1
|
Mack T, Gianferri T, Niedermayer A, Debatin KM, Meyer LH, Muench V. Benchmarking miRNA reference genes in B-cell precursor acute lymphoblastic leukemia. Sci Rep 2024; 14:26390. [PMID: 39488607 PMCID: PMC11531470 DOI: 10.1038/s41598-024-77733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
MicroRNAs (miRNAs) play dual roles in acute lymphoblastic leukemia (ALL) as both tumor suppressors and oncogenes, and miRNA expression profiles can be used for patient risk stratification. Precise assessment of miRNA levels is crucial for understanding their role and function in gene regulation. Quantitative real-time polymerase chain reaction (qPCR) is a reliable, rapid, and cost-effective method for analyzing miRNA expression, assuming that appropriate normalization to stable references is performed to ensure valid data. In this study, we evaluated the stability of six commonly used miRNA references (5sRNA, SNORD44, RNU6, RNU1A1, miR-103a-3p, and miR-532-5p) across nine B-cell precursor (BCP) ALL cell lines, 22 patient-derived xenograft (PDX) BCP ALL samples from different organ compartments of leukemia bearing mice, and peripheral blood mononuclear cells (PBMCs) from six healthy donors. We used four different algorithms (Normfinder, ∆CT, geNorm, and BestKeeper) to assess the most stably expressed reference across all samples. Moreover, we validated our data in an additional set of 13 PDX ALL samples and six healthy controls, identifying miR-103a-3p and miR-532-5p as the most stable references for miRNA normalization in BCP ALL studies. Additionally, we demonstrated the critical importance of using a stable reference to accurately interpret miRNA data.
Collapse
Affiliation(s)
- Teresa Mack
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Tommaso Gianferri
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Alexandra Niedermayer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Vera Muench
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
2
|
Bommannan K, Arumugam JR, Koshy T, Radhakrishnan V, Sundersingh S. Role of Interphase FISH Assay on Air-Dried Smears in Identifying Specific Structural Chromosomal Abnormalities among Pediatric Patients with Acute Leukemias. Indian J Hematol Blood Transfus 2024; 40:324-330. [PMID: 38708148 PMCID: PMC11065818 DOI: 10.1007/s12288-023-01699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/03/2023] [Indexed: 05/07/2024] Open
Abstract
Leukemia-associated structural chromosomal abnormalities (SCA) can be identified either by karyotyping or interphase-fluorescence in-situ hybridization (i-FISH) assays. Both karyotyping and i-FISH on mononuclear cell suspension are time, resource, and manpower-consuming assays. In this study, we have compared the results of specific leukemia-associated SCAs identified by i-FISH on air-dried bone marrow (BM)/peripheral blood (PB) smears and BM karyotyping. The study was conducted among pediatric patients (age ≤ 18 years) diagnosed with acute leukemias between January 2018 to December 2022. The results of i-FISH on air-dried BM/PB smears and BM-karyotyping for our SCA of interest (BCR::ABL1, ETV6::RUNX1, TCF3::PBX1, KMT2A rearrangement, RUNX1::RUNX1T1, CBFB::MYH11, and PML::RARA) were entered in a contingency table and the agreement of results was calculated. The strength of agreement was assessed by Cramer's V test. Among 270 patients, SCA of interest was identified among 26% and 17% of patients by i-FISH on air-dried smears and karyotyping, respectively. Excluding 53 patients with metaphase failure, the remaining 217 patients had 92% agreement (Cramer's V of 0.931 with p < 0.000) between the results for specific SCAs identified by both techniques. On excluding samples with cryptic cytogenetic aberrancies, there was 99% agreement (Cramer's V of 0.953 with p < 0.000) for gross SCA identified by both techniques. In addition, i-FISH on air-dried smears identified SCA in 30% of patients with metaphase failure. I-FISH on air-dried PB/BMA smears is a less-labor and resource-consuming assay. It can be considered an efficient alternative to conventional karyotyping for identifying specific SCA of interest in under-resourced laboratories. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01699-2.
Collapse
Affiliation(s)
- Karthik Bommannan
- Department of Oncopathology, Cancer Institute (W.I.A.), Chennai, 600020 India
| | | | - Teena Koshy
- Department of Oncopathology, Cancer Institute (W.I.A.), Chennai, 600020 India
| | | | - Shirley Sundersingh
- Department of Oncopathology, Cancer Institute (W.I.A.), Chennai, 600020 India
| |
Collapse
|
3
|
Trinquand A, Betts DR, Harte S, Sills A, Rooney S, Barrett N, Storey L, Malone A, O'Marcaigh A, Smith OP. Adapted risk stratification and intensive chemotherapy abrogate the poor prognosis of pediatric B acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21 (iAMP21): a National cohort analysis. Leuk Lymphoma 2024; 65:279-282. [PMID: 37909291 DOI: 10.1080/10428194.2023.2276061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Amélie Trinquand
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - David R Betts
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Shauna Harte
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Aoife Sills
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sean Rooney
- Haematology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Neil Barrett
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Lorna Storey
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Andrea Malone
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Aengus O'Marcaigh
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Owen P Smith
- National Children's Cancer Service, Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
4
|
Akin-Bali DF, Doganay Erdogan B, Aslar Oner D, Mahmud A, Tasdelen S, Kurekci E, Akar N, Ozdag Sevgili H. Genetic Profiling of Pediatric Patients with B-Cell Precursor Acute Lymphoblastic Leukemia. J Pediatr Genet 2023; 12:288-300. [PMID: 38162155 PMCID: PMC10756719 DOI: 10.1055/s-0041-1742246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a heterogeneous leukemia subgroup. It has multiple sub-types that are likely to be classified by prognostic factors. Following a systematic literature review, this study analyzed the genes correlated with BCP-ALL prognosis ( IKZF1, PAX5, EBF1, CREBBP, CRLF2, JAK2, ERG, CXCR4, ZAP70, VLA4, NF1, NR3C1, RB1, TSLP, ZNRF1, and FOXO3A) , specifically their nucleotide variations and expression profiles in pediatric BCP-ALL samples. The study included 45 pediatric BCP-ALL patients with no cytogenetic anomaly and a control group of 10 children. The selected genes' hot-spot regions were sequenced using next-generation sequencing, while Polymorphism Phenotyping v2 and Supplemental Nutrition Assistance Program were used to identify pathogenic mutations. The expression analysis was performed using quantitative real-time polymerase chain reaction. The mutation analysis detected 328 variants (28 insertions, 47 indels, 74 nucleotide variants, 75 duplications, and 104 deletions). The most and least frequently mutated genes were IKZF1 and CREBBP , respectively. There were statistically significant differences between patients and controls for mutation distribution in eight genes ( ERG, CRLF2, CREBBP, TSLP, JAK2, ZAP70, FOXO3A, and NR3C1 ). The expression analysis revealed that JAK and ERG were significantly overexpressed in patients compared with controls (respectively, p = 0.004 and p = 0.003). This study combined genes and pathways previously analyzed in pediatric BCP-ALL into one dataset for a comprehensive analysis from the same samples to unravel candidate prognostic biomarkers. Novel mutations were identified in all of the studied genes.
Collapse
Affiliation(s)
- Dilara Fatma Akin-Bali
- Department of Medical Biology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Beyza Doganay Erdogan
- Department of Biostatistic, Faculty of Medicine, Biostatistics, Ankara University, Ankara, Turkey
| | - Deniz Aslar Oner
- Atatürk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Akkan Mahmud
- LÖSANTE Children's and Adult Hospital, Ankara, Turkey
| | | | - Emin Kurekci
- LÖSANTE Children's and Adult Hospital, Ankara, Turkey
| | - Nejat Akar
- Department of Pediatrics, TOBB-ETU Hospital, Ankara, Turkey
| | | |
Collapse
|
5
|
Gao Q, Ryan SL, Iacobucci I, Ghate PS, Cranston RE, Schwab C, Elsayed AH, Shi L, Pounds S, Lei S, Baviskar P, Pei D, Cheng C, Bashton M, Sinclair P, Bentley DR, Ross MT, Kingsbury Z, James T, Roberts KG, Devidas M, Fan Y, Chen W, Chang TC, Wu G, Carroll A, Heerema N, Valentine V, Valentine M, Yang W, Yang JJ, Moorman AV, Harrison CJ, Mullighan CG. The genomic landscape of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Blood 2023; 142:711-723. [PMID: 37216686 PMCID: PMC10460677 DOI: 10.1182/blood.2022019094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Intrachromosomal amplification of chromosome 21 defines a subtype of high-risk childhood acute lymphoblastic leukemia (iAMP21-ALL) characterized by copy number changes and complex rearrangements of chromosome 21. The genomic basis of iAMP21-ALL and the pathogenic role of the region of amplification of chromosome 21 to leukemogenesis remains incompletely understood. In this study, using integrated whole genome and transcriptome sequencing of 124 patients with iAMP21-ALL, including rare cases arising in the context of constitutional chromosomal aberrations, we identified subgroups of iAMP21-ALL based on the patterns of copy number alteration and structural variation. This large data set enabled formal delineation of a 7.8 Mb common region of amplification harboring 71 genes, 43 of which were differentially expressed compared with non-iAMP21-ALL ones, including multiple genes implicated in the pathogenesis of acute leukemia (CHAF1B, DYRK1A, ERG, HMGN1, and RUNX1). Using multimodal single-cell genomic profiling, including single-cell whole genome sequencing of 2 cases, we documented clonal heterogeneity and genomic evolution, demonstrating that the acquisition of the iAMP21 chromosome is an early event that may undergo progressive amplification during disease ontogeny. We show that UV-mutational signatures and high mutation load are characteristic secondary genetic features. Although the genomic alterations of chromosome 21 are variable, these integrated genomic analyses and demonstration of an extended common minimal region of amplification broaden the definition of iAMP21-ALL for more precise diagnosis using cytogenetic or genomic methods to inform clinical management.
Collapse
Affiliation(s)
- Qingsong Gao
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sarra L. Ryan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pankaj S. Ghate
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ruth E. Cranston
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Claire Schwab
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Abdelrahman H. Elsayed
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lei Shi
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Shaohua Lei
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Deqing Pei
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Matthew Bashton
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Paul Sinclair
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - David R. Bentley
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Mark T. Ross
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Zoya Kingsbury
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Terena James
- Illumina Cambridge, Ltd, Illumina Centre, Great Abingdon, Cambridge, United Kingdom
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Andrew Carroll
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Nyla Heerema
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Virginia Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marcus Valentine
- Cytogenetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jun J. Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN
| | - Anthony V. Moorman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Christine J. Harrison
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, United Kingdom
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
6
|
Rezayee F, Eisfeldt J, Skaftason A, Öfverholm I, Sayyab S, Syvänen AC, Maqbool K, Lilljebjörn H, Johansson B, Olsson-Arvidsson L, Pietras CO, Staffas A, Palmqvist L, Fioretos T, Cavelier L, Fogelstrand L, Nordlund J, Wirta V, Rosenquist R, Barbany G. Feasibility to use whole-genome sequencing as a sole diagnostic method to detect genomic aberrations in pediatric B-cell acute lymphoblastic leukemia. Front Oncol 2023; 13:1217712. [PMID: 37664045 PMCID: PMC10470829 DOI: 10.3389/fonc.2023.1217712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The suitability of whole-genome sequencing (WGS) as the sole method to detect clinically relevant genomic aberrations in B-cell acute lymphoblastic leukemia (ALL) was investigated with the aim of replacing current diagnostic methods. Methods For this purpose, we assessed the analytical performance of 150 bp paired-end WGS (90x leukemia/30x germline). A set of 88 retrospective B-cell ALL samples were selected to represent established ALL subgroups as well as ALL lacking stratifying markers by standard-of-care (SoC), so-called B-other ALL. Results Both the analysis of paired leukemia/germline (L/N)(n=64) as well as leukemia-only (L-only)(n=88) detected all types of aberrations mandatory in the current ALLTogether trial protocol, i.e., aneuploidies, structural variants, and focal copy-number aberrations. Moreover, comparison to SoC revealed 100% concordance and that all patients had been assigned to the correct genetic subgroup using both approaches. Notably, WGS could allocate 35 out of 39 B-other ALL samples to one of the emerging genetic subgroups considered in the most recent classifications of ALL. We further investigated the impact of high (90x; n=58) vs low (30x; n=30) coverage on the diagnostic yield and observed an equally perfect concordance with SoC; low coverage detected all relevant lesions. Discussion The filtration of the WGS findings with a short list of genes recurrently rearranged in ALL was instrumental to extract the clinically relevant information efficiently. Nonetheless, the detection of DUX4 rearrangements required an additional customized analysis, due to multiple copies of this gene embedded in the highly repetitive D4Z4 region. We conclude that the diagnostic performance of WGS as the standalone method was remarkable and allowed detection of all clinically relevant genomic events in the diagnostic setting of B-cell ALL.
