1
|
Godsk SH, Jensen CMS, Larsen TV, Ahrenfeldt J, Gammelgaard KR, Jakobsen MR. IFNλ1 is a STING-dependent mediator of DNA damage and induces immune activation in lung cancer. Front Immunol 2025; 15:1525083. [PMID: 40012911 PMCID: PMC11862833 DOI: 10.3389/fimmu.2024.1525083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
Introduction The importance of the cGAS-STING pathway and type I interferon (IFN) in anti-tumor immunity has been widely studied. However, there is limited knowledge about the role of type III IFNs in cancer settings. Type III IFNs, comprising IFNλ1-4, are opposite to type I IFN only expressed by a few cell types, including epithelial cells, and the receptor subunit IFNLR1, is equally only expressed on limited types of cells. Methods Gene and protein expression of the cGAS-STING signaling pathway was characterized in a series of non-small cell lung cancer (NSCLC) cell lines. Herring-testis DNA stimulation and chemotherapy drugs (doxorubicin and cisplatin) were used to activate the cGAS-STING pathway, and the level of activation was determined by measuring changes in the transcriptomic profile as well as type I and III IFNs by ELISA. Re-expression of IFNLR1 on cancer cell lines was achieved using CRISPR activation (CRISPRa) followed by evaluating chemotherapy-induced apoptosis using flow cytometry assays. Results STING was not broadly expressed across the NSCLC cell lines. Those cancer cell lines expressing all relevant factors supporting the cGAS-STING pathway secreted IFNλ following STING activation whereas only few of them expressed IFNβ. Treatment with chemotherapy drugs likewise preferentially induced IFNλ, which was abrogated in CRISPR-Cas9 STING knock-out cells. Expression of IFNLR1 was found downregulated in the cancer cell lines compared to the benign epithelial cell line Nuli-1. Rescuing IFNLR1 expression by CRISPRa in multiple cancer cell lines sensitization them to IFNλ-stimulation and resulted in significant reduction in cell viability. Conclusion Downregulation of IFNLR1 can be an immune evasion mechanism developed by cancer cells to avoid responding to endogenous type III IFNs. Thus, rescuing IFNLR1 expression in NSCLC in conjunction to chemotherapy may potentially be harnessed to elevate the anti-tumoral responses.
Collapse
Affiliation(s)
| | | | | | - Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
2
|
Sun Y, Liu Y, Jiang L, Zhong C. m5C methylation modification may be an accomplice in colorectal cancer escaping from anti-tumor effects of innate immunity-type I/III interferon. Front Immunol 2025; 15:1512353. [PMID: 39867908 PMCID: PMC11757137 DOI: 10.3389/fimmu.2024.1512353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes. It can enhance the proliferation, migration, and invasion of tumor cells by affecting mRNA stability, translation efficiency, and nuclear export. In addition, m5C modification modulates the activity of innate immune signaling pathways and inhibits interferon production and function, further helping tumor cells evade immune surveillance. However, there are insufficient elucidations on the interaction between m5C modification and innate immunity in CRC. In this study, the mechanism of interferon I/III in colorectal cancer was systematically reviewed and explored. This work focused on how m5C modification promotes tumor immune escape by affecting the interferon signaling pathway, thereby providing new diagnostic markers and therapeutic targets for clinical use, and enhancing the immunotherapy efficacy.
Collapse
Affiliation(s)
- Yiqi Sun
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunfei Liu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Jiang
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chao Zhong
- Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Qing F, Tian H, Wang B, Xie B, Sui L, Xie X, He W, He T, Li Y, He L, Guo Q, Liu Z. Interferon regulatory factor 7 alleviates the experimental colitis through enhancing IL-28A-mediated intestinal epithelial integrity. J Transl Med 2024; 22:905. [PMID: 39370517 PMCID: PMC11457333 DOI: 10.1186/s12967-024-05673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The incidence of inflammatory bowel disease (IBD) is on the rise in developing countries, and investigating the underlying mechanisms of IBD is essential for the development of targeted therapeutic interventions. Interferon regulatory factor 7 (IRF7) is known to exert pro-inflammatory effects in various autoimmune diseases, yet its precise role in the development of colitis remains unclear. METHODS We analyzed the clinical significance of IRF7 in ulcerative colitis (UC) by searching RNA-Seq databases and collecting tissue samples from clinical UC patients. And, we performed dextran sodium sulfate (DSS)-induced colitis modeling using WT and Irf7-/- mice to explore the mechanism of IRF7 action on colitis. RESULTS In this study, we found that IRF7 expression is significantly reduced in patients with UC, and also demonstrated that Irf7-/- mice display heightened susceptibility to DSS-induced colitis, accompanied by elevated levels of colonic and serum pro-inflammatory cytokines, suggesting that IRF7 is able to inhibit colitis. This increased susceptibility is linked to compromised intestinal barrier integrity and impaired expression of key molecules, including Muc2, E-cadherin, β-catenin, Occludin, and Interleukin-28A (IL-28A), a member of type III interferon (IFN-III), but independent of the deficiency of classic type I interferon (IFN-I) and type II interferon (IFN-II). The stimulation of intestinal epithelial cells by recombinant IL-28A augments the expression of Muc2, E-cadherin, β-catenin, and Occludin. The recombinant IL-28A protein in mice counteracts the heightened susceptibility of Irf7-/- mice to colitis induced by DSS, while also elevating the expression of Muc2, E-cadherin, β-catenin, and Occludin, thereby promoting the integrity of the intestinal barrier. CONCLUSION These findings underscore the pivotal role of IRF7 in preserving intestinal homeostasis and forestalling the onset of colitis.
Collapse
Affiliation(s)
- Furong Qing
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongbo Tian
- Department of Stomatology, Chifeng Maternity Hospital, Chifeng, Inner Mongolia, China
| | - Biyao Wang
- Department of Gastroenterology, The Sixth-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bingyu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lina Sui
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyan Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wenji He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tiansheng He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- Department of Gastroenterology, The First-Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qin Guo
- Department of Gastroenterology, The Sixth-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth-Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
4
|
Petrova L, Bunz F. Interferons in Colorectal Cancer Pathogenesis and Therapy. DISEASES & RESEARCH 2024; 4:31-39. [PMID: 38962090 PMCID: PMC11220628 DOI: 10.54457/dr.202401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
As key modulators of the immune response, interferons play critical roles following infection and during the pathogenesis of cancer. The idea that these cytokines might be developed as new therapies emerged soon after their discovery. While enthusiasm for this approach to cancer therapy has waxed and waned over the ensuing decades, recent advances in cancer immunotherapy and our improved understanding of the tumor immune environment have led to a resurgence of interest in this unique class of biologic drug. Here, we review how interferons influence the growth of colorectal cancers (CRCs) and highlight new insights into how interferons and drugs that modulate interferon expression might be most effectively deployed in the clinic.
Collapse
Affiliation(s)
- Lucy Petrova
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore Maryland 21287, USA
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore Maryland 21287, USA
| |
Collapse
|
5
|
Ren L, Meng X, Sun J, Shao X, Shao M, Wang S, Li Z, Chen Y. Prokaryotic expression of soluble IFN-λ1 recombinant protein with cold-shock system. Protein Expr Purif 2024; 215:106413. [PMID: 38065246 DOI: 10.1016/j.pep.2023.106413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/31/2023]
Abstract
Interferon (IFN)-λ1, a member of type III IFN, possesses unique antiviral, anti-tumor, and immune modulation properties. IFN-λ alone or combined with other drugs is considered an essential therapeutic regimen in the clinic. Obtaining high-quality, biologically-active recombinant human IFN-λ1 (rhIFN-λ1) is of great practical significance. In this study, pCold-II-IFN-λ1 expression plasmid was correctly constructed, the rhIFN-λ1 was expressed in BL21(DE3) E.coli and reached the highest level under the optimal condition of 15 °C culture temperature and at 1 μg/L IPTG induction for 12 h. The soluble rhIFN-λ1 was purified by Ni-NTA affinity chromatography. The purified rhIFN-λ1 can effectively activate the JAK1-STAT1 signaling pathway and induce the expression of a large number of interferon-stimulated genes (ISG) including ISG15, ISG54, ISG56, TRAIL, OAS1, MX1, IRF7 and IRF9. In addition, rhIFN-λ1 can effectively inhibit the growth/proliferation of cervical cancer HeLa cells in a dose-dependent pattern. Collectively, the soluble rhIFN-λ1 was successfully expressed in BL21(DE3) E.coli with the cold-shock system, and the purified rhIFN-λ1 demonstrated excellent biological activity. This study lays a solid basis for acquiring high-quality rhIFN-λ1 and its clinical application.
Collapse
Affiliation(s)
- Leiying Ren
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Xueqiong Meng
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China; Luoyang Vocational and Technical College, Luoyang, China
| | - Jie Sun
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Xiaoya Shao
- The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang, China
| | - Mengyu Shao
- Luoyang Vocational and Technical College, Luoyang, China
| | - Shuo Wang
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Zhitao Li
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China; Luoyang Vocational and Technical College, Luoyang, China.
| |
Collapse
|
6
|
Zahid W, Farooqui N, Zahid N, Ahmed K, Anwar MF, Rizwan-ul-Hasan S, Hussain AR, Sarría-Santamera A, Abidi SH. Association of Interferon Lambda 3 and 4 Gene SNPs and Their Expression with COVID-19 Disease Severity: A Cross-Sectional Study. Infect Drug Resist 2023; 16:6619-6628. [PMID: 37840831 PMCID: PMC10576565 DOI: 10.2147/idr.s422095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Expression and certain SNPs of interferon lambda 3 and 4 (IFNL3 and 4) have been associated with variable outcomes in COVID-19 patients in different regions, suggesting population-specific differences in the disease outcome. This study examined the association of INFL3 and INFL4 SNPs (rs12979860 and rs368234815, respectively) and nasopharyngeal expression with COVID-19 disease severity in Pakistani patients. Methods For this study, 117 retrospectively collected nasopharyngeal swab samples were used from individuals with mild and severe COVID-19 disease. qPCR assays were used to determine the viral loads and mRNA expression of IFNL3 and 4 through the Ct and delta Ct methods, respectively. Due to funding limitations, only one SNP each in INFL3 and INFL4 (found to be most significant through literature search) was analyzed using tetra-arm PCR and RFLP-PCR strategies, respectively. The Mann-Whitney U-test was applied to evaluate the statistical differences in the expression of IFNL3/4 genes in the mild and severe groups, while for SNPs, a Chi-square test was employed. A multivariate Cox regression test was performed to assess the relationship of different variables with COVID-19 severity. Results Comparative analysis of SNPs between mild and severe groups showed only the difference in SNP of the IFNL4 gene to be statistically significant (p = 0.001). Similarly, nasopharyngeal expression of IFNL3 and IFNL4 genes, respectively, was found to be 3.48-fold less and 3.48-fold higher in the severe group as compared to the mild group. Multivariate analysis revealed SNP in the IFNL4 gene and age to have a significant association with COVID-19 severity. Conclusion Despite the small sample size, IFNL4 gene SNP and patient age were associated with COVID-19 severity. Age, IFNL3/IFNL4 mRNA expression in the nasopharyngeal milieu, and the presence of SNP in the IFNL4 (rs368234815) gene in COVID-19 patients may be biomarkers for infection severity and help improve SARS-CoV-2 infection management.
