1
|
Wong-Benito V, de Rijke J, Dixon B. Antigen presentation in vertebrates: Structural and functional aspects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 144:104702. [PMID: 37116963 DOI: 10.1016/j.dci.2023.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 06/05/2023]
Abstract
Antigen presentation is a key process of the immune system and is responsible for the activation of T cells. The main characters are the major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules, and accessory proteins that act as chaperones for these glycoproteins. Current knowledge of this process and also the elucidation of the structural features of these proteins, has been extensively reviewed in humans. Unfortunately, this is not the case for non-human species, wherein the function and structural characteristic of the antigen presentation proteins is far from being understood. The majority of previous studies in non-human species, especially in teleost fish and lower vertebrates, are limited to the transcriptomic level, which leads to gaps in the knowledge about the functional process of antigen presentation in these species. This review summarizes what is known so far about antigen presentation pathways in vertebrates from a structural and functional perspective. The focus is not only on the MHC receptors, but also, on the forgotten characters of these pathways such as the proteins of the peptide loading complex, and the MHC-II chaperone invariant chain.
Collapse
Affiliation(s)
| | - Jill de Rijke
- Department of Biology, University of Waterloo, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Canada.
| |
Collapse
|
2
|
Antigen Translocation Machineries in Adaptive Immunity and Viral Immune Evasion. J Mol Biol 2015; 427:1102-18. [DOI: 10.1016/j.jmb.2014.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022]
|
3
|
Ashraf S, Nitschke K, Warshow UM, Brooks CR, Kim AY, Lauer GM, Hydes TJ, Cramp ME, Alexander G, Little AM, Thimme R, Neumann-Haefelin C, Khakoo SI. Synergism of tapasin and human leukocyte antigens in resolving hepatitis C virus infection. Hepatology 2013; 58:881-9. [PMID: 23532923 PMCID: PMC3759612 DOI: 10.1002/hep.26415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/21/2013] [Indexed: 01/15/2023]
Abstract
UNLABELLED CD8+ T-cell responses to hepatitis C virus (HCV) are important in generating a successful immune response and spontaneously clearing infection. Human leukocyte antigen (HLA) class I presents viral peptides to CD8+ T cells to permit detection of infected cells, and tapasin is an important component of the peptide loading complex for HLA class I. We sought to determine if tapasin polymorphisms affected the outcome of HCV infection. Patients with resolved or chronic HCV infection were genotyped for the known G/C coding polymorphism in exon 4 of the tapasin gene. In a European, but not a US, Caucasian population, the tapasin G allele was significantly associated with the outcome of HCV infection, being found in 82.5% of resolvers versus 71.3% of persistently infected individuals (P = 0.02, odds ratio [OR] = 1.90 95% confidence interval [CI] = 1.11-3.23). This was more marked at the HLA-B locus at which heterozygosity of both tapasin and HLA-B was protective (P < 0.03). Individuals with an HLA-B allele with an aspartate at residue 114 and the tapasin G allele were more likely to spontaneously resolve HCV infection (P < 0.00003, OR = 3.2 95% CI = 1.6-6.6). Additionally, individuals with chronic HCV and the combination of an HLA-B allele with an aspartate at residue 114 and the tapasin G allele also had stronger CD8+ T-cell responses (P = 0.02, OR = 2.58, 95% CI-1.05-6.5). CONCLUSION Tapasin alleles contribute to the outcome of HCV infection by synergizing with polymorphisms at HLA-B in a population-specific manner. This polymorphism may be relevant for peptide vaccination strategies against HCV infection.
Collapse
Affiliation(s)
- Shirin Ashraf
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem Sci 2013; 38:412-20. [PMID: 23849087 DOI: 10.1016/j.tibs.2013.06.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
Abstract
Recognition and elimination of virally or malignantly transformed cells are pivotal tasks of the adaptive immune system. For efficient immune detection, snapshots of the cellular proteome are presented as epitopes on major histocompatibility complex class I (MHC I) molecules for recognition by cytotoxic T cells. Knowledge about the track from the equivocal protein to the presentation of antigenic peptides has greatly expanded, leading to an astonishingly elaborate understanding of the MHC I peptide loading pathway. Here, we summarize the current view on this complex process, which involves ABC transporters, proteases, chaperones, and endoplasmic reticulum (ER) quality control. The contribution of individual proteins and subcomplexes is discussed, with a focus on the architecture and dynamics of the key player in the pathway, the peptide-loading complex (PLC).
