP-1 alpha/CCL3, MIP-1 beta/CCL4 and MDC/CCL22 production in neonates, but did not trigger these chemokines in mothers or 10-yr-old children. Onchocerca volvulus antigens (OvAg) activated IFN-gamma and TARC/CCL17 production in mothers but not in neonates and children. Crude IL-10 production [i.e., without subtracting spontaneous cellular release (baseline)] was highest in mothers and somewhat lower in neonates, while the lowest IL-10 amounts of all were released by peripheral blood mononuclear cells from 10-yr-old children. In summary, strong inflammatory chemokine responses to plasmodia and ameba antigens in newborns and 10-yr-old children suggest that adequately balanced immune regulatory mechanisms may not have developed yet in these age groups and that repeated exposure to parasite infections and immune maturation during childhood is required to generate similar cytokine and chemokine profiles as in adults.
Collapse
Affiliation(s)
- Lars Kocherscheidt
- Institute for Tropical Medicine, University Clinics of Tübingen, Wilhelmstr., Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Gonzalez-Muñoz M, Rodriguez-Mahillo AI, Moneo I. Different Th1/Th2 responses to Anisakis simplex are related to distinct clinical manifestations in sensitized patients. Parasite Immunol 2010; 32:67-73. [PMID: 20042009 DOI: 10.1111/j.1365-3024.2009.01162.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Anisakis simplex is a fish parasite capable of inducing inflammatory and allergic reactions in humans who eat raw or undercooked fish. The aim of this study was to characterize the T helper type 1 (Th1)/Th2 immune response to parasite crude (CE) and thermostable (TsE) extracts in A. simplex-sensitized patients. Cytokines were quantified by a multiplex flow cytometric method in short-term whole blood cultures. Higher concentrations of IL-2, IL-4 and IL-5, measured with the CE and TsE, were found in patients than in controls. Patients showing urticaria-angio-oedema or anaphylaxis (UA/A) had higher total and specific IgE levels than those with gastrointestinal symptoms (GI). The UA/A group showed high levels of IL-5 and IL-4 and low expression of IFN-gamma than the GI group. The GI group had significantly higher IFN-gamma/IL4 ratio than the UA/A group. Four patients with severe GI symptoms reporting a delayed skin test reaction had very low values of specific IgE to A. simplex and higher IFN-gamma/IL4 ratios than that observed in other patients belonging to the GI group. This short-term whole blood test can be useful for immune response characterization in Anisakis infection and showed that heated parasite antigens are still capable of inducing cellular immune response in sensitized patients.
Collapse
Affiliation(s)
- M Gonzalez-Muñoz
- Department of Immunology, Hospital Carlos III, Sinesio Delgado, 10, 28029 Madrid, Spain.
| | | | | |
Collapse
|
33
|
Balic A, Smith KA, Harcus Y, Maizels RM. Dynamics of CD11c(+) dendritic cell subsets in lymph nodes draining the site of intestinal nematode infection. Immunol Lett 2009; 127:68-75. [PMID: 19766674 PMCID: PMC2789245 DOI: 10.1016/j.imlet.2009.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 08/21/2009] [Accepted: 09/08/2009] [Indexed: 11/13/2022]
Abstract
Helminth parasites drive dominant Th2 responses through an as yet unidentified pathway. We have previously shown that the rodent gastrointestinal nematode Nippostrongylus brasiliensis secretes products which selectively activate in vitro-derived dendritic cells to induce Th2 responses on in vivo transfer. We now show that, during active infection with this parasite, the draining mesenteric lymph node dendritic cell population is altered significantly. Although there is substantial expansion of DC numbers during infection, the CD86hi-CD8αint-CD11b− subset is markedly diminished, and expression levels of CD40, CD86 and CD103 are reduced. Notably, the reduced frequency of CD8αint DCs is evident only in those mesenteric lymph nodes draining the anterior site of infestation. In infections with the longer lived Heligmosomoides polygyrus, the proportion of CD8αint DCs in the MLNC falls to below 10% of total DC numbers by 35 days post-infection. Further, infection alters TLR responsiveness, as IL-12 production (as measured by ex vivo intracellular staining of CD11c+ DCs) in response to LPS stimulation is reduced, while IL-6, TNF-α and in particular, IL-10 all increase following infection with either nematode parasite. These changes suggest the possibility that helminth parasites modulate gastrointestinal immunity both by inhibiting migration of CD8αint DCs to the draining lymph nodes, and modifying DC responsiveness in a manner which favours a Th2 outcome.