Collapse
Affiliation(s)
- Warisha Zahid
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Nida Farooqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Nida Zahid
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Khalid Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Muhammad Faraz Anwar
- Department of Biochemistry, Bahria University Medical and Dental College, Karachi, Pakistan
| | | | - Azhar R Hussain
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| |
Collapse
|
7
|
Murata K, Mizokami M. Possible biological mechanisms of entecavir versus tenofovir disoproxil fumarate on reducing the risk of hepatocellular carcinoma. J Gastroenterol Hepatol 2023; 38:683-691. [PMID: 36918402 DOI: 10.1111/jgh.16178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Hepatitis B virus (HBV) is a life-threatening infectious virus associated with the risk of liver failure and hepatocellular carcinoma (HCC). Regarding HBV treatment, the recent development of nucleoside/nucleotide analogs (NUC), HBV reverse transcriptase inhibitors, enabled favorable viral control as well as improved prognosis in patients with chronic hepatitis B. However, NUC fails to clear HBV because the formation of covalently closed circular DNA or HBV surface antigen occurs upstream of the point of action of NUC. Recently, we found that acyclic nucleoside phosphonates (ANP) such as adefovir or tenofovir, but not lamivudine or entecavir, induced IFN-λ3 productions in the gastrointestinal tract and modulated lipopolysaccharide (LPS)-mediated cytokine profiles in peripheral blood mononuclear cells, such as interleukin (IL)-12p70 induction and IL-10 inhibition, which are immunologically favorable cytokine profiles for HBV elimination. Furthermore, IFN-α, in combination with ANP, showed additional and synergistic effects on IFN-λ3 and IL-12p70 production, respectively, while not affecting IL-10 levels. Mechanistic analyses of the cytokine modulation by ANP revealed that ANP blocked the mammalian target of the rapamycin (mTOR) pathway by inhibiting Akt translocation to the plasma membrane, thereby inhibiting Akt phosphorylation. As it has been reported that IFN-λ inhibits tumor growth directly or indirectly and the mTOR pathway is generally activated in most cancer cells, ANP might have potential anti-HCC effects. Our in vitro and ex vivo findings might stir the debate on whether types of NUC affect the risk of HBV-related HCC incidence.
Collapse
Affiliation(s)
- Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
8
|
Mountford J, Gheyas A, Vervelde L, Smith J. Genetic variation in chicken interferon signalling pathway genes in research lines showing differential viral resistance. Anim Genet 2022; 53:640-656. [PMID: 35739459 PMCID: PMC9544680 DOI: 10.1111/age.13233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023]
Abstract
Avian viruses of economic interest are a significant burden on the poultry industry, affecting production traits and resulting in mortality. Furthermore, the zoonosis of avian viruses risks pandemics developing in humans. Vaccination is the most common method of controlling viruses; however current vaccines often lack cross-protection against multiple strains of each virus. The mutagenicity of these viruses has also led to virulent strains emerging that can overcome the protection offered by vaccines. Breeding chickens with a more robust innate immune response may help in tackling current and emerging viruses. Understanding the genetic evolution of different lines will thus provide a useful tool in helping the host in the fight against pathogens. This study focuses on the interferon genes and their receptors in different chicken lines that are known to be more resistant or susceptible to particular avian viruses. Comparing genotypic differences in these core immune genes between the chicken lines may explain the phenotypic differences observed and aid the identification of causative variations. The relative resistance/susceptibility of each line to viruses of interest (Marek's disease virus, infectious bursal disease, infectious bronchitis virus and avian influenza virus) has previously been determined. Here we identify single nucleotide polymorphisms in interferons and downstream genes. Functional prediction tools were used to identify variants that may be affecting protein structure, mRNA secondary structure or transcription factor and micro-RNA binding sites. These variants were then considered in the context of the research lines and their distribution between phenotypes. We highlight 60 variants of interest in the interferon pathway genes that may account for susceptibility/resistance to viral pathogens.
Collapse
Affiliation(s)
- Joshua Mountford
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Almas Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
9
|
Effect of cannabidiol on apoptosis and cellular interferon and interferon-stimulated gene responses to the SARS-CoV-2 genes ORF8, ORF10 and M protein. Life Sci 2022; 301:120624. [PMID: 35568225 PMCID: PMC9091075 DOI: 10.1016/j.lfs.2022.120624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
AIMS To study effects on cellular innate immune responses to ORF8, ORF10, and Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, in combination with cannabidiol (CBD). MAIN METHODS HEK293 cells transfected with plasmids expressing control vector, ORF8, ORF10, or M protein were assayed for cell number and markers of apoptosis at 24 h, and interferon and interferon-stimulated gene expression at 14 h, with or without CBD. Cells transfected with polyinosinic:polycytidylic acid (Poly (I:C)) were also studied as a general model of RNA-type viral infection. KEY FINDINGS Reduced cell number and increased early and late apoptosis were found when expression of viral genes was combined with 1-2 μM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. In cells expressing viral genes, CBD augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2'-5'-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL. CBD also augmented expression of these genes in control cells not expressing viral genes, but without enhancing apoptosis. CBD similarly enhanced the cellular anti-viral response to Poly (I:C). SIGNIFICANCE Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but an augmented innate anti-viral response to these genes in the presence of CBD. Thus, CBD may prime components of the innate immune system, increasing readiness to respond to RNA-type viral infection without activating apoptosis, and could be studied for potential in prophylaxis.
Collapse
|
10
|
IL-28B reprograms tumor-associated macrophages to promote anti-tumor effects in colon cancer. Int Immunopharmacol 2022; 109:108799. [PMID: 35525232 DOI: 10.1016/j.intimp.2022.108799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022]
Abstract
The type III interferon family (IFN-III), including IFN-λ3 [interleukin (IL)-28B], has antiviral, anti-tumor, and immunomodulatory activities. Although the IL-28B anti-tumor effect has been extensively explored, its underlying mechanism remains unclear. Here, we explored IL-28B effects on colon cancer. Our results show that IL-28B significantly inhibits colon cancer progression in a mouse MC38 tumor cell colonization model and colitis-associated colorectal tumor model. Interestingly, IL-28B does not directly promote apoptosis or inhibit MC38 tumor cell proliferation in vitro. Rather, IL-28B treatment has indirect anti-tumor activity by downregulating tumor-associated macrophages. Furthermore, IL-28B inhibits M2 macrophage polarization in vitro, while also halting M2 macrophage differentiation predominantly via inhibition of the signal transducer and activator of transcription (STAT)3 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings revealed that IL-28B inhibits M2 macrophages in the tumor microenvironment to delay colon cancer progression. These findings provide novel evidence of IL-28B anti-tumor and immunomodulatory activities.
Collapse
|
11
|
Vitiello GAF, Ferreira WAS, Cordeiro de Lima VC, Medina TDS. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment. Front Immunol 2021; 12:782852. [PMID: 34925363 PMCID: PMC8674309 DOI: 10.3389/fimmu.2021.782852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.
Collapse
Affiliation(s)
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
12
|
McElrath C, Espinosa V, Lin JD, Peng J, Sridhar R, Dutta O, Tseng HC, Smirnov SV, Risman H, Sandoval MJ, Davra V, Chang YJ, Pollack BP, Birge RB, Galan M, Rivera A, Durbin JE, Kotenko SV. Critical role of interferons in gastrointestinal injury repair. Nat Commun 2021; 12:2624. [PMID: 33976143 PMCID: PMC8113246 DOI: 10.1038/s41467-021-22928-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The etiology of ulcerative colitis is poorly understood and is likely to involve perturbation of the complex interactions between the mucosal immune system and the commensal bacteria of the gut, with cytokines acting as important cross-regulators. Here we use IFN receptor-deficient mice in a dextran sulfate sodium (DSS) model of acute intestinal injury to study the contributions of type I and III interferons (IFN) to the initiation, progression and resolution of acute colitis. We find that mice lacking both types of IFN receptors exhibit enhanced barrier destruction, extensive loss of goblet cells and diminished proliferation of epithelial cells in the colon following DSS-induced damage. Impaired mucosal healing in double IFN receptor-deficient mice is driven by decreased amphiregulin expression, which IFN signaling can up-regulate in either the epithelial or hematopoietic compartment. Together, these data underscore the pleiotropic functions of IFNs and demonstrate that these critical antiviral cytokines also support epithelial regeneration following acute colonic injury.
Collapse
Affiliation(s)
- Constance McElrath
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Vanessa Espinosa
- Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Jian-Da Lin
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jianya Peng
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Raghavendra Sridhar
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Orchi Dutta
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Hsiang-Chi Tseng
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Sergey V Smirnov
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Heidi Risman
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Marvin J Sandoval
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Viralkumar Davra
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- School of Graduate Studies, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Brian P Pollack
- Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Center for Cell Signaling, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark Galan
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Amariliz Rivera
- Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Joan E Durbin
- Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
- Center for Cell Signaling, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
- Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, Newark, NJ, USA.
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
13
|
von Locquenghien M, Rozalén C, Celià-Terrassa T. Interferons in cancer immunoediting: sculpting metastasis and immunotherapy response. J Clin Invest 2021; 131:143296. [PMID: 33393507 PMCID: PMC7773346 DOI: 10.1172/jci143296] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines critical for regulation of epithelial cell functions and for immune system regulation. In cancer, IFNs contribute to tumor-intrinsic and -extrinsic mechanisms that determine the quality of antitumor immunity and response to immunotherapy. In this Review, we focus on the different types of tumor IFN sensitivity that determine dynamic tumor-immune interactions and their coevolution during cancer progression and metastasis. We extend the discussion to new evidence supporting immunotherapy-mediated immunoediting and the dual opposing roles of IFNs that lead to immune checkpoint blockade response or resistance. Understanding the intricate dynamic responses to IFN will lead to novel immunotherapeutic strategies to circumvent protumorigenic effects of IFN while exploiting IFN-mediated antitumor immunity.
Collapse
|
14
|
Geoffroy K, Bourgeois-Daigneault MC. The pros and cons of interferons for oncolytic virotherapy. Cytokine Growth Factor Rev 2020; 56:49-58. [PMID: 32694051 DOI: 10.1016/j.cytogfr.2020.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
Interferons (IFN) are potent immune stimulators that play key roles in both innate and adaptive immune responses. They are considered the first line of defense against viral pathogens and can even be used as treatments to boost the immune system. While viruses are usually seen as a threat to the host, an emerging class of cancer therapeutics exploits the natural capacity of some viruses to directly infect and kill cancer cells. The cancer-specificity of these bio-therapeutics, called oncolytic viruses (OVs), often relies on defective IFN responses that are frequently observed in cancer cells, therefore increasing their vulnerability to viruses compared to healthy cells. To ensure the safety of the therapy, many OVs have been engineered to further activate the IFN response. As a consequence of this IFN over-stimulation, the virus is cleared faster by the immune system, which limits direct oncolysis. Importantly, the therapeutic activity of OVs also relies on their capacity to trigger anti-tumor immunity and IFNs are key players in this aspect. Here, we review the complex cancer-virus-anti-tumor immunity interplay and discuss the diverse functions of IFNs for each of these processes.