Collapse
|
5
|
Boyle LH, Hermann C, Boname JM, Porter KM, Patel PA, Burr ML, Duncan LM, Harbour ME, Rhodes DA, Skjødt K, Lehner PJ, Trowsdale J. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc Natl Acad Sci U S A 2013; 110:3465-70. [PMID: 23401559 PMCID: PMC3587277 DOI: 10.1073/pnas.1222342110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tapasin is an integral component of the peptide-loading complex (PLC) important for efficient peptide loading onto MHC class I molecules. We investigated the function of the tapasin-related protein, TAPBPR. Like tapasin, TAPBPR is widely expressed, IFN-γ-inducible, and binds to MHC class I coupled with β2-microglobulin in the endoplasmic reticulum. In contrast to tapasin, TAPBPR does not bind ERp57 or calreticulin and is not an integral component of the PLC. β2-microglobulin is essential for the association between TAPBPR and MHC class I. However, the association between TAPBPR and MHC class I occurs in the absence of a functional PLC, suggesting peptide is not required. Expression of TAPBPR decreases the rate of MHC class I maturation through the secretory pathway and prolongs the association of MHC class I on the PLC. The TAPBPR:MHC class I complex trafficks through the Golgi apparatus, demonstrating a function of TAPBPR beyond the endoplasmic reticulum/cis-Golgi. The identification of TAPBPR as an additional component of the MHC class I antigen-presentation pathway demonstrates that mechanisms controlling MHC class I expression remain incompletely understood.
Collapse
Affiliation(s)
- Louise H Boyle
- Department of Pathology, Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Simone LC, Smith BL, Solheim JC. Impact of beta 2-microglobulin on tapasin expression and covalent association. Cell Immunol 2012; 279:66-9. [PMID: 23089196 DOI: 10.1016/j.cellimm.2012.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 01/19/2023]
Abstract
Cellular immunity is dependent on major histocompatibility complex (MHC) class I molecules enabling cytotoxic T cell recognition of malignant and infected cells. Loading of antigenic peptides onto MHC class I is assisted by a peptide-loading protein complex including tapasin. We found that tapasin expression is enhanced by beta 2-microglobulin via both transcriptional and post-transcriptional mechanisms. In addition, using conditions which preserve the tapasin-ERp57 disulfide-bonded conjugate, we demonstrated that beta 2-microglobulin increases tapasin-containing protein complexes, and reduces the level of MHC class I/ERp57 complexes lacking tapasin. Overall, our results provide a new perspective on the regulation of tapasin expression and association.
Collapse
Affiliation(s)
- Laura C Simone
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
7
|
Panter MS, Jain A, Leonhardt RM, Ha T, Cresswell P. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex. J Biol Chem 2012; 287:31172-84. [PMID: 22829594 PMCID: PMC3438949 DOI: 10.1074/jbc.m112.387704] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.
Collapse
Affiliation(s)
- Michaela S Panter
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | |
Collapse
|
8
|
Human cytomegalovirus disrupts the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription. J Virol 2011. [PMID: 21248040 DOI: 10.1128/jvi.01923-10.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides for CD8(+) T-cell recognition. Prior to cell surface expression, proper MHC I loading is conducted by the peptide-loading complex (PLC), composed of the MHC I heavy chain (HC) and β(2)-microglobulin (β(2)m), the peptide transporter TAP, and several chaperones, including tapasin. Tapasin connects peptide-receptive MHC I molecules to the PLC, thereby facilitating loading of high-affinity peptides onto MHC I. To cope with CD8(+) T-cell responses, human cytomegalovirus (HCMV) encodes several posttranslational strategies inhibiting peptide transport and MHC I biogenesis which have been studied extensively in transfected cells. Here we analyzed assembly of the PLC in naturally HCMV-infected fibroblasts throughout the protracted replication cycle. MHC I incorporation into the PLC was absent early in HCMV infection. Subsequently, tapasin neosynthesis became strongly reduced, while tapasin steady-state levels diminished only slowly in infected cells, revealing a blocked synthesis rather than degradation. Tapasin mRNA levels were continuously downregulated during infection, while tapasin transcripts remained stable and long-lived. Taking advantage of a novel method by which de novo transcribed RNA is selectively labeled and analyzed, an immediate decline of tapasin transcription was seen, followed by downregulation of TAP2 and TAP1 gene expression. However, upon forced expression of tapasin in HCMV-infected cells, repair of MHC I incorporation into the PLC was relatively inefficient, suggesting an additional level of HCMV interference. The data presented here document a two-pronged coordinated attack on tapasin function by HCMV.