Collapse
Affiliation(s)
- Fatemah Rezayee
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ingegerd Öfverholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Shumaila Sayyab
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ann Christine Syvänen
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Khurram Maqbool
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bertil Johansson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | | | - Anna Staffas
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Attarbaschi A, Möricke A, Harrison CJ, Mann G, Baruchel A, De Moerloose B, Conter V, Devidas M, Elitzur S, Escherich G, Hunger SP, Horibe K, Manabe A, Loh ML, Pieters R, Schmiegelow K, Silverman LB, Stary J, Vora A, Pui CH, Schrappe M, Zimmermann M. Outcomes of Childhood Noninfant Acute Lymphoblastic Leukemia With 11q23/ KMT2A Rearrangements in a Modern Therapy Era: A Retrospective International Study. J Clin Oncol 2023; 41:1404-1422. [PMID: 36256911 PMCID: PMC9995095 DOI: 10.1200/jco.22.01297] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/01/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE We aimed to study prognostic factors and efficacy of allogeneic hematopoietic stem-cell transplantation (allo-HSCT) in first remission of patients with noninfant childhood acute lymphoblastic leukemia (ALL) with 11q23/KMT2A rearrangements treated with chemotherapy regimens between 1995 and 2010. PATIENTS AND METHODS Data were retrospectively retrieved from 629 patients with 11q23/KMT2A-rearranged ALL from 17 members of the Ponte-di-Legno Childhood ALL Working Group. Clinical and biologic characteristics, early response assessed by minimal residual disease at the end of induction (EOI) therapy, and allo-HSCT were analyzed for their impact on outcomes. RESULTS A specific 11q23/KMT2A translocation partner gene was identified in 84.3% of patients, with the most frequent translocations being t(4;11)(q21;q23) (n = 273; 51.5%), t(11;19)(q23;p13.3) (n = 106; 20.0%), t(9;11)(p21_22;q23) (n = 76; 14.3%), t(6;11)(q27;q23) (n = 20; 3.8%), and t(10;11)(p12;q23) (n = 14; 2.6%); 41 patients (7.7%) had less frequently identified translocation partner genes. Patient characteristics and early response varied among subgroups, indicating large biologic heterogeneity and diversity in therapy sensitivity among 11q23/KMT2A-rearranged ALL. The EOI remission rate was 93.2%, and the 5-year event-free survival (EFS) for the entire cohort was 69.1% ± 1.9%, with a range from 41.7% ± 17.3% for patients with t(9;11)-positive T-ALL (n = 9) and 64.8% ± 3.0% for patients with t(4;11)-positive B-ALL (n = 266) to 91.2% ± 4.9% for patients with t(11;19)-positive T-ALL (n = 34). Low EOI minimal residual disease was associated with favorable EFS, and induction failure was particularly predictive of nonresponse to further therapy and relapse and poor EFS. In addition, EFS was not improved by allo-HSCT compared with chemotherapy only in patients with both t(4;11)-positive B-ALL (n = 64 v 51; P = .10) and 11q23/KMT2A-rearranged T-ALL (n = 16 v 10; P = .69). CONCLUSION Compared with historical data, prognosis of patients with noninfant 11q23/KMT2A-rearranged ALL has improved, but allo-HSCT failed to affect outcome. Targeted therapies are needed to reduce relapse and treatment-related mortality rates.
Collapse
Affiliation(s)
- Andishe Attarbaschi
- St Anna Children's Hospital and St Anna Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - Anja Möricke
- Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Georg Mann
- St Anna Children's Hospital and St Anna Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| | - André Baruchel
- Robert Debré University Hospital (APHP), Université Paris Cité, Paris, France
| | | | - Valentino Conter
- University of Milano-Bicocca, MBBM Foundation/ASST Monza, Monza, Italy
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN
| | - Sarah Elitzur
- Schneider Children's Medical Center, Tel Aviv, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Gabriele Escherich
- Clinic of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Keizo Horibe
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsushi Manabe
- Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mignon L. Loh
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Rob Pieters
- Princess Máxima Centre for Pediatric Oncology, Utrecht, the Netherlands
| | - Kjeld Schmiegelow
- Rigshospitalet and University Hospital Copenhagen, Copenhagen, Denmark
- Faculty of Medicine, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Jan Stary
- University Hospital Motol and Charles University, Prague, Czech Republic
| | - Ajay Vora
- Great Ormond Street Hospital, London, United Kingdom
| | - Ching-Hon Pui
- St Jude Children's Research Hospital, Memphis, TN
- University of Tennessee, Memphis, TN
| | - Martin Schrappe
- Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
8
|
Ryan SL, Peden JF, Kingsbury Z, Schwab CJ, James T, Polonen P, Mijuskovic M, Becq J, Yim R, Cranston RE, Hedges DJ, Roberts KG, Mullighan CG, Vora A, Russell LJ, Bain R, Moorman AV, Bentley DR, Harrison CJ, Ross MT. Whole genome sequencing provides comprehensive genetic testing in childhood B-cell acute lymphoblastic leukaemia. Leukemia 2023; 37:518-528. [PMID: 36658389 PMCID: PMC9991920 DOI: 10.1038/s41375-022-01806-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Childhood B-cell acute lymphoblastic leukaemia (B-ALL) is characterised by recurrent genetic abnormalities that drive risk-directed treatment strategies. Using current techniques, accurate detection of such aberrations can be challenging, due to the rapidly expanding list of key genetic abnormalities. Whole genome sequencing (WGS) has the potential to improve genetic testing, but requires comprehensive validation. We performed WGS on 210 childhood B-ALL samples annotated with clinical and genetic data. We devised a molecular classification system to subtype these patients based on identification of key genetic changes in tumour-normal and tumour-only analyses. This approach detected 294 subtype-defining genetic abnormalities in 96% (202/210) patients. Novel genetic variants, including fusions involving genes in the MAP kinase pathway, were identified. WGS results were concordant with standard-of-care methods and whole transcriptome sequencing (WTS). We expanded the catalogue of genetic profiles that reliably classify PAX5alt and ETV6::RUNX1-like subtypes. Our novel bioinformatic pipeline improved detection of DUX4 rearrangements (DUX4-r): a good-risk B-ALL subtype with high survival rates. Overall, we have validated that WGS provides a standalone, reliable genetic test to detect all subtype-defining genetic abnormalities in B-ALL, accurately classifying patients for the risk-directed treatment stratification, while simultaneously performing as a research tool to identify novel disease biomarkers.
Collapse
Affiliation(s)
- Sarra L Ryan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - John F Peden
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Zoya Kingsbury
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Claire J Schwab
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Terena James
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Petri Polonen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Jenn Becq
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Richard Yim
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Ruth E Cranston
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Dale J Hedges
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Lisa J Russell
- Biosciences Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Robert Bain
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Anthony V Moorman
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - David R Bentley
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK
| | - Christine J Harrison
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle upon Tyne, UK.
| | - Mark T Ross
- Illumina Cambridge Ltd., Granta Park, Great Abington, Cambridge, UK.
| |
Collapse
|
9
|
G. SD, Ahmed F, Mundada MC, Khera R, Nambaru L, Mallavarapu K, Boyella PK, Patil V, Laddha PS, Rajappa SJ. Retrospective Study of B Lymphoblastic Leukemia to Assess the Prevalence of TEL/AML1 in South India: A Study of 214 Cases and Review of Literature. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1742611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract
Introduction Translocation t(12;21)(p13;q22), a recurrent and an invisible chromosomal abnormality, resulting in TEL/AML1 gene fusion, associated with good prognosis, has been described to be a common abnormality, in children with B-acute lymphoblastic leukemia (B-ALL).
Objectives The initial observation of very few TEL/AML1 positive patients at this center on testing by fluorescence in situ hybridization (FISH) led to study the prevalence of the abnormality, compare with the global distribution, and evaluate clinical, pathological, molecular, and cytogenetic features in TEL/AML1 positive patients.
Materials and Methods A retrospective study of all B-ALL patients tested for TEL/AML1 gene fusion during the period January 2009 to November 2020 was undertaken. Clinicopathological, molecular, cytogenetic, treatment, and follow-up details were collected. All publications dealing with TEL/AML1 gene rearrangement were reviewed post Google and PubMed search.
Results TEL/AML1gene rearrangement was assessed by FISH in 178 patients and by reverse transcription polymerase chain reaction in 36 patients and detected as the sole abnormality in 8.4% patients with additional genetic abnormalities noted on FISH evaluation. Normal karyotype was noted in 14/18 (77.7%) of these patients and 2 had complex karyotype. Complete blood count revealed hemoglobin to range from 35 to 116 g/L (median: 74 g/L), white blood count: 1.01–110×109/L (median: 7.8×109/L), platelet counts: 10–115×109/L (median: 42×109/L), blast count in peripheral smear: 0–98% (median: 41%). Immunophenotyping demonstrated 94.4% were CD34 positive, common acute lymphoblastic leukemia associated antigen (CALLA) positive with aberrant expression of CD13, CD33, CD56, singly or in combination in 58.8%.
Conclusion TEL/AML1 fusion is rare in Indian patients with B-ALL and appears to be much rarer in our region. The detection of relevant specific abnormalities is of fundamental importance in B-ALL patients and these geographic variations can be used in defining management policies.
Collapse
Affiliation(s)
- Sandhya Devi G.
- Department of Laboratory Medicine, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Faiq Ahmed
- Department of Laboratory Medicine, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Manasi C. Mundada
- Department of Laboratory Medicine, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Rachna Khera
- Department of Laboratory Medicine, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Lavanya Nambaru
- Department of Laboratory Medicine, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Krishnamohan Mallavarapu
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Pavan Kumar Boyella
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Veerandra Patil
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Pallavi Suresh Laddha
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| | - Senthil J. Rajappa
- Department of Medical Oncology, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Rack K, Bie J, Ameye G, Gielen O, Demeyer S, Cools J, Keersmaecker K, Vermeesch JR, Maertens J, Segers H, Michaux L, Dewaele B. Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping. Am J Hematol 2022; 97:548-561. [PMID: 35119131 PMCID: PMC9314940 DOI: 10.1002/ajh.26487] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybridization (FISH) together with Multiple Ligation‐dependent Probe Amplification (MLPA), array and PCR‐based methods form the backbone of routine diagnostics. This approach is labor‐intensive, time‐consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work‐up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP‐array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.