Collapse
Affiliation(s)
- Adam Balic
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | | | | | | |
Collapse
|
34
|
Farid AS, Shimohira T, Kobayashi I, Sawada J, Horii Y. Intestinally implanted Nippostrongylus brasiliensis adult worms decrease serum paraoxonase-1 activity in rats. Parasitol Int 2009; 58:178-83. [DOI: 10.1016/j.parint.2009.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/03/2009] [Accepted: 03/07/2009] [Indexed: 01/22/2023]
|
35
|
The hookworm tissue inhibitor of metalloproteases (Ac-TMP-1) modifies dendritic cell function and induces generation of CD4 and CD8 suppressor T cells. PLoS Negl Trop Dis 2009; 3:e439. [PMID: 19468296 PMCID: PMC2678263 DOI: 10.1371/journal.pntd.0000439] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/21/2009] [Indexed: 11/19/2022] Open
Abstract
Hookworm infection is a major cause of disease burden for humans. Recent studies have described hookworm-related immunosuppression in endemic populations and animal models. A Tissue Inhibitor of Metalloproteases (Ac-TMP-1) has been identified as one of the most abundant proteins released by the adult parasite. We investigated the effect of recombinant Ac-TMP-1 on dendritic cell (DC) and T cell function. Splenic T cells from C57BL/6 mice injected with Ac-TMP-1 showed reduced proliferation to restimulation with anti CD3 or bystander antigens such as OVA. Incubation of bone marrow-derived DCs with Ac-TMP-1 decreased MHC Class I and, especially, Class II expression but increased CD86 and IL-10 expression. Co-incubation of splenic T cells with DCs pulsed with Ac-TMP-1 induced their differentiation into CD4+ and, particularly, CD8+ CD25+Foxp3+ T cells that expressed IL-10. These cells were able to suppress proliferation of naïve and activated CD4+ T cells by TGF-Beta-dependent (CD4+ suppressors) or independent (CD8+ suppressors) mechanisms. Priming of DCs with non-hookworm antigens, such as OVA, did not result in the generation of suppressor T cells. These data indicate that Ac-TMP-1 initiates the development of a regulatory response through modifications in DC function and generation of suppressor T cells. This is the first report to propose a role of suppressor CD8+ T cells in gastrointestinal helminthic infections.
Collapse
|
36
|
van Eijk AM, Lindblade KA, Odhiambo F, Peterson E, Rosen DH, Karanja D, Ayisi JG, Shi YP, Adazu K, Slutsker L. Geohelminth Infections among pregnant women in rural western Kenya; a cross-sectional study. PLoS Negl Trop Dis 2009; 3:e370. [PMID: 19172184 PMCID: PMC2627942 DOI: 10.1371/journal.pntd.0000370] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 12/29/2008] [Indexed: 11/28/2022] Open
Abstract
Background Geohelminth infections are common in rural western Kenya, but risk factors and effects among pregnant women are not clear. Methodology During a community-based cross-sectional survey, pregnant women were interviewed and asked to provide a blood sample and a single fecal sample. Hemoglobin was measured and a blood slide examined for malaria. Geohelminth infections were identified using the concentration and Kato-Katz method. Results Among 390 participants who provided a stool sample, 76.2% were infected with at least one geohelminth: 52.3% with Ascaris lumbricoides, 39.5% with hookworm, and 29.0% with Trichuris trichiura. Infection with at least one geohelminth species was associated with the use of an unprotected water source (adjusted odds ratio [AOR] 1.8, 95% confidence interval [CI] 1.1–3.0) and the lack of treatment of drinking water (AOR 1.8, 95% CI 1.1–3.1). Geohelminth infections were not associated with clinical symptoms, or low body mass index. A hookworm infection was associated with a lower mid upper arm