Collapse
Affiliation(s)
- Karen Geoffroy
- Cancer axis and Institut du cancer de Montréal, Centre de recherche du CHUM- CRCHUM, 900 St-Denis Street, Viger Tower, Room R10.480, Montreal, Quebec, H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Roger-Gaudry Building, Montreal, Quebec, H3T1J4, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Cancer axis and Institut du cancer de Montréal, Centre de recherche du CHUM- CRCHUM, 900 St-Denis Street, Viger Tower, Room R10.480, Montreal, Quebec, H2X0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculty of Medicine, Université de Montréal, 2900 Edouard-Montpetit Boulevard, Roger-Gaudry Building, Montreal, Quebec, H3T1J4, Canada.
| |
Collapse
|
15
|
Abdolvahab MH, Darvishi B, Zarei M, Majidzadeh-A K, Farahmand L. Interferons: role in cancer therapy. Immunotherapy 2020; 12:833-855. [PMID: 32635782 DOI: 10.2217/imt-2019-0217] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are a group of signaling cytokines, secreted by host cells to induce protection against various disorders. IFNs can directly impact on tumor cells or indirectly induce the immune system to protect host cells. The expression levels of IFNs and its functions of are excellently modulated in a way to protect host cells from probable toxicities caused by extreme responses. The efficacy of anticancer therapies is correlated to IFNs signaling. Although IFN signaling is involved in induction of antitumor responses, chronic stimulation of the IFN signaling pathway can induce resistance to various antineoplasm therapies. Hence, IFNs are expressed by both cancer and immune cells, and modulate their biological function. Understanding this mechanism of action might be a key target of combination therapies.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mohammad Zarei
- Department of Pathology & Laboratory Medicine, Center for Mitochondrial & Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| |
Collapse
|
16
|
Hubert M, Gobbini E, Couillault C, Manh TPV, Doffin AC, Berthet J, Rodriguez C, Ollion V, Kielbassa J, Sajous C, Treilleux I, Tredan O, Dubois B, Dalod M, Bendriss-Vermare N, Caux C, Valladeau-Guilemond J. IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci Immunol 2020; 5:5/46/eaav3942. [PMID: 32303573 DOI: 10.1126/sciimmunol.aav3942] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/02/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
Dendritic cells play a key role in the orchestration of antitumor immune responses. The cDC1 (conventional dendritic cell 1) subset has been shown to be essential for antitumor responses and response to immunotherapy, but its precise role in humans is largely unexplored. Using a multidisciplinary approach, we demonstrate that human cDC1 play an important role in the antitumor immune response through their capacity to produce type III interferon (IFN-λ). By analyzing a large cohort of breast primary tumors and public transcriptomic datasets, we observed specific production of IFN-λ1 by cDC1. In addition, both IFN-λ1 and its receptor were associated with favorable patient outcomes. We show that IFN-III promotes a TH1 microenvironment through increased production of IL-12p70, IFN-γ, and cytotoxic lymphocyte-recruiting chemokines. Last, we showed that engagement of TLR3 is a therapeutic strategy to induce IFN-III production by tumor-associated cDC1. These data provide insight into potential IFN- or cDC1-targeting antitumor therapies.
Collapse
Affiliation(s)
- Margaux Hubert
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Elisa Gobbini
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,CHU Grenoble-Alpes, France
| | - Coline Couillault
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Thien-Phong Vu Manh
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Anne-Claire Doffin
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | - Justine Berthet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Céline Rodriguez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Vincent Ollion
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,LabEx DEVweCAN, Lyon, France
| | - Janice Kielbassa
- Synergie Lyon Cancer, Plateforme de Bio-informatique 'Gilles Thomas', Lyon, France
| | - Christophe Sajous
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France
| | | | | | - Bertrand Dubois
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Marc Dalod
- Aix Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France.,LabEx DEVweCAN, Lyon, France
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France.,Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France.,LabEx DEVweCAN, Lyon, France.,Centre Léon Bérard, F-69008 Lyon, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69008, France. .,LabEx DEVweCAN, Lyon, France
| |
Collapse
|
17
|
Vlachiotis S, Andreakos E. Lambda interferons in immunity and autoimmunity. J Autoimmun 2019; 104:102319. [DOI: 10.1016/j.jaut.2019.102319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/23/2023]
|
18
|
Ginting TE, Christian S, Larasati YO, Suryatenggara J, Suriapranata IM, Mathew G. Antiviral interferons induced by Newcastle disease virus (NDV) drive a tumor-selective apoptosis. Sci Rep 2019; 9:15160. [PMID: 31641164 PMCID: PMC6806003 DOI: 10.1038/s41598-019-51465-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/01/2019] [Indexed: 01/06/2023] Open
Abstract
Newcastle disease virus (NDV) strongly induces both type I and III antiviral interferons (IFNs-α/-β and IFN-λ, respectively) in tumor cells while it induces mainly type III IFN in normal cells. Impairment of antiviral type I IFN signaling in tumor cells is thought to be the reason for effective oncolysis. However, there is lack of clarity why lentogenic strain NDV can also induce oncolysis. NDV infection caused apoptosis in normal and tumor cells as demonstrated with the caspase-3 enzyme activation and annexin-V detection. The apoptosis response was inhibited by B18R protein (a type I IFN inhibitor) in tumor cells i.e. A549 and U87MG, and not in normal cells i.e. NB1RGB and HEK293. Similarly, UV-inactivated medium from NDV infection was shown to induce apoptosis in corresponding cells and the response was inhibited in A549 and U87MG cells with the addition of B18R protein. Treatment with combination of IFNs-α/-β/-λ or IFNs-α/-β or IFN-λ in NB1RGB, HEK293, A549 and U87MG showed that caspase activity in IFNs-α/-β/-λ group was the highest, followed with IFN-α/-β group and IFN-λ group. This suggests that tumor-selectivity of NDV is mainly because of the cumulative effect of type I and III in tumor cells that lead to higher apoptotic effect.
Collapse
Affiliation(s)
- Teridah Ernala Ginting
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Jalan Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia.
| | - Salomo Christian
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Jalan Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Young Othiwi Larasati
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Jalan Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Jeremiah Suryatenggara
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Jalan Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - Ivet Marita Suriapranata
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Jalan Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| | - George Mathew
- Division of Immunology, Mochtar Riady Institute for Nanotechnology and Medical Science Group, University of Pelita Harapan, Jalan Boulevard Jenderal Sudirman 1688, Lippo Karawaci, Tangerang, Banten, 15811, Indonesia
| |
Collapse
|
19
|
Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019; 50:907-923. [PMID: 30995506 PMCID: PMC6839410 DOI: 10.1016/j.immuni.2019.03.025] [Citation(s) in RCA: 755] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) (IFN-α, IFN-β) and type III IFNs (IFN-λ) share many properties, including induction by viral infection, activation of shared signaling pathways, and transcriptional programs. However, recent discoveries have revealed context-specific functional differences. Here, we provide a comprehensive review of type I and type III IFN activities, highlighting shared and distinct features from molecular mechanisms through physiological responses. Beyond discussing canonical antiviral functions, we consider the adaptive immune priming, anti-tumor, and autoimmune functions of IFNs. We discuss a model wherein type III IFNs serve as a front-line defense that controls infection at epithelial barriers while minimizing damaging inflammatory responses, reserving the more potent type I IFN response for when local responses are insufficient. In this context, we discuss current therapeutic applications targeting these cytokine pathways and highlight gaps in understanding of the biology of type I and type III IFNs in health and disease.
Collapse
Affiliation(s)
- Helen M Lazear
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael S Diamond
- Departments of Medicine, Pathology & Immunology, and Molecular Microbiology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
20
|
Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028548. [PMID: 29038121 DOI: 10.1101/cshperspect.a028548] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses during host defense but also in autoimmune disorders, inflammatory diseases, and cancer. Although IL-10 itself primarily acts on leukocytes and has potent immunosuppressive functions, other family members preferentially target nonimmune compartments, such as tissue epithelial cells, where they elicit innate defense mechanisms to control viral, bacterial, and fungal infections, protect tissue integrity, and promote tissue repair and regeneration. As cytokines are prime drug targets, IL-10 family cytokines provide great opportunities for the treatment of autoimmune diseases, tissue damage, and cancer. Yet no therapy in this space has been approved to date. Here, we summarize the diverse biology of the IL-10 family as it relates to human disease and review past and current strategies and challenges to target IL-10 family cytokines for clinical use.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Comparative Biology and Safety Sciences, Amgen, South San Francisco, California 94080
| | - Kit Wong
- Department of Biomarker Development, Genentech, South San Francisco, California 94080
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen, South San Francisco, California 94080
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, South San Francisco, California 94080
| |
Collapse
|
21
|
Zhao H, Dong N, Liu T, Zhang P, Zheng Y, Yang L, Ren X. Clinical Significance of Serum Type III Interferons in Patients with Gastric Cancer. J Interferon Cytokine Res 2019; 39:155-163. [PMID: 30672717 DOI: 10.1089/jir.2018.0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type III interferon (IFN) is a newly established IFN that shows roles different from those of type I and II IFNs. However, the effect of type III IFN on the prognosis of patients with gastric cancer (GC) is controversial. This study aimed to investigate the effects of serum IFN-α, IFN-β, IFN-γ, IFN-λ1, and IFN-λ2/3 levels on the survival of patients with GC. LEGENDplex bead-based immunoassays were used to analyze the serum IFN-α, IFN-β, IFN-γ, IFN-λ1, and IFN-λ2/3 levels in patients with GC and healthy volunteers. Flow cytometry was used to test the IFN concentrations. Compared with the healthy controls, the patients with GC had significantly decreased serum IFN-α, IFN-γ, and IFN-λ1 levels, but significantly increased serum IFN-λ2/3 level. Analysis of the serum IFN concentrations and clinical parameters of the patients with GC showed significant correlations of serum IFN-α, IFN-β, IFN-γ, and IFN-λ2/3 levels with clinical stages. Serum IFN-λ1 levels significantly correlated with tumor location, histopathology, and lymph node involvement. Serum IFN-λ2/3 levels significantly correlated with lymph node involvement and distant metastasis. In addition, serum IFN-α, IFN-β, and IFN-γ levels significantly correlated with clinical stage and lymph node metastasis. Serum IFN-β and IFN-γ levels also significantly correlated with Lauren classification. Furthermore, the patients with stage IV GC exhibited significantly lower IFN-λ2/3 levels and higher IFN-α, IFN-β, and IFN-γ levels than the patients with stage I-III GC. The univariate analysis revealed that tumor sizes of >5 cm, higher clinical stage, and high IFN-λ2/3 level were significantly associated with poor prognosis. This study shows the relationship between serum IFN level and GC progression. High serum IFN-λ2/3 levels were associated with poor prognosis and could be a novel biomarker for evaluating GC progression and predicting the outcomes of nonmetastatic GC.