Collapse
Affiliation(s)
- Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Jolien Bie
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
| | - Geneviève Ameye
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Olga Gielen
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
| | - Jan Cools
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
| | - Kim Keersmaecker
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
- Department of Oncology KU Leuven Leuven Belgium
| | - Joris R. Vermeesch
- Department of Human Genetics KU Leuven Leuven Belgium
- Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Johan Maertens
- Department of Hematology University Hospitals Leuven Leuven Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
- Department of Pediatric Oncology‐Hematology University Hospitals Leuven Leuven Belgium
| | - Lucienne Michaux
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| |
Collapse
|
11
|
Yin MM, Wu RC, Gao J, Hu SY, Liu XM, Zhu XF, Shen SH, Tang JY, Chen J, Hu Q. Cytogenetic Characteristics of Childhood Acute Lymphoblastic Leukemia: A Study of 1541 Chinese Patients Newly Diagnosed between 2001 and 2014. Curr Med Sci 2022; 42:201-209. [PMID: 34874488 DOI: 10.1007/s11596-021-2477-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/06/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Cytogenetic abnormalities have been proven to be the most valuable parameter for risk stratification of childhood acute lymphoblastic leukemia (ALL). However, studies on the prevalence of cytogenetic abnormalities and their correlation to clinical features in Chinese pediatric patients are limited, especially large-scale studies. METHODS We collected the cytogenetics and clinical data of 1541 children newly diagnosed with ALL between 2001 and 2014 in four Chinese hospitals, and retrospectively analyzed their clinical features, prognosis and risk factors associated with pediatric ALL. RESULTS All of these patients had karyotyping results, and some of them were tested for fusion genes by fluorescence in situ hybridization or reverse-transcription polymerase chain reaction. Overall, 930 cases (60.4%) had abnormal cytogenetics in this study, mainly including high hyperdiploidy (HHD, n=276, 17.9%), hypodiploidy (n=74, 4.8%), t(12;21)/TEL-AML1 (n=260, 16.9%), t(1;19)/E2A-PBX1 (n=72, 4.7%), t(9;22)/BCR-ABL (n=64, 4.2%), and t(v;11q23)/MLL rearrangements (n=40, 2.6%). The distribution of each cytogenetic abnormality was correlated with gender, age, white blood cell count at diagnosis, and immunophenotype. In addition, multivariate analysis suggested that t(v;11q23)/MLL rearrangements (OR: 2.317, 95%CI: 1.219-3.748, P=0.008) and t(9;22)/BCR-ABL (OR: 2.519, 95%CI: 1.59-3.992, P<0.001) were independent risk factors for a lower event-free survival (EFS) rate in children with ALL, while HHD (OR: 0.638, 95%CI: 0.455-0.894, P=0.009) and t(12;21)/TEL-AML1 (OR: 0.486, 95%CI: 0.333-0.707, P<0.001) were independent factors of a favorable EFS. CONCLUSION The cytogenetic characteristics presented in our study resembled other research groups, emphasizing the important role of cytogenetic and molecular genetic classification in ALL, especially in B-ALL.
Collapse
Affiliation(s)
- Meng-Meng Yin
- Department of Pediatric Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui-Chi Wu
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China
| | - Jing Gao
- Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Shao-Yan Hu
- Children's Hospital of Soochow University, Suzhou, 215000, China
| | - Xiao-Ming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300000, China
| | - Xiao-Fan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300000, China
| | - Shu-Hong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China
| | - Jing-Yan Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China
| | - Jing Chen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China.
| | - Qun Hu
- Department of Pediatric Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
de Lima LG, Howe E, Singh VP, Potapova T, Li H, Xu B, Castle J, Crozier S, Harrison CJ, Clifford SC, Miga KH, Ryan SL, Gerton JL. PCR amplicons identify widespread copy number variation in human centromeric arrays and instability in cancer. CELL GENOMICS 2021; 1:100064. [PMID: 34993501 PMCID: PMC8730464 DOI: 10.1016/j.xgen.2021.100064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Centromeric α-satellite repeats represent ~6% of the human genome, but their length and repetitive nature make sequencing and analysis of those regions challenging. However, centromeres are essential for the stable propagation of chromosomes, so tools are urgently needed to monitor centromere copy number and how it influences chromosome transmission and genome stability. We developed and benchmarked droplet digital PCR (ddPCR) assays that measure copy number for five human centromeric arrays. We applied them to characterize natural variation in centromeric array size, analyzing normal tissue from 37 individuals from China and 39 individuals from the US and UK. Each chromosome-specific array varies in size up to 10-fold across individuals and up to 50-fold across chromosomes, indicating a unique complement of arrays in each individual. We also used the ddPCR assays to analyze centromere copy number in 76 matched tumor-normal samples across four cancer types, representing the most-comprehensive quantitative analysis of centromeric array stability in cancer to date. In contrast to stable transmission in cultured cells, centromeric arrays show gain and loss events in each of the cancer types, suggesting centromeric α-satellite DNA represents a new category of genome instability in cancer. Our methodology for measuring human centromeric-array copy number will advance research on centromeres and genome integrity in normal and disease states.
Collapse
Affiliation(s)
| | - Edmund Howe
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Tamara Potapova
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Hua Li
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jemma Castle
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steve Crozier
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | | | | | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sarra L. Ryan
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jennifer L. Gerton
- The Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
13
|
Studd JB, Cornish AJ, Hoang PH, Law P, Kinnersley B, Houlston R. Cancer drivers and clonal dynamics in acute lymphoblastic leukaemia subtypes. Blood Cancer J 2021; 11:177. [PMID: 34753926 PMCID: PMC8578656 DOI: 10.1038/s41408-021-00570-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
To obtain a comprehensive picture of composite genetic driver events and clonal dynamics in subtypes of paediatric acute lymphoblastic leukaemia (ALL) we analysed tumour-normal whole genome sequencing and expression data from 361 newly diagnosed patients. We report the identification of both structural drivers, as well as recurrent non-coding variation in promoters. Additionally we found the transcriptional profile of histone gene cluster 1 and CTCF altered tumours shared hallmarks of hyperdiploid ALL suggesting a 'hyperdiploid like' subtype. ALL subtypes are driven by distinct mutational processes with AID mutagenesis being confined to ETV6-RUNX1 tumours. Subclonality is a ubiquitous feature of ALL, consistent with Darwinian evolution driving selection and expansion of tumours. Driver mutations in B-cell developmental genes (IKZF1, PAX5, ZEB2) tend to be clonal and RAS/RTK mutations subclonal. In addition to identifying new avenues for therapeutic exploitation, this analysis highlights that targeted therapies should take into account composite mutational profile and clonality.
Collapse
Affiliation(s)
- James B Studd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK.
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Phuc H Hoang
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, ML, USA
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| |
Collapse
|
14
|
Schwab CJ, Murdy D, Butler E, Enshaei A, Winterman E, Cranston RE, Ryan S, Barretta E, Hawking Z, Murray J, Antony G, Vora A, Moorman AV, Harrison CJ. Genetic characterisation of childhood B-other-acute lymphoblastic leukaemia in UK patients by fluorescence in situ hybridisation and Multiplex Ligation-dependent Probe Amplification. Br J Haematol 2021; 196:753-763. [PMID: 34676543 DOI: 10.1111/bjh.17869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
While next-generation sequencing technologies provide excellent strategies to screen for newly defined genetic abnormalities of prognostic or therapeutic significance in patients with B-other-acute lymphoblastic leukaemia (ALL), they are not widely available. We used a dual screening approach, incorporating fluorescence in situ hybridisation (FISH) and Multiplex Ligation-dependent Probe Amplification (MLPA), to establish the frequency and long-term outcome of a representative cohort of specific subgroups of B-other-ALL recruited to the childhood ALL trial, UKALL2003. We focussed on abnormalities of known prognostic significance, including ABL-class fusions and ERG deletions, as a surrogate marker for DUX4-rearranged ALL. ABL-class fusions accounted for ~4% of B-other-ALL and were associated with high levels of minimal residual disease (MRD; 14/23 with MRD >5%) and a high relapse rate (55·7%) following treatment without tyrosine kinase inhibitor (TKI), confirming the importance of prospective screening with a view to incorporating TKI into therapy. Patients with deletions of ERG (~10% of B-other-ALL) had a 10-year event-free-survival of 97·2%, validating previous reports of their excellent outcome. Rearrangements of ZNF384, MEF2D and NUTM1 were observed at low frequencies. Here, we estimate that approximately one third of B-other-ALL patients can be reliably classified into one of the known genetic subgroups using our dual screening method. This approach is rapid, accurate and readily incorporated into routine testing.
Collapse
Affiliation(s)
- Claire J Schwab
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Daniel Murdy
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ellie Butler
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Emily Winterman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ruth E Cranston
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Sarra Ryan
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Zoe Hawking
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - James Murray
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Grace Antony
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Ajay Vora
- Department of Haematology, Great Ormond Street Hospital, London, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Hosein Pour Feizi A, Zeinali S, Toporski J, Sheervalilou R, Mehranfar S. Frequency and Correlation of Common Genes Copy Number Alterations in Childhood Acute Lymphoblastic Leukemia with Prognosis. Asian Pac J Cancer Prev 2020; 21:3493-3500. [PMID: 33369444 PMCID: PMC8046302 DOI: 10.31557/apjcp.2020.21.12.3493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: It was shown by genomic profiling that despite no detectable chromosomal abnormalities a proportion of children with pre-B acute lymphoblastic leukemia harbors copy number alterations (CNA) of genes playing role in B-cell development and function. The aim of the study was to determine the frequency of CNA in pediatric acute lymphoblastic leukemia and correlate these findings with clinical outcome. Methods: DNA extracted from peripheral blood or bone marrow at diagnosis/relapse of fifty newly diagnosed children with precursor B-cell acute lymphoblastic leukemia was analyzed for CNA with multiplex ligation-dependent probe amplification. Results: The analysis revealed 76 CNA in 24 patients most frequently found in PAR1 (17%), CDKN2A/B (15.7%) and PAX5 (14.4%) genes. There were significant CNA co-occurrences between PAX5, CDKN2A/B, BTG1, ETV6, PAR1 or XP22 genes, (p<0.020) and the high-risk group. There was a significant correlation between EBF1, RB1, and IKZF1 alterations and bone marrow relapse. Patients with CNA in screened genes are more likely to succumb to their disease except for those with PAR1 or XP22 genes (p<0.050). Conclusion: The multiplex ligation-dependent probe amplification could be considered as an independent diagnostic tool allowing prompt identification of patients at high risk of treatment failure and, subsequently, a more adequate treatment approach.
Collapse
Affiliation(s)
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Kawsar Human Genetics Research Center, Kawsar Genomics Center, Tehran, Iran
| | - Jacek Toporski
- Department of Clinical Sciences, Pediatric Oncology and Hematology, University of Lund, Lund, Sweden
| | | | - Sahar Mehranfar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Social Determinate of Health Research Center, Clinical Research Institute Urmia University of Medical Science, Urmia, Iran
| |
Collapse
|
16
|
Lomov N, Zerkalenkova E, Lebedeva S, Viushkov V, Rubtsov MA. Cytogenetic and molecular genetic methods for chromosomal translocations detection with reference to the KMT2A/MLL gene. Crit Rev Clin Lab Sci 2020; 58:180-206. [PMID: 33205680 DOI: 10.1080/10408363.2020.1844135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute leukemias (ALs) are often associated with chromosomal translocations, in particular, KMT2A/MLL gene rearrangements. Identification or confirmation of these translocations is carried out by a number of genetic and molecular methods, some of which are routinely used in clinical practice, while others are primarily used for research purposes. In the clinic, these methods serve to clarify diagnoses and monitor the course of disease and therapy. On the other hand, the identification of new translocations and the confirmation of known translocations are of key importance in the study of disease mechanisms and further molecular classification. There are multiple methods for the detection of rearrangements that differ in their principle of operation, the type of problem being solved, and the cost-result ratio. This review is intended to help researchers and clinicians studying AL and related chromosomal translocations to navigate this variety of methods. All methods considered in the review are grouped by their principle of action and include karyotyping, fluorescence in situ hybridization (FISH) with probes for whole chromosomes or individual loci, PCR and reverse transcription-based methods, and high-throughput sequencing. Another characteristic of the described methods is the type of problem being solved. This can be the discovery of new rearrangements, the determination of unknown partner genes participating in the rearrangement, or the confirmation of the proposed rearrangement between the two genes. We consider the specifics of the application, the basic principle of each method, and its pros and cons. To illustrate the application, examples of studying the rearrangements of the KMT2A/MLL gene, one of the genes that are often rearranged in AL, are mentioned.