circumference (adjusted mean decrease 0.7 cm, 95% CI 0.3–1.2 cm). Hookworm infections with an egg count ≥1000/gram feces (11 women) were associated with lower hemoglobin (adjusted mean decrease 1.5 g/dl, 95% CI 0.3–2.7). Among gravidae 2 and 3, women with A. lumbricoides were less likely to have malaria parasitemia (OR 0.4, 95% CI 0.2–0.8) compared to women without A. lumbricoides, unlike other gravidity groups. Conclusion Geohelminth infections are common in this pregnant population; however, there were few observed detrimental effects. Routine provision of antihelminth treatment during an antenatal clinic visit is recommended, but in this area an evaluation of the impact on pregnancy, malaria, and birth outcome is useful. In rural western Kenya, both malaria and intestinal infections with worms are common. Pregnant women are particularly vulnerable to infection with malaria, but the effect on pregnancy of intestinal infections with worms is not clear and may depend both on how heavy the worm infection is and on the type of worm. Additionally, it is not clear whether infections with worms may affect malaria infections. In this article, we begin to disentangle some of these issues. Intestinal infections with worms were diagnosed in three-quarters of 390 pregnant women in western Kenya who provided a stool sample. In these women, intestinal worm infections caused a modest decrease both in haemoglobin levels and indicators of nutritional status. Women in their second and third pregnancies who were diagnosed with one particular type of worm infection (Ascaris lumbricoides) were less likely to have malaria than other women in their second or third pregnancies who did not have this type of worm infection. Although our results suggest that it would be good advice to treat women with drugs for intestinal worm infections during their pregnancy in this area, the effect on maternal and infant health and malaria infection needs further study.
Collapse
Affiliation(s)
- Anna M van Eijk
- Department of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mutapi F, Burchmore R, Mduluza T, Midzi N, Turner CMR, Maizels RM. Age-related and infection intensity-related shifts in antibody recognition of defined protein antigens in a schistosome-exposed population. J Infect Dis 2008; 198:167-75. [PMID: 18549316 DOI: 10.1086/589511] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND This study compared patterns of recognition of defined Schistosoma haematobium adult worm antigens by serum antibodies from schistosome-exposed Zimbabweans aged 5-18 years. METHODS The population was stratified by age and infection intensity into 9 groups within which serum specimens were pooled and used to screen for protein recognition by 2-dimensional Western blotting. Recognized proteins were identified by electrospray ionizing tandem mass spectrometry. RESULTS A total of 71 antigens were recognized by >or=1 of the serum pools. The recognition varied distinctly with host age and infection intensity, with some isoform-specific responses. The repertoire of antigens recognized increased with age, peaking in the oldest participants whose had no or mild-to-moderate infection intensity. The intensity of antigen recognition also increased with age, peaking in the oldest participants with the heaviest infection intensity. CONCLUSIONS The recognition of specific schistosome antigens, both in terms of the diversity of antigens recognized and the intensity of antigen recognition, increased with duration of exposure to infection, supporting the hypothesis that the slow development of schistosome-acquired immunity is due to the slow accumulation of responsiveness to relevant parasite antigens.
