1
|
Lu L, Liu D, Ying J, Yao Z, Hou Q, Wang H, Qi F, Luan W, Jiang H. Denervation Affected Skin Wound Healing in a Modified Rat Model. INT J LOW EXTR WOUND 2025; 24:329-341. [PMID: 35341341 DOI: 10.1177/15347346221090758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Lacking of normal innervation increases the chance of chronic wounds and recurrence of ulceration. Various rodent models are designed to reveal nerve-wound relationship but present many limitations to mimic human wound which heals primarily by re-epithelialization rather than contraction in rodents. This article tested a modified rat model of denervated wound healing to better mimic clinical common denervated wounds. Material and Methods: The wounds formed on right hind paws of 18 SD rats served as the experimental (denervated) group and the left side as contra-lateral control (non-denervated). The denervation was achieved through sciatic and femoral nerve co-transection and the control side underwent sham-surgery 3 days prior to a skin punch wound formation on both sides. Wound closure rate was calculated under digital photographing. Loss of innervation and affected healing process was confirmed by histological analyses. Results: Truncation of the sciatic and femur nerve successfully denervated the skin of the hind paw and resulted in a significantly declined healing rate, prolonged inflammation, weakened dermal contraction, hindered macrophage recruitment, retarded re-epithelialization and collagen deposition, decreased angiogenesis and epidermal proliferation, and persisted epidermal apoptosis compared to the innervated contra-lateral control. Conclusion: Wound on denervated dorsal pedis in rats can be used to study denervated skin healing in multiple histological process. We believe that this model will assist in understanding the underlying mechanism of nerve-wound relationship and identifying new treatment strategies that can be more rapidly translated into clinical practice.
Collapse
Affiliation(s)
- Lu Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dandan Liu
- Department of Plastic Surgery, Shenzhen Hospital, Peking University, Shenzhen, 510836, China
| | - Jianghui Ying
- Department of Plastic and Reconstructive Surgery, Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qiang Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenjie Luan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hua Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Dongfang Hospital, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
2
|
Akdağ G, Hazman Ö, Aksoy L, Savrık M, Büyükben A, Yılmaz MA, Cakir O, Kara R. Phytochemical composition, antimicrobial, antioxidant, and wound healing activities of Thermopsis turcica. Z NATURFORSCH C 2025; 80:261-274. [PMID: 39422443 DOI: 10.1515/znc-2024-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
The antioxidant, antimicrobial, anticarcinogenic, wound healing activities and phenolic substance profile of aqueous extracts prepared using branch, leaf, flower parts and above-ground parts of Thermopsis turcica were determined in the study. The analyses indicate that the total phenolic substance contents and total antioxidant status are higher in the mix, flower, and leaf extracts. The extracts reduced cell viability in HGF cells more than in A549 cells. It shows that the extract has low anticarcinogenic activity in A549 cells. Flower extract had the highest wound closure rate. Quinic acid, cyranoside and luteolin were found in high concentrations in all extracts with LC/ESI-MS/LC analysis. It has been determined that the flower extract of the species is the most critical part showing antioxidant, antimicrobial, cytotoxic and wound healing properties. While the leaf and mix extracts stand out with their antioxidative and antimicrobial properties, the branch extract is effective in wound healing.
Collapse
Affiliation(s)
- Gülçin Akdağ
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, 03200, Afyonkarahisar, Türkiye
| | - Ömer Hazman
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, 03200, Afyonkarahisar, Türkiye
| | - Laçine Aksoy
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, 03200, Afyonkarahisar, Türkiye
| | - Mehmet Savrık
- Department of Chemistry, Faculty of Science and Arts, Afyon Kocatepe University, 03200, Afyonkarahisar, Türkiye
| | - Ahmet Büyükben
- Cay Vocational School, Program of Chemistry Technology, Afyon Kocatepe University, 03200, Afyonkarahisar, Türkiye
| | - Mustafa Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, 21280, Diyarbakir, Türkiye
| | - Oguz Cakir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Dicle University, 21280, Diyarbakir, Türkiye
| | - Recep Kara
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Türkiye
| |
Collapse
|
3
|
Dantas LR, de Andrade EB, Tagliari GN, Pereira GR, Godoy LC, Gomes MEM, Cachoeira VC, Loureiro MDP, Casagrande TAC, Loesch GH, Loesch MDMON, Tuon FF. Efficacy of biomaterials in burn treatment: Comparative study of collagen-derived membranes, hydrogel, and sponge in an animal model. Burns 2025; 51:107522. [PMID: 40327973 DOI: 10.1016/j.burns.2025.107522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
PURPOSE Thermal burns are complex injuries that significantly impact morbidity and mortality. This study aimed to evaluate the effectiveness of biomaterials, including collagen gel (CG), collagen sponge (CS), non-decellularized amniotic membrane (NAM), and decellularized amniotic membrane (DAM), in promoting wound healing in a rat burn model. METHODS Sixty Wistar rats were divided into five groups: control, CG, CS, NAM, and DAM. Burn wounds were induced using a heated metal rod, and treatments were applied accordingly. Histological and macroscopic analyses were conducted on days 7 and 14 post-burn to assess inflammation, proliferation of collagen fibers, angiogenesis, and re-epithelialization. Statistical comparisons of wound healing parameters were performed. RESULTS By day 7, the CS group showed significant fibroblast proliferation and collagen deposition, facilitating early-stage healing. However, the NAM group demonstrated superior angiogenesis and granulation tissue formation by day 14, with advanced dermal matrix organization and nearly complete epithelialization, including hair regrowth. DAM exhibited moderate proliferation of collagen fibers and angiogenesis but lagged NAM in epidermal regeneration. CG promoted re-epithelialization and vascular remodeling but was less effective than NAM. The control group showed delayed healing with limited repair markers. Overall, NAM was the most effective biomaterial, followed by CG, CS, and DAM. CONCLUSION NAM emerged as the optimal treatment for burn healing, demonstrating superior efficacy in promoting angiogenesis, collagen organization, and epithelial regeneration. These findings underscore the potential of biological membranes in improving burn outcomes. Further human studies are warranted to validate these results and explore clinical applications.
Collapse
Affiliation(s)
- Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | | | - Giovana Neves Tagliari
- a Departamento de Biotecnologia, Universidade Positivo, Curitiba, Paraná 80020-010, Brazil
| | | | - Luana Czlusniak Godoy
- a Departamento de Biotecnologia, Universidade Positivo, Curitiba, Paraná 80020-010, Brazil
| | | | | | | | | | | | | | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil; Human Multi-Tissue Bank, the Mackenzie Presbyterian Institute, Curitiba, PR 80215-901, Brazil.
| |
Collapse
|
4
|
Xu J, Zhang H, Ye H. Research progress on the role of fascia in skin wound healing. BURNS & TRAUMA 2025; 13:tkaf002. [PMID: 40248160 PMCID: PMC12001785 DOI: 10.1093/burnst/tkaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 04/19/2025]
Abstract
The skin, the human body's largest organ, is perpetually exposed to environmental factors, rendering it vulnerable to potential injuries. Fascia, a vital connective tissue that is extensively distributed throughout the body, fulfils multiple functions, including support, compartmentalization, and force transmission. The role of fascia in skin wound healing has recently attracted considerable attention. In addition to providing mechanical support, fascia significantly contributes to intercellular signalling and tissue repair, establishing itself as a crucial participant in wound healing. This review synthesises the latest advancements in fascia research and its implications for skin wound healing.
Collapse
Affiliation(s)
- Jiamin Xu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haifeng Ye
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
5
|
Ibrahim A, Hassanein KMA, Soliman M, Elshahawy AM. New burn model for developing consistent second- and third-degree burn injuries in rats. BMC Res Notes 2025; 18:179. [PMID: 40241210 PMCID: PMC12004812 DOI: 10.1186/s13104-025-07200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVE This study's aim was: (1) introduce the digital drying oven as a reproducible, controllable, and accurate heating device for burn model creation. (2) Define the heating temperature appropriate for developing consistent second and third-degree burn injuries in rats. RESULTS Burns appeared deeper with more distinct borders in groups (B) and (C) than in group (A). The stainless-steel rod at 100 ºC created burn injuries of the second degree, evidenced by the sloughing of the epidermis and necrosis in the epithelium and upper part of the dermis. Heating at 150 and 200 ºC created third-degree burn injuries, where necrosis involved the epidermis and dermis and extended to the subcutaneous fat and muscles. The depth of the burn wound in the group (B) (371.2 ± 41.3 μm) and (C) (385.2 ± 38.0 μm) was significantly deeper compared with the group (A) (178 ± 46.6 μm) (P < 0.001). The digital drying oven is a reliable, reproducible, and controllable heating device for creating burn models. The stainless-steel rod (63 g and 8 mm) heated at 100 and 150 ºC with a contact time of 30 s is adequate for creating consistent second and third-degree burn injuries in rats, respectively.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Khaled M A Hassanein
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Mahmoud Soliman
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | | |
Collapse
|
6
|
Tong J, Zhao Y, Jin Y, Hao Z, Li S, Sun M. A mini review on the regulation of coagulation homeostasis through interfering with vitamin K-dependent coagulation/anticoagulation factors. Biochem Biophys Res Commun 2025; 753:151494. [PMID: 39978255 DOI: 10.1016/j.bbrc.2025.151494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Coagulation disorders, such as excessive bleeding or thrombosis, present significant health challenges. Vitamin K-dependent proteins (VKDPs), including coagulation and anticoagulation factors, are essential for maintaining the coagulation homeostasis due to their key roles in the coagulation cascade. Therefore, VKDPs have become significant targets for regulating coagulation homeostasis, and various strategies have been developed, primarily including small molecule drugs and nanomaterials. This review presents the summary of these strategies, focusing on the mechanisms, effectiveness and limitations. It first discusses the pivotal role of VKDPs in the coagulation cascade, followed by an in-depth analysis of how small molecule drugs and nanomaterials to regulate hemostasis through interfering with VKDPs. Furthermore, this review addresses the challenges faced in the current approaches and potential future research directions. We hope this review will contribute to advancing the development of novel methods for modulating coagulation homeostasis through VKDP interference.
Collapse
Affiliation(s)
- Jiangbo Tong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yuan Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yongchao Jin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zhenyu Hao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Shixin Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| | - Mei Sun
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Svotin AA, Taldaev A, Nikitin ID, Korochkina MD, Terekhov RP, Selivanova IA. Insights in wound healing properties of water-soluble composition of dihydroquercetin and L-lysine. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2025; 28:13831. [PMID: 40144465 PMCID: PMC11936752 DOI: 10.3389/jpps.2025.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
This study focuses on implementing a composition of the natural flavonoid dihydroquercetin (DHQ) with L-lysine in the treatment of thermal burns. The wound-healing activity of DHQ is well-known. The addition of amino acid to the composition increases the water solubility of the flavonoids, providing an opportunity to develop a spray dosage form. The research involved 60 male Wistar rats divided into five treatment groups. Sea buck oil served as a positive control. On day 14, the composition treatment group showed significant progress in wound healing, being 9.6 ± 2.0% ahead of the other groups in absolute terms. On day 35, treatment with the composition resulted in a significant decrease in relative wound area to 1.9 ± 0.9%, while in the negative and positive control groups, it was 10.7 ± 7.8% and 8.4 ± 4.9%, respectively. At the same time, the epidermal and dermal layers were found to be clearly distinguished in the composition treatment according to histological analysis. Numerous collagen fibres were clearly visible, and the active process of keloid scar formation was observed. An additive effect of the combined use of DHQ and L-lysine was observed (F = 0.21, p = 0.649). A natural next step is to develop the dosage form for the DHQ-L-lysine composition.