Collapse
Affiliation(s)
- Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena Zerkalenkova
- Laboratory of Cytogenetics and Molecular Genetics Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Svetlana Lebedeva
- Laboratory of Cytogenetics and Molecular Genetics Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Vladimir Viushkov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biochemistry, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
17
|
Comprehensive Custom NGS Panel Validation for the Improvement of the Stratification of B-Acute Lymphoblastic Leukemia Patients. J Pers Med 2020; 10:jpm10030137. [PMID: 32967112 PMCID: PMC7565730 DOI: 10.3390/jpm10030137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/13/2020] [Accepted: 09/19/2020] [Indexed: 01/06/2023] Open
Abstract
Background: B-acute lymphoblastic leukemia (B-ALL) is a hematological neoplasm of the stem lymphoid cell of the B lineage, characterized by the presence of genetic alterations closely related to the course of the disease. The number of alterations identified in these patients grows as studies of the disease progress, but in clinical practice, the conventional techniques frequently used are only capable of detecting the most common alterations. However, techniques, such as next-generation sequencing (NGS), are being implemented to detect a wide spectrum of new alterations that also include point mutations. Methods: In this study, we designed and validated a comprehensive custom NGS panel to detect the main genetic alterations present in the disease in a single step. For this purpose, 75 B-ALL diagnosis samples from patients previously characterized by standard-of-care diagnostic techniques were sequenced. Results: The use of the custom NGS panel allowed the correct detection of the main genetic alterations present in B-ALL patients, including the presence of an aneuploid clone in 14 of the samples and some of the recurrent fusion genes in 35 of the samples. The panel was also able to successfully detect a number of secondary alterations, such as single nucleotide variants (SNVs) and copy number variations (CNVs) in 66 and 46 of the samples analyzed, respectively, allowing for further refinement of the stratification of patients. The custom NGS panel could also detect alterations with a high level of sensitivity and reproducibility when the findings obtained by NGS were compared with those obtained from other conventional techniques. Conclusions: The use of this custom NGS panel allows us to quickly and efficiently detect the main genetic alterations present in B-ALL patients in a single assay (SNVs and insertions/deletions (INDELs), recurrent fusion genes, CNVs, aneuploidies, and single nucleotide polymorphisms (SNPs) associated with pharmacogenetics). The application of this panel would thus allow us to speed up and simplify the molecular diagnosis of patients, helping patient stratification and management.
Collapse
|
18
|
Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, Foot N, Jeffries S, Martin K, O'Connor S, Schoumans J, Talley P, Telford N, Stioui S, Zemanova Z, Hastings RJ. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms: reponse to the comments from the Francophone Group of Hematological Cytogenetics (GFCH). Leukemia 2020; 34:2262-2264. [PMID: 32042082 PMCID: PMC7387292 DOI: 10.1038/s41375-020-0736-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/28/2019] [Accepted: 01/29/2020] [Indexed: 01/30/2023]
Affiliation(s)
- K A Rack
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - E van den Berg
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C Haferlach
- MLL-Munich Leukemia Laboratory, Munich, Germany
| | - H B Beverloo
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - D Costa
- Hematopathology Section, Hospital Clinic, Barcelona, Spain
| | - B Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Grup de Recerca, Translacional en Neoplàsies Hematològiques, Cancer Research Program, imim-Hospital del Mar, Barcelona, Spain
| | - N Foot
- Viapath Genetics Laboratories, Guys Hospital, London, UK
| | - S Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - K Martin
- Department of Cytogenetics, Nottingham University Hospital, Nottingham, UK
| | - S O'Connor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - J Schoumans
- Oncogénomique laboratory, Hematology Department, Lausanne University Hospital, Vaudois, Switzerland
| | - P Talley
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - N Telford
- Oncology Cytogenetics Service, The Christie NHS Foundation Trust, Manchester, UK
| | - S Stioui
- Laboratorio di Citogenetica e genetica moleculaire, Laboratorio Analisi, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Z Zemanova
- Center of Oncocytogenetics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - R J Hastings
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK.
| |
Collapse
|
19
|
Kimura S, Mullighan CG. Molecular markers in ALL: Clinical implications. Best Pract Res Clin Haematol 2020; 33:101193. [PMID: 33038982 DOI: 10.1016/j.beha.2020.101193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and remains a main cause of death in children despite recent improvements in cure rates. In the past decade, development of massively parallel sequencing has enabled large scale genome profiling studies of ALL, which not only led to identification of new subtypes in both B-cell precursor ALL (BCP-ALL) and T-cell ALL (T-ALL), but has also identified potential new therapeutic approaches to target vulnerabilities of many subtypes. Several of these approaches have been validated in preclinical models and are now being formally evaluated in prospective clinical trials. In this review, we provide an overview of the recent advances in our knowledge of genomic bases of BCP-ALL, T-ALL, and relapsed ALL, and discuss their clinical implications.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, 38105, TN, USA
| | - Charles G Mullighan
- Department of Pathology, Hematological Malignancies Program, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, 38105, TN, USA.
| |
Collapse
|
20
|
Berry NK, Scott RJ, Sutton R, Law T, Trahair TN, Dalla-Pozza L, Ritchie P, Barbaric D, Enjeti AK. Enrichment of atypical hyperdiploidy and IKZF1 deletions detected by SNP-microarray in high-risk Australian AIEOP-BFM B-cell acute lymphoblastic leukaemia cohort. Cancer Genet 2020; 242:8-14. [PMID: 32058318 DOI: 10.1016/j.cancergen.2020.01.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/11/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common childhood malignancy with the majority of patients being classified as B-cell lineage (B-ALL). The sub-classification of B-ALL is based on genomic architecture. Recent studies have demonstrated the capability of SNP-microarrays to detect genomic changes in B-ALL which cannot be observed by conventional cytogenetic methods. In current clinical trials, B-ALL patients at high risk of relapse are mainly identified by adverse cancer genomics and/or poor response to early therapy. To test the hypothesis that inclusion of SNP-microarrays in frontline diagnostics could more efficiently and accurately identify adverse genomic factors than conventional techniques, we evaluated the Australian high-risk B-ALL cohort enrolled on AIEOP-BFM ALL 2009 study (n = 33). SNP-microarray analysis identified additional aberrations in 97% of patients (32/33) compared to conventional techniques. This changed the genomic risk category of 24% (8/33) of patients. Additionally, 27% (9/33) of patients exhibited a 'hyperdiploid' genome, which is generally associated with a good genomic risk and favourable outcomes. An enrichment of IKZF1 deletions was observed with one third of the cohort affected. Our findings suggest the current classification system could be improved and highlights the need to use more sensitive techniques such as SNP-microarray for cytogenomic risk stratification in B-ALL.
Collapse
Affiliation(s)
- Nadine K Berry
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology-Hunter, Newcastle, New South Wales, Australia.
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology-Hunter, Newcastle, New South Wales, Australia
| | - Rosemary Sutton
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, Australia; School of Women's and Children's Health, UNSW Medicine, Randwick, Australia
| | - Tamara Law
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Randwick, Australia; School of Women's and Children's Health, UNSW Medicine, Randwick, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick Australia
| | - Luce Dalla-Pozza
- Cancer Centre for Children, The Children's Hospital at Westmead, Australia
| | - Petra Ritchie
- Women's and Children's Hospital, SA Pathology, University of Adelaide, Adelaide, Australia
| | - Draga Barbaric
- School of Women's and Children's Health, UNSW Medicine, Randwick, Australia; Kids Cancer Centre, Sydney Children's Hospital, Randwick Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia; Department of Haematology, NSW Health Pathology-Hunter, Newcastle, New South Wales, Australia
| |
Collapse
|
21
|
Rack KA, van den Berg E, Haferlach C, Beverloo HB, Costa D, Espinet B, Foot N, Jeffries S, Martin K, O'Connor S, Schoumans J, Talley P, Telford N, Stioui S, Zemanova Z, Hastings RJ. European recommendations and quality assurance for cytogenomic analysis of haematological neoplasms. Leukemia 2019; 33:1851-1867. [PMID: 30696948 PMCID: PMC6756035 DOI: 10.1038/s41375-019-0378-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Cytogenomic investigations of haematological neoplasms, including chromosome banding analysis, fluorescence in situ hybridisation (FISH) and microarray analyses have become increasingly important in the clinical management of patients with haematological neoplasms. The widespread implementation of these techniques in genetic diagnostics has highlighted the need for guidance on the essential criteria to follow when providing cytogenomic testing, regardless of choice of methodology. These recommendations provide an updated, practical and easily available document that will assist laboratories in the choice of testing and methodology enabling them to operate within acceptable standards and maintain a quality service.
Collapse
Affiliation(s)
- K A Rack
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - E van den Berg
- Department of Genetics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C Haferlach
- MLL-Munich Leukemia Laboratory, Munich, Germany
| | - H B Beverloo
- Department of Clinical Genetics, Erasmus MC, University medical center, Rotterdam, The Netherlands
| | - D Costa
- Hematopathology Section, Hospital Clinic, Barcelona, Spain
| | - B Espinet
- Laboratori de Citogenètica Molecular, Servei de Patologia, Grup de Recerca,Translacional en Neoplàsies Hematològiques, Cancer Research Program, imim-Hospital del Mar, Barcelona, Spain
| | - N Foot
- Viapath Genetics laboratories, Guys Hospital, London, UK
| | - S Jeffries
- West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
| | - K Martin
- Department of Cytogenetics, Nottingham University Hospital, Nottingham, UK
| | - S O'Connor
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - J Schoumans
- Oncogénomique laboratory, Hematology department, Lausanne University Hospital, Vaudois, Switzerland
| | - P Talley
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - N Telford
- Oncology Cytogenetics Service, The Christie NHS Foundation Trust, Manchester, UK
| | - S Stioui
- Laboratorio di Citogenetica e genetica moleculaire, Laboratorio Analisi, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Z Zemanova
- Prague Center of Oncocytogenetics, Institute of Clinical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - R J Hastings
- GenQA, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, UK.
| |
Collapse
|
22
|
Berry NK, Scott RJ, Rowlings P, Enjeti AK. Clinical use of SNP-microarrays for the detection of genome-wide changes in haematological malignancies. Crit Rev Oncol Hematol 2019; 142:58-67. [PMID: 31377433 DOI: 10.1016/j.critrevonc.2019.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphism (SNP) microarrays are commonly used for the clinical investigation of constitutional genomic disorders; however, their adoption for investigating somatic changes is being recognised. With increasing importance being placed on defining the cancer genome, a shift in technology is imperative at a clinical level. Microarray platforms have the potential to become frontline testing, replacing or complementing standard investigations such as FISH or karyotype. This 'molecular karyotype approach' exemplified by SNP-microarrays has distinct advantages in the investigation of several haematological malignancies. A growing body of literature, including guidelines, has shown support for the use of SNP-microarrays in the clinical laboratory to aid in a more accurate definition of the cancer genome. Understanding the benefits of this technology along with discussing the barriers to its implementation is necessary for the development and incorporation of SNP-microarrays in a clinical laboratory for the investigation of haematological malignancies.
Collapse
Affiliation(s)
- Nadine K Berry
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia.