Collapse
Affiliation(s)
- Francisca Mutapi
- Institute for Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
38
|
Achidi EA, Apinjoh TO, Mbunwe E, Besingi R, Yafi C, Wenjighe Awah N, Ajua A, Anchang JK. Febrile status, malarial parasitaemia and gastro-intestinal helminthiases in schoolchildren resident at different altitudes, in south-western Cameroon. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2008; 102:103-18. [PMID: 18318932 DOI: 10.1179/136485908x252287] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the many areas where human malaria and helminthiases are co-endemic, schoolchildren often harbour the heaviest infections and suffer much of the associated morbidity, especially when co-infected. In one such area, the Buea district, in south-western Cameroon, two cross-sectional surveys, together covering 263 apparently healthy schoolchildren aged 4-12 years, were recently conducted. The prevalences of fever, malarial parasitaemia and intestinal helminth infections, the seroprevalences of anti-Plasmodium falciparum IgG and IgE and anti-glycosylphosphatidylinositol (anti-GPI) IgG, plasma concentrations of total IgE, and the incidence of anaemia were all investigated. The mean (S.D.) age of the study children was 7.56 (1.82) years. Overall, 156 (59.3%) of the children were found parasitaemic, with a geometric mean parasitaemia of 565 parasites/microl. Parasitaemia and fever were significantly associated (P=0.042). The children who lived at low altitude, attending schools that lay 400-650 m above sea level, had significantly higher parasitaemias than their high-altitude counterparts (P<0.01). At low altitude, the children attending government schools had significantly higher parasitaemias than their mission-school counterparts (P=0.010). Of the 31 children (11.9%) found anaemic, 22 (70.4%) had mild anaemia and none had severe anaemia. A significant negative correlation (r=-0.224; P=0.005) was observed between haemoglobin concentration and level of parasitaemia. Infection with Plasmodium appeared to reduce erythrocyte counts (P=0.045), a condition that was exacerbated by co-infection with helminths (P=0.035). Plasma concentrations of total IgE were higher in the children found to be excreting helminth eggs than in those who appeared helminth-free, while levels of anti-P. falciparum IgE were higher in the children with low-grade parasitaemias than in those with more intense parasitaemias. Levels of anti-GPI IgG increased with age and were relatively high in the children who lived at low altitude and in those who were aparasitaemic. The survey results confirm that asymptomatic malarial parasitaemia frequently co-exists with helminth infections in schoolchildren and indicate links with fever, altitude and school type. Immunoglobulin E may play a role in immune protection against helminthiasis whereas anti-GPI antibodies may be important in the development of antimalarial immunity in such children. In Cameroon, as in other areas with endemic malaria, control programmes to reduce the prevalences of infections with intestinal helminths and malarial parasites in schoolchildren, which may effectively reduce the incidence of anaemia, are clearly needed.
Collapse
Affiliation(s)
- E A Achidi
- Department of Medical Laboratory Science, Faculty of Health Sciences, University of Buea, Buea, Cameroon.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ezeamama AE, McGarvey ST, Acosta LP, Zierler S, Manalo DL, Wu HW, Kurtis JD, Mor V, Olveda RM, Friedman JF. The synergistic effect of concomitant schistosomiasis, hookworm, and trichuris infections on children's anemia burden. PLoS Negl Trop Dis 2008; 2:e245. [PMID: 18523547 PMCID: PMC2390851 DOI: 10.1371/journal.pntd.0000245] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/08/2008] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To estimate the degree of synergism between helminth species in their combined effects on anemia. METHODS Quantitative egg counts using the Kato-Katz method were determined for Ascaris lumbricoides, hookworm, Trichuris trichiura, and Schistosoma japonicum in 507 school-age children from helminth-endemic villages in The Philippines. Infection intensity was defined in three categories: uninfected, low, or moderate/high (M+). Anemia was defined as hemoglobin <11 g/dL. Logistic regression models were used to estimate odds ratios (OR), 95% confidence intervals (CI), and synergy index for pairs of concurrent infections. RESULTS M+ co-infection of hookworm and S. japonicum (OR = 13.2, 95% CI: 3.82-45.5) and of hookworm and T. trichiura (OR = 5.34, 95% CI: 1.76-16.2) were associated with higher odds of anemia relative to children without respective M+ co-infections. For co-infections of hookworm and S. japonicum and of T. trichiura and hookworm, the estimated indices of synergy were 2.9 (95% CI: 1.1-4.6) and 1.4 (95% CI: 0.9-2.0), respectively. CONCLUSION Co-infections of hookworm and either S. japonicum or T. trichiura were associated with higher levels of anemia than would be expected if the effects of these species had only independent effects on anemia. This suggests that integrated anti-helminthic treatment programs with simultaneous deworming for S. japonicum and some geohelminths could yield a greater than additive benefit for reducing anemia in helminth-endemic regions.