Collapse
Affiliation(s)
- Artem A. Svotin
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Amir Taldaev
- Laboratory for the Study of Single Biomacromolecules, Institute of Biomedical Chemistry, Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya D. Nikitin
- A. A. Kharkevich Institute for Information Transmission Problems Russian Academy of Sciences, Moscow, Russia
| | - Maria D. Korochkina
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Roman P. Terekhov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Irina A. Selivanova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
8
|
Sun Z, Sun J, Su G, Wang R, Zhai Z, Yu F, Li Y. A comparative study of the established methods and evaluation of rat trauma models. Animal Model Exp Med 2025; 8:501-510. [PMID: 39439109 PMCID: PMC11904095 DOI: 10.1002/ame2.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Scientific animal models are indispensable for studying trauma repair. This work aimed at establishing a more scientific rat trauma model by studying different rat trauma models caused by different trauma numbers, locations, and trauma attachment tension unloaders and rat age. METHODS A four-trauma self-upper, lower, left and right control model; a two-trauma self-trauma bare and ring control model; and a young and old rat trauma model were created to evaluate the condition of these traumas. RESULTS In the four-trauma self-control model, the healing status of the upper proximal cephalic trauma was better than that of the lower proximal caudal trauma, whereas there was no significant difference between the left and right trauma. The healing rate and postwound condition of the trauma with a ring control in the two-trauma model were better than those of the bare side. The healing speed of the old rats was slower, and the amount of extracellular matrix in the subcutaneous tissue after healing was significantly lower than that of the young rats. CONCLUSION The double trauma with a ring is a more scientific and reasonable experimental model. There is a significant difference between young and old rats in the wound healing process. Therefore, the appropriate age of the rats should be selected according to the main age range of the patients with similar conditions in the clinical setting being mimicked.
Collapse
Affiliation(s)
- Zhenmin Sun
- Qingdao HospitalUniversity of Health and Rehabilitation Sciences, Qingdao Municipal HospitalQingdaoChina
- Shandong Second Medical UniversityWeifangChina
| | - Jia Sun
- Shandong Second Medical UniversityWeifangChina
| | - Gang Su
- Shandong Second Medical UniversityWeifangChina
| | - Ruohan Wang
- Shandong Second Medical UniversityWeifangChina
| | | | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si‐Zr‐Ti Resources, College of Materials Science and EngineeringHainan UniversityHaikouChina
| | - Yuli Li
- Qingdao HospitalUniversity of Health and Rehabilitation Sciences, Qingdao Municipal HospitalQingdaoChina
| |
Collapse
|
9
|
Poorkazem H, Saber M, Moradmand A, Yakhkeshi S, Seydi H, Hajizadeh-Saffar E, Shekari F, Hassani SN. Comparative effects of various extracellular vesicle subpopulations derived from clonal mesenchymal stromal cells on cultured fibroblasts in wound healing-related process. Int J Biochem Cell Biol 2025; 180:106737. [PMID: 39828140 DOI: 10.1016/j.biocel.2025.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Non-healing wounds pose significant challenges and require effective therapeutic interventions. Extracellular vesicles (EVs) have emerged as promising cell-free therapeutic agents in tissue regeneration. However, the functional differences between different subpopulations of EVs in wound healing remain understudied. This study aimed to evaluate the effects of two distinct subpopulations of clonal mesenchymal stromal cells (cMSC)-derived EVs (cMSC-EVs), namely 20 K and 110K-cMSC-EVs, primarily on in vitro wound healing process, providing fast and cost-effective alternatives to animal models. METHODS In vitro assays were conducted to compare the effects of 20 K and 110K-cMSC-EVs, isolated through high-speed centrifugation and differential ultracentrifugation, respectively. For evaluation the main mechanisms of wound healing, including cell proliferation, cell migration, angiogenesis, and contraction. Human dermal fibroblasts (HDF) were considered as the main cells for analysis of these procedures. Moreover, gene expression analysis was performed to assess the impact of these EV subpopulations on the related process of wound healing on HDF. RESULTS The results demonstrated that both 20 K and 110K-cMSC-EVs exhibited beneficial effects on cell proliferation, cell migration, angiogenesis, and gel contraction. RT-qPCR revealed that both EV types downregulated interleukin 6 (IL6), induced proliferation by upregulating proliferating cell nuclear antigen (PCNA), and regulated remodeling by upregulating matrix metallopeptidase 1 (MMP1) and downregulating collagen type 1 (COL1). DISCUSSION This study highlights the effects of both 20 K and 110K-cMSC-EVs on the potency of HDFs in wound healing-related process. As the notable finding, 20K-cMSC-EVs offer a more feasible and cost-effective subpopulation for isolation and follow the GMP standard, recommended to utilize this fraction for therapeutic application.
Collapse
Affiliation(s)
- Hedie Poorkazem
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
10
|
Dursun Coban B, Demir CI, Yaşar EK, Tekfiliz I, Alagoz MS, Yaprak Bayrak B. Experimental Investigation into the Effect of Variable Inflation Intervals on Capsule Thickness in Tissue Expander. Plast Surg (Oakv) 2025:22925503251315491. [PMID: 40017991 PMCID: PMC11863000 DOI: 10.1177/22925503251315491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 03/01/2025] Open
Abstract
Introduction: Increasing the thickness of the capsule around the tissue expander, as in breast reconstruction complicates the expansion process and increases the time to achieve the required flap size. The aim of this study was to investigate the effect of changes in inflation intervals and amounts on the capsule thickness around the tissue expander. Methods: Fifteen adult rats were divided into 3 groups, and 25 cc elliptical tissue expanders were placed on the back of each, and inflated with 5 cc saline. Expanders were inflated daily in Group 1, every 3 days in Group 2, and every 10 days in Group 3. Inflation was stopped, then expanders were removed and skin flaps were harvested after the results of the expansion were measured. Biopsies containing skin and capsule tissue were evaluated by histomorphometry and immunohistochemistry. Results: Skin flaps were measured as 81 cm2 in Group 1 and 89.3 cm2 in both Groups 2 and 3. When capsule thickness and number of vessels were examined; the thickest capsule was found in Group 2 while Group 3 had the densest vascularization. On histopathological examination of the biopsies, no significant difference was found between groups, except for the histiocyte density, which was the lowest in Group 1 and the highest in Group 3. Conclusions: This experiment showed that inflating tissue expander in small amounts at frequent intervals decreased the thickness of the capsule but it resulted in smaller skin flaps. Thus, it may be beneficial to adopt this protocol in some patients, for example in patients who are predicted to have increased capsule thickness due to the effect of radiotherapy and/or chemotherapy, or who are prone to fibrosis. Additionally, in patients whose flap size is important, it may be reasonable to inflate the tissue expander at less frequent intervals and in relatively large volumes for preventing flap loss and avoiding an increase in capsule thickness.
Collapse
Affiliation(s)
- Buket Dursun Coban
- Department of Plastic, Reconstructive and Aesthetics Surgery, Bilecik Training and Research Hospital, Bilecik, Turkey
| | - Can Ilker Demir
- Private Practice, Plastic, Reconstructive and Aesthetics Surgery, Istanbul, Turkey
| | - Emrah Kagan Yaşar
- Department of Plastic, Reconstructive and Aesthetics Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Ismail Tekfiliz
- Department of Plastic, Reconstructive and Aesthetics Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Murat Sahin Alagoz
- Department of Plastic, Reconstructive and Aesthetics Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Busra Yaprak Bayrak
- Department of Pathology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| |
Collapse
|
11
|
Garcia MH, Dionísio TJ, Cestari TM, Parisi VA, Torres EA, Santos CF. The role of AT-1 antagonist on wound healing in rats with hypertension and diabetes. J Mol Histol 2025; 56:84. [PMID: 39921764 DOI: 10.1007/s10735-025-10357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 02/10/2025]
Abstract
Wound healing is a complex process involving molecular and structural interactions. Transforming growth factor β (TGF-β), the renin-angiotensin system (RAS), and other important mediators play a central role on wound healing process. This study examined the dynamics of healing in healthy, hypertensive, and diabetic rats treated with or without Losartan, focusing on healing rate, scar characteristics, and molecular modulation. Macroscopic and microscopic analyses revealed delayed healing and reduced collagen deposition in diabetic and hypertensive rats compared with normoglycemic controls. Losartan affected healing by regulating TGF-β expression and collagen organization. In the groups of hypertensive and diabetic rats treated with losartan, healing aesthetics improved by less collagen deposition and consequently minor chances to fibrosis development, probably due to lower TGFβ and SMADs expression. Diabetic rats showed reduced skin and collagen fiber thickness, whereas hypertensive rats showed better healing under Losartan treatment (LT). These results demonstrate the complex interactions between LT, diabetes and hypertension on important fibrotic and inflammatory pathways. Although LT successfully reduces TGF-β expression and classical SMAD signaling in hypertensive settings, its minor effect in diabetes conditions indicate the necessity of supplemental treatments that target mechanisms unique to hyperglycemia, such as glycation end products or oxidative stress inhibitors. To improve treatment outcomes for individuals with diabetes and hypertension comorbidities, future studies should investigate the combination of multi-pathway modulators.
Collapse
Affiliation(s)
- Marcelo Henrique Garcia
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Tânia Mary Cestari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Viviane Aparecida Parisi
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Elza Araújo Torres
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Carlos Ferreira Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| |
Collapse
|
12
|
Malka R, Silliman DT, Fourcaudot A, Nguyen JQ, Leung KP, Decker JF, Dion GR. Design and validation of a preclinical model for oral commissure and lower eyelid thermal injury. Burns 2025; 51:107291. [PMID: 39532044 DOI: 10.1016/j.burns.2024.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Oral commissure stenosis and lower eyelid ectropion from burns are functionally impairing and challenging to treat. Evaluation of various treatment modalities is limited by a lack of preclinical models. Described is a method for inducing controlled, titratable oral commissure and lower eyelid burns in swine for future treatment research. METHODS Burn wounds 3 cm in diameter were applied to the lower eyelid and oral commissure of seven anesthetized Yorkshire swine for 10, 15, 20, or 30 s at 100 °C with a custom designed thermocouple-controlled burn device and observed for 3, 30, or 90 days. Tissue underwent laser speckle imaging (LSI) to assess vascular perfusion and histologic analysis after harvest. Statistical comparisons were calculated using Wilcoxon rank-sum tests. RESULTS Subdermal extension was noted in oral commissure and lower eyelid burns with contact time of 20 s or greater. Wound area progressively contracted from post-operative day (POD) 0 to 90 in both sites, but this was not statistically significant based on contact time or burn site (p > 0.20). Burns of 20-30 s demonstrated increased neutrophil influx for oral commissure injuries (p < 0.01) and leukocyte and macrophage influx for lower eyelid injuries (p = 0.02). Degree of vascular congestion increased with 20-30 second burns in both the oral commissure (p = 0.015) and lower eyelid (p = 0.04). Normalized LSI readings showed increased speckle size in both oral commissure (4.0-fold increase, p < 0.01) and lower eyelid (3.2-fold increase, p < 0.01) burns on POD 90 compared to pre-injury. No change in oral or ocular function was noted in any of the groups (p = 0.96). CONCLUSION Oral commissure and lower eyelid burns create scars which may be modified by burn duration. This model may evaluate a therapeutic's ability to limit functional impairment from burns.