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia; Department of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia
| | - Philip Rowlings
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Hospital, Newcastle, New South Wales, Australia; School of Medicine and Public Health, University Newcastle, New South Wales, Australia
| |
Collapse
|
23
|
Teachey DT, Pui CH. Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia. Lancet Oncol 2019; 20:e142-e154. [PMID: 30842058 PMCID: PMC9233195 DOI: 10.1016/s1470-2045(19)30031-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 01/01/2023]
Abstract
Contemporary paediatric clinical trials have improved 5-year event-free survival above 85% and 5-year overall survival above 90% in B-cell acute lymphoblastic leukaemia (ALL) in many study groups, whilst outcomes for T-cell ALL are still lagging behind by 5-10% in most studies. Several factors have contributed to this discrepant outcome. First, patients with T-cell ALL are generally older than those with B-cell ALL and, therefore, have poorer tolerance to chemotherapy, especially dexamethasone and asparaginase, and have increased risk of extramedullary relapse. Second, a higher proportion of patients with B-cell ALL have favourable genetic subtypes (eg, ETV6-RUNX1 and high hyperdiploidy), which confer a superior outcome compared with favourable subtypes of T-cell ALL. Third, T-cell ALL blasts are generally more resistant to conventional chemotherapeutic drugs than are B-cell ALL blasts. Finally, patients with B-cell ALL are more amendable to available targeted therapies, such as Philadelphia chromosome-positive and some Philadelphia chromosome-like ALL cases to ABL-class tyrosine kinase inhibitors, and CD19-positive and CD22-postive B-cell ALL cases to a variety of immunotherapies. Several novel treatments under investigation might narrow the gap in survival between T-cell ALL and B-cell ALL, although novel treatment options for T-cell ALL are limited.
Collapse
Affiliation(s)
- David T Teachey
- Hematology and Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ching-Hon Pui
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
24
|
Sinclair PB, Ryan S, Bashton M, Hollern S, Hanna R, Case M, Schwalbe EC, Schwab CJ, Cranston RE, Young BD, Irving JAE, Vora AJ, Moorman AV, Harrison CJ. SH2B3 inactivation through CN-LOH 12q is uniquely associated with B-cell precursor ALL with iAMP21 or other chromosome 21 gain. Leukemia 2019; 33:1881-1894. [PMID: 30816328 PMCID: PMC6756024 DOI: 10.1038/s41375-019-0412-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
In more than 30% of B-cell precursor acute lymphoblastic leukaemia (B-ALL), chromosome 21 sequence is overrepresented through aneuploidy or structural rearrangements, exemplified by intrachromosomal amplification of chromosome 21 (iAMP21). Although frequent, the mechanisms by which these abnormalities promote B-ALL remain obscure. Intriguingly, we found copy number neutral loss of heterozygosity (CN-LOH) of 12q was recurrent in iAMP21-ALL, but never observed in B-ALL without some form of chromosome 21 gain. As a consequence of CN-LOH 12q, mutations or deletions of the adaptor protein, SH2B3, were converted to homozygosity. In patients without CN-LOH 12q, bi-allelic abnormalities of SH2B3 occurred, but only in iAMP21-ALL, giving an overall incidence of 18% in this sub-type. Review of published data confirmed a tight association between overrepresentation of chromosome 21 and both CN-LOH 12q and SH2B3 abnormalities in B-ALL. Despite relatively small patient numbers, preliminary analysis linked 12q abnormalities to poor outcome in iAMP21-ALL (p = 0.03). Homology modelling of a leukaemia-associated SH2 domain mutation and in vitro analysis of patient-derived xenograft cells implicated the JAK/STAT pathway as one likely target for SH2B3 tumour suppressor activity in iAMP21-ALL.
Collapse
Affiliation(s)
- Paul B Sinclair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Sarra Ryan
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthew Bashton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Shaun Hollern
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rebecca Hanna
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Marian Case
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Edward C Schwalbe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Claire J Schwab
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ruth E Cranston
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Brian D Young
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Julie A E Irving
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ajay J Vora
- Great Ormond Street Hospital for Children NHS trust, London, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
25
|
Loosveld M, Nivaggioni V, Arnoux I, Bernot D, Michel G, Béné MC, Eveillard M. Early (Day 15 Post Diagnosis) Peripheral Blood Assessment of Measurable Residual Disease in Flow Cytometry is a Strong Predictor of Outcome in Childhood B-Lineage Lymphoblastic Leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 96:128-133. [PMID: 30734503 DOI: 10.1002/cyto.b.21769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND In children with acute lymphoblastic leukemia (ALL) low levels of minimal residual disease (MRD) after induction, essentially assessed in the bone marrow, have been shown to be of good prognosis. However, only few studies have tested the peripheral blood for MRD. METHODS Here, we report the impact on survival of peripheral blood (PB) MRD assessment by multiparameter flow cytometry (MFC) at early time points of treatment in 125 B-ALL children, compared to Day 35 molecular bone marrow (BM) MRD. Patients were sampled for MFC one week postdiagnosis after a pre-phase of corticotherapy (Day 8), then after one week of chemotherapy (Day 15). The study enrolled 67 boys and 58 girls with a median follow-up of 52 months. Over the duration of the study, 20 patients relapsed and eight died. MFC was performed based on the leukemia-associated immunophenotype at diagnosis, using panels of 10 antibodies. RESULTS Although, PB MFC-MRD had no prognostic impact at Day 8, Day 15 MRD negativity was associated with a significantly better 4 years DFS (91.6 ± 3% vs. 67.6 ± 9% P = 0.0013). Furthermore, while MFC and molecular data were concordant in most cases, patients with detectable PB MRD on Day 15, yet negative in BM on Day 35 had a significantly lower DFS (P < 0.0001). CONCLUSION This study demonstrates that the less invasive procedure of MFC-MRD assessment in PB can be informative for childhood ALL patients at the early point of Day 15 of the treatment schedule. © 2019 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Marie Loosveld
- APHM, Laboratoire d'Hématologie, Hôpital La Timone, Marseille, France.,CNRS, INSERM, CIML, Aix Marseille University, Marseille, France
| | | | - Isabelle Arnoux
- APHM, Laboratoire d'Hématologie, Hôpital La Timone, Marseille, France
| | - Denis Bernot
- APHM, Laboratoire d'Hématologie, Hôpital La Timone, Marseille, France
| | - Gérard Michel
- APHM, Service d'Hématologie et d'Oncologie Pédiatrique, Hôpital La Timone, Marseille, France
| | - Marie C Béné
- Service d'Hématologie Biologique, CHU Nantes, Nantes, France.,CIRCNA, Nantes, France
| | - Marion Eveillard
- Service d'Hématologie Biologique, CHU Nantes, Nantes, France.,CIRCNA, Nantes, France.,Laboratory Medecine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
26
|
Gatt ME, Izraeli S. Lymphoid Leukemias. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Parihar M, Singh MK, Islam R, Saha D, Mishra DK, Saha V, Krishnan S. A triple-probe FISH screening strategy for risk-stratified therapy of acute lymphoblastic leukaemia in low-resource settings. Pediatr Blood Cancer 2018; 65:e27366. [PMID: 30168245 PMCID: PMC6309222 DOI: 10.1002/pbc.27366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
Karyotyping along with a 3-probe fluorescence in situ hybridization (FISH) strategy was used to risk stratify therapy in 303 children with B-cell precursor acute lymphoblastic leukaemia. Of the 166 patients risk stratified, karyotype identified 91 (55%). FISH identified all karyotypes accurately, with the exception of hypodiploidy, and risk stratified an additional 75 patients. The frequency of ETV6-RUNX1 is lower and high hyperdiploidy, higher than reported in the west. An adapted 3-probe FISH strategy identified two patients with ETV6-ABL1 fusion who received imatinib. In limited-resource settings, a 3-probe FISH approach provides a practical approach for risk-stratified therapy in childhood ALL.
Collapse
Affiliation(s)
- Mayur Parihar
- Department of Cytogenetics and Lab Haematology, Tata Medical Center, MAR(EW), Newtown, Kolkata, India -700160
| | - Manish K Singh
- Department of Cytogenetics and Lab Haematology, Tata Medical Center, MAR(EW), Newtown, Kolkata, India -700160
| | - Rubina Islam
- Tata Medical Center and Tata Translational Cancer Research Centre, MAR(EW), Newtown, Kolkata, India-700160
| | - Debparna Saha
- Tata Medical Center and Tata Translational Cancer Research Centre, MAR(EW), Newtown, Kolkata, India-700160
| | - Deepak Kumar Mishra
- Department of Cytogenetics and Lab Haematology, Tata Medical Center, MAR(EW), Newtown, Kolkata, India -700160
| | - Vaskar Saha
- Paediatric Haematology and Oncology, Tata Medical Center, MAR(EW), Newtown, Kolkata, India -700160
- Tata Medical Center and Tata Translational Cancer Research Centre, MAR(EW), Newtown, Kolkata, India-700160
- Division of Cancer Sciences, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Central Manchester University Hospitals NHS Trust, Michael Smith Building, Manchester M13 9PL
| | - Shekhar Krishnan
- Paediatric Haematology and Oncology, Tata Medical Center, MAR(EW), Newtown, Kolkata, India -700160
- Tata Medical Center and Tata Translational Cancer Research Centre, MAR(EW), Newtown, Kolkata, India-700160
| |
Collapse
|
28
|
Starý J, Zuna J, Zaliova M. New biological and genetic classification and therapeutically relevant categories in childhood B-cell precursor acute lymphoblastic leukemia. F1000Res 2018; 7. [PMID: 30345005 PMCID: PMC6173109 DOI: 10.12688/f1000research.16074.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
Traditionally, genetic abnormalities detected by conventional karyotyping, fluorescence in situ hybridization, and polymerase chain reaction divided childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) into well-established genetic subtypes. This genetic classification has been prognostically relevant and thus used for the risk stratification of therapy. Recently, the introduction of genome-wide approaches, including massive parallel sequencing methods (whole-genome, -exome, and -transcriptome sequencing), enabled extensive genomic studies which, together with gene expression profiling, largely expanded our understanding of leukemia pathogenesis and its heterogeneity. Novel BCP-ALL subtypes have been described. Exact identification of recurrent genetic alterations and their combinations facilitates more precise risk stratification of patients. Discovery of targetable lesions in subsets of patients enables the introduction of new treatment modalities into clinical practice and stimulates the transfer of modern methods from research laboratories to routine practice.
Collapse
Affiliation(s)
- Jan Starý
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Jan Zuna
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| | - Marketa Zaliova
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic.,Childhood Leukaemia Investigation Prague (CLIP), Prague, Czech Republic
| |
Collapse
|
29
|
Hefazi M, Litzow MR. Recent advances in the biology and treatment of B-cell acute lymphoblastic leukemia. Blood Lymphat Cancer 2018; 8:47-61. [PMID: 31360093 PMCID: PMC6467350 DOI: 10.2147/blctt.s170351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematologic malignancy arising from precursors of the lymphoid lineage. Conventional cytotoxic chemotherapies have resulted in high cure rates of up to 90% in pediatric ALL, but the outcomes for adult patients remain suboptimal with 5-year survival rates of only 30%-40%. Over the last decade, major advances have been made in our understanding and management of ALL. Identification of new prognostic genomic markers and incorporation of minimal residual diseases' assessment into therapeutic protocols have improved risk stratification and treatment strategies. The use of pediatric-inspired regimens for adolescent and young adults, and the advent of tyrosine kinase inhibitors and novel targeted therapies, including monoclonal antibodies and chimeric antigen receptor T cells, have redefined the therapeutic paradigm of ALL, and significantly improved the outcomes. In this article, we will provide an overview of the current knowledge regarding the biology and treatment of ALL, and highlight recent diagnostic and therapeutic advances made in this area over the past 5 years.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN, USA,
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN, USA,
| |
Collapse
|
30
|
Sinclair PB, Blair HH, Ryan SL, Buechler L, Cheng J, Clayton J, Hanna R, Hollern S, Hawking Z, Bashton M, Schwab CJ, Jones L, Russell LJ, Marr H, Carey P, Halsey C, Heidenreich O, Moorman AV, Harrison CJ. Dynamic clonal progression in xenografts of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Haematologica 2018; 103:634-644. [PMID: 29449437 PMCID: PMC5865429 DOI: 10.3324/haematol.2017.172304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Intrachromosomal amplification of chromosome 21 is a heterogeneous chromosomal rearrangement occurring in 2% of cases of childhood precursor B-cell acute lymphoblastic leukemia. These abnormalities are too complex to engineer faithfully in animal models and are unrepresented in leukemia cell lines. As a resource for future functional and preclinical studies, we have created xenografts from the leukemic blasts of patients with intrachromosomal amplification of chromosome 21 and characterized them by in-vivo and ex-vivo luminescent imaging, flow immunophenotyping, and histological and ultrastructural analyses of bone marrow and the central nervous system. Investigation of up to three generations of xenografts revealed phenotypic evolution, branching genomic architecture and, compared with other B-cell acute lymphoblastic leukemia genetic subtypes, greater clonal diversity of leukemia-initiating cells. In support of intrachromosomal amplification of chromosome 21 as a primary genetic abnormality, it was always retained through generations of xenografts, although we also observed the first example of structural evolution of this rearrangement. Clonal segregation in xenografts revealed convergent evolution of different secondary genomic abnormalities implicating several known tumor suppressor genes and a region, containing the B-cell adaptor, PIK3AP1, and nuclear receptor co-repressor, LCOR, in the progression of B-cell acute lymphoblastic leukemia. Tracking of mutations in patients and derived xenografts provided evidence for co-operation between abnormalities activating the RAS pathway in B-cell acute lymphoblastic leukemia and for their aggressive clonal expansion in the xeno-environment. Bi-allelic loss of the CDKN2A/B locus was recurrently maintained or emergent in xenografts and also strongly selected as RNA sequencing demonstrated a complete absence of reads for genes associated with the deletions.