Collapse
Affiliation(s)
- Hua Zhao
- 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,2 Department of Immunology, National Clinical Research Center for Cancer, Tianjin, China.,3 Key Laboratories of Cancer Prevention and Therapy, Tianjin, China.,4 Department of Immunology, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,5 Key Laboratories of Cancer Immunology and Biotherapy, Tianjin, China
| | - Nan Dong
- 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,2 Department of Immunology, National Clinical Research Center for Cancer, Tianjin, China.,3 Key Laboratories of Cancer Prevention and Therapy, Tianjin, China.,4 Department of Immunology, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,5 Key Laboratories of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ting Liu
- 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,2 Department of Immunology, National Clinical Research Center for Cancer, Tianjin, China.,3 Key Laboratories of Cancer Prevention and Therapy, Tianjin, China.,4 Department of Immunology, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,5 Key Laboratories of Cancer Immunology and Biotherapy, Tianjin, China
| | - Peng Zhang
- 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,2 Department of Immunology, National Clinical Research Center for Cancer, Tianjin, China.,3 Key Laboratories of Cancer Prevention and Therapy, Tianjin, China.,4 Department of Immunology, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,5 Key Laboratories of Cancer Immunology and Biotherapy, Tianjin, China
| | - Yawen Zheng
- 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,2 Department of Immunology, National Clinical Research Center for Cancer, Tianjin, China.,3 Key Laboratories of Cancer Prevention and Therapy, Tianjin, China.,4 Department of Immunology, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,5 Key Laboratories of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,2 Department of Immunology, National Clinical Research Center for Cancer, Tianjin, China.,3 Key Laboratories of Cancer Prevention and Therapy, Tianjin, China.,4 Department of Immunology, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,5 Key Laboratories of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- 1 Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,2 Department of Immunology, National Clinical Research Center for Cancer, Tianjin, China.,3 Key Laboratories of Cancer Prevention and Therapy, Tianjin, China.,4 Department of Immunology, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,5 Key Laboratories of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
22
|
Lasfar A, Zloza A, Silk AW, Lee LY, Cohen-Solal KA. Interferon Lambda: Toward a Dual Role in Cancer. J Interferon Cytokine Res 2019; 39:22-29. [DOI: 10.1089/jir.2018.0046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Ann W. Silk
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Leonard Y. Lee
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
- Robert Wood Johnson University Hospital, New Brunswick, New Jersey
| | - Karine A. Cohen-Solal
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
23
|
Chen JY, Wang CM, Chen TD, Jan Wu YJ, Lin JC, Lu LY, Wu J. Interferon-λ3/4 genetic variants and interferon-λ3 serum levels are biomarkers of lupus nephritis and disease activity in Taiwanese. Arthritis Res Ther 2018; 20:193. [PMID: 30157968 PMCID: PMC6116434 DOI: 10.1186/s13075-018-1683-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 07/23/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Type III interferons (IFNs) or IFN-λs are the newly discovered cytokines that primarily target the cells of epithelial and myeloid lineages, which are major components of kidneys. The current study aimed to investigate whether IFN-λs are involved in the pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis. METHODS TaqMan allele discrimination assays were used to determine IFNL3/4 SNP genotypes of 1620 healthy controls and 1013 SLE patients (two independent cohorts consisting of 831 and 182 subjects, respectively) from Taiwan. The distributions of IFNL3/4 SNP genotypes and allele frequencies were compared between SLE patients and healthy controls and among SLE patients stratified by clinical phenotypes. ELISA was used to determine the serum IFN-λ3 concentrations of SLE patients. RESULTS All major IFN3/4 SNP alleles were significantly associated with the risk for lupus nephritis (rs8099917T, PFDR = 0.0021, OR 1.75, 95% CI 1.24-2.47; rs12979860C, PFDR = 0.0034, OR 1.65, 95% CI 1.18-2.30; rs4803217C, PFDR = 0.0021, OR 1.76, 95% CI 1.25-2.48; and ss469415590TT, PFDR = 0.0021, OR 1.73, 95% CI 1.23-2.42) among SLE patients. Similarly, the major IFNL3/4 SNP haplotype rs8099917T-ss469415590TT-rs12979860C-rs4803217C (or T-TT-C-C) was a significant risk factor for lupus nephritis (P = 0.0015, OR 1.68, 95% CI 1.22-2.32). Additionally, all minor IFN3/4 SNP alleles were significantly associated with SLE susceptibility in nephritis-negative SLE patients as compared to normal healthy controls (rs8099917G, PFDR = 0.00177, OR 1.68, 95% CI 1.24-2.28; rs12979860T, PFDR = 0.00299, OR 1.58, 95% CI 1.18-2.32; rs4803217A, PFDR = 0.00176, OR 1.65, 95% CI 1.22-2.23; and ss469415590ΔG, PFDR = 0.00176, OR 1.70, 95% CI 1.26-2.29). Furthermore, the elevated serum levels of IFN-λ3 were significantly correlated with the complement depression and the high SLE disease activities in SLE patients. CONCLUSIONS IFN-λ3/4 genetic variants play a unique role in the development of lupus nephritis and SLE.
Collapse
Affiliation(s)
- Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Tao-Yuan, Taiwan
| | - Chin-Man Wang
- Department of Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Tao-Yuan, Taiwan
| | - Tai-Di Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Tao-Yuan, Taiwan
| | - Jing-Chi Lin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5, Fu-Shin St. Kwei-Shan, Tao-Yuan, Taiwan
| | - Ling Ying Lu
- Department of Medicine, Division of Allergy Immunology and Rheumatology, Kaohsiung Veterans General Hospital, No. 386, Dazhong 1st Rd, Zuoying District, Kaohsiung City, 81362 Taiwan
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, Department of Medicine, University of Minnesota, 235B Animal Science/Vet. Med. Bldg, 1988 Fitch Avenue, St. Paul, MN 55108 USA
| |
Collapse
|
24
|
Gao W, Wang R, Wang X, Wu H, Wang Y, Lu X, Li L, Zheng J, Li W. Vitamin D serum levels and receptor genetic polymorphisms are associated with hepatitis B virus and HIV infections and IFN-λ levels. Biomark Med 2017; 11:733-740. [PMID: 29493287 DOI: 10.2217/bmm-2017-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Vitamin D is involved in antiviral/antitumor activities. Its associations to hepatitis B virus (HBV), HIV and hepatocellular carcinoma (HCC) are unclear. MATERIALS & METHODS A retrospective study was conducted on 232 chronic hepatitis B (CHB) patients and 72 HIV-infected patients. The correlation between serum 25(OH)D3 and 25 vitamin D receptor single nucleotide polymorphisms to disease progression and interferons were evaluated. RESULTS The 25(OH)D3 was associated with HBV infection and progression. In HIV, it was linked to treatment responsiveness. In CHB, cirrhotic and HCC patients, it was associated with viral load. Fourteen single nucleotide polymorphisms were related to disease progression in HBV infection. In HCC, IFN-λ levels were associated with 25(OH)D3 levels negatively. CONCLUSION Serum vitamin D level and vitamin D receptor genetic polymorphisms are associated with CHB and HIV disease progression and IFN-λs.
Collapse
Affiliation(s)
- Wenfeng Gao
- Center of Interventional Oncology & Liver Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Wang
- Center of Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaojun Wang
- Department of Oncology, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Hao Wu
- Center of Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Wang
- Center of Interventional Oncology & Liver Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaofan Lu
- Center of Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Li Li
- Center of Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Jiasheng Zheng
- Center of Interventional Oncology & Liver Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Wei Li
- Center of Interventional Oncology & Liver Diseases, Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
25
|
Chiriac MT, Buchen B, Wandersee A, Hundorfean G, Günther C, Bourjau Y, Doyle SE, Frey B, Ekici AB, Büttner C, Weigmann B, Atreya R, Wirtz S, Becker C, Siebler J, Neurath MF. Activation of Epithelial Signal Transducer and Activator of Transcription 1 by Interleukin 28 Controls Mucosal Healing in Mice With Colitis and Is Increased in Mucosa of Patients With Inflammatory Bowel Disease. Gastroenterology 2017; 153:123-138.e8. [PMID: 28342759 DOI: 10.1053/j.gastro.2017.03.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS We investigated the roles of interleukin 28A (also called IL28A or interferon λ2) in intestinal epithelial cell (IEC) activation, studying its effects in mouse models of inflammatory bowel diseases (IBD) and intestinal mucosal healing. METHODS Colitis was induced in C57BL/6JCrl mice (controls), mice with IEC-specific disruption of Stat1 (Stat1IEC-KO), mice with disruption of the interferon λ receptor 1 gene (Il28ra-/-), and mice with disruption of the interferon regulatory factor 3 gene (Irf3-/-), with or without disruption of Irf7 (Irf7-/-). We used high-resolution mini-endoscopy and in vivo imaging methods to assess colitis progression. We used 3-dimensional small intestine and colon organoids, along with RNA-Seq and gene ontology methods, to characterize the effects of IL28 on primary IECs. We studied the effects of IL28 on the human intestinal cancer cell line Caco-2 in a wound-healing assay, and in mice colon wounds. Colonic biopsies and resected tissue from patients with IBD (n = 62) and patients without colon inflammation (controls, n = 23) were analyzed by quantitative polymerase chain rection to measure expression of IL28A, IL28RA, and other related cytokines; biopsy samples were also analyzed by immunofluorescence to identify sources of IL28 production. IECs were isolated from patient tissues and incubated with IL28; signal transducer and activator of transcription 1 (STAT1) phosphorylation was measured by immunoblots and confocal imaging. RESULTS Lamina propria cells in colon tissues of patients with IBD, and mice with colitis, had increased expression of IL28 compared with controls; levels of IL28R were increased in the colonic epithelium of patients with IBD and mice with colitis. Administration of IL28 induced phosphorylation of STAT1 in primary human and mouse IECs, increasing with dose. Il28ra-/-, Irf3-/-, Irf3-/-Irf7-/-, as well as Stat1IEC-KO mice, developed more severe colitis after administration of dextran sulfate sodium than control mice, with reduced epithelial restitution. Il28ra-/- and Stat1IEC-KO mice also developed more severe colitis in response to oxazolone than control mice. We found IL28 to induce phosphorylation (activation) of STAT1 in epithelial cells, leading to their proliferation in organoid culture. Administration of IL28 to mice with induced colonic wounds promoted mucosal healing. CONCLUSIONS IL28 controls proliferation of IECs in mice with colitis and accelerates mucosal healing by activating STAT1. IL28 might be developed as a therapeutic agent for patients with IBD.
Collapse
Affiliation(s)
- Mircea T Chiriac
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Barbara Buchen
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexandra Wandersee
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Gheorghe Hundorfean
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yvonne Bourjau
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Benjamin Frey
- Department of Radiation Oncology, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Core Unit Genomics, Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Büttner
- Core Unit Genomics, Institute of Human Genetics, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Benno Weigmann
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Raja Atreya
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany; Ludwig Demling Endoscopy Center of Excellence, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Becker
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jürgen Siebler
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Medical Clinic 1, Department of Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany; Ludwig Demling Endoscopy Center of Excellence, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
26
|
Heidari Z, Moudi B, Mahmoudzadeh-Sagheb H, Moudi M. The association between interleukin-28B gene polymorphisms as a potential biomarker and the risk of chronic Periodontitis in an Iranian population. Head Face Med 2017; 13:16. [PMID: 28655358 PMCID: PMC5485623 DOI: 10.1186/s13005-017-0148-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/08/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chronic Periodontitis (CP) is a common inflammatory disease affects supporting tissues of the teeth and can lead to tooth loss. The objective of this study was to determine the relationship between polymorphisms in the IL-28B gene and chronic periodontitis in an Iranian population. METHODS Two hundred and ten CP patients and one hundred healthy subjects were enrolled in the present case-control study. The rs12979860 and rs8099917 SNPs were identified using RFLP and T-ARMS-PCR methods respectively. RESULTS SNP analysis revealed that the G allele of rs8099917 SNP and T allele of rs12979860 SNP increased susceptibility to CP compared to the A allele and C allele (p < 0.0001, OR = 2.712, CI = 1.783-4.126; p < 0.0001, OR = 2.538, CI = 1.784-3.613 respectively). In addition, the CT/GT, TT/GG and TT/GT haplotypes were predominant in CP patients and significantly associated with the increased risk of CP. CONCLUSION IL-28B polymorphisms may be useful predictive factors for chronic periodontitis and correlated to the susceptibility to CP infection in our population.