Collapse
Affiliation(s)
- Ronit Malka
- Department of Otolaryngology - Head and Neck Surgery, Brooke Army Medical Center, JBSA Fort Sam Houston, TX, USA; United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA.
| | - David T Silliman
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Andrea Fourcaudot
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Jesse Q Nguyen
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA; Department of Periodontics - Advanced Education in General Dentistry Program, University of Uniformed Services, Fort Hood Dental Activities, Darnall Army Medical Center, Fort Hood, TX, USA
| | - Kai P Leung
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA; Department of Periodontics - Advanced Education in General Dentistry Program, University of Uniformed Services, Fort Hood Dental Activities, Darnall Army Medical Center, Fort Hood, TX, USA
| | - John F Decker
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA; Department of Periodontics - Advanced Education in General Dentistry Program, University of Uniformed Services, Fort Hood Dental Activities, Darnall Army Medical Center, Fort Hood, TX, USA
| | - Gregory R Dion
- Department of Otolaryngology - Head and Neck Surgery, Brooke Army Medical Center, JBSA Fort Sam Houston, TX, USA; United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA; Department of Otolaryngology - Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Salem M, Ateya A, Shouman Z, Salama B, Hamed B, Batiha G, Ataya F, Alexiou A, Papadakis M, Abass M. Amelioration of full-thickness cutaneous wound healing using stem cell exosome and zinc oxide nanoparticles in rats. Heliyon 2024; 10:e38994. [PMID: 39568845 PMCID: PMC11577189 DOI: 10.1016/j.heliyon.2024.e38994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 11/22/2024] Open
Abstract
Background Wound healing is a complex procedure that requires the coordination of several factors, so this study aimed to assess the zinc oxide nanoparticles' regenerated effect and stem cell exosomes on full-thickness wounds in rats. Methods Seventy-two Wistar male rats were subjected to a full-thickness skin defect (20 mm2) on the dorsal surface of each rat between two shoulder joints. The rats were randomized into four groups (18/group) according to wound treatments. The wounds were irrigated with normal saline (Control group), or the wound's edges were subcutaneously injected daily with 0.3 ml of exosome (Exo-group), or 1 ml of zinc oxide nanoparticles (ZnO2-NPs group), or 0.3 ml of exosome in combined with 1 ml of zinc oxide nanoparticles (Exo/ZnO2-NPs group). On the 7th, 14th, and 21st days post-wounding, the weight of the rats, the wound healing breaking strength, the wound size, and the contraction percent were evaluated. Six rats in each group were euthanized at each time point for histopathological, immunohistochemical examination of collagen, the levels of alpha-smooth muscle actin (α-SMA), and epidermal growth factor receptor (EGFR). additionally, the gene expression analysis of the relative renal nuclear factor erythroid 2-related factor2 (Nrf2 mRNA), Transforming growth factor beta-1 (TGFβ1), fibroblast growth factor-7 (FGF7), Transforming growth factor beta-1 (TGFβ1), Lysyl oxidase (LOX), and Vascular endothelial growth factor (VEGF) were applied. Results The Exo-group exhibited a significant decrease in wound size and a significant increase in wound contraction compared with other groups. Histopathologically evaluation during the three intervals revealed that the Exo-group had the highest collagen deposition area with a significant reduction of the granulation tissue. Moreover, upregulated gene expression profiles of the growth factors genes at all time points post-wounding. Discussion The exosomes-treated group revealed superior wound healing and contraction, with minimal inflammatory signs, higher angiogenesis, and myofibroblasts, and associated with higher growth factor expression genes compared to the other groups. Conclusions Exosome-based therapy demonstrates potential as a treatment method to promote and accelerate wound healing by modulating angiogenesis, re-epithelialization, collagen deposition, and gene expression profiles.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed Ateya
- Department of Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Salama
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Basma Hamed
- Mansoura experimental research center (MERC), Faculty of Medicine, Mansoura, 35516, Egypt
| | - Gaber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Farid Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Athanasios Alexiou
- Department of Research & Development, Funogen, Athens, 11741, Greece
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
14
|
Yadav KK, Kenney SP. Hepatitis E virus immunosuppressed animal models. BMC Infect Dis 2024; 24:965. [PMID: 39266958 PMCID: PMC11395946 DOI: 10.1186/s12879-024-09870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Hepatitis E virus (HEV) is an important emerging pathogen producing significant morbidity in immunosuppressed patients. HEV has been detrimental to solid organ transplant (SOT) patients, cancer patients, and HIV-positive patients, where chronic HEV infections occur. Blood-borne transfusions and multiple cases of chronic HEV infection in transplant patients have been reported in the past few decades, necessitating research on HEV pathogenesis using immunosuppressed animal models. Numerous animal species with unique naturally occurring HEV strains have been found, several of which have the potential to spread to humans and to serve as pathogenesis models. Host immunosuppression leads to viral persistence and chronic HEV infection allows for genetic adaptation to the human host creating new strains with worse disease outcomes. Procedures necessary for SOT often entail blood transfusions placing immunosuppressive patients into a "high risk group" for HEV infection. This scenario requires an appropriate immunosuppressive animal model to understand disease patterns in these patients. Hence, this article reviews the recent advances in the immunosuppressed animal models for chronic HEV infection with emphasis on pathogenesis, immune correlates, and the liver pathology associated with the chronic HEV infections.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA.
| |
Collapse
|
15
|
Zhang D, Zhu M, Xu P, Wen X, Liang G, Zheng W, Zeng Y, Sun T, Fan R, Lu Y, Tan X, Gong M, Wang T, Chen J, Guan J. Mechanistic Interrogation on Wound Healing and Scar Removing by the Mo 4/3B 2-x Nanoscaffold Revealed Regulated Amino Acid and Purine Metabolism. ACS NANO 2024; 18:23428-23444. [PMID: 39150010 DOI: 10.1021/acsnano.4c06796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Wound rehabilitation is invariably time-consuming, scar formation further weakens therapeutic efficacy, and detailed mechanisms at the molecular level remain unclear. In this work, a Mo4/3B2-x nanoscaffold was fabricated and utilized for wound healing and scar removing in a mice model, while metabolomics was used to study the metabolic reprogramming of metabolome during therapy at the molecular level. The results showed that transition metal borides, called Mo4/3B2-x nanoscaffolds, could mimic superoxide dismutase and glutathione peroxidase to eliminate excess reactive oxygen species (ROS) in the wound microenvironment. During the therapeutic process, the Mo4/3B2-x nanoscaffold could facilitate the regeneration of wounds and removal of scars by regulating the biosynthesis of collagen, fibers, and blood vessels at the pathological, imaging, and molecular levels. Subsequent metabolomics study revealed that the Mo4/3B2-x nanoscaffold effectively ameliorated metabolic disorders in both wound and scar microenvironments through regulating ROS-related pathways including the amino acid metabolic process (including glycine and serine metabolism and glutamate metabolism) and the purine metabolic process. This study is anticipated to illuminate the potential clinical application of the Mo4/3B2-x nanoscaffold as an effective therapeutic agent in traumatic diseases and provide insights into the development of analytical methodology for interrogating wound healing and scar removal-related metabolic mechanisms.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Neurosurgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Man Zhu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610050, P. R. China
| | - Pei Xu
- Department of Pathology, Deyang People's Hospital, Deyang 618000, P. R. China
| | - Xue Wen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ge Liang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yu Zeng
- Department of Neurosurgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Tong Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
- Chengdu Research Institute, City University of Hong Kong, Chengdu 610200, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, P. R. China
- Chengdu Research Institute, City University of Hong Kong, Chengdu 610200, P. R. China
| | - Xueqin Tan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Meng Gong
- Department of Neurosurgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Tingting Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junjie Chen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Junwen Guan
- Department of Neurosurgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
16
|
Ghanbari M, Salkovskiy Y, Carlson MA. The rat as an animal model in chronic wound research: An update. Life Sci 2024; 351:122783. [PMID: 38848945 PMCID: PMC11581782 DOI: 10.1016/j.lfs.2024.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The increasing global prevalence of chronic wounds underscores the growing importance of developing effective animal models for their study. This review offers a critical evaluation of the strengths and limitations of rat models frequently employed in chronic wound research and proposes potential improvements. It explores these models in the context of key comorbidities, including diabetes, venous and arterial insufficiency, pressure-induced blood flow obstruction, and infections. Additionally, the review examines important wound factors including age, sex, smoking, and the impact of anesthetic and analgesic drugs, acknowledging their substantial effects on research outcomes. A thorough understanding of these variables is crucial for refining animal models and can provide valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Mahboubeh Ghanbari
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Yury Salkovskiy
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, USA.
| | - Mark A Carlson
- Department of Surgery, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Zhu Y, Mei O, Zhang H, You W, Zhong J, Collins CP, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Luu HH, Shi LL, Fan J, He TC, Ameer GA, Sun C, Wen L, Reid RR. Establishment and characterization of a rat model of scalp-cranial composite defect for multilayered tissue engineering. RESEARCH SQUARE 2024:rs.3.rs-4643966. [PMID: 39108474 PMCID: PMC11302684 DOI: 10.21203/rs.3.rs-4643966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Composite cranial defects have individual functional and aesthetic ramifications, as well as societal burden, while posing significant challenges for reconstructive surgeons. Single-stage composite reconstruction of these deformities entail complex surgeries that bear many short- and long-term risks and complications. Current research on composite scalp-cranial defects is sparse and one-dimensional, often focusing solely on bone or skin. Thus, there is an unmet need for a simple, clinically relevant composite defect model in rodents, where there is a challenge in averting healing of the skin component via secondary intention. By utilizing a customizable (3D-printed) wound obturator, the scalp wound can be rendered non-healing for a long period (more than 6 weeks), with the cranial defect patent. The wound obturator shows minimal biotoxicity and will not cause severe endocranium-granulation adhesion. This composite defect model effectively slowed the scalp healing process and preserved the cranial defect, embodying the characteristics of a "chronic composite defect". In parallel, an autologous reconstruction model was established as the positive control. This positive control exhibited reproducible healing of the skin within 3 weeks with variable degrees of osseointegration, consistent with clinical practice. Both models provide a stable platform for subsequent research not only for composite tissue engineering and scaffold design but also for mechanistic studies of composite tissue healing.
Collapse
Affiliation(s)
- Yi Zhu
- The University of Chicago Medical Center
| | - Ou Mei
- The University of Chicago Medical Center
| | - Hui Zhang
- The University of Chicago Medical Center
| | - Wulin You
- The University of Chicago Medical Center
| | | | | | | | | | - Xingye Wu
- The University of Chicago Medical Center
| | | | - Yi Shu
- The University of Chicago Medical Center
| | - Ya Wen
- Capital Medical University
| | - Hue H Luu
- The University of Chicago Medical Center
| | | | | | | | | | | | - Liangyuan Wen
- Chinese Academy of Medical Sciences & Peking Union Medical College
| | | |
Collapse
|
18
|
Pignet AL, Schellnegger M, Hecker A, Kamolz LP, Kotzbeck P. Modeling Wound Chronicity In Vivo: The Translational Challenge to Capture the Complexity of Chronic Wounds. J Invest Dermatol 2024; 144:1454-1470. [PMID: 38483357 DOI: 10.1016/j.jid.2023.11.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 06/24/2024]
Abstract
In an aging society with common lifestyle-associated health issues such as obesity and diabetes, chronic wounds pose a frequent challenge that physicians face in everyday clinical practice. Therefore, nonhealing wounds have attracted much scientific attention. Several in vitro and in vivo models have been introduced to deepen our understanding of chronic wound pathogenesis and amplify therapeutic strategies. Understanding how wounds become chronic will provide insights to reverse or avoid chronicity. Although choosing a suitable model is of utmost importance to receive valuable outcomes, an ideal in vivo model capturing the complexity of chronic wounds is still missing and remains a translational challenge. This review discusses the most relevant mammalian models for wound healing studies and provides guidance on how to implement the hallmarks of chronic wounds. It highlights the benefits and pitfalls of established models and maps out future avenues for research.
Collapse
Affiliation(s)
- Anna-Lisa Pignet
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria.
| | - Andrzej Hecker
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria
| | - Petra Kotzbeck
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria; COREMED - Centre for Regenerative and Precision Medicine, JOANNEUM RESEARCH, Graz, Austria; Research Unit for Tissue Repair and Reconstruction, Medical University of Graz, Graz, Austria
| |
Collapse
|
19
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
20
|
Castro JI, Payan-Valero A, Valencia-Llano CH, Insuasty D, Rodríguez Macias JD, Ordoñez A, Valencia Zapata ME, Mina Hernández JH, Grande-Tovar CD. Evaluation of the Antibacterial, Anti-Cervical Cancer Capacity, and Biocompatibility of Different Graphene Oxides. Molecules 2024; 29:281. [PMID: 38257194 PMCID: PMC10821421 DOI: 10.3390/molecules29020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.