Collapse
Affiliation(s)
- Paul B Sinclair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Helen H Blair
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Sarra L Ryan
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lars Buechler
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Joanna Cheng
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jake Clayton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rebecca Hanna
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Shaun Hollern
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Zoe Hawking
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthew Bashton
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Claire J Schwab
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lisa Jones
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Lisa J Russell
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Helen Marr
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Peter Carey
- Department of Clinical Haematology, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
31
|
High frequency of intermediate and poor risk copy number abnormalities in pediatric cohort of B-ALL correlate with high MRD post induction. Leuk Res 2018; 66:79-84. [DOI: 10.1016/j.leukres.2018.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/17/2022]
|
32
|
Impact of cytogenetic abnormalities in adults with Ph-negative B-cell precursor acute lymphoblastic leukemia. Blood 2017; 130:1832-1844. [DOI: 10.1182/blood-2017-05-783852] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/17/2017] [Indexed: 02/05/2023] Open
Abstract
Abstract
Multiple cytogenetic subgroups have been described in adult Philadelphia chromosome (Ph)-negative B-cell precursor (BCP) acute lymphoblastic leukemia (ALL), often comprising small numbers of patients. In this study, we aimed to reassess the prognostic value of cytogenetic abnormalities in a large series of 617 adult patients with Ph-negative BCP-ALL (median age, 38 years), treated in the intensified Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 trials. Combined data from karyotype, DNA index, fluorescence in situ hybridization, and polymerase chain reaction screening for relevant abnormalities were centrally reviewed and were informative in 542 cases (88%), allowing classification in 10 exclusive primary cytogenetic subgroups and in secondary subgroups, including complex and monosomal karyotypes. Prognostic analyses focused on cumulative incidence of failure (including primary refractoriness and relapse), event-free survival, and overall survival. Only 2 subgroups, namely t(4;11)/KMT2A-AFF1 and 14q32/IGH translocations, displayed a significantly worse outcome in this context, still observed after adjustment for age and after censoring patients who received allogeneic stem cell transplantation (SCT) in first remission at SCT time. A worse outcome was also observed in patients with low hypodiploidy/near triploidy, but this was likely related to their higher age and worse tolerance to therapy. The other cytogenetic abnormalities, including complex and monosomal karyotypes, had no prognostic value in these intensive protocols designed for adult patients up to the age of 60 years.
Collapse
|
33
|
Yang M, Yi ES, Kim HJ, Yoo KH, Koo HH, Kim SH. Intrachromosomal amplification of chromosome 21 in Korean pediatric patients with B-cell precursor acute lymphoblastic leukemia in a single institution. Blood Res 2017; 52:100-105. [PMID: 28698845 PMCID: PMC5503886 DOI: 10.5045/br.2017.52.2.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/01/2017] [Accepted: 03/13/2017] [Indexed: 11/17/2022] Open
Abstract
Background Intrachromosomal amplification of chromosome 21 (iAMP21), defined as the presence of three or more RUNX1 signals on one marker chromosome, is a distinct cytogenetic subgroup of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) that is known to have a poor prognosis when treated with standard therapy. The aim of this study was to evaluate the clinical characteristics of Korean children with iAMP21. Methods The cytogenetic data from BCP-ALL children were reviewed. The ETV6/RUNX1 ES Dual Color Probe was used for fluorescence in situ hybridization (FISH). Results In total, 295 children were included. Of these, 10 patients (3.4%) had iAMP21. The median age of iAMP21 patients was 9 years, and the median value of white blood cell count was 5.09×109/L. Slow early treatment response was observed more in iAMP21 patients. Patients with iAMP21 had a higher incidence of relapse and worse survival rates. In patients with iAMP21, the estimated 10-year cumulative incidence of relapse was 53.3%. The estimated 10-year event-free survival and overall survival rate were 46.7% and 64.8%, respectively. Most cases of leukemic relapse developed in the late period (median, 43 mo). In multivariate analysis, high risk group was the only factor that had a significant impact on death. Conclusion The existence of iAMP21 was related to delayed treatment response and was likely to affect increased relapse and death in the late period. Further studies are needed to reveal its effect on BCP-ALL treatment outcomes and its role as an independent prognostic factor.
Collapse
Affiliation(s)
- Mina Yang
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun Sang Yi
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jin Kim
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Porter CC. Germ line mutations associated with leukemias. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:302-308. [PMID: 27913495 PMCID: PMC6142470 DOI: 10.1182/asheducation-2016.1.302] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Several genetic syndromes have long been associated with a predisposition to the development of leukemia, including bone marrow failure syndromes, Down syndrome, and Li Fraumeni syndrome. Recent work has better defined the leukemia risk and outcomes in these syndromes. Also, in the last several years, a number of other germ line mutations have been discovered to define new leukemia predisposition syndromes, including ANKRD26, GATA2, PAX5, ETV6, and DDX41 In addition, data suggest that a substantial proportion of patients with therapy related leukemias harbor germ line mutations in DNA damage response genes such as BRCA1/2 and TP53 Recognition of clinical associations, acquisition of a thorough family history, and high index-of-suspicion are critical in the diagnosis of these leukemia predisposition syndromes. Accurate identification of patients with germ line mutations associated with leukemia can have important clinical implications as it relates to management of the leukemia, as well as genetic counseling of family members.
Collapse
|
35
|
Kim J, Lyu CJ, Shin S, Lee ST, Choi JR. Frequency and Clinical Characteristics of Intrachromosomal Amplification of Chromosome 21 in Korean Childhood B-lineage Acute Lymphoblastic Leukemia. Ann Lab Med 2016; 36:475-80. [PMID: 27374714 PMCID: PMC4940492 DOI: 10.3343/alm.2016.36.5.475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/30/2016] [Accepted: 05/11/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intrachromosomal amplification of chromosome 21 (iAMP21) is known to be associated with poor prognosis in B-cell ALL (B-ALL). To determine the frequency and clinical characteristics of iAMP21 in Korean B-ALL patients, we performed FISH and multiplex ligation-dependent probe amplification (MLPA) analyses. METHODS A total of 102 childhood B-ALL patients were screened with ETV6-RUNX1 FISH probes (Abbott Molecular, USA). The presence of an iAMP21 was confirmed by using MLPA P327 iAMP21-ERG probemix (MRC Holland, The Netherlands). RESULTS iAMP21 was detected in one of the screened B-ALL patients (1/102 patients, 1.0%) who presented the ALL immunophenotype and complex karyotype at initial diagnosis. The patient relapsed twice after bone marrow transplantation. MLPA showed 12.5-Mb and 4.28-Mb regions of amplification and deletion, respectively. CONCLUSIONS The frequency of iAMP21 is considerable in Korean pediatric patients. Our report suggests that iAMP21 in childhood B-ALL has very unfavorable impact on patient's prognosis. Additional methods such as MLPA analysis is essential to rule out patients with equivocal interphase FISH results.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chuhl Joo Lyu
- Department of Pediatrics, Yonsei Cancer Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Hallym University College of Medicine, Kangnam Sacred Heart Hospital, Seoul, Korea.
| | - Seung Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea.
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Wang Y, Miller S, Roulston D, Bixby D, Shao L. Genome-Wide Single-Nucleotide Polymorphism Array Analysis Improves Prognostication of Acute Lymphoblastic Leukemia/Lymphoma. J Mol Diagn 2016; 18:595-603. [PMID: 27161658 DOI: 10.1016/j.jmoldx.2016.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 02/08/2023] Open
Abstract
Chromosomal abnormalities are important for the risk stratification of acute lymphoblastic leukemia/lymphoma (ALL). However, approximately 30% of pediatric and 50% of adult patients lack abnormalities with clinical relevance by traditional cytogenetic analysis. We integrated cytogenetic, fluorescence in situ hybridization, and whole-genome single-nucleotide polymorphism array results from 60 consecutive clinical ALL cases. By cytogenetic and/or fluorescence in situ hybridization analyses, recurring abnormalities with clinical relevance were observed in 33 B-cell ALL (B-ALL), including t(9;22), hyperdiploidy, KMT2A translocation, ETV6-RUNX1, intrachromosomal amplification of chromosome 21, near haploidy or low hypodiploidy, and t(8;22). Single-nucleotide polymorphism array analysis found additional aberrations with prognostic or therapeutic implication in 21 B-ALL and two T-cell ALL, including IKZF1 deletion, intrachromosomal amplification of chromosome 21 (one case with a normal karyotype), low hypodiploidy (two cases with a normal karyotype), and one case each with fusion genes ETV6-NTRK3, CRLF2-P2RY8, NUP214-ABL1, and SET-NUP214. IKZF1 deletion was noted in nine B-ALL with t(9;22), one B-ALL with t(4;11), five B-ALL with a normal karyotype, and three B-ALL with nonrecurring karyotypic abnormalities. Combining single-nucleotide polymorphism array with chromosome and fluorescence in situ hybridization assays, the detection rate for clinically significant abnormal results increased from 56% to 75%. Whole-genome single-nucleotide polymorphism array analysis detects cytogenetically undetectable clinically significant aberrations and should be routinely applied at diagnosis of ALL.