Collapse
|
9
|
Human cytomegalovirus disrupts the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription. J Virol 2011; 85:3473-85. [PMID: 21248040 DOI: 10.1128/jvi.01923-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides for CD8(+) T-cell recognition. Prior to cell surface expression, proper MHC I loading is conducted by the peptide-loading complex (PLC), composed of the MHC I heavy chain (HC) and β(2)-microglobulin (β(2)m), the peptide transporter TAP, and several chaperones, including tapasin. Tapasin connects peptide-receptive MHC I molecules to the PLC, thereby facilitating loading of high-affinity peptides onto MHC I. To cope with CD8(+) T-cell responses, human cytomegalovirus (HCMV) encodes several posttranslational strategies inhibiting peptide transport and MHC I biogenesis which have been studied extensively in transfected cells. Here we analyzed assembly of the PLC in naturally HCMV-infected fibroblasts throughout the protracted replication cycle. MHC I incorporation into the PLC was absent early in HCMV infection. Subsequently, tapasin neosynthesis became strongly reduced, while tapasin steady-state levels diminished only slowly in infected cells, revealing a blocked synthesis rather than degradation. Tapasin mRNA levels were continuously downregulated during infection, while tapasin transcripts remained stable and long-lived. Taking advantage of a novel method by which de novo transcribed RNA is selectively labeled and analyzed, an immediate decline of tapasin transcription was seen, followed by downregulation of TAP2 and TAP1 gene expression. However, upon forced expression of tapasin in HCMV-infected cells, repair of MHC I incorporation into the PLC was relatively inefficient, suggesting an additional level of HCMV interference. The data presented here document a two-pronged coordinated attack on tapasin function by HCMV.
Collapse
|
10
|
Lian L, Qu L, Zheng J, Liu C, Zhang Y, Chen Y, Xu G, Yang N. Expression profiles of genes within a subregion of chicken major histocompatibility complex B in spleen after Marek’s disease virus infection. Poult Sci 2010; 89:2123-9. [DOI: 10.3382/ps.2010-00919] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
11
|
Schölz C, Tampé R. The peptide-loading complex--antigen translocation and MHC class I loading. Biol Chem 2009; 390:783-94. [PMID: 19426129 DOI: 10.1515/bc.2009.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A large and dynamic membrane-associated machinery orchestrates the translocation of antigenic peptides into the endoplasmic reticulum (ER) lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. The peptide-loading complex ensures that only high-affinity peptides, which guarantee long-term stability of MHC I complexes, are presented to T-lymphocytes. Adaptive immunity is dependent on surface display of the cellular proteome in the form of protein fragments, thus allowing efficient recognition of infected or malignant transformed cells. In this review, we summarize recent findings of antigen translocation by the transporter associated with antigen processing and loading of MHC class I molecules in the ER, focusing on the mechanisms involved in this process.