Collapse
Affiliation(s)
- Jorge Ivan Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Alana Payan-Valero
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Juan David Rodríguez Macias
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Alejandra Ordoñez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Mayra Eliana Valencia Zapata
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Jose Herminsul Mina Hernández
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| |
Collapse
|
21
|
Zhang G, Wang Y, Qiu H, Lu L. Facile one-pot synthesis of flower-like ellagic acid microparticles incorporating anti-microbial peptides for enhanced wound healing. J Mater Chem B 2024; 12:500-507. [PMID: 38099474 DOI: 10.1039/d3tb02016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Anti-microbial peptides (AMPs) have gained significant attention as potential antimicrobial agents due to their cytocompatibility and reduced drug resistance. However, AMPs often suffer from low stability due to their vulnerable molecular structure. This study presents a one-pot synthesis method for ellagic acid (EA)-based, flower-like AMPs@EAMP particles, combining the antibacterial properties of EA with AMPs. The resulting particles exhibit an enlarged surface area for the adsorption or embedding of AMPs, enhancing their antibacterial efficacy. Furthermore, in vitro evaluations demonstrate excellent biocompatibility and broad-spectrum activity against bacterial strains including both Gram-positive S. epidermidis and Gram-negative E. coli. In vivo studies indicate AMPs@EAMPs' potential to reconstruct the immune barrier, inhibit pathogens, and reduce inflammation, promoting orderly tissue repair. This innovative synthesis strategy provides a straightforward and effective approach for large-scale production of flower-like AMPs@EAMP particles with remarkable antibacterial properties, addressing the challenges associated with MDR infections.
Collapse
Affiliation(s)
- Guo Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China.
- Key Lab. of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hua Qiu
- Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
22
|
Polat B, Okur DT, Çolak A, Okur S, Özkaraca M, Yilmaz K. Comparison of three different dosages of low-level laser therapy on expression of cell proliferation and inflammatory markers following ovariohysterectomy in rats. Cutan Ocul Toxicol 2023; 42:273-282. [PMID: 37624142 DOI: 10.1080/15569527.2023.2252075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The objective of the current study was to evaluate Low-level laser therapy (LLLT) on the healing of incisional wounds following ovariohysterectomy in rats, by means of subjective histopathological and immunohistochemical analysis. A total of 72 female Wistar rats were categorised into four treatment groups (Group I; sacrification 4 hours following only one LLLT application, Group II; sacrification 7 days following only one LLLT application, Group III; sacrification 4 hours after two LLLT applications, and Group IV; sacrification 7 days after two LLLT applications). Each group was further divided into four different doses subgroups (Group Control [C, off mode LLLT application], L1 [1 J/cm2], L3 [3 J/cm2], and L6 [6 J/cm2]), with equal representation in each subgroup. Ovariohysterectomy was employed using two 2-cm-length midline abdominal incisions in the left and right sides of line alba. The Group C was assigned to the left side incision to each rat in the study. After irradiation, the tissue was subjected to histopathological analysis to determine the extent of mononuclear cell infiltration, edoema, and epithelialization. Additionally, immunohistochemical analysis was performed to evaluate the expression of proliferating cell nuclear antigen (pCNA) and inducible nitric oxide synthase (iNOS). Group L1 and L3 significantly decreased mononuclear cell infiltration compared with Group C in all treatment groups (p < 0.05). Group L3 significantly decreased edoema compared with Group C in all groups except for treatment Group I (p < 0.05). Group L2 and L3 significantly increased epithelization in treatment Group IV (p < 0.05). Moreover, Group L2 and L3 significantly increased pCNA in all groups, while L2 and L3 significantly decreased iNOS expression in treatment Group II, III, and IV (p < 0.05). However, no statistical difference was found between subgroups of treatment Group I in iNOS expiration (p > 0.05). The results of the current examination demonstrated that LLLT can modulate mononuclear cell infiltration and edoema, and improve epithelization, as well as increase pCNA expression, whereas decrease iNOS expression during the wound healing process, therefore enhancing wound healing following ovariohysterectomy in rats.
Collapse
Affiliation(s)
- Bülent Polat
- Department of Obstetrics and Gynecology, Atatürk University, Erzurum, Turkey
- Bil-Tek, Ata Teknokent, Erzurum, TR, Turkey
| | - Damla Tuğçe Okur
- Department of Obstetrics and Gynecology, Atatürk University, Erzurum, Turkey
| | - Armağan Çolak
- Department of Obstetrics and Gynecology, Atatürk University, Erzurum, Turkey
| | - Sıtkıcan Okur
- Department of Surgery, Atatürk University, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Sivas Cumhuriyet University, Sivas, Turkey
| | - Kader Yilmaz
- Celal Oruç Animal Production School, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| |
Collapse
|
23
|
Gupta R, Priya A, Chowdhary M, Batra VV, Jyotsna, Nagarajan P, Gokhale RS, Singh A. Pigmented skin exhibits accelerated wound healing compared to the nonpigmented skin in Guinea pig model. iScience 2023; 26:108159. [PMID: 37927554 PMCID: PMC10622689 DOI: 10.1016/j.isci.2023.108159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
This study investigated and compared the wound healing kinetics of pigmented (PG) and non-pigmented (NP) skin in guinea pigs, focusing on histological and transcriptional changes. Full-thickness wounds created on PG and NP skin were evaluated at various time points post-injury. Fontana-Masson staining and ultrastructural analysis suggested the presence of melanin and melanosomes in PG skin, which coincided with an upregulation of melanogenic genes cKIT, TYR, and DCT. On day 9 post-wound, PG skin exhibited a rapid transition from the inflammatory to proliferative phase, which correlated with the reappearance of epidermal pigmentation whereas the NP skin exhibited a delayed neo-epidermis formation. Furthermore, the study revealed that melanocyte-derived growth factors (conditioned media) positively regulated keratinocyte migration while inhibiting fibroblast differentiation. These effects were more prominent in tyrosine-treated (hyperpigmented) melanocyte-CM as was TGF- β expression. These findings provide valuable insights into the mechanisms underlying skin repair and pigmentation.
Collapse
Affiliation(s)
- Rohit Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Anshu Priya
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Jyotsna
- National Institute of Immunology, New Delhi 110067, India
| | | | | | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
24
|
Chen CF, Chen SH, Chen RF, Liu KF, Kuo YR, Wang CK, Lee TM, Wang YH. A Multifunctional Polyethylene Glycol/Triethoxysilane-Modified Polyurethane Foam Dressing with High Absorbency and Antiadhesion Properties Promotes Diabetic Wound Healing. Int J Mol Sci 2023; 24:12506. [PMID: 37569881 PMCID: PMC10419382 DOI: 10.3390/ijms241512506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The delayed healing of chronic wounds, such as diabetic foot ulcers (DFUs), is a clinical problem. Few dressings can promote wound healing by satisfying the demands of chronic wound exudate management and tissue granulation. Therefore, the aim of this study was to prepare a high-absorption polyurethane (PU) foam dressing modified by polyethylene glycol (PEG) and triethoxysilane (APTES) to promote wound healing. PEG-modified (PUE) and PEG/APTES-modified (PUESi) dressings were prepared by self-foaming reactions. Gauze and PolyMem were used as controls. Next, Fourier transform-infrared spectroscopy, thermomechanical analyses, scanning electron microscopy and tensile strength, water absorption, anti-protein absorption, surface dryness and biocompatibility tests were performed for in vitro characterization. Wound healing effects were further investigated in nondiabetic (non-DM) and diabetes mellitus (DM) rat models. The PUE and PUESi groups exhibited better physicochemical properties than the gauze and PolyMem groups. Moreover, PUESi dressing showed better anti-adhesion properties and absorption capacity with deformation. Furthermore, the PUESi dressing shortened the inflammatory phase and enhanced collagen deposition in both the non-DM and DM animal models. To conclude, the PUESi dressing not only was fabricated with a simple and effective strategy but also enhanced wound healing via micronegative-pressure generation by its high absorption compacity with deformation.
Collapse
Affiliation(s)
- Chiu-Fang Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan;
| | - Szu-Hsien Chen
- Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei 106216, Taiwan;
| | - Rong-Fu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (R.-F.C.); (K.-F.L.); (Y.-R.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Keng-Fan Liu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (R.-F.C.); (K.-F.L.); (Y.-R.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yur-Ren Kuo
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (R.-F.C.); (K.-F.L.); (Y.-R.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Chih-Kuang Wang
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzer-Min Lee
- Institute of Oral Medicine, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
- School of Dentistry, National Cheng Kung University, Tainan 701, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan;
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
25
|
Dontas IA, Lelovas P, Parara S, Galanos A, Agrogiannis G, Goutas D, Charalambidis G, Nikolaou V, Landrou G, Kokotidou C, Apostolidou CP, Mitraki A, Coutsolelos AG. Delivery of Porphyrins Through Self-Assembling Peptide Hydrogels for Accelerated Healing of Experimental Skin Defects In Vivo. Cureus 2023; 15:e39120. [PMID: 37332461 PMCID: PMC10273017 DOI: 10.7759/cureus.39120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/20/2023] Open
Abstract
INTRODUCTION The care and healing of skin defects resulting from different causes has been the object of research to achieve rapid and complete skin regeneration. Hydrogels have been used for their ability to maintain hydration during wound healing, absorb wound exudate, and cover the underlying tissue without adherence while being transparent. In this study, we evaluated the efficacy of a hydrogel (H) with encapsulated porphyrin (H+P) on a rat model of surgically-induced skin defects. METHODS Four round 6 mm diameter skin defects were performed under general anesthesia on the dorsal area of 24 three-month-old "Young" and 24 twelve-month-old "Mature" male rats. Each age group was separated into the Control, H, and H+P groups, n=8 each, where no therapy, H, or H+P was respectively applied daily for 20 days. Digital photographs and skin biopsies were taken on the third, seventh, 10th, and 20th postoperative days and evaluated by planimetry, histology, and immunohistochemistry. RESULTS Planimetry results demonstrated significantly decreased perimeter, diameter, and area measurements (p<0.005) of group H+P compared to Control and H groups on days 10 and 20 in the young rats, while in the mature rats, the significant differences were evident earlier (perimeter third day p<0.05; diameter and area seventh day p<0.05 and p<0.005, respectively vs. H). Granulation and scar tissue formation were also reduced in the H+P groups although they were not statistically significant. CONCLUSIONS The application of H+P on the skin defects benefited the healing process in both young and mature animal groups, as evidenced by the statistically significant findings of planimetry. The beneficial healing process was more pronounced in the mature animals, both in the level of statistical significance as well as regarding time (evident already on the third day of healing), probably due to porphyrin assisting the reduced healing rate, which is observed in organisms of advanced age.
Collapse
Affiliation(s)
- Ismene A Dontas
- Veterinary Medicine, Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Pavlos Lelovas
- Veterinary Medicine, Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Sofia Parara
- Plastic Surgery, Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Antonios Galanos
- Epidemiology and Public Health, Laboratory for Research of the Musculoskeletal System, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Georgios Agrogiannis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Dimitris Goutas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, GRC
| | - Vasilis Nikolaou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, GRC
| | - Georgios Landrou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, GRC
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, Voutes University Campus, Heraklion, GRC
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, GRC
| | - Chrysanthi-Pinelopi Apostolidou
- Department of Materials Science and Technology, University of Crete, Voutes University Campus, Heraklion, GRC
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, GRC
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Voutes University Campus, Heraklion, GRC
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, GRC
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, GRC
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, GRC
| |
Collapse
|
26
|
Curukoglu A, Gungor GCA, Akan G, Kukner A, Ogutcu G, Kalayci M, Temizel M, Ozgencil FE. The effect of cold atmospheric plasma (NO) alone and in combination with NPH insulin on the full-thickness excisional wound healing in a diabetic rat model. VET MED-CZECH 2023; 68:152-163. [PMID: 37982089 PMCID: PMC10581533 DOI: 10.17221/109/2022-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 11/21/2023] Open
Abstract
This study was planned to investigate an alternative treatment modality in diabetic wound healing. In this experimental study, the efficacy of both cold atmospheric plasma/nitric oxide (NO) and NPH insulin ointment, recently known to have beneficial effects on wound healing, was investigated in diabetic wound healing. Twenty-four (24) diabetic rats were divided into four groups DC, DI, DNO and DINO (diabetic control, diabetic insulin, diabetic nitric oxide, diabetic insulin + nitric oxide groups). No treatment was applied to the DC group, NPH insulin was applied to the DI group, CAP/NO was applied to the DNO group, and CAP/NO + NPH insulin was applied to the DINO group once daily for 14 days. The wound area reduction and the wound contraction rate were calculated on the basis of the tissue sections taken, and histopathological and genetic analyses were carried out. Compared to the control group, exogenous NO gas was found to be a potent antibacterial agent in the diabetic wound healing, causing a reduction in the wound area (P = 0.034), an increased contraction rate (P = 0.021), epithelialisation (P = 0.02), collagen organisation (P = 0.006) and a reduction in the number of inflammatory cells (P = 0.002). A significant increase in the expression of IL-8 mRNA was observed (P = 0.026). It was concluded that NPH insulin alone contributes to wound healing, but it is not necessary to use it together with exogenous NO gas.