Collapse
Affiliation(s)
- Zahra Heidari
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnoosh Moudi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Bai M, Li W, Yu N, Zhang H, Long F, Zeng A. The crosstalk between β-catenin signaling and type I, type II and type III interferons in lung cancer cells. Am J Transl Res 2017; 9:2788-2797. [PMID: 28670369 PMCID: PMC5489881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND/OBJECTIVE IFNs induce potent antiviral and antitumor activities. β-catenin pathway is a surviving pathway adapted by carcinogenetic mechanisms of various cancers. Crosstalk between these pathways has not been well described in lung cancer cells. METHODS Lung cancer cell lines, A549 and Calu-3, were used in this study. β-catenin protein levels and signaling activities were tested by flow cytometry and luciferase assay. Cell proliferation was measured by counting viable cells under microscope, and apoptosis by TUNEL assay and caspase 3 activation. DKK1 and GSK3β levels were tested by flow cytometry. Secreted DKK1 was measured by ELISA. αDKK1 , FLUD and S3I were to inhibit DKK1, STAT1 and STAT3 activities, respectively. RESULTS All of IFNα, IFNγ and IFNλ1 suppressed β-catenin signaling in A549 and Calu-3 cells, where IFNγ was the strongest (P<0.05). They inhibited cellular proliferation and promoted apoptosis. IFNγ gave greater induction ability compared to IFNα and IFNλ1 (P<0.05). All tested IFNs promoted DKK1 activation but not GSK3β in A549 and Calu-3 cells. IFNs activated STAT1 and STAT3. But only STAT3 was vital for IFN-mediated DKK1 activation and apoptosis. Plus, DKK1 antagonist abrogated IFN-mediated apoptosis. The degree of STAT3 activation was corresponding to the level of apoptosis induced by different IFNs (P<0.05). CONCLUSIONS In lung cancer cells, all three types of IFNs can induce apoptosis via suppressing β-catenin signaling by a STAT3- and DKK1-dependent manner. This findings demonstrate a link between IFNs and β-catenin signaling, which may possess potentials on the development of novel therapeutic measures against lung cancer.
Collapse
Affiliation(s)
- Ming Bai
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| | - Wei Li
- Center of Interventional Oncology and Liver Diseases, Beijing You’an Hospital, Capital Medical UniversityBeijing 100069, China
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| | - Hailin Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| | - Fei Long
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| | - Ang Zeng
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing 100730, China
| |
Collapse
|
28
|
Fragale A, Romagnoli G, Licursi V, Buoncervello M, Del Vecchio G, Giuliani C, Parlato S, Leone C, De Angelis M, Canini I, Toschi E, Belardelli F, Negri R, Capone I, Presutti C, Gabriele L. Antitumor Effects of Epidrug/IFNα Combination Driven by Modulated Gene Signatures in Both Colorectal Cancer and Dendritic Cells. Cancer Immunol Res 2017; 5:604-616. [PMID: 28615266 DOI: 10.1158/2326-6066.cir-17-0080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/12/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Colorectal cancer results from the progressive accumulation of genetic and epigenetic alterations. IFN signaling defects play an important role in the carcinogenesis process, in which the inability of IFN transcription regulatory factors (IRF) to access regulatory sequences in IFN-stimulated genes (ISG) in tumors and in immune cells may be pivotal. We reported that low-dose combination of two FDA-approved epidrugs, azacytidine (A) and romidepsin (R), with IFNα2 (ARI) hampers the aggressiveness of both colorectal cancer metastatic and stem cells in vivo and triggers immunogenic cell death signals that stimulate dendritic cell (DC) function. Here, we investigated the molecular signals induced by ARI treatment and found that this drug combination increased the accessibility to regulatory sequences of ISGs and IRFs that were epigenetically silenced in both colorectal cancer cells and DCs. Likewise, specific ARI-induced histone methylation and acetylation changes marked epigenetically affected ISG promoters in both metastatic cancer cells and DCs. Analysis by ChIP-seq confirmed such ARI-induced epigenetically regulated IFN signature. The activation of this signal endowed DCs with a marked migratory capability. Our results establish a direct correlation between reexpression of silenced ISGs by epigenetic control and ARI anticancer activity and provide new knowledge for the development of innovative combined therapeutic strategies for colorectal cancer. Cancer Immunol Res; 5(7); 604-16. ©2017 AACR.
Collapse
Affiliation(s)
- Alessandra Fragale
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Giulia Romagnoli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valerio Licursi
- Institute for System Analysis and Computer Science "Antonio Ruberti", Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Maria Buoncervello
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgia Del Vecchio
- Department of Biology and Biotechnologies "C. Darwin," Sapienza University, Rome, Italy
| | - Caterina Giuliani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Parlato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Celeste Leone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marta De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Irene Canini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Toschi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin," Sapienza University, Rome, Italy.,Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Imerio Capone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Presutti
- Department of Biology and Biotechnologies "C. Darwin," Sapienza University, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
29
|
de la Fuente S, Citores MJ, Duca A, Cisneros E, Baños I, Vilches C, Cuervas-Mons V. Interleukin-28B TT genotype is frequently found in patients with hepatitis C virus cirrhosis but does not influence hepatocarcinogenesis. Clin Exp Med 2017; 17:217-223. [PMID: 27083168 DOI: 10.1007/s10238-016-0418-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/31/2016] [Indexed: 02/08/2023]
Abstract
Persistent hepatitis C virus (HCV) infection is associated with progressive hepatic fibrosis and ultimately hepatocellular carcinoma. The interleukin-28B (IL28B) rs12979860 polymorphism is associated with fibrosis progression in chronic HCV infection. IL28B encodes interferon-λ, which has both antiviral and anti-proliferative properties. This study aimed to determine whether IL28B rs12979860 polymorphism is also associated with development of hepatocellular carcinoma both in chronic HCV infection and in non-viral-related cirrhosis. Real-time polymerase chain reaction and melting curve analyses were used to genotype 311 patients who underwent liver transplantation for HCV cirrhosis (n = 202) or alcoholic cirrhosis (n = 109). HCV patients were older (p = 0.012) and less likely males (p < 0.001) than patients with alcoholic cirrhosis. IL28B rs12979860 TT genotype [OR 6.08, 95 % CI 2.11-17.53; p < 0.001] and T allele carriage (CT + TT; OR 2.3, CI 95 % 1.42-3.72; p = 0.001) were more frequent among HCV patients and, among them, more common in patients infected with HCV genotype 1 (CT + TT; OR 1.79, CI 95 % 1.03-3.09; p = 0.009). Incidence of hepatocellular carcinoma was higher in HCV cirrhosis (OR 2.7, CI 95 % 1.5-4.7; p < 0.001), with no differences according to HCV genotype. IL28B genotype distribution was similar among patients with or without hepatocellular carcinoma, in both HCV patients regardless viral genotype (p = 0.84) and alcoholic patients (p = 0.91). Multivariate analysis showed that older age (OR 1.06, CI 95 % 1.02-1.1; p = 0.003) and male gender (OR 2.49, CI 95 % 1.24-5; p = 0.01) were independent risk factors for hepatocellular carcinoma in HCV patients. In summary, the current study did not find a significant association between IL28B rs12979860 polymorphism and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Sara de la Fuente
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - María-Jesús Citores
- Servicio de Medicina Interna, Instituto de Investigación Sanitaria del Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain.
| | - Ana Duca
- Unidad de Trasplante Hepático, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Elisa Cisneros
- Grupo de Inmunogenética e Histocompatibilidad, Servicio de Inmunología, Instituto de Investigación Sanitaria del Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Isolina Baños
- Unidad de Trasplante Hepático, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Carlos Vilches
- Grupo de Inmunogenética e Histocompatibilidad, Servicio de Inmunología, Instituto de Investigación Sanitaria del Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Valentín Cuervas-Mons
- Unidad de Trasplante Hepático, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
- Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Abstract
Type-III interferons (IFN-λ), the most recently discovered family of IFNs, shares common features with other family members, but also has many distinctive activities. IFN-λ uniquely has a different receptor complex, and a more focused pattern of tissue expression and signaling effects, from other classes of IFNs. Multiple genome-wide association studies (GWAS) and subsequent validation reports suggest a pivotal role for polymorphisms near the IFNL3 gene in hepatitis C clearance and control, as also for several other epithelial cell tropic viruses. Apart from its antiviral activity, IFN-λ possesses anti-tumor, immune-inflammatory and homeostatic functions. The overlapping effects of IFN-λ with type I IFN, with a restricted tissue expression pattern renders IFN-λ an attractive therapeutic target for viral infection, cancer and autoimmune diseases, with limited side effects. Areas covered: This review will summarize the current and future therapeutic opportunities offered by this most recently discovered family of interferons. Expert opinion: Our knowledge on IFN-λ is rapidly expanding. Though there are many remaining questions and challenges that require elucidation, the unique characteristics of IFN-λ increases enthusiasm that multiple therapeutic options will emerge.
Collapse
Affiliation(s)
- Mohammed Eslam
- a Storr Liver Centre, Westmead Institute for Medical Research , Westmead Hospital and University of Sydney , Sydney , Australia
| | - Jacob George
- a Storr Liver Centre, Westmead Institute for Medical Research , Westmead Hospital and University of Sydney , Sydney , Australia
| |
Collapse
|
31
|
Lasfar A, Gogas H, Zloza A, Kaufman HL, Kirkwood JM. IFN-λ cancer immunotherapy: new kid on the block. Immunotherapy 2016; 8:877-88. [PMID: 27381684 PMCID: PMC5619162 DOI: 10.2217/imt-2015-0021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/21/2016] [Indexed: 02/08/2023] Open
Abstract
Interferon-lambda (IFN-λ) is a new IFN type, related to IFN-α, that is commonly used in the clinic. However, significant side effects accompanying IFN-α treatment limit enthusiasm for IFN-α. In this review, we discuss the current landscape of IFN-α use in oncology and describe the biologic characteristics of IFN-λ. IFN-λ offers unique advantages, including a more tumor cell selective targeting, lower off-target binding and an ability to generate both innate and adaptive immune responses. IFN-λ has also demonstrated therapeutic benefit in murine cancer models. IFN-λ may be used in clinic as a single agent or in combination with other immunotherapy agents, such as immune checkpoint inhibitors. Further clinical trials will be needed to fully elucidate the potential of this novel agent in oncology.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Helen Gogas
- First Department of Medicine, Medical School, University of Athens, Athens, Greece
| | - Andrew Zloza
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Howard L Kaufman
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - John M Kirkwood
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Medical Center, PA, USA
| |
Collapse
|
32
|
Bakre A, Wu W, Hiscox J, Spann K, Teng MN, Tripp RA. Human respiratory syncytial virus non-structural protein NS1 modifies miR-24 expression via transforming growth factor-β. J Gen Virol 2016; 96:3179-3191. [PMID: 26253191 DOI: 10.1099/jgv.0.000261] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a major health challenge in the young and elderly owing to the lack of a safe and effective vaccine and proven antiviral drugs. Understanding the mechanisms by which viral genes and proteins modulate the host response to infection is critical for identifying novel disease intervention strategies. In this study, the RSV non-structural protein NS1 was shown to suppress miR-24 expression during infection. Lack of NS1 was linked to increased expression of miR-24, whilst NS1 overexpression suppressed miR-24 expression. NS1 was found to induce Kruppel-like factor 6 (KLF6), a transcription factor that positively regulates the transforming growth factor (TGF)-b pathway to induce cell cycle arrest. Silencing of KLF6 led to increased miR-24 expression via downregulation of TGF-β. Treatment with exogenous TGF-β suppressed miR-24 expression and induced KLF6. Confocal microscopy showed co-localization of KLF6 and RSV NS1. These findings indicated that RSV NS1 interacts with KLF6 and modulates miR-24 expression and TGF-β, which facilitates RSV replication.