Collapse
Affiliation(s)
- Yunhong Wang
- Clinical Cytogenetics Laboratory, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Peking University First Hospital, Beijing, China
| | - Sue Miller
- Clinical Cytogenetics Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Diane Roulston
- Clinical Cytogenetics Laboratory, University of Michigan, Ann Arbor, Michigan
| | - Dale Bixby
- Department of Pathology, and the Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lina Shao
- Clinical Cytogenetics Laboratory, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
37
|
Ivanov Öfverholm I, Tran AN, Olsson L, Zachariadis V, Heyman M, Rudd E, Syk Lundberg E, Nordenskjöld M, Johansson B, Nordgren A, Barbany G. Detailed gene dose analysis reveals recurrent focal gene deletions in pediatric B-cell precursor acute lymphoblastic leukemia. Leuk Lymphoma 2016; 57:2161-70. [DOI: 10.3109/10428194.2015.1136740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Moorman AV. New and emerging prognostic and predictive genetic biomarkers in B-cell precursor acute lymphoblastic leukemia. Haematologica 2016; 101:407-16. [PMID: 27033238 PMCID: PMC5004393 DOI: 10.3324/haematol.2015.141101] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous disease at the genetic level. Chromosomal abnormalities are used as diagnostic, prognostic and predictive biomarkers to provide subtype, outcome and drug response information. t(12;21)/ETV6-RUNX1 and high hyper-diploidy are good-risk prognostic biomarkers whereas KMT2A(MLL) translocations, t(17;19)/TCF3-HLF, haploidy or low hypodiploidy are high-risk biomarkers. t(9;22)/BCR-ABL1 patients require targeted treatment (imatinib/dasatinib), whereas iAMP21 patients achieve better outcomes when treated intensively. High-risk genetic biomarkers are four times more prevalent in adults compared to children. The application of genomic technologies to cases without an established abnormality (B-other) reveals copy number alterations which can be used either individually or in combination as prognostic biomarkers. Transcriptome sequencing studies have identified a network of fusion genes involving kinase genes -ABL1,ABL2,PDGFRB,CSF1R,CRLF2,JAK2 and EPOR in-vitro and in-vivo studies along with emerging clinical observations indicate that patients with a kinase-activating aberration may respond to treatment with small molecular inhibitors like imatinib/dasatinib and ruxolitinib. Further work is required to determine the true frequency of these abnormalities across the age spectrum and the optimal way to incorporate such inhibitors into protocols. In conclusion, genetic biomarkers are playing an increasingly important role in the management of patients with ALL.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- B-Lymphocytes/drug effects
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Chromosomes, Human, Pair 12
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 9
- Dasatinib/therapeutic use
- Gene Expression
- Humans
- Imatinib Mesylate/therapeutic use
- Nitriles
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality
- Prognosis
- Pyrazoles/therapeutic use
- Pyrimidines
- Survival Analysis
- Translocation, Genetic
Collapse
Affiliation(s)
- Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
39
|
Harrison CJ, Schwab C. Constitutional abnormalities of chromosome 21 predispose to iAMP21-acute lymphoblastic leukaemia. Eur J Med Genet 2016; 59:162-5. [PMID: 26836400 DOI: 10.1016/j.ejmg.2016.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/04/2016] [Accepted: 01/24/2016] [Indexed: 11/30/2022]
Abstract
In addition to Down syndrome, individuals with other constitutional abnormalities of chromosome 21 have an increased risk of developing childhood acute lymphoblastic leukaemia (ALL). Specifically, carriers of the Robertsonian translocation between chromosomes 15 and 21, rob(15;21) (q10; q10)c, have ∼2,700 increased risk of developing ALL with iAMP21 (intrachromosomal amplification of chromosome 21). In these patients, chromosome 15 as well as chromosome 21 is involved in the formation of iAMP21, referred to here as der(21)(15;21). Individuals with constitutional ring chromosomes involving chromosome 21, r(21)c, are also predisposed to iAMP21-ALL, involving the same series of mutational processes as seen in sporadic- and der(21)(15;21)-iAMP21 ALL. Evidence is accumulating that the dicentric nature of the Robertsonian and ring chromosome is the initiating factor in the formation of the complex iAMP21 structure. Unravelling these intriguing predispositions to iAMP21-ALL may provide insight into how other complex rearrangements arise in cancer.
Collapse
Affiliation(s)
- Christine J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK.
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Bailey HD, Infante-Rivard C, Metayer C, Clavel J, Lightfoot T, Kaatsch P, Roman E, Magnani C, Spector LG, Petridou E, Milne E, Dockerty JD, Miligi L, Armstrong BK, Rudant J, Fritschi L, Simpson J, Zhang L, Rondelli R, Baka M, Orsi L, Moschovi M, Kang AY, Schüz J. Home pesticide exposures and risk of childhood leukemia: Findings from the childhood leukemia international consortium. Int J Cancer 2015; 137:2644-2663. [PMID: 26061779 PMCID: PMC4572913 DOI: 10.1002/ijc.29631] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 01/20/2023]
Abstract
Some previous studies have suggested that home pesticide exposure before birth and during a child's early years may increase the risk of childhood leukemia. To further investigate this, we pooled individual level data from 12 case-control studies in the Childhood Leukemia International Consortium. Exposure data were harmonized into compatible formats. Pooled analyses were undertaken using multivariable unconditional logistic regression. The odds ratio (ORs) for acute lymphoblastic leukemia (ALL) associated with any pesticide exposure shortly before conception, during pregnancy and after birth were 1.39 (95% confidence interval [CI]: 1.25, 1.55) (using 2,785 cases and 3,635 controls), 1.43 (95% CI: 1.32, 1.54) (5,055 cases and 7,370 controls) and 1.36 (95% CI: 1.23, 1.51) (4,162 cases and 5,179 controls), respectively. Corresponding ORs for risk of acute myeloid leukemia (AML) were 1.49 (95% CI: 1.02, 2.16) (173 cases and 1,789 controls), 1.55 (95% CI: 1.21, 1.99) (344 cases and 4,666 controls) and 1.08 (95% CI: 0.76, 1.53) (198 cases and 2,655 controls), respectively. There was little difference by type of pesticide used. The relative similarity in ORs between leukemia types, time periods and pesticide types may be explained by similar exposure patterns and effects across the time periods in ALL and AML, participants' exposure to multiple pesticides, or recall bias. Although some recall bias is likely, until a better study design can be found to investigate the associations between home pesticide use and childhood leukemia in an equally large sample, it would appear prudent to limit the use of home pesticides before and during pregnancy, and during childhood.
Collapse
Affiliation(s)
- Helen D Bailey
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, Lyon, France
| | - Claire Infante-Rivard
- Department of Epidemiology, Biostatistics, and Occupational Health, Faculty of Medicine, McGill University, Canada
| | - Catherine Metayer
- University of California, Berkeley, School of Public Health, Berkeley, United States
| | - Jacqueline Clavel
- Inserm U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
- RNHE - National Registry of Childhood cancers, Villejuif, France
| | - Tracy Lightfoot
- Department of Health Sciences, University of York, York, United Kingdom
| | - Peter Kaatsch
- German Childhood Cancer Registry (GCCR) at the Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Johannes Gutenberg University Mainz, Germany
| | - Eve Roman
- Department of Health Sciences, University of York, York, United Kingdom
| | - Corrado Magnani
- Dipartimento di Medicina Traslazionale – Universita` del Piemonte Orientale, AOU Maggiore della Carita` e CPO – Piemonte, Novara, Italy
| | - Logan G Spector
- Division of Epidemiology Clinical Research, University of Minnesota, Minneapolis, United States
- Department of Pediatrics and Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Eleni Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Elizabeth Milne
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - John D Dockerty
- Dean's Department and Department of Preventive and Social Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lucia Miligi
- ISPO-Cancer Prevention and Research Institute, Occupational and Environmental Epidemiology Unit, Florence, Italy
| | - Bruce K Armstrong
- Sydney School of Public Health, University of Sydney, New South Wales, Australia
- Sax Institute, Ultimo, NSW, Australia
| | - Jérémie Rudant
- Inserm U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
- RNHE - National Registry of Childhood cancers, Villejuif, France
| | - Lin Fritschi
- Curtin University, School of Public Health, Perth, Australia
| | - Jill Simpson
- Department of Health Sciences, University of York, York, United Kingdom
| | - Luoping Zhang
- University of California, Berkeley, School of Public Health, Berkeley, United States
| | - Roberto Rondelli
- Paediatric Haematology -Oncology, Lalla Seràgnoli, Policlinico Sant’Orsola Malpighi Bologna Italy
| | - Margarita Baka
- Department of Pediatric Hematology-Oncology, ‘‘Pan.&Agl. Kyriakou’’ Children’s Hospital, Athens, Greece
| | - Laurent Orsi
- Inserm U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Epidemiology of childhood and adolescent cancers team (EPICEA), Villejuif, France
- Paris-Descartes University, UMRS-1153, Epidemiology and Biostatistics Sorbonne Paris Cité Center (CRESS), Paris, France
| | - Maria Moschovi
- Hematology-Oncology Unit, First Department of Pediatrics, Athens University Medical School, ‘‘Aghia Sophia’’ General Children’s Hospital, Athens, Greece
| | - Alice Y Kang
- University of California, Berkeley, School of Public Health, Berkeley, United States
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, Lyon, France
| |
Collapse
|
41
|
Tasian SK, Loh ML, Hunger SP. Childhood acute lymphoblastic leukemia: Integrating genomics into therapy. Cancer 2015; 121:3577-90. [PMID: 26194091 PMCID: PMC4592406 DOI: 10.1002/cncr.29573] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 12/31/2022]
Abstract
Acute lymphoblastic leukemia (ALL), the most common malignancy of childhood, is a genetically complex entity that remains a major cause of childhood cancer-related mortality. Major advances in genomic and epigenomic profiling during the past decade have appreciably enhanced knowledge of the biology of de novo and relapsed ALL and have facilitated more precise risk stratification of patients. These achievements have also provided critical insights regarding potentially targetable lesions for the development of new therapeutic approaches in the era of precision medicine. In this review, the authors delineate the current genetic landscape of childhood ALL, emphasizing patient outcomes with contemporary treatment regimens as well as therapeutic implications of newly identified genomic alterations in specific subsets of ALL.
Collapse
Affiliation(s)
- Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Abramson Cancer Center; Philadelphia, PA
| | - Mignon L Loh
- University of California, San Francisco Benioff Children's Hospital; San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center; San Francisco, CA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia; Philadelphia, PA
| |
Collapse
|
42
|
Coccé MC, Alonso CN, Rossi JG, Bernasconi AR, Rampazzi MA, Felice MS, Rubio PL, Eandi Eberle S, Medina A, Gallego MS. Cytogenetic and Molecular Findings in Children with Acute Lymphoblastic Leukemia: Experience of a Single Institution in Argentina. Mol Syndromol 2015; 6:193-203. [PMID: 26648836 DOI: 10.1159/000441046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
The purpose of the current study was to evaluate the cytogenetic findings in 1,057 children with acute lymphoblastic leukemia (ALL) referred to the cytogenetics laboratory at the Hospital de Pediatría Dr. Juan P. Garrahan, between 1991 and 2014. Chromosomal abnormalities were evaluated by G-banding and FISH. Since December 2002, RT-PCR determinations were systematically carried out for BCR-ABL1, KMT2A-AFF1, ETV6-RUNX1, and TCF3-PBX1 rearrangements in children, adding KMT2A-MLLT3 and KMT2A-MLLT1 in infants. The percentage of abnormalities detected by cytogenetics was 70.1%. Four novel abnormalities, t(2;8)(p11.2;p22), inv(4)(p16q25), t(1;7)(q25;q32), and t(5;6)(q21;q21), were found in this cohort. We compared cytogenetic and RT-PCR results for BCR-ABL1, KMT2A-AFF1 and TCF3-PBX1 rearrangements in 497 children evaluated by both methods. The results were highly concordant (p < 0.7), and interestingly, FISH was relevant to confirm G-banding findings that were discordant with RT-PCR studies. This study showed the importance of performing G-banding, FISH and RT-PCR simultaneously to improve the detection of chromosomal abnormalities considering their important value in the diagnosis and prognosis of childhood ALL patients. Finally, to the best of our knowledge, this is the first series of cytogenetic findings in children with ALL reported in Argentina.