Collapse
Affiliation(s)
- Ali Curukoglu
- Surgery Department, Faculty of Veterinary Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Gul Ciray Akbas Gungor
- Surgery Department, Faculty of Veterinary Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Gokce Akan
- DESAM Institute, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Aysel Kukner
- Histology Department, Faculty of Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Gozde Ogutcu
- Histology Department, Faculty of Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Melis Kalayci
- DESAM Institute, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Meliha Temizel
- Experimental Animal Research Center, Faculty of Veterinary Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| | - Fatma Eser Ozgencil
- Surgery Department, Faculty of Veterinary Medicine, Near East University, Yakin Dogu St, Nicosia, Mersin, Turkiye
| |
Collapse
|
27
|
Inflammation-modulating antibacterial hydrogel sustained release asiaticoside for infection wound healing. BIOMATERIALS ADVANCES 2023; 147:213302. [PMID: 36841110 DOI: 10.1016/j.bioadv.2023.213302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Wound infection and persistent inflammation are considered to be the main reasons for hindering wound healing. In this study, we developed an innovative hydrogel dressing, EPL-DA/ODEX/AMs, as a platform to inhibit bacteria and inflammation and promote wound healing. Polylysine (EPL) has cationic properties and can effectively disrupt bacterial cell membranes for antibacterial purposes. Polylysine-grafted levodopa (EPL-DA) with abundant amino and catechol groups can be cross-linked with oxidized dextran through Schiff base reaction to form antibacterial hydrogels with good adhesion and mechanical properties. In addition, asiaticoside, which can effectively inhibit inflammation and promote collagen regeneration, is made into PLGA microspheres to effectively deliver asiaticoside to the wound. The innovative antibacterial hydrogel of EPL-DA/ODEX/AMs may become a competitive wound dressing for infected wound.
Collapse
|
28
|
Zacarias CA, de Mendonça Florenziano RF, de Andrade TAM, de Aro AA, do Amaral MEC, dos Santos GMT, Esquisatto MAM. Arnica montana L. associated with microcurrent accelerates the dermis reorganisation of skin lesions. Int J Exp Pathol 2023; 104:81-95. [PMID: 36752313 PMCID: PMC10009304 DOI: 10.1111/iep.12469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 02/09/2023] Open
Abstract
The aim of this study was to test the effect of electrical stimulation in association with topical Arnica montana gel on organisational changes in the dermis during tissue repair. An experimental rat incisional skin lesion was used for the study. This involved making an incisional lesion on the dorsum of the animals using a scalpel. Ninety-six animals were used divided into the following groups: control (C), microcurrent (MC); topical treatment with Arnica montana gel (ARN); the ARN + microcurrent (ARN + MC). Treatments were administered daily, and injured tissue samples were collected and processed on Days 2, 6 and 10 for dermis analyses. Myeloperoxidase levels were greater in control than in treatment groups on Days 2 and 6. F4/80 expression was similar among all treatment groups and greater than that in control on Day 2. On Day 6, the expression of vascular endothelial growth factor was higher in the MC group than that in other groups, whereas transforming growth factor-β expression increased in the MC and ARN + MC groups on Day 10. The expression of matrix metalloproteinase-2 was higher in the ARN + MC group when compared with other groups on Day 10. Expression levels of collagen I were increased in the ARN and ARN + MC groups when compared with control and MC groups on Day 6, while expression of collagen III was enhanced in MC, ARN, and ARN + MC groups when compared with the control. The protocol combining microcurrent with topical application of ARN reduces the inflammatory process, increases myofibroblasts proliferation and decreases the presence of macrophages in the dermis during skin repair in rats.
Collapse
Affiliation(s)
- Cresle Andrei Zacarias
- Graduate Program in Biomedical SciencesUniversity Center of Herminio Ometto Foundation – FHOArarasBrazil
| | | | | | - Andrea Aparecida de Aro
- Graduate Program in Biomedical SciencesUniversity Center of Herminio Ometto Foundation – FHOArarasBrazil
| | | | | | | |
Collapse
|
29
|
Deana NF, Zaror C, Del Sol M, Bagnato VS, Alves N. Wound contraction rate in excised and unexcised burn wounds with laser photobiomodulation: Systematic review and meta-analysis of preclinical studies. Burns 2023; 49:261-274. [PMID: 35842272 DOI: 10.1016/j.burns.2022.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/09/2022]
Abstract
INTRODUCTION Laser photobiomodulation (laser PBM) is an effective means of accelerating burn wound contraction, however it is still unclear whether laser PBM produces greater benefit when applied directly to excised and unexcised burn wounds . The aim of this systematic review of preclinical studies was to determine the effectiveness of laser PBM in the wound contraction rate in excised and unexcised burn wounds. MATERIALS AND METHODS A systematic search was conducted in the EMBASE, MEDLINE and LILACS databases. Preclinical studies were included that analysed the effectiveness of laser PBM in burn wound contraction, and assessed wound closure. The SYRCLE risk of bias tool was used. Random effects models were used to estimate the pooled effect. RESULTS Thirteen studies were included in the qualitative analysis and six in the quantitative analysis. Two weeks after the lesion, laser PBM favoured the wound contraction percentage, increasing the closure rate in excised burn wounds (SMD= 1.34, CI 95% 0.41 to 2.27, 0.41-2.27, I2=0%, =0%, low certainty of evidence. In unexcised burns, it was uncertain whether laser PBM increased or diminished the wound contraction rate (SMD=1.22(SMD=1.22 CI 95% -0.05 to 2.49, I2=68%; =68%; very low certainty of evidence). CONCLUSIONS In the animal model, laser PBM is effective in increasing the wound contraction rate in excised burns. However, due to the low certainty of the evidence, uncertainty remains about the true magnitude of the effect of laser on wound contraction in animals; our results should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Naira Figueiredo Deana
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile; Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile
| | - Carlos Zaror
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile; Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile; Faculty of Dentistry, Universidad San Sebastian, Puerto Montt, Chile
| | - Mariano Del Sol
- Center of Excellence in Surgical and Morphological Research (CEMyQ), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São Carlense, 400, Parque Arnold Schimidt, CEP: 13.566-590, São Carlos, São Paulo, Brazil
| | - Nilton Alves
- Center of Excellence in Surgical and Morphological Research (CEMyQ), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Applied Morphology Research Centre (CIMA), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
30
|
Ajit A, Kumar TRS, Harikrishnan VS, Anil A, Sabareeswaran A, Krishnan LK. Enriched adipose stem cell secretome as an effective therapeutic strategy for in vivo wound repair and angiogenesis. 3 Biotech 2023; 13:83. [PMID: 36798854 PMCID: PMC9925643 DOI: 10.1007/s13205-023-03496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
The therapeutic potential of adipose tissue-derived mesenchymal stem cells (ADMSCs) is well studied for use in non-healing wounds. However, concerns on the transplantable cell number requirement, cell expansion, cell viability, retained cell multipotency and the limited cell implantation time for efficient impact hinders cell therapy. Recent literature is much inclined to the superiority of the ADMSCs' secretome, pre-dominating its paracrine-mediated therapeutic impact. In this context, the possibility of attaining accelerated wound angiogenesis through non-viral mediated enrichment of the ADMSCs secretome with pro-angiogenic growth factors (AGF) seems promising. Accordingly, this study aimed to explore the effect of AGF-enriched ADMSCs secretome for accelerating wound angiogenesis and repair in acute large area full thickness excision rabbit wound model, as adopted from Salgado et al. (Chir Buchar Rom 108:706-710, 1990). Using sub-dermal single-dose injections along the margin of the dorsal wound, native ADMSCs secretome, AGF-enriched ADMSC secretome, allogenic rabbit ADMSCs and a combination of AGF-enriched ADMSC secretome with allogenic rabbit ADMSCs were transplanted independently. Twenty-eight days (28 days) post-transplantation, histopathological analysis was performed to assess the effect. Hematoxylin and eosin (H&E) staining showed enhanced epithelization, notable granulation tissue and collagen fiber deposition in AGF-enriched secretome transplanted groups. This was confirmed by elevated CD31 detection, faster wound closure time and collagen organization. The use of single-dose AGF-enriched ADMSCs' secretome for therapeutic angiogenesis and wound repair seems to be a promising cell-free therapeutic option. Further investigations using multiple doses on larger animal groups remains to be explored in order to ascertain the comparative potential of AGF-enriched ADMSCs' secretome.
Collapse
Affiliation(s)
- Amita Ajit
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695012 India
| | - T. Retnabai Santhosh Kumar
- Integrated Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014 India
| | - V. S. Harikrishnan
- Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - Arya Anil
- Division of Laboratory Animal Science, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - A. Sabareeswaran
- Histopathology Laboratory, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - Lissy Kalliyana Krishnan
- Division of Thrombosis Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695012 India
| |
Collapse
|
31
|
Rahim O, Masseh H, Salih N, Dastan D. Healing Effect of Plantago major and Photodynamic Therapy Combination on Skin Wounds. INT J PHARMACOL 2023. [DOI: 10.3923/ijp.2023.64.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Randhawa A, Dutta SD, Ganguly K, Patel DK, Patil TV, Lim KT. Recent Advances in 3D Printing of Photocurable Polymers: Types, Mechanism, and Tissue Engineering Application. Macromol Biosci 2023; 23:e2200278. [PMID: 36177687 DOI: 10.1002/mabi.202200278] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/09/2022] [Indexed: 01/19/2023]
Abstract
The conversion of liquid resin into solid structures upon exposure to light of a specific wavelength is known as photopolymerization. In recent years, photopolymerization-based 3D printing has gained enormous attention for constructing complex tissue-specific constructs. Due to the economic and environmental benefits of the biopolymers employed, photo-curable 3D printing is considered an alternative method for replacing damaged tissues. However, the lack of suitable bio-based photopolymers, their characterization, effective crosslinking strategies, and optimal printing conditions are hindering the extensive application of 3D printed materials in the global market. This review highlights the present status of various photopolymers, their synthesis, and their optimization parameters for biomedical applications. Moreover, a glimpse of various photopolymerization techniques currently employed for 3D printing is also discussed. Furthermore, various naturally derived nanomaterials reinforced polymerization and their influence on printability and shape fidelity are also reviewed. Finally, the ultimate use of those photopolymerized hydrogel scaffolds in tissue engineering is also discussed. Taken together, it is believed that photopolymerized 3D printing has a great future, whereas conventional 3D printing requires considerable sophistication, and this review can provide readers with a comprehensive approach to developing light-mediated 3D printing for tissue-engineering applications.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
33
|
Chhoud R, Said Bagga M, Ali Lassoued M, Jlizi S, Nabili A, Sfar S, Ben Jannet H, Majdoub H. Chemical Profile of the Pits Oil from the Tunisian 'Alig' Cultivar of Phoenix dactylifera L.: In Vivo Wound Healing Potential Evaluation of a Cream Formulated from the Extracted Oil and Insights from Molecular Docking and SAR Analysis. Chem Biodivers 2023; 20:e202200533. [PMID: 36325999 DOI: 10.1002/cbdv.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
Since ancient times the oil from date palm pits (Phoenix dactylifera L.) has been used to heal wounds. In order to prove this traditional usage of the pits, this oil was extracted from the pits of the Tunisian cultivar 'Alig' and its physico-chemical properties and the chemical composition were evaluated. The fatty acid profile, evidenced by GC, allowed to classify this oil as an oleic-myristic acid oil with a clear abundance of oleic acid (53.66 %). 1 H and 13 C-NMR as well as FT-IR analyses confirmed the presence of fatty acids in triglyceride forms. Furthermore, in vivo wound healing activity of a cream formulated from the extracted oil was performed, for the first time, using a rat model and was compared to placebo cream and a commercial formulation, MEBO®. This study showed that the test cream promoted the healing of pressure ulcers better than the placebo cream and the MEBO® ointment. The results showed that this vegetable oil is able to improve the healing of infected wounds in rats, thus supporting its traditional use. The contribution of the main oleic, linoleic and myristic acids that can be derived from enzymatic hydrolysis to the healing activity of the whole pits oil was predicted by in silico study and the calculated pharmacokinetics parameters.