Collapse
Affiliation(s)
- Abhijeet Bakre
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Weining Wu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Julian Hiscox
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Kirsten Spann
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Michael N Teng
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Heidari Z, Moudi B, Mahmoudzadeh-Sagheb H, Hashemi M. The Correlation Between Interferon Lambda 3 Gene Polymorphisms and Susceptibility to Hepatitis B Virus Infection. HEPATITIS MONTHLY 2016; 16:e34266. [PMID: 27226800 PMCID: PMC4875561 DOI: 10.5812/hepatmon.34266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/31/2016] [Accepted: 02/08/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cytokines are proteins that mediate innate and adaptive immunity responses. It is hypothesized that interferon lambda 3 (IFNL3) levels can influence the outcome of chronic hepatitis B virus (HBV) infection. Polymorphisms in IFN genes have been associated with response to infection. OBJECTIVES This study was carried-out to investigate the association of IFNL3 gene polymorphisms (rs12979860 and rs8099917) with HBV susceptibility, in chronic HBV-infected patients. PATIENTS AND METHODS In this case-control study, we determined IFNL3 single nucleotide polymorphisms (SNPs) (rs12979860 and rs8099917) in 221 individuals, with chronic HBV infection, and 200 healthy individuals, who were voluntary blood donors, with negative test for HBV. Alleles and genotypes analyses were performed by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods. RESULTS The frequencies of the rs12979860 and rs8099917 genotypes were not significantly different between the HBV-infected and the control groups (CC:CT:TT of 30.3%:48.0%:21.7% vs. 33.0%:49.0%:18.0%, P > 0.05, and GG:GT:TT of 5.8%:39.4%:54.8% vs. 5.0%:41.0%:54.0%, P > 0.05, respectively). Also, the frequencies of the alleles were not significantly different between both groups (C:T of 54.3%:45.7% vs. 57.5%:42.5%, P > 0.05, and G:T of 25.6%:74.4% vs. 25.5%:74.5%, P > 0.05, respectively) and the chronic HBV infection. There were no significant differences between patients, with at least one rs12979860C and or rs8099917T alleles compared to the healthy controls (rs12979860: CT + CC:TT, OR = 1.26, 95%CI = 0.78 - 2.04, P = 0.341 and rs8099917: GT + TT:GG, OR = 1.03, 95%CI = 0.70 - 1.51, P = 0.877, respectively). CONCLUSIONS Our study showed no correlation between rs12979860 and rs8099917 SNPs and chronic HBV infection. Further studies, with larger sample sizes and different ethnicities, are necessary to validate our findings.
Collapse
Affiliation(s)
- Zahra Heidari
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
| | - Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Corresponding Author: Bita Moudi, Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran. Tel: +98-5433295794, Fax: +98-5433295794, E-mail:
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, IR Iran
| |
Collapse
|
34
|
Wang Y, Wang D, Guo D. Interictal cytokine levels were correlated to seizure severity of epileptic patients: a retrospective study on 1218 epileptic patients. J Transl Med 2015; 13:378. [PMID: 26626560 PMCID: PMC4666166 DOI: 10.1186/s12967-015-0742-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 11/25/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Many aspects on the correlation between epilepsy and cytokine levels were unclear. This study aims to investigate the correlations between cytokine levels and severe epilepsy. METHODS Totally 1218 epileptic patients were grouped by types of epilepsy: TLE (temporal lobe epilepsy, n = 409), XLE (extra-temporal lobe epilepsy, n = 290) and IGE (idiopathic generalized epilepsy, n = 519). Two hundred healthy volunteers were as controls. Clinical findings and levels of 14 serum and CSF cytokines and 6 STAT members were collected, measured and analyzed. RESULTS Analysis showed no differences in interictal cytokine levels among patients from TLE, XLE and IGE groups. Interictal serum levels of IL-1b, IL-1Ra, IL-6, IL-8, IFNγ, IFNλ3 and IL-17a were associated with seizure severity of epileptic patients, measured by seizure frequency, VA score or NHS3. Multivariate regression analysis indicated that interictal concentrations of serum IL-6, IFNγ, IL-17a, IFNλ3, and CSF IL-6, IL-17a, IFNλ3 were significant biomarkers for patients with severe epilepsy. mRNA levels of IL-6, IFNγ, IL-17a, and IFNλ3 were elevated in different types of epilepsy. Activation of all STATs was elevated in epilepsy, and STAT3 was activated 9-fold in average, which was the highest among all STATs. CONCLUSIONS Interictal serum IL-6, IFNγ, IL-17a, IFNλ3, and CSF IL-6, IL-17a, IFNλ3 could be used as potential biomarkers for severe epilepsy. Activation of STATs, especially STAT3, was important in epilepsy. Our findings pointed out crucial roles of cytokine levels in epilepsy.
Collapse
Affiliation(s)
- Ye Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, Peoples' Republic of China.
| | - Desheng Wang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, Peoples' Republic of China.
| | - Dawen Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, Peoples' Republic of China.
| |
Collapse
|
35
|
Bu X, Wang M, Zhang J, Liu J, Jia L, Liang B, Yan Y. Recombinant adenovirus expressing hIFN-λ1 inhibits gastric adenocarcinoma cell line SGC-7901 proliferation. Oncol Lett 2015; 11:287-292. [PMID: 26870205 DOI: 10.3892/ol.2015.3890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 09/24/2015] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study is to investigate the effect of a recombinant plasmid adenovirus (pAd) expressing human interferon-λ1 (hIFN-λ1) on the proliferation of the gastric adenocarcinoma cell line SGC-7901. For this purpose, human gastric adenocarcinoma SGC-7901 cells were infected with recombinant pAd-hIFN-λ1, pAd-LacZ and phosphate-buffered saline (PBS), respectively, and the subsequent effects on the proliferation of the infected cells were compared. Cell proliferation was evaluated by MTT assay, while mRNA and protein expression of hIFN-λ1 were detected by reverse transcription-polymerase chain reaction analysis and immunofluorescence assay, respectively. In addition, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay and flow cytometry were conducted to analyze the rate of cell apoptosis. The results indicated that the proliferation of gastric adenocarcinoma SGC-7901 cells was significantly inhibited by pAd-hIFN-λ1. Furthermore, the apoptosis rate and the mRNA and protein expression levels of hIFN-λ1 were higher in pAd-hIFN-λ1-transfected cells, compared with the pAd-LacZ and PBS control groups. In conclusion, recombinant pAd-hIFN-λ1 induced the expression of hIFN-λ1 in gastric adenocarcinoma SGC-7901 cells, and significantly inhibited cell proliferation by promoting apoptosis in these cancer cells.
Collapse
Affiliation(s)
- Xuefeng Bu
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Mubin Wang
- Department of Surgical Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jie Zhang
- Department of Surgical Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jun Liu
- Department of Surgical Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Lijuan Jia
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bing Liang
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yulan Yan
- Department of Respiratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
36
|
Song B, Yang Y, Wang YL, Fan XH, Huang YM, Ci HS, Zuo JH. Adenovirus expressing IFN-λ (Ad/hIFN-λ) produced anti-tumor effects through inducing apoptosis in human tongue squamous cell carcinoma cell. Int J Clin Exp Med 2015; 8:12509-12518. [PMID: 26550161 PMCID: PMC4612846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 08/01/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the potential therapeutic effects of adenovirus expressing IFN-λ1 and IFN-λ2 (Ad/hIFN-λ) in treating squamous cell carcinoma of the oral tongue (SCCOT) and to explore the underlying mechanisms. METHODS Two SCCOT cell lines HSC-3 and Tca8113 were adopted as study objects. Cell Counting Kit-8 (CCK-8) cell proliferation and viability assay was performed to evaluate the antiproliferative effects of Ad/hIFN-λ and IFN-λ treatments at different dosages. Flow cytometry (FCM) was performed to investigate the apoptosis rate induced by Ad/hIFN-λ. In vivo study was performed through evaluating tumorigenicity and tumor volume on BALB/c nu/nu mice inoculated with HSC-3 cells with or without infection of Ad/hIFN-λ. qPCR was used to screen important apoptosis related genes expression and western blot (WB) was performed to verify the results. WB was also used to test the phosphorylation of STATs protein in the JAK/STAT signaling pathways. RESULTS Our results indicated an obvious antiproliferative effect of Ad/hIFN-λ in vitro on infected HSC-3 and Tca8113 cells. The antiproliferative effects started to appear at 48 h (day 2) after infection. IFN-λs alone treating HSC-3 and Tca8113 cells also showed a dose-dependent inhibitory manner. Though the antiproliferative effects did not show on 24 h (day 1), early apoptosis rate already increased significantly in cells infected with Ad/hIFN-λ (P<0.05) detected by FCM. The underlying mechanisms of antiproliferative activity rely on the IFN-λ signaling by phosphorylation of STATs protein. Expression of Bax, Bcl-2 and Caspase-3 were promoted by Ad/hIFN-λ leading to higher apoptosis rate. Upper stream of p21 and Rb dephosphorylation explained the Caspase-3 activation. Animal study showed that HSC-3 cells infected with Ad/hIFN-λ significantly promoted the survival rate and decreased mean tumor volume comparing to HSC-3 cells group. CONCLUSION Ad/hIFN-λ injection had obvious antiproliferative effects on HSC-3 and Tca8113 cells. Ad/hIFN-λ induced apoptosis in SCCOT cells through increasing Bcl-2, Bax and Caspase-3 expression. Ad/hIFN-λ is a potential therapeutic strategy in treating oral tongue carcinoma.