Collapse
Affiliation(s)
- Amara E Ezeamama
- Department of Community Health and International Health Institute, Brown University Providence, Rhode Island, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cooper PJ, Ayre G, Martin C, Rizzo JA, Ponte EV, Cruz AA. Geohelminth infections: a review of the role of IgE and assessment of potential risks of anti-IgE treatment. Allergy 2008; 63:409-17. [PMID: 18315729 DOI: 10.1111/j.1398-9995.2007.01601.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Geohelminth infections are major parasitic infections with a worldwide distribution. Immunoglobulin E (IgE) is considered to play a central role in protective immunity against these parasites although the evidence from experimental animal models infected with helminth parasites and treated with anti-IgE antibodies and from observational studies in human populations of the immunologic correlates of protective immunity against helminths do not support a critical role for IgE in mediating protection against helminths. Anti-IgE treatment of human allergic disorders using a humanized monoclonal IgE antibody (omalizumab, Xolair) has been approved for clinical use in the USA and Europe and there is concern that this treatment may be associated with increased morbidity in populations exposed to helminth infections. A recently published randomized controlled trial investigating the risk of geohelminth infections in allergic patients receiving omalizumab in Brazil has provided some evidence that omalizumab may not be associated with increased morbidity attributable to these parasites. This review examines the evidence for a role of IgE in protective immunity against helminth parasites, discusses the findings of the randomized controlled trial, assesses the potential risks and provides recommendations for anti-IgE treatment in groups of allergic patients with different exposure risks for helminth infections.
Collapse
Affiliation(s)
- P J Cooper
- Laboratorio de Investigaciones extensión Quinindé, Hospital Pedro Vicente Maldonado, Pichincha Province, Ecuador
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Hookworm infection caused by the soil-transmitted nematodes Necator americanus and Ancylostoma duodenale is one of the most common parasitic infections worldwide. Although not directly responsible for substantial mortality, it causes significant morbidity in the form of chronic anemia and protein malnutrition. Current global control efforts based on periodic mass anthelmintic administration are unsustainable, and new control strategies must be developed. This review describes progress in the development of vaccines against hookworm infection, including the preclinical and initial clinical testing of the N. americanus Ancylostoma Secreted Protein-2 Hookworm Vaccine. Plans call for eventual development of a vaccine that will combine at least 2 hookworm antigens--one targeting the larval stage of the life cycle and another targeting the adult worm living in the gastrointestinal tract.
Collapse
Affiliation(s)
- David J Diemert
- Sabin Vaccine Institute, George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
42
|
Mwangi TW, Bethony JM, Brooker S. Malaria and helminth interactions in humans: an epidemiological viewpoint. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2007; 100:551-70. [PMID: 16989681 PMCID: PMC1858631 DOI: 10.1179/136485906x118468] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the tropics, helminths are among the most common chronic infections of humans and Plasmodium infections the most deadly. As these two groups of parasites have similar geographical distributions, co-infection is commonplace. It has increasingly been speculated that helminth infections may alter susceptibility to clinical malaria, and there is now increasing interest in investigating the consequences of co-infection, with studies yielding contrasting results. The immunological interactions between helminths and malarial parasites are unclear, although several hypotheses have been proposed. This review provides an epidemiological overview of the possible interactions between helminths and malarial parasites, in relation to geographical distributions and disease patterns, and provides a critical discussion of the results of the epidemiological studies that have so far been conducted to investigate the possible associations. Future studies that might be considered, in order to address the gaps in knowledge, are also considered.
Collapse
Affiliation(s)
- T W Mwangi
- Kenya Medical Research Institute, Centre for Geographic Medicine and Research, P.O. Box 230, 80108 Kilifi, Kenya.