Collapse
Affiliation(s)
- Rihab Chhoud
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| | - Mohamed Said Bagga
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Salma Jlizi
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Bd. of the Environment, 5019, Monastir, Tunisia
| | - Abdelkader Nabili
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| | - Souad Sfar
- Laboratory of Pharmaceutical, Chemical and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
| | - Hichem Ben Jannet
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Bd. of the Environment, 5019, Monastir, Tunisia
| | - Hatem Majdoub
- University of Monastir, Faculty of Sciences of Monastir, Laboratory of Interfaces and Advanced Materials (LIMA), Bd. of the Environment, 5019, Monastir, Tunisia
| |
Collapse
|
34
|
Rai V, Agrawal DK. Male or female sex: considerations and translational aspects in diabetic foot ulcer research using rodent models. Mol Cell Biochem 2022. [PMID: 36574098 DOI: 10.1007/s11010-022-04642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Zhao M, Wang J, Zhang J, Huang J, Luo L, Yang Y, Shen K, Jiao T, Jia Y, Lian W, Li J, Wang Y, Lian Q, Hu D. Functionalizing multi-component bioink with platelet-rich plasma for customized in-situ bilayer bioprinting for wound healing. Mater Today Bio 2022; 16:100334. [PMID: 35799896 PMCID: PMC9254123 DOI: 10.1016/j.mtbio.2022.100334] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022] Open
Abstract
In-situ three-dimensional (3D) bioprinting has been emerging as a promising technology designed to rapidly seal cutaneous defects according to their contour. Improvements in the formulations of multi-component bioink are needed to support cytocompatible encapsulation and biological functions. Platelet-rich plasma (PRP), as a source of patient-specific autologous growth factors, exhibits capabilities in tissue repair and rejuvenation. This study aimed to prepare PRP-integrated alginate-gelatin (AG) composite hydrogel bioinks and evaluate the biological effects in vitro and in vivo. 3D bioprinted constructs embedded with dermal fibroblasts and epidermal stem cells were fabricated using extrusion strategy. The integration of PRP not only improved the cellular behavior of seeded cells, but regulate the tube formation of vascular endothelial cells and macrophage polarization in a paracrine manner, which obtained an optimal effect at an incorporation concentration of 5%. For in-situ bioprinting, PRP integration accelerated the high-quality wound closure, modulated the inflammation and initiated the angiogenesis compared with the AG bioink. In conclusion, we revealed the regenerative potential of PRP, readily available at the bedside, as an initial signaling provider in multi-component bioink development. Combined with in-situ printing technology, it is expected to accelerate the clinical translation of rapid individualized wound repair.
Collapse
|
36
|
Ravanfar K, Amniattalab A, Mohammadi R. Curcumin-Polyethylene Glycol Loaded on Chitosan-Gelatin Nanoparticles Enhances Burn Wound Healing in Rat. J Burn Care Res 2022; 43:1399-1409. [PMID: 35420679 DOI: 10.1093/jbcr/irac048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to evaluate effects of curcumin-polyethylene glycol loaded on chitosan-gelatin nanoparticles (C-PEG-CGNPs) on burn wound healing in rat as a model study. Sixty healthy male White Wistar rats were randomized into four experimental groups of 15 animals each: Control group (Control) was treated with normal saline. Carrier group was treated with CGNPs-based ointment (0.05 mg/ml). Silver sulfadiazine group was treated with silver sulfadiazine 1% ointment. Treatment group was treated with C-PEG-CGNPs (0.05 mg/ml). Wound size was measured on 7, 14, and 21 days after surgery. The expression of p53, Bcl-2, caspase-3 were evaluated using reverse transcription-polymerase chain reaction and immunohistochemical staining. Reduction in wound area indicated that there was significant difference between Treatment group and other groups (P < .05). Quantitative histological and morphometric studies, and mean rank of the qualitative studies demonstrated that there was a significant difference between Treatment group and other groups (P < .05). Observations demonstrated C-PEG-CGNPs significantly shortened the inflammatory phase and accelerated the cellular proliferation. Accordingly, the animals in Treatment group revealed significantly (P < .05) higher fibroblast distribution/one mm2 of wound area and rapid reepithelialization. The mRNA levels of Bcl-2, p53, and caspase-3 were remarkably (P < .05) higher in Treatment group compared to control animals. The immunohistochemical analyses confirmed the reverse transcription-polymerase chain reaction findings. C-PEG-CGNPs offered potential advantages in burn wound healing acceleration and improvement.
Collapse
Affiliation(s)
- Kimia Ravanfar
- Department of Pathology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Amir Amniattalab
- Department of Pathology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
37
|
Yoshimura TM, Cabral FV, Sellera FP, Pozzo L, Ribeiro MS. Could Light-Based Technologies Improve Stem Cell Therapy for Skin Wounds? A Systematic Review and Meta-Analysis of Preclinical Studies. Photochem Photobiol 2022; 99:519-528. [PMID: 36004458 DOI: 10.1111/php.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 12/09/2022]
Abstract
Several diseases or conditions cause dermatological disorders that hinder the process of skin repair. The search for novel technologies has inspired the combination of stem cell (SC) and light-based therapies to ameliorate skin wound repair. Herein, we systematically revised the impact of photobiomodulation therapy (PBM) combined with SCs in animal models of skin wounds and quantitatively evaluated this effect through a meta-analysis. For inclusion, SCs should be irradiated in vitro or in vivo, before or after being implanted in animals, respectively. The search resulted in nine eligible articles, which were assessed for risk of bias. For the meta-analysis, studies were included only when PBM was applied in vivo, five regarding wound closure, and three to wound strength. Overall, a positive influence of SC+PBM on wound closure (MD: 9.69; 95%CI: 5.78 to 13.61, p<0.00001) and strength (SMD: 1.7, 95%CI: 0.68 to 2.72, p=0.001) was detected, although studies have shown moderate to high heterogeneity and a lack of information regarding some bias domains. Altogether, PBM seems to be an enabling technology able to be applied post-implantation of SCs for cutaneous regeneration. Our findings may guide future laboratory and clinical studies in hopes of offering wound care patients a better quality of life.
Collapse
Affiliation(s)
- Tania M Yoshimura
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, SP, Brazil
| | - Fernanda V Cabral
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, SP, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, SP, Brazil
| | - Lorena Pozzo
- Health Technology Assessment Nucleus, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, SP, Brazil
| | - Martha S Ribeiro
- Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, SP, Brazil.,Health Technology Assessment Nucleus, Nuclear and Energy Research Institute (IPEN-CNEN), São Paulo, SP, Brazil
| |
Collapse
|
38
|
El-Salamouni NS, Gowayed MA, Younis SE, Abdel-Bary A, Kamel MA, Labib GS. Pentoxifylline/Valsartan co-delivery in liposomal gel alters the inflammatory HMGB-1/ TLR pathway and promotes faster healing in burn wounds: A promising repurposed approach. Int J Pharm 2022; 625:122129. [PMID: 36007851 DOI: 10.1016/j.ijpharm.2022.122129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Burn wounds are one of the most severe complex forms of trauma. Hence, new treatment strategies that facilitate the healing process; reduce the severity and the healing time is the main concern of the health care systems. In this work, pentoxifylline-valsartan, (PTX- VAL), loaded liposomes integrated into gel were designed for the first time as a novel co-delivery carrier for the treatment of burn wounds. The objective of this work was to investigate the ability of the nano-based liposomal system to co-entrap two repurposed drugs; hydrophilic pentoxifylline and lipophilic valsartan for topical treatment of burn wounds. The impact of increasing the phospholipid amount to enhance the co-entrapment of PTX and VAL was investigated and in-vitro evaluation of the prepared formulations was conducted to choose the optimum composition with the highest entrapment of both drugs adopting a simple, reliable derivative spectrophotometric method. Structure elucidation was also performed using a transmission electron microscope. In addition, A simple selected derivative spectrophotometric method was developed for the assay of PTX-VAL novel combination. The proven selectivity, precision and accuracy assured the reliability of this analytical method. Being economic and fast makes routine application of the developed analytical method is recommended in pharmaceutical industry. The selected liposomal formulation integrated into gel matrix (PTX-VAL-LG) showed; nanometric size, acceptable entrapment efficiency of both PTX and VAL as well as sustained release profiles and thus, enhanced action.
Collapse
Affiliation(s)
- Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Sameh E Younis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ahmed Abdel-Bary
- Department of Dermatology, Venereology, Andrology and Dermatopathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Egypt.
| | - Gihan S Labib
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
39
|
Lukomskyj AO, Rao N, Yan L, Pye JS, Li H, Wang B, Li JJ. Stem Cell-Based Tissue Engineering for the Treatment of Burn Wounds: A Systematic Review of Preclinical Studies. Stem Cell Rev Rep 2022; 18:1926-1955. [PMID: 35150392 PMCID: PMC9391245 DOI: 10.1007/s12015-022-10341-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Burn wounds are a devastating type of skin injury leading to severe impacts on both patients and the healthcare system. Current treatment methods are far from ideal, driving the need for tissue engineered solutions. Among various approaches, stem cell-based strategies are promising candidates for improving the treatment of burn wounds. A thorough search of the Embase, Medline, Scopus, and Web of Science databases was conducted to retrieve original research studies on stem cell-based tissue engineering treatments tested in preclinical models of burn wounds, published between January 2009 and June 2021. Of the 347 articles retrieved from the initial database search, 33 were eligible for inclusion in this review. The majority of studies used murine models with a xenogeneic graft, while a few used the porcine model. Thermal burn was the most commonly induced injury type, followed by surgical wound, and less commonly radiation burn. Most studies applied stem cell treatment immediately post-burn, with final endpoints ranging from 7 to 90 days. Mesenchymal stromal cells (MSCs) were the most common stem cell type used in the included studies. Stem cells from a variety of sources were used, most commonly from adipose tissue, bone marrow or umbilical cord, in conjunction with an extensive range of biomaterial scaffolds to treat the skin wounds. Overall, the studies showed favourable results of skin wound repair in animal models when stem cell-based tissue engineering treatments were applied, suggesting that such strategies hold promise as an improved therapy for burn wounds.
Collapse
Affiliation(s)
- Alissa Olga Lukomskyj
- Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia
| | - Nikitha Rao
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lei Yan
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China
| | - Jasmine Sarah Pye
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Haiyan Li
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Bin Wang
- Department of Orthopedics, Shanxi Medical University Second Affiliated Hospital, Taiyuan, 030001, China.
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 315000, China.
| | - Jiao Jiao Li
- Kolling Institute, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW, 2065, Australia.