Collapse
Affiliation(s)
- Bing Song
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| | - Yong Yang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| | - Yan-Li Wang
- Department of Stomatology, Binzhou People’s HospitalBinzhou 256600, China
| | - Xiao-Hui Fan
- Department of Stomatology, Binzhou People’s HospitalBinzhou 256600, China
| | - Yu-Mei Huang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| | - Hao-Su Ci
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| | - Jin-Hua Zuo
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University HospitalBinzhou 256603, China
| |
Collapse
|
37
|
Abstract
When type III interferon (IFN-λ; also known as interleukin-28 [IL-28] and IL-29) was discovered in 2003, its antiviral function was expected to be analogous to that of type I IFNs (IFN-α and IFN-β) via the induction of IFN-stimulated genes (ISGs). Although IFN-λ stimulates expression of antiviral ISGs preferentially in cells of epithelial origin, recent studies have defined additional antiviral mechanisms in other cell types and tissues. Viral infection models using mice lacking IFN-λ signaling and SNP associations with human disease have expanded our understanding of the contribution of IFN-λ to the antiviral response at anatomic barriers and the immune response beyond these barriers. In this review, we highlight recent insights into IFN-λ functions, including its ability to restrict virus spread into the brain and to clear chronic viral infections in the gastrointestinal tract. We also discuss how IFN-λ modulates innate and adaptive immunity, autoimmunity, and tumor progression and its possible therapeutic applications in human disease.
Collapse
Affiliation(s)
- Helen M Lazear
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Nice
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
38
|
Voigt EA, Yin J. Kinetic Differences and Synergistic Antiviral Effects Between Type I and Type III Interferon Signaling Indicate Pathway Independence. J Interferon Cytokine Res 2015; 35:734-47. [PMID: 25938799 DOI: 10.1089/jir.2015.0008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The spread of acute respiratory viral infections is controlled by type I and III interferon (IFN) signaling. While the mechanisms of type I IFN signaling have been studied in detail, features that distinguish type III IFN signaling remain poorly understood. Type III IFNs play an essential role in limiting infections of intestinal and respiratory epithelial surfaces; however, type III IFNs have been shown to activate similar genes to type I IFNs, raising the question of how these IFNs differ and their signals interact. We measured the kinetics of type I and III IFN activation, functional stability, and downstream antiviral responses on A549 human lung epithelial cells. Similar kinetics were found for transcriptional upregulation and secretion of type I and III IFNs in response to infection by an RNA virus, peaking at 12 h postinfection, and both protein types had similar stabilities with functional half-lives extending beyond 2 days. Both IFNs activated potent cellular antiviral responses; however, responses to type III IFNs were delayed by 2-6 h relative to type I IFN responses. Combined treatments with type I and III IFNs produced enhanced antiviral effects, and quantitative analysis of these data with a Bliss interaction model provides evidence for independence of type I and III IFN downstream signaling pathways. This novel synergistic interaction has therapeutic implications for treatment of respiratory virus infections.
Collapse
Affiliation(s)
- Emily A Voigt
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin.,2 Systems Biology Theme, Wisconsin Institute for Discovery , Madison, Wisconsin
| | - John Yin
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison , Madison, Wisconsin.,2 Systems Biology Theme, Wisconsin Institute for Discovery , Madison, Wisconsin
| |
Collapse
|
39
|
Stiff A, Carson W. Investigations of interferon-lambda for the treatment of cancer. J Innate Immun 2015; 7:243-50. [PMID: 25661266 DOI: 10.1159/000370113] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/25/2014] [Indexed: 11/19/2022] Open
Abstract
Interferon-lambda (IFN-λ), a recently discovered cytokine, overlaps broadly with type I IFN signaling, producing antiviral, antiproliferative, and proapoptotic responses. In comparison to type I IFNs, IFN-λ has a limited spectrum of responsive tissues due to variation in expression of the IFN-λ receptor IFNLR1. Type I IFNs have been investigated for their antitumor effects and used in the clinical setting for a number of different cancers. Given the overlap in signaling and function between IFN-λ and type I IFNs, IFN-λ has also drawn interest for the treatment of cancer. To date, a number of studies using both murine and human models of cancer have investigated the antitumor effects of IFN-λ. These studies have found that IFN-λ is capable of directly targeting cancer cells to reduce their tumorigenicity, induce cell cycle arrest, and cause apoptosis. In addition, IFN-λ has been shown to have indirect effects against cancer cells through immune system responses and immune modulatory effects. This review aims to detail the findings of studies investigating IFN-λ for the treatment of cancer as well as suggest areas of potential interest for future studies.
Collapse
Affiliation(s)
- Andrew Stiff
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
40
|
Galani IE, Koltsida O, Andreakos E. Type III interferons (IFNs): Emerging Master Regulators of Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:1-15. [PMID: 26324342 DOI: 10.1007/978-3-319-15774-0_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lambda interferons (IFN-λs), type III interferons or interleukins 28 and 29 are the latest addition to the class II cytokine family. They share low homology with the interferon (IFN) and IL-10 cytokine families, yet they exhibit common and unique activities, the full spectrum of which still remains incompletely understood. Although initially described for their antiviral functions, it is now appreciated that IFN-λs also mediate diverse antitumor and immune-modulatory effects, and are key determinants of innate immunity at mucosal sites such as the gastrointestinal and respiratory tracks. Here, we are reviewing the biological functions of IFN-λs, the mechanisms controlling their expression, their downstream effects and their role in the maintenance of homeostasis and disease. We are also exploring the potential application of IFN-λs as novel therapeutics.
Collapse
Affiliation(s)
- Ioanna E Galani
- Department of Immunology, Center for Translational and Clinical Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | | | | |
Collapse
|
41
|
Interleukin-28A enhances autoimmune disease in a retinal autoimmunity model. Cytokine 2014; 70:179-84. [PMID: 25138017 DOI: 10.1016/j.cyto.2014.07.252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 07/04/2014] [Accepted: 07/24/2014] [Indexed: 11/20/2022]
Abstract
Interleukin-28A (IL-28A), a member of type III interferons (IFN-λs), promotes antiviral, antitumor and immune responses. However, its ability to regulate autoimmune diseases is poorly understood. In this study, we examined the effect of IL-28A on retinal antigen-induced experimental autoimmune uveoretinitis (EAU), a mouse model of human T-cell-mediated autoimmune eye disease. We found that administration of IL-28A enhanced EAU scores and autoimmune response parameters including delayed-type hypersensitivity (DTH), Ag-specific T cell proliferation and the production of Ag-specific IL-17 and IFN-γ in the priming phase. The effect of IL-28A was abrogated by administration of a neutralizing antibody against IL-28A. Our results suggest that IL-28A is capable of exacerbating a T-cell-mediated autoimmune disease. Thus, targeting IL-28A may provide a new therapeutic approach to T cell-mediated autoimmune diseases such as uveitis.
Collapse
|
42
|
Tian S, Hui X, Fan Z, Li Q, Zhang J, Yang X, Ma X, Huang B, Chen D, Chen H. Suppression of hepatocellular carcinoma proliferation and hepatitis B surface antigen secretion with interferon-λ1 or PEG-interferon-λ1. FASEB J 2014; 28:3528-39. [PMID: 24769671 DOI: 10.1096/fj.14-250704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer associated with chronic hepatitis B virus (HBV) infection. Conventional interferon-α (IFN-α) and pegylated IFNs (PEG-IFNs) approved for chronic HBV infection treatment can reduce the risk of HCC but are not suitable for the majority of patients and cause significant side effects. IFN-λ1 is a type III IFN with antiviral, antiproliferative, and immunomodulatory functions similar to type I IFNs but with fewer side effects. However, the tolerability and antitumor activity of PEG-IFN-λ1 in HCC xenograft mice are unknown. In vitro IFN-λ1 treatment of Hep3B and Huh7 human hepatoma cell lines increased MHC class I expression, activated JAK-STAT signaling pathways, induced IFN-stimulated gene expression, and inhibited hepatitis B surface antigen (HBsAg) expression. IFN-λ1 treatment also caused 23.2 and 19.9% growth inhibition of Hep3B and Huh7 cells, respectively, and promoted cellular apoptosis. PEG-IFN-λ1, but not IFN-λ1 treatment, significantly suppressed tumor growth (P=0.002) and induced tumor cell apoptosis in a Hep3B cell xenograft mouse model without significant weight loss or toxicity. PEG-IFN-λ1 also significantly inhibited (P=0.000) serum HBsAg secretion from Hep3B xenograft tumors in vivo. Thus, PEG-IFN-λ1 can suppress Hep3B xenograft tumor growth and inhibit HBsAg production and may be a potential treatment for HBV-related HCC.
Collapse
Affiliation(s)
- Shuo Tian
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Xiwu Hui
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and CSPC ZhongQi Pharmaceutical Technology, Shijiazhuang, China
| | - Zhenzhen Fan
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Qinshan Li
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Junwen Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Xia Yang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Xiaoli Ma
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Bingren Huang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Deng Chen
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| | - Hong Chen
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China; and
| |
Collapse
|
43
|
Li B, Xie C, Lin X, Su SB. Interleukin-28A promotes IFN-γ production by peripheral blood mononuclear cells from patients with Behçet's disease. Cell Immunol 2014; 290:116-9. [PMID: 24973639 DOI: 10.1016/j.cellimm.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/16/2014] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
Abstract
Behçet's disease (BD) is an autoimmune disease of unknown etiology. Interleukin-28A (IL-28A) promotes immune responses and may participate in the pathogenesis of autoimmune diseases. To examine the role of IL-28A in the pathogenesis of BD, we measured the expression of IFN-γ and IL-17 by IL-28A-stimulated peripheral blood mononuclear cells (PBMCs) from 19 patients with BD and 16 healthy individuals. We found that IFN-γ and IL-17 were undetectable in the sera from BD patients and control subjects. The mRNA expression and protein production of IFN-γ by IL-28A-stimulated PBMCs from BD patients were significantly increased compared to healthy individuals. No significant difference was observed in the mRNA expression and protein production of IL-17 by IL-28A-stimulated PBMCs between BD patients and normal individuals.
Collapse
Affiliation(s)
- Bing Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chufang Xie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaomin Lin
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shao Bo Su
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
44
|
Krupna-Gaylord MA, Liveris D, Love AC, Wormser GP, Schwartz I, Petzke MM. Induction of type I and type III interferons by Borrelia burgdorferi correlates with pathogenesis and requires linear plasmid 36. PLoS One 2014; 9:e100174. [PMID: 24945497 PMCID: PMC4063763 DOI: 10.1371/journal.pone.0100174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 05/23/2014] [Indexed: 12/28/2022] Open
Abstract
The capacity for Borrelia burgdorferi to cause disseminated infection in humans or mice is associated with the genotype of the infecting strain. The cytokine profiles elicited by B. burgdorferi clinical isolates of different genotype (ribosomal spacer type) groups were assessed in a human PBMC co-incubation model. RST1 isolates, which are more frequently associated with disseminated Lyme disease in humans and mice, induced significantly higher levels of IFN-α and IFN-λ1/IL29 relative to RST3 isolates, which are less frequently associated with disseminated infection. No differences in the protein concentrations of IFN-γ, IL-1β, IL-6, IL-8, IL-10 or TNF-α were observed between isolates of differing genotype. The ability of B. burgdorferi to induce type I and type III IFNs was completely dependent on the presence of linear plasmid (lp) 36. An lp36-deficient B. burgdorferi mutant adhered to, and was internalized by, PBMCs and specific dendritic cell (DC) subsets less efficiently than its isogenic B31 parent strain. The association defect with mDC1s and pDCs could be restored by complementation of the mutant with the complete lp36. The RST1 clinical isolates studied were found to contain a 2.5-kB region, located in the distal one-third of lp36, which was not present in any of the RST3 isolates tested. This divergent region of lp36 may encode one or more factors required for optimal spirochetal recognition and the production of type I and type III IFNs by human DCs, thus suggesting a potential role for DCs in the pathogenesis of B. burgdorferi infection.