| | | | | |
Collapse
|
43
|
Mutapi F, Mduluza T, Gomez-Escobar N, Gregory WF, Fernandez C, Midzi N, Maizels RM. Immuno-epidemiology of human Schistosoma haematobium infection: preferential IgG3 antibody responsiveness to a recombinant antigen dependent on age and parasite burden. BMC Infect Dis 2006; 6:96. [PMID: 16764709 PMCID: PMC1523344 DOI: 10.1186/1471-2334-6-96] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/09/2006] [Indexed: 11/17/2022] Open
Abstract
Background Schistosomiasis is a major parasitic disease affecting over 200 million people in the developing world with a further 400 million people at risk of infection. The aim of this study was to identify a single antigen from adult Schistosoma haematobium worms and subsequently use this antigen to study the development of schistosome-acquired immunity in a human population. Methods The full-length cDNA sequence of a S. haematobium protein, a putative orthologue of the S. mansoni tegumental antigen Sm13, was obtained from a cDNA library of adult S. haematobium worms and named Sh13 following a small-scale expressed sequence tags (EST) project. The recombinant Sh13 protein expressed in E. coli, was used to investigate immuno-epidemiological patterns in 147 Zimbabweans (7–18 years old) exposed to S. haematobium. Results Sequence analysis of the full-length cDNA sequence of the S. haematobium protein Sh13, indicated that the protein has an N-terminal signal peptide and encodes an 85-amino acid mature protein with a highly conserved predicted transmembrane domain (86 % identity with the S. mansoni tegumental antigen Sm13). The recombinant Sh13 protein was used in ELISA assays to determine the reactivity of sera from the study participants. Antibody responses against Sh13 were predominantly IgG3 isotype compared to responses against crude worm antigens which were predominantly IgG1 and IgG4. The relationship between anti-Sh13 IgG3 levels and infection intensity varied significantly with host age. The youngest children (7–10 years old) had relatively low levels of both infection and anti-Sh13 IgG3. In older children (11–12 years old) rising infection levels were accompanied by a significant increase in anti-Sh13 IgG3 levels. Subsequently, infection intensity declined significantly in 13–18 year olds but levels of the antibody continued to rise. The changing relationship between infection intensity and anti-Sh13 IgG3 levels with host age is consistent with the profile of a protective immune response predicted from theoretical work. Conclusion We have identified and characterised a novel S. haematobium antigen Sh13, a putative tegumental protein, and shown that it is recognised predominantly by IgG3 antibodies from people infected with/exposed to S. haematobium parasites. We have also shown that, the anti-Sh13 IgG3 response is maximal in older individuals with the lowest infection intensity, and that the age profile of the relationship between anti-Sh13 IgG3 and infection intensity is consistent with that predicted by theoretical work for a protective response stimulated by and directed against adult worms.
Collapse
Affiliation(s)
- Francisca Mutapi
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh, EH9 3J, UK
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe, P.O. Box 167, Mount Pleasant, Harare, Zimbabwe
| | - Natalia Gomez-Escobar
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh, EH9 3J, UK
- Medical Research Council, PO Box 273, Banjul, Gambia
| | - William F Gregory
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh, EH9 3J, UK
| | - Cecilia Fernandez
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh, EH9 3J, UK
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Casilla de Correo 1157, Montevideo, Uruguay
| | - Nicholas Midzi
- National Institute of Health Research, Box CY 570, Causeway, Harare, Zimbabwe
| | - Rick M Maizels
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Rd, Edinburgh, EH9 3J, UK
| |
Collapse
|
44
|
Fleming FM, Brooker S, Geiger SM, Caldas IR, Correa-Oliveira R, Hotez PJ, Bethony JM. Synergistic associations between hookworm and other helminth species in a rural community in Brazil. Trop Med Int Health 2006; 11:56-64. [PMID: 16398756 DOI: 10.1111/j.1365-3156.2005.01541.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To identify possible synergistic associations of hookworm and other helminths. METHOD Cross-sectional survey of all households within 10 km2 of Americaninhas, a rural community in Minas Gerais, Brazil. We determined the prevalence and intensity of single and multiple helminth species infection in an age-stratified sample of 1332 individuals from 335 households. RESULTS Hookworm was the most prevalent helminth infection (68.2%), followed by Ascaris lumbricoides (48.8%) and Schistosoma mansoni (45.3%). Overall, 60.6% of individuals harboured mixed helminth infections. Multivariate analysis indicated significant positive associations for co-infection with hookworm and S. mansoni and for co-infection with hookworm and A. lumbricoides. Co-infections with hookworm and A. lumbricoides resulted in higher egg counts for both, suggesting a synergistic relationship between these species, although, we found important age differences in this relationship. However, the intensity of S. mansoni or A. lumbricoides co-infection did not differ from that of mono-infection. CONCLUSION These results have implications for the epidemiology, immunology and control of multiple helminth infections. More research is needed to examine the rates of re-infection and immune responses after chemotherapy, and to what extent the effects of polyparasitism are altered by chemotherapy.
Collapse
Affiliation(s)
- Fiona M Fleming
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK
| | | | | | | | | | | | | |
Collapse
|