Collapse
Affiliation(s)
- Mariela C Coccé
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Cristina N Alonso
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Jorge G Rossi
- Department of Immunology and Rheumatology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Andrea R Bernasconi
- Department of Immunology and Rheumatology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Maria A Rampazzi
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Maria S Felice
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Patricia L Rubio
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Silvia Eandi Eberle
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Adriana Medina
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Marta S Gallego
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| |
Collapse
|
43
|
Eswaran J, Sinclair P, Heidenreich O, Irving J, Russell LJ, Hall A, Calado DP, Harrison CJ, Vormoor J. The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia. Leukemia 2015; 29:1623-31. [PMID: 25943180 DOI: 10.1038/leu.2015.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023]
Abstract
The B-cell receptor (BCR) and its immature form, the precursor-BCR (pre-BCR), have a central role in the control of B-cell development, which is dependent on a sequence of cell-fate decisions at specific antigen-independent checkpoints. Pre-BCR expression provides the first checkpoint, which controls differentiation of pre-B to immature B-cells in normal haemopoiesis. Pre-BCR signalling regulates and co-ordinates diverse processes within the pre-B cell, including clonal selection, proliferation and subsequent maturation. In B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), B-cell development is arrested at this checkpoint. Moreover, malignant blasts avoid clonal extinction by hijacking pre-BCR signalling in favour of the development of BCP-ALL. Here, we discuss three mechanisms that occur in different subtypes of BCP-ALL: (i) blocking pre-BCR expression; (ii) activating pre-BCR-mediated pro-survival and pro-proliferative signalling, while inhibiting cell cycle arrest and maturation; and (iii) bypassing the pre-BCR checkpoint and activating pro-survival signalling through pre-BCR independent alternative mechanisms. A complete understanding of the BCP-ALL-specific signalling networks will highlight their application in BCP-ALL therapy.
Collapse
Affiliation(s)
- J Eswaran
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - P Sinclair
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - O Heidenreich
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Irving
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - L J Russell
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - A Hall
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - D P Calado
- 1] Cancer Research UK, London Research Institute, London, UK [2] Peter Gorer Department of Immunobiology, Kings College London, London, UK
| | - C J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Vormoor
- 1] Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK [2] Great North Children's Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
44
|
Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ, Bornhauser B, Gombert M, Kratsch C, Stütz AM, Sultan M, Tchinda J, Worth CL, Amstislavskiy V, Badarinarayan N, Baruchel A, Bartram T, Basso G, Canpolat C, Cario G, Cavé H, Dakaj D, Delorenzi M, Dobay MP, Eckert C, Ellinghaus E, Eugster S, Frismantas V, Ginzel S, Haas OA, Heidenreich O, Hemmrich-Stanisak G, Hezaveh K, Höll JI, Hornhardt S, Husemann P, Kachroo P, Kratz CP, Te Kronnie G, Marovca B, Niggli F, McHardy AC, Moorman AV, Panzer-Grümayer R, Petersen BS, Raeder B, Ralser M, Rosenstiel P, Schäfer D, Schrappe M, Schreiber S, Schütte M, Stade B, Thiele R, von der Weid N, Vora A, Zaliova M, Zhang L, Zichner T, Zimmermann M, Lehrach H, Borkhardt A, Bourquin JP, Franke A, Korbel JO, Stanulla M, Yaspo ML. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 2015. [PMID: 26214592 PMCID: PMC4603357 DOI: 10.1038/ng.3362] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TCF3-HLF-fusion positive acute lymphoblastic leukemia (ALL) is currently incurable. Employing an integrated approach, we uncovered distinct mutation, gene expression, and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. Recurrent intragenic deletions of PAX5 or VPREB1 were identified in constellation with TCF3-HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin towards a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics, but sensitivity towards glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease.
Collapse
Affiliation(s)
- Ute Fischer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anna Rinaldi
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thomas Risch
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stéphanie Sungalee
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Hans-Jörg Warnatz
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Beat Bornhauser
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michael Gombert
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Kratsch
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Marc Sultan
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Joelle Tchinda
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Catherine L Worth
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Nandini Badarinarayan
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - André Baruchel
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Thies Bartram
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Giuseppe Basso
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Cengiz Canpolat
- Department of Pediatrics, Acıbadem University Medical School, Ataşehir, Istanbul, Turkey
| | - Gunnar Cario
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hélène Cavé
- Department of Genetics, Hôpital Robert Debré and Paris Diderot University, Paris, France
| | - Dardane Dakaj
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Cornelia Eckert
- Pediatric Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sabrina Eugster
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Viktoras Frismantas
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Sebastian Ginzel
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Oskar A Haas
- Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Heidenreich
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kebria Hezaveh
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jessica I Höll
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sabine Hornhardt
- Federal Office for Radiation Protection, Oberschleissheim, Germany
| | - Peter Husemann
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Geertruy Te Kronnie
- Department of Pediatrics, Laboratory of Pediatric Hematology/Oncology, University of Padova, Padova, Italy
| | - Blerim Marovca
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Felix Niggli
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anthony V Moorman
- Northern Institute of Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Britt S Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Meryem Ralser
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniel Schäfer
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martin Schrappe
- Department of Pediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Björn Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Ralf Thiele
- Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | | | - Ajay Vora
- Sheffield Children's Hospital, Sheffield, United Kingdom
| | - Marketa Zaliova
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.,Childhood Leukaemia Investigation Prague (CLIP), Department of Pediatric Hematology/Oncology, Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | - Langhui Zhang
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Thomas Zichner
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Zimmermann
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany.,Dahlem Centre for Genome Reseach and Medical Systems Biology, Berlin, Germany
| | - Arndt Borkhardt
- Clinic for Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jean-Pierre Bourquin
- Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Marie-Laure Yaspo
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
45
|
Johnson RC, Weinberg OK, Cascio MJ, Dahl GV, Mitton BA, Silverman LB, Cherry AM, Arber DA, Ohgami RS. Cytogenetic Variation of B-Lymphoblastic Leukemia With Intrachromosomal Amplification of Chromosome 21 (iAMP21): A Multi-Institutional Series Review. Am J Clin Pathol 2015; 144:103-12. [PMID: 26071468 DOI: 10.1309/ajcpluyf11hqbyrb] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES B-lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21) is a relatively uncommon manifestation of acute leukemia and limited predominantly to the pediatric population. Case-specific information regarding flow cytometric, morphologic, and laboratory findings of this subtype of leukemia is currently lacking. METHODS We searched the databases of three large institutions for lymphoblastic leukemia with iAMP21 from 2005 through 2012 and analyzed the clinicopathologic features. RESULTS We identified 17 cases with five or more RUNX1 signals on interphase nuclei, 14 of which were consistent with the Children's Oncology Group (COG) definition for iAMP21—namely, the presence of three or more RUNX1 signals on one marker chromosome. These cases showed a statistically significant lower peripheral WBC count and older age at diagnosis compared with all pediatric cases of B-ALL. We also identified three cases with increased RUNX1 signals scattered on multiple marker chromosomes that did not meet the COG definition of iAMP21 but showed similar 21q instability and older age at presentation. CONCLUSIONS Our findings not only demonstrate that B-ALL with iAMP21 is truly a distinct clinicopathologic entity but also suggest that a subset of cases of B-ALL with iAMP21 can show variable cytogenetic features.
Collapse
|
46
|
Dixon-McIver A. Emerging technologies in paediatric leukaemia. Transl Pediatr 2015; 4:116-24. [PMID: 26835367 PMCID: PMC4729090 DOI: 10.3978/j.issn.2224-4336.2015.03.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic changes, in particular chromosomal aberrations, are a hallmark of acute lymphoblastic lymphoma (ALL) and accurate detection of them is important in ensuring assignment to the appropriate drug protocol. Our ability to detect these genetic changes has been somewhat limited in the past due to the necessity to analyse mitotically active cells by conventional G-banded metaphase analysis and by mutational analysis of individual genes. Advances in technology include high resolution, microarray-based techniques that permit examination of the whole genome. Here we will review the current available methodology and discuss how the technology is being integrated into the diagnostic setting.
Collapse
|
47
|
Blood Spotlight on iAMP21 acute lymphoblastic leukemia (ALL), a high-risk pediatric disease. Blood 2015; 125:1383-6. [PMID: 25608562 DOI: 10.1182/blood-2014-08-569228] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intrachromosomal amplification of chromosome 21 (iAMP21) defines a distinct cytogenetic subgroup of childhood B-cell precursor acute lymphoblastic leukemia. Breakage-fusion-bridge cycles followed by chromothripsis and other complex structural rearrangements of chromosome 21 underlie the mechanism giving rise to iAMP21. Patients with iAMP21 are older (median age 9 years), with a low white cell count. They have a high relapse rate when treated as standard risk. Recent studies have shown improved outcome on intensive therapy. Molecular targets for therapy are being sought.
Collapse
|
48
|
Bhandari P, Ahmad F, Dalvi R, Koppaka N, Kokate P, Das BR, Mandava S. Cytogenetic Profile of De Novo B lineage Acute Lymphoblastic Leukemia: Determination of Frequency, Distribution Pattern and Identification of Rare and Novel Chromosomal Aberrations in Indian Patients. Asian Pac J Cancer Prev 2015; 16:7219-7229. [PMID: 26514515 DOI: 10.7314/apjcp.2015.16.16.7219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosomal aberrations identified in acute lymphoblastic leukemia (ALL) have an important role in disease diagnosis, prognosis and management. Information on karyotype and associated clinical parameters are essential to physicians for planning cancer control interventions in different geographical regions. MATERIALS AND METHODS In this study, we present the overall frequency and distribution patterns of chromosomal aberrations in both children and adult de novo B lineage ALL Indian patients using conventional cytogenetics, interphase FISH and multiplex RT-PCR. RESULTS Among the 215 subjects, cytogenetic results were achieved in 172 (80%) patients; normal karyotype represented 37.2% and abnormal 62.8% with a distribution as follows: 15.3% hypodiploidy; 10.3% hyperdiploidy; 15.8% t(9;22); 9.8% t(1;19); 3.7% t(12;21); 2.8% t(4;11); 2.8% complex karyotypes. Apart from these, we observed several novel, rare and common chromosomal rearrangements. Also, FISH studies using LSI extra-signal dual-color probes revealed additional structural or numerical changes. CONCLUSIONS These results demonstrate cytogenetic heterogeneity of ALL and confirm that the incidence of chromosomal abnormalities varies considerably. To the best of our knowledge, this is one of the largest reported series of cytogenetic investigations in Indian B-lineage ALL cases. In addition, ongoing cytogenetic studies are warranted in larger groups of B-lineage ALL cases to identify newly acquired chromosomal abnormalities that may contribute to disease diagnosis and management.
Collapse
|
49
|
Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood 2014; 124:3420-30. [PMID: 25253770 DOI: 10.1182/blood-2014-04-531871] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For most children who relapse with acute lymphoblastic leukemia (ALL), the prognosis is poor, and there is a need for novel therapies to improve outcome. We screened samples from children with B-lineage ALL entered into the ALL-REZ BFM 2002 clinical trial (www.clinicaltrials.gov, #NCT00114348) for somatic mutations activating the Ras pathway (KRAS, NRAS, FLT3, and PTPN11) and showed mutation to be highly prevalent (76 from 206). Clinically, they were associated with high-risk features including early relapse, central nervous system (CNS) involvement, and specifically for NRAS/KRAS mutations, chemoresistance. KRAS mutations were associated with a reduced overall survival. Mutation screening of the matched diagnostic samples found many to be wild type (WT); however, by using more sensitive allelic-specific assays, low-level mutated subpopulations were found in many cases, suggesting that they survived up-front therapy and subsequently emerged at relapse. Preclinical evaluation of the mitogen-activated protein kinase kinase 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) showed significant differential sensitivity in Ras pathway-mutated ALL compared with WT cells both in vitro and in an orthotopic xenograft model engrafted with primary ALL; in the latter, reduced RAS-mutated CNS leukemia. Given these data, clinical evaluation of selumetinib may be warranted for Ras pathway-mutated relapsed ALL.
Collapse
|
50
|
Allen A, Gill K, Hoehn D, Sulis M, Bhagat G, Alobeid B. C-myc protein expression in B-cell acute lymphoblastic leukemia, prognostic significance? Leuk Res 2014; 38:1061-6. [DOI: 10.1016/j.leukres.2014.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/06/2014] [Accepted: 06/29/2014] [Indexed: 11/17/2022]
|