Collapse
Affiliation(s)
- Michelle A. Krupna-Gaylord
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Dionysios Liveris
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Andrea C. Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Mary M. Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Hellesen A, Edvardsen K, Breivik L, Husebye ES, Bratland E. The effect of types I and III interferons on adrenocortical cells and its possible implications for autoimmune Addison's disease. Clin Exp Immunol 2014; 176:351-62. [PMID: 24666275 DOI: 10.1111/cei.12291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2014] [Indexed: 02/06/2023] Open
Abstract
Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ- and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD.
Collapse
Affiliation(s)
- A Hellesen
- Section for Endocrinology, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
46
|
Sato M, Kato N, Tateishi R, Muroyama R, Kowatari N, Li W, Goto K, Otsuka M, Shiina S, Yoshida H, Omata M, Koike K. IL28B minor allele is associated with a younger age of onset of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol 2014; 49:748-754. [PMID: 23689989 DOI: 10.1007/s00535-013-0826-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/22/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND IL28B polymorphisms were shown to be associated with a response to peg-interferon-based treatment in chronic hepatitis C (CHC) and spontaneous clearance. However, little is known about how this polymorphism affects the course of CHC, including the development of hepatocellular carcinoma (HCC). We evaluated the influence of IL28B polymorphisms on hepatocarcinogenesis in CHC patients. METHODS We genotyped the rs8099917 single-nucleotide polymorphism in 351 hepatitis C-associated HCC patients without history of IFN-based treatment, and correlated the age at onset of HCC in patients with each genotype. RESULTS Frequencies of TT, TG, and GG genotypes were 74.3 % (261/351), 24.8 % (87/351), and 0.9 % (3/351), respectively. The mean ages at onset of HCC for TT, TG, and GG genotypes were 69.9, 67.5 and 66.8, respectively. In multivariate analysis, IL28B minor allele (TG and GG genotypes) was an independent risk factor for younger age at onset of HCC (P = 0.02) in males (P < 0.001) with higher body mass index (BMI; P = 0.009). The IL28B minor allele was also associated with a lower probability of having aspartate aminotransferase-to-platelet ratio index (APRI) >1.5 (minor vs. major, 46.7 vs. 58.6 %; P = 0.01), lower AST (69.1 vs. 77.7 IU/L, P = 0.02), lower ALT (67.8 vs. 80.9 IU/L, P = 0.002), higher platelet count (12.8 vs. 11.2 × 10(4)/μL, P = 0.002), and higher prothrombin time (79.3 vs. 75.4 %, P = 0.002). CONCLUSIONS The IL28B minor allele was associated with lower inflammatory activity and less progressed fibrosis of the liver; however, it constituted a risk factor for younger-age onset of HCC in CHC patients.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ezzikouri S, Alaoui R, Rebbani K, Brahim I, Fakhir FZ, Nadir S, Diepolder H, Khakoo SI, Thursz M, Benjelloun S. Genetic variation in the interleukin-28B gene is associated with spontaneous clearance and progression of hepatitis C virus in Moroccan patients. PLoS One 2013; 8:e54793. [PMID: 23358556 PMCID: PMC3554614 DOI: 10.1371/journal.pone.0054793] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic variation in the IL28B gene has been strongly associated with treatment outcomes, spontaneous clearance and progression of the hepatitis C virus infection (HCV). The aim of the present study was to investigate the role of polymorphisms at this locus with progression and outcome of HCV infection in a Moroccan population. METHODS We analyzed a cohort of 438 individuals among them 232 patients with persistent HCV infection, of whom 115 patients had mild chronic hepatitis and 117 had advanced liver disease (cirrhosis and hepatocellular carcinoma), 68 individuals who had naturally cleared HCV and 138 healthy subjects. The IL28B SNPs rs12979860 and rs8099917 were genotyped using a TaqMan 5' allelic discrimination assay. RESULTS The protective rs12979860-C and rs8099917-T alleles were more common in subjects with spontaneous clearance (77.9% vs 55.2%; p = 0.00001 and 95.6% vs 83.2%; p = 0.0025, respectively). Individuals with clearance were 4.69 (95% CI, 1.99-11.07) times more likely to have the C/C genotype for rs12979860 polymorphism (p = 0.0017) and 3.55 (95% CI, 0.19-66.89) times more likely to have the T/T genotype at rs8099917. Patients with advanced liver disease carried the rs12979860-T/T genotype more frequently than patients with mild chronic hepatitis C (OR = 1.89; 95% CI, 0.99-3.61; p = 0.0532) and this risk was even more pronounced when we compared them with healthy controls (OR = 4.27; 95% CI, 2.08-8.76; p = 0.0005). The rs8099917-G allele was also associated with advanced liver disease (OR = 2.34; 95% CI, 1.40-3.93; p = 0.0100). CONCLUSIONS In the Moroccan population, polymorphisms near the IL28B gene play a role both in spontaneous clearance and progression of HCV infection.
Collapse
Affiliation(s)
- Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Rhimou Alaoui
- Service de Médecine B, CHU Ibn Rochd, Casablanca, Morocco
| | - Khadija Rebbani
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Ikram Brahim
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Fatima-Zohra Fakhir
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - Salwa Nadir
- Service de Médecine B, CHU Ibn Rochd, Casablanca, Morocco
| | - Helmut Diepolder
- Ludwig-Maximilians-Universität München, Marchioninistrasse, München, Germany
| | - Salim I. Khakoo
- University of Southampton, Tremona Road, Southampton, United Kingdom
| | - Mark Thursz
- Department of Hepatology, Division of Medicine, Imperial College, London, United Kingdom
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| |
Collapse
|
48
|
Lee DH, Cho Y, Seo JY, Kwon JH, Cho EJ, Jang ES, Kwak MS, Cheong JY, Cho SW, Lee JH, Yu SJ, Yoon JH, Lee HS, Kim CY, Shin HD, Kim YJ. Polymorphisms near interleukin 28B gene are not associated with hepatitis B virus clearance, hepatitis B e antigen clearance and hepatocellular carcinoma occurrence. Intervirology 2013; 56:84-90. [PMID: 23343781 DOI: 10.1159/000342526] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/10/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Polymorphisms near the IL28B gene have been proposed to be strongly associated with treatment response and the rate of spontaneous clearance of hepatitis C virus infection, and treatment response of hepatitis B virus (HBV) infection. In this study, we aimed to determine whether these polymorphisms could affect natural courses of HBV infection. METHODS Genetic variations were identified through direct DNA sequencing using TaqMan assay in 1,439 patients with past or present HBV infection. Subjects included 404 spontaneously recovered patients, 313 chronic hepatitis B (CHB) patients, 305 liver cirrhosis (LC) patients and 417 hepatocellular carcinoma (HCC) patients. Three polymorphisms near the IL28B gene, rs8099917T>G, rs12979860C>T and rs12980275A>G, were identified. Associations between these polymorphisms and HBV clearance, hepatitis B e antigen (HBeAg) clearance as well as HCC occurrence among patients were analyzed using logistic regression analyses adjusted for age and gender. RESULTS There were no significant associations between these polymorphisms and the HBV clearance both in CHB and LC groups. Similarly, these polymorphisms showed no significant associations with HBeAg clearance and the occurrence of HCC either. DISCUSSION No significant association was identified between polymorphisms near the IL28B gene and the natural courses of chronic HBV infection, including the HBV clearance and HCC occurrence.
Collapse
Affiliation(s)
- Dong Hyeon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang F, Xu L, Feng X, Guo D, Tan W, Zhang M. Interleukin-29 modulates proinflammatory cytokine production in synovial inflammation of rheumatoid arthritis. Arthritis Res Ther 2012; 14:R228. [PMID: 23078630 PMCID: PMC3580539 DOI: 10.1186/ar4067] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The immunoregulatory function of interleukin (IL)-29 has recently been recognized. However, little is known about the involvement of IL-29 in the pathogenesis of rheumatoid arthritis (RA). This study aimed to examine the expression profiles of IL-29 in blood, synovial fluid (SF) and synovium in RA patients and investigate the effect of IL-29 on cytokines production in RA synovial fibroblasts. METHODS The transcript levels of IL-29 and its specific receptor IL-28Rα in peripheral blood mononuclear cells (PBMC) and synovium were determined by real-time reverse transcription-polymerase chain reaction (real-time PCR). The concentrations of IL-29 in serum and synovial fluid (SF) were quantified by enzyme-linked immunoassay (ELISA), and the correlation of serum IL-29 levels with disease activity in RA patients was investigated. Furthermore, the expression of IL-29 in RA synovium was examined by immunohistochemistry and double immunofluorescence analysis. Finally, the expression of IL-6, IL-8, IL-10, IL-17 and matrix metalloproteinase-3 (MMP-3) in synovial fibroblasts upon IL-29 stimulation was determined by real-time PCR. RESULTS IL-29 and IL-28Rα mRNA expression in PBMC was significantly increased in patients with RA compared with healthy controls (HC). The serum levels of circulating IL-29 were higher in RA than those in HC. Increased IL-29 levels were detected in RA SF when compared with osteoarthritis (OA) SF. However, serum IL-29 levels showed no significant correlation with RA disease activity. IL-29 was mostly expressed in the lining region of RA synovium. Moreover, IL-29 was expressed predominately in synovial macrophages and fibroblasts. RA synovial fibroblasts exposed to IL-29 specifically upregulated IL-6, -8 and MMP-3 but downregulated IL-10. CONCLUSIONS The findings in the present study indicate, for the first time, that IL-29 is dysregulated in patients with RA, which may contribute to the RA pathogenesis via inducing the production of proinflammatory cytokines, chemokines or matrix metalloproteinases in synovial fibroblasts.
Collapse
Affiliation(s)
- Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Lingxiao Xu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Xiaoke Feng
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Dunming Guo
- Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wenfeng Tan
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Miaojia Zhang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
50
|
Schwartz SM, Schwartz HT, Horvath S, Schadt E, Lee SI. A systematic approach to multifactorial cardiovascular disease: causal analysis. Arterioscler Thromb Vasc Biol 2012; 32:2821-35. [PMID: 23087359 DOI: 10.1161/atvbaha.112.300123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The combination of systems biology and large data sets offers new approaches to the study of cardiovascular diseases. These new approaches are especially important for the common cardiovascular diseases that have long been described as multifactorial. This promise is undermined by biologists' skepticism of the spider web-like network diagrams required to analyze these large data sets. Although these spider webs resemble composites of the familiar biochemical pathway diagrams, the complexity of the webs is overwhelming. As a result, biologists collaborate with data analysts whose mathematical methods seem much like those of experts using Ouija boards. To make matters worse, it is not evident how to design experiments when the network implies that many molecules must be part of the disease process. Our goal is to remove some of this mystery and suggest a simple experimental approach to the design of experiments appropriate for such analysis. We will attempt to explain how combinations of data sets that include all possible variables, graphical diagrams, complementation of different data sets, and Bayesian analyses now make it possible to determine the causes of multifactorial cardiovascular disease. We will describe this approach using the term causal analysis. Finally, we will describe how causal analysis is already being used to decipher the interactions among cytokines as causes of cardiovascular disease.
Collapse
|