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
40
|
Burmeister DM, Supp DM, Clark RA, Tredget EE, Powell HM, Enkhbaatar P, Bohannon JK, Cancio LC, Hill DM, Nygaard RM. Advantages and Disadvantages of Using Small and Large Animals in Burn Research: Proceedings of the 2021 Research Special Interest Group. J Burn Care Res 2022; 43:1032-1041. [PMID: 35778269 DOI: 10.1093/jbcr/irac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Multiple animal species and approaches have been used for modeling different aspects of burn care, with some strategies considered more appropriate or translatable than others. On April 15, 2021, the Research Special Interest Group of the American Burn Association held a virtual session as part of the agenda for the annual meeting. The session was set up as a pro/con debate on the use of small versus large animals for application to four important aspects of burn pathophysiology: burn healing/conversion; scarring; inhalation injury; and sepsis. For each of these topics, 2 experienced investigators (one each for small and large animal models) described the advantages and disadvantages of using these preclinical models. The use of swine as a large animal model was a common theme due to anatomic similarities with human skin. The exception to this was a well-defined ovine model of inhalation injury; both of these species have larger airways which allow for incorporation of clinical tools such as bronchoscopes. However, these models are expensive and demanding from labor and resource standpoints. Various strategies have been implemented to make the more inexpensive rodent models appropriate for answering specific questions of interest in burns. Moreover, modelling burn-sepsis in large animals has proven difficult. It was agreed that the use of both small and large animal models have merit for answering basic questions about the responses to burn injury. Expert opinion and the ensuing lively conversations are summarized herein, which we hope will help inform experimental design of future research.
Collapse
Affiliation(s)
- David M Burmeister
- Uniformed Services University of the Health Sciences, Department of Medicine, Bethesda, MD, United States of America
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Richard A Clark
- Stony Brook University, Departments of Dermatology, Biomedical Engineering and Medicine, Stony Brook, NY, USA
| | - Edward E Tredget
- Firefighters' Burn Treatment Unit, Department of Surgery, 2D3.31 Mackenzie Health Sciences Centre, University of Alberta, Edmonton, AB, Canada
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, USA
| | - Julia K Bohannon
- Vanderbilt University Medical Center, Department of Anesthesiology, Department of Pathology, Microbiology, and Immunology, Nashville, TN, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - David M Hill
- Firefighters' Burn Center, Regional One Health, 877 Jefferson Avenue, Memphis, TN, USA
| | - Rachel M Nygaard
- Department of Surgery, Hennepin Healthcare, Minneapolis, MN, USA
| |
Collapse
|
41
|
Collantes M, Vairo C, Erhard Á, Navas C, Villullas S, Ecay M, Pareja F, Quincoces G, Gainza G, Peñuelas I. Preclinical safety of negatively charged microspheres (NCMs): optimization of radiolabeling for in vivo and ex vivo biodistribution studies after topical administration on full-thickness wounds in a rat model. Eur J Pharm Biopharm 2022; 177:61-67. [PMID: 35697288 DOI: 10.1016/j.ejpb.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/15/2022]
Abstract
Negatively charged microspheres (NCMs) are postulated as a new form of treatment for chronic wounds. Despite the efficacy shown at clinical level, more studies are required to demonstrate their safety and local effect. The objective of the work was to confirm the lack of NCM systemic absorption performing a biodistribution study of the NCMs in an open wound rat animal model. To this end, radiolabeling of NCMs with technetium-99m was optimized and biodistribution studies were performed by in vivo SPEC/CT imaging and ex vivo counting during 24 h after topical administration. The studies were performed on animals treated with a single or repeated dose to study the effect of macrophages during a prolonged treatment. NCM radiolabeling was achieved in a simple, efficient and stable manner with high yield. SPECT/CT images showed that almost all NCMs (about 85 %) remained on the wound for 24 h either after single or multiple administrations. Ex vivo biodistribution studies confirmed that there was no accumulation of NCMs in any organ or tissue except in the wound area, suggesting a lack of absorption. In conclusion, NCMs can be considered safe as local wound treatment since they remain at the administration area.
Collapse
Affiliation(s)
- María Collantes
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain
| | - Claudia Vairo
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain
| | - Álvaro Erhard
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain
| | - Cristina Navas
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain
| | - Silvia Villullas
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain
| | - Margarita Ecay
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain
| | - Félix Pareja
- Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain
| | - Gemma Quincoces
- RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain
| | - Garazi Gainza
- BioKeralty Research Institute AIE, Albert Einstein, 25-E3, 01510, Miñano, Spain.
| | - Iván Peñuelas
- Translational Molecular Imaging Unit (UNIMTRA), Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; RADIOMIN Research Group, Radiopharmacy Unit, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Nuclear Medicine Department, Clínica Universidad de Navarra, Avenida Pío XII, 31080, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain
| |
Collapse
|
42
|
Ishak A, Jusuf AA, Simadibrata CL, Barasila AC, Novita R. Effect of Manual Acupuncture and Laser Acupuncture on Wound Closure in Rat with Deep Partial Thickness Burn Injury. Med Acupunct 2022; 34:240-250. [PMID: 36051408 PMCID: PMC9419944 DOI: 10.1089/acu.2021.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Burns are defined as tissue damage that occurs as a result of the action of heat. Although many advanced treatments have been made in burn therapy, slow wound healing remains a challenge in burn treatment. Acupuncture can accelerate burn healing through its anti-inflammatory effect, increasing re-epithelialization and angiogenesis. Objectives This study assessed the effect of manual acupuncture and laser acupuncture on the healing of burns that were observed macroscopically and microscopically. Methods Thirty-six male Wistar rats with deep partial thickness burns were randomly divided into control group (n = 12), acupuncture group (n = 12), and laser acupuncture group (n = 12). Wound measurements and treatments were given every 2 days for 14 days. Results On the 14th day of macroscopic evaluations, there was a significant difference (P = 0.009) between the acupuncture group (66.96 ± 9.17) and the control group (49.93 ± 9.15), and a significant difference (P = 0.009) between laser acupuncture group (72.48 ± 14.62) and the control group. However, there was no significant difference (P = 0.451) between acupuncture and laser acupuncture groups. On the 14th day of microscopic evaluations, there was a significant difference (P < 0.001) between the acupuncture group (16.17 ± 1.17) and the control group (10.33 ± 1.21), and a significant difference (P = 0.004) between the laser acupuncture group (17.83 ± 1.47) and the control group. However, there was no significant difference (P = 0.058) between acupuncture and laser acupuncture groups. Conclusion The results showed that either acupuncture therapy or laser acupuncture therapy could be used as an adjunct therapy to accelerate burn healing.
Collapse
Affiliation(s)
- Andy Ishak
- Medical Acupuncture Specialist Program, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | | - Risqa Novita
- Centre of Biomedical and Basic Health Technology, NIHRD, Jakarta, Indonesia
| |
Collapse
|
43
|
Pulakat L, Chen HH, Gavini MP, Ling LA, Tang Y, Mehm A, Martin GL, Beale CN, Mooney BP, Sun H. Transdermal Delivery of High Molecular Weight Antibiotics to Deep Tissue Infections via Droplette Micromist Technology Device (DMTD). Pharmaceutics 2022; 14:976. [PMID: 35631562 PMCID: PMC9146216 DOI: 10.3390/pharmaceutics14050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Wound infection by multidrug-resistant (MDR) bacteria is a major disease burden. Systemic administration of broad-spectrum antibiotics colistin methanesulfonate (CMS) and vancomycin are the last lines of defense against deep wound infections by MDR bacteria. However, systemic administration of CMS and vancomycin are linked to life-threatening vital organ damage. Currently there are no effective topical application strategies to deliver these high molecular weight antibiotics across the stratum corneum. To overcome this difficulty, we tested if high molecular weight antibiotics delivered by Droplette micromist technology device (DMTD), a transdermal delivery device that generates a micromist capable of packaging large molecules, could attenuate deep skin tissue infections. Using green fluorescent protein-tagged E. coli and live tissue imaging, we show that (1) the extent of attenuation of deep-skin E. coli infection was similar when treated with topical DMTD- or systemic IP (intraperitoneal)-delivered CMS; (2) DMTD-delivered micromist did not spread the infection deeper; (3) topical DMTD delivery and IP delivery resulted in similar levels of vancomycin in the skin after a 2 h washout period; and (4) IP-delivered vancomycin was about 1000-fold higher in kidney and plasma than DMTD-delivered vancomycin indicating systemic toxicity. Thus, topical DMTD delivery of these antibiotics is a safe treatment for the difficult-to-treat deep skin tissue infections by MDR bacteria.
Collapse
Affiliation(s)
- Lakshmi Pulakat
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA 02111, USA; (H.H.C.); (L.A.L.); (Y.T.); (A.M.); (G.L.M.)
- School of Medicine, Tufts University, Boston, MA 02111, USA;
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Howard H. Chen
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA 02111, USA; (H.H.C.); (L.A.L.); (Y.T.); (A.M.); (G.L.M.)
- School of Medicine, Tufts University, Boston, MA 02111, USA;
| | | | - Lauren A. Ling
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA 02111, USA; (H.H.C.); (L.A.L.); (Y.T.); (A.M.); (G.L.M.)
- School of Medicine, Tufts University, Boston, MA 02111, USA;
| | - Yinian Tang
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA 02111, USA; (H.H.C.); (L.A.L.); (Y.T.); (A.M.); (G.L.M.)
| | - Alexander Mehm
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA 02111, USA; (H.H.C.); (L.A.L.); (Y.T.); (A.M.); (G.L.M.)
| | - Gregory L. Martin
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA 02111, USA; (H.H.C.); (L.A.L.); (Y.T.); (A.M.); (G.L.M.)
| | | | - Brian P. Mooney
- Charles W. Gehrke Proteomics Center, Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - Hongmin Sun
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
44
|
Moysidis M, Stavrou G, Cheva A, Abba Deka I, Tsetis JK, Birba V, Kapoukranidou D, Ioannidis A, Tsaousi G, Kotzampassi K. The 3-D configuration of excisional skin wound healing after topical probiotic application. Injury 2022; 53:1385-1393. [PMID: 35148901 DOI: 10.1016/j.injury.2022.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
Nowadays, there is an increasing knowledge that probiotic bacteria, topically applied, affects skin pathology. The objective of this study is to evaluate the effect on wound healing of locally applied probiotics by calculating the 3-D configuration of a standardized excisional wound. Fifty-two male Wistar rats were randomly allocated into groups: control, PRO1 [L. plantarum] and PRO2 [L. rhamnosus, B. longum]. Six excisional full-thickness wounds were created on each dorsum by an 8-mm circular biopsy punch; probiotics or saline were applied on days 0, 2, 4, 8, 16, photos of the wounds taken and specimens excised for histology [4 rats/group/time-point]. Both probiotic-groups exhibited accelerated healing significantly faster than the control, throughout, PRO2 exhibiting finally the best results [day 16]. However, only on day 2, did PRO1 exhibit the best results [wounded area, borders distance and epitheliazation line]. The results clearly demonstrate that the topical application of probiotics significantly improves the healing process, each strain working differently and more effectively in different healing phases. Thus, a combined formula containing different probiotics to modulate various healing phases is desirable. To this end our research continous.
Collapse
Affiliation(s)
- Moysis Moysidis
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - George Stavrou
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Aggeliki Cheva
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Abba Deka
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vasiliki Birba
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Dorothea Kapoukranidou
- Department of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aris Ioannidis
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Tsaousi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.
| |
Collapse
|
45
|
Sitohang NA, Putra EDL, Kamil H, Musman M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Res 2022; 11:191. [PMID: 35356313 PMCID: PMC8933646 DOI: 10.12688/f1000research.104602.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 08/26/2024] Open
Abstract
Background: Phytomedicines are gaining a spotlight in wound management, where much research has suggested the wound healing potential of Barringtonia racemosa. The objective of this study was to investigate the effectiveness of B. racemosa kernel extract in accelerating wound healing process in animal models. Methods:B. racemosa kernel was extracted using ethanol:water (7:3) solvent and was then used as a bioactive ingredient in a Carbopol 940-based gel formulation in four different concentrations (1, 3, 5 and 7 ppm). A 3 cm diameter wound was made in the dorsal area of Rattus norvegicus rat and wound healing process was assessed up to 12 days using DESIGN (Depth, Exudate, Size of Inflammation/Infection, Granulation tissue, and Necrotic tissue) scoring system. Results: Our data suggested that the DESIGN scores were significantly different among concentration groups after the 3 rd day onward suggesting B. racemosa extract accelerated the wound healing process. Rats treated with gel formulation containing 7 ppm of B. racemosa kernel extract had faster wound healing than that treated with topical Metcovazin. Conclusion:B. racemosa kernel extract was effective in accelerating wound healing on rats. Further study is warranted to purify the bioactive component and the action mechanism in wound healing process.
Collapse
Affiliation(s)
- Nur A. Sitohang
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Faculty of Nursing, Universitas Sumatera Utara, Medan, 20222, Indonesia
| | | | - Hajjul Kamil
- Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Musri Musman
- Faculty of Education and Teachers’ Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
46
|
Sitohang NA, Putra EDL, Kamil H, Musman M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Res 2022; 11:191. [PMID: 35356313 PMCID: PMC8933646 DOI: 10.12688/f1000research.104602.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Phytomedicines are gaining a spotlight in wound management, where much research has suggested the wound healing potential of Barringtonia racemosa. The objective of this study was to investigate the effectiveness of B. racemosa kernel extract in accelerating wound healing process in animal models. Methods:B. racemosa kernel was extracted using ethanol:water (7:3) solvent and was then used as a bioactive ingredient in a Carbopol 940-based gel formulation in four different concentrations (1, 3, 5 and 7 ppm). A 3 cm diameter wound was made in the dorsal area of Rattus norvegicus rat and wound healing process was assessed up to 12 days using DESIGN (Depth, Exudate, Size of Inflammation/Infection, Granulation tissue, and Necrotic tissue) scoring system. Results: Our data suggested that the DESIGN scores were significantly different among concentration groups after the 3 rdday onward suggesting B. racemosa extract accelerated the wound healing process. Rats treated with gel formulation containing 7 ppm of B. racemosa kernel extract had faster wound healing than that treated with topical Metcovazin. On day 6, macroscopic observation on 7 ppm group revealed that the wound had persistent redness, lesion area of < 3 cm 2, and 80% healthy granulation, where presence of exudate and redness were not observable. Conclusion:B. racemosa kernel extract was effective in accelerating wound healing on rats. Further study is warranted to purify the bioactive component and the action mechanism in wound healing process.
Collapse
Affiliation(s)
- Nur A. Sitohang
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Faculty of Nursing, Universitas Sumatera Utara, Medan, 20222, Indonesia
| | | | - Hajjul Kamil
- Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Musri Musman
- Faculty of Education and Teachers’ Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
47
|
Villegas-Alzate F, Caycedo-García DJ, Malaver-Acero R, Hidalgo-Ibarra SA, Cardona VA, Villegas-Mesa JD. TULUA: Effects of Flap Undermining and Type of Wall Plicature in a Rat Model Abdominoplasty. Aesthetic Plast Surg 2022; 46:456-467. [PMID: 34424368 DOI: 10.1007/s00266-021-02501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND TULUA, a transverse plication lipoabdominoplasty, which excludes elevation of the supraumbilical flap and includes a skin graft neoumbilicoplasty, claims greater safety and better results. An animal study was designed to compare it, with two current techniques. MATERIALS AND METHODS Three matched groups of 12 rats had combined liposuction and abdominoplasty. Liposuction was extensive and unrestricted. Groups 1 and 2 had vertical plication and transposition umbilicoplasty, and group 3 had transverse plication and neoumbilicoplasty. Flap elevation in the epigastrium was wide to costal margins in group 1, limited to a tunnel in group 2, and no dissection in group 3. The animals were observed for 21 days and then euthanized. Intraoperative, postoperative, and postmortem variables and findings were measured and analyzed to find differences between groups. RESULTS Transverse lipoabdominoplasty demonstrated a wider wall plication area, as well as a decrease in tension to close the wound, causing the horizontal scar to remain in a low position. In vertical plication lipoabdominoplasty groups, flap necrosis and seromas were more frequent, and the umbilical position descended due to secondary healing and scar contraction. The scar's scores were better in the transverse group and were confirmed when evaluated by external observers.In postmortem examination, horizontal plication presented less widening; perforator vessels were preserved when surgical undermining of the upper abdomen was not performed, and there were fewer seromas. CONCLUSION In a rat model, TULUA demonstrates superior results and a decrease in complications when compared to lipoabdominoplasties with vertical plication and wide or tunneled dissection in the upper abdomen. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Francisco Villegas-Alzate
- Departamento de cirugía plástica, Facultad de Salud, Universidad del Valle, Calle 4B N°36-00, Cali, Colombia.
| | - Diego José Caycedo-García
- Jefe de servicio de cirugía plástica, Universidad del Valle, 3 piso hospital universitario del Valle, Cali, Colombia
| | - Ricardo Malaver-Acero
- Facultad de medicina veterinaria y zootecnia, Universidad San Martin Cali Colombia, Carrera 122 #23-395 del, Vía Cali - Puerto Tejada, Cali, Cauca, Colombia
| | | | | | - José Daniel Villegas-Mesa
- Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Calle 78b No 72a-109, Medellín, Colombia
| |
Collapse
|
48
|
Rai V, Moellmer R, Agrawal DK. Clinically relevant experimental rodent models of diabetic foot ulcer. Mol Cell Biochem 2022; 477:1239-1247. [PMID: 35089527 DOI: 10.1007/s11010-022-04372-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
Abstract
Chronic wounds are a substantial clinical problem in diabetes and nearly 6% of diabetics suffer from foot disease including ulceration, infection, and tissue necrosis. Wound healing in diabetes is impaired and delayed and is augmented by diabetic complications. Wound healing involves complex cellular, molecular, and biochemical processes and animal models are the most suitable prototype to investigate and understand the underlying pathological changes in the process of wound healing. Animal models are also useful in evaluating the safety and efficacy of newer therapeutic agents and improving the clinical approaches for human patients with chronic ulcers. The wound healing strategies get more complicated in the presence of diabetes and its associated complication. Despite the advancement in methods of wound healing, the healing of the chronic diabetic foot ulcer (DFU) remains an important clinical problem resulting in costly and prolonged treatment and poses a risk for major amputation. Saying that it is important to elucidate the newer therapeutic targets and strategies via an in-depth understanding of the complicated cascade of the chronic DFU. A major challenge in translating lab findings to clinics is the lack of an optimal preclinical model capable of properly recapitulating human wounds. Both small and large animal models of wound healing involving rodents, rabbits, and pigs have been discussed. Mouse and rats as small animal models and pig as large animal models have been discussed in association with the diabetic wound but there are advantages and limitations for each model. In this review, we critically reviewed the pros and cons of experimental models of diabetic wound healing with a focus on type II diabetes rodent models.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| | - Rebecca Moellmer
- Western University College of Podiatric Medicine, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| |
Collapse
|
49
|
Berlanga-Acosta J, Fernández-Mayola M, Mendoza-Marí Y, García-Ojalvo A, Martinez-Jimenez I, Rodriguez-Rodriguez N, Playford RJ, Reyes-Acosta O, Lopez-Marín L, Guillén-Nieto G. Intralesional Infiltrations of Arteriosclerotic Tissue Cells-Free Filtrate Reproduce Vascular Pathology in Healthy Recipient Rats. Int J Mol Sci 2022; 23:1511. [PMID: 35163435 PMCID: PMC8835913 DOI: 10.3390/ijms23031511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Lower-extremity arterial disease is a major health problem with increasing prevalence, often leading to non-traumatic amputation, disability and mortality. The molecular mechanisms underpinning abnormal vascular wall remodeling are not fully understood. We hypothesized on the existence of a vascular tissue memory that may be transmitted through soluble signaling messengers, transferred from humans to healthy recipient animals, and consequently drive the recapitulation of arterial wall thickening and other vascular pathologies. We examined the effects of the intralesional infiltration for 6 days of arteriosclerotic popliteal artery-derived homogenates (100 µg of protein) into rats' full-thickness wounds granulation tissue. Animals infiltrated with normal saline solution or healthy brachial arterial tissue homogenate obtained from traumatic amputation served as controls. The significant thickening of arteriolar walls was the constant outcome in two independent experiments for animals receiving arteriosclerotic tissue homogenates. This material induced other vascular morphological changes including an endothelial cell phenotypic reprogramming that mirrored the donor's vascular histopathology. The immunohistochemical expression pattern of relevant vascular markers appeared to match between the human tissue and the corresponding recipient rats. These changes occurred within days of administration, and with no cross-species limitation. The identification of these "vascular disease drivers" may pave novel research avenues for atherosclerosis pathobiology.
Collapse
Affiliation(s)
- Jorge Berlanga-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Maday Fernández-Mayola
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Yssel Mendoza-Marí
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Ariana García-Ojalvo
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Indira Martinez-Jimenez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Nadia Rodriguez-Rodriguez
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Raymond J. Playford
- School of Biomedical Sciences, University of West London, St Marys Rd, Ealing, London W5 5RF, UK;
| | - Osvaldo Reyes-Acosta
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| | - Laura Lopez-Marín
- Department of Pathology, Institute for Arteriosclerosis Research, Institute of Nephrology “Dr. Abelardo Buch”, Calle 26 y Línea del Ferrocarril, Vedado, Havana 10400, Cuba;
| | - Gerardo Guillén-Nieto
- Tissue Repair, Wound Healing and Cytoprotection Research Group, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Ave. 31 S/N. e/158 and 190, Cubanacán, Playa, Havana 10600, Cuba; (M.F.-M.); (Y.M.-M.); (A.G.-O.); (I.M.-J.); (N.R.-R.); (O.R.-A.); (G.G.-N.)
| |
Collapse
|
50
|
Sandora N, Fitria NA, Kusuma TR, Winarno GA, Tanjunga SF, Wardhana A. Amnion bilayer for dressing and graft replacement for delayed grafting of full-thickness burns; A study in a rat model. PLoS One 2022; 17:e0262007. [PMID: 35061768 PMCID: PMC8782387 DOI: 10.1371/journal.pone.0262007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Burn is a common case in developing countries, with over half of fire-related deaths reported in Southeast Asia and full-thickness burns as a high mortality risk. Human amnion has been used as a wound dressing for centuries. In this study, a decellularised amnion overlaid with fibrin, “amnion bilayer (AB),” was used as a dressing immediately after burn and as a graft to replace the scar in Sprague-Dawley rats subjected to full-thickness burn model. The aim was to observe whether amnion bilayer can reduce damages in third-grade burn when skin replacement is deemed impossible. The burn was induced using an electrical solder, heated for 5 mins, and contacted on the rat’s bare skin for 20 s. AB was applied as a (i) dressing immediately after induction and graft after eschar removal. Two groups (n = 6) were compared: AB and Sofra-Tulle ®, the National Hospital of Indonesia (NHI) protocol. Sections were stained with hematoxylin and eosin and Masson trichrome stains. Immunohistochemistry labelling was used to indicate scars (α-smooth muscle actin [α-SMA] and collagen-1) and angiogenesis (von Willebrand factor). Also, the macrophages inflammatory protein-3α (MIP-3α) indicates an early inflammatory process. The post dressing of the AB group demonstrated hair follicle remains and adipose tissue development. The NHI group appeared with a denatured matrix. Complete healing was seen in the AB group after 28 days with skin appendages similar to normal, while the NHI group showed no appendages in the centre of the actively inflamed area. The α-SMA was found in both groups. Collagen-1 was highly expressed in the NHI group, which led to a scar. Angiogenesis was found more in the AB group. The AB group had shown the capacity to accelerate complete healing and recover skin appendages better than the current protocol.
Collapse
Affiliation(s)
- Normalina Sandora
- Faculty of Medicine, Universitas Riau, Pekanbaru, Indonesia
- Indonesian Medical Education and Research Institute (IMERI), Jakarta, Indonesia
| | - Nur Amalina Fitria
- Indonesian Medical Education and Research Institute (IMERI), Jakarta, Indonesia
| | - Tyas Rahmah Kusuma
- Indonesian Medical Education and Research Institute (IMERI), Jakarta, Indonesia
| | - Gammaditya Adhibarata Winarno
- Burn Unit, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Department of Surgery, Plastic and Reconstructive Surgery Division, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Sanjaya Faisal Tanjunga
- Burn Unit, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Department of Surgery, Plastic and Reconstructive Surgery Division, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
| | - Aditya Wardhana
- Burn Unit, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Department of Surgery, Plastic and Reconstructive Surgery Division, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- * E-mail:
| |
Collapse
|