Collapse
Affiliation(s)
- Christian Schölz
- Institute of Biochemistry, Biocenter, Center for Membrane Proteomics (CMP) and Cluster of Excellence (CEF)-Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany
| | | |
Collapse
|
12
|
Schneeweiss C, Garstka M, Smith J, Hütt MT, Springer S. The mechanism of action of tapasin in the peptide exchange on MHC class I molecules determined from kinetics simulation studies. Mol Immunol 2009; 46:2054-63. [DOI: 10.1016/j.molimm.2009.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 01/08/2023]
|
13
|
Wearsch PA, Cresswell P. The quality control of MHC class I peptide loading. Curr Opin Cell Biol 2008; 20:624-31. [PMID: 18926908 PMCID: PMC2650229 DOI: 10.1016/j.ceb.2008.09.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 11/20/2022]
Abstract
The assembly of major histocompatibility complex (MHC) class I molecules is one of the more widely studied examples of protein folding in the endoplasmic reticulum (ER). It is also one of the most unusual cases of glycoprotein quality control involving the thiol oxidoreductase ERp57 and the lectin-like chaperones calnexin and calreticulin. The multistep assembly of MHC class I heavy chain with beta(2)-microglobulin and peptide is facilitated by these ER-resident proteins and further tailored by the involvement of a peptide transporter, aminopeptidases, and the chaperone-like molecule tapasin. Here we summarize recent progress in understanding the roles of these general and class I-specific ER proteins in facilitating the optimal assembly of MHC class I molecules with high affinity peptides for antigen presentation.
Collapse
Affiliation(s)
- Pamela A Wearsch
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520-8011, United States
| | | |
Collapse
|
14
|
Belicha-Villanueva A, McEvoy S, Cycon K, Ferrone S, Gollnick SO, Bangia N. Differential contribution of TAP and tapasin to HLA class I antigen expression. Immunology 2008; 124:112-20. [PMID: 18194274 PMCID: PMC2434385 DOI: 10.1111/j.1365-2567.2007.02746.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/20/2007] [Accepted: 10/02/2007] [Indexed: 11/30/2022] Open
Abstract
Expression of class I human leucocyte antigens (HLA) on the surface of malignant cells is critical for their recognition and destruction by cytotoxic T lymphocytes. Surface expression requires assembly and folding of HLA class I molecules in the endoplasmic reticulum with the assistance of proteins such as Transporter associated with Antigen Processing (TAP) and tapasin. Interferon-gamma induces both TAP and tapasin so dissection of which protein contributes more to HLA class I expression has not been possible previously. In this study, we take advantage of a human melanoma cell line in which TAP can be induced, but tapasin cannot. Interferon-gamma increases TAP protein levels dramatically but HLA class I expression at the cell surface does not increase substantially, indicating that a large increase in peptide supply is not sufficient to increase HLA class I expression. On the other hand, transfection of either allelic form of tapasin (R240 or T240) enhances HLA-B*5001 and HLA-B*5701 antigen expression considerably with only a modest increase in TAP. Together, these data indicate that in the presence of minimal TAP activity, tapasin can promote substantial HLA class I expression at the cell surface.
Collapse
Affiliation(s)
- Alan Belicha-Villanueva
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
15
|
Procko E, Raghuraman G, Wiley DC, Raghavan M, Gaudet R. Identification of domain boundaries within the N-termini of TAP1 and TAP2 and their importance in tapasin binding and tapasin-mediated increase in peptide loading of MHC class I. Immunol Cell Biol 2008; 83:475-82. [PMID: 16174096 DOI: 10.1111/j.1440-1711.2005.01354.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Before exit from the endoplasmic reticulum (ER), MHC class I molecules transiently associate with the transporter associated with antigen processing (TAP1/TAP2) in an interaction that is bridged by tapasin. TAP1 and TAP2 belong to the ATP-binding cassette (ABC) transporter family, and are necessary and sufficient for peptide translocation across the ER membrane during loading of MHC class I molecules. Most ABC transporters comprise a transmembrane region with six membrane-spanning helices. TAP1 and TAP2, however, contain additional N-terminal sequences whose functions may be linked to interactions with tapasin and MHC class I molecules. Upon expression and purification of human TAP1/TAP2 complexes from insect cells, proteolytic fragments were identified that result from cleavage at residues 131 and 88 of TAP1 and TAP2, respectively. N-Terminally truncated TAP variants lacking these segments retained the ability to bind peptide and nucleotide substrates at a level comparable to that of wild-type TAP. The truncated constructs were also capable of peptide translocation in vitro, although with reduced efficiency. In an insect cell-based assay that reconstituted the class I loading pathway, the truncated TAP variants promoted HLA-B*2705 processing to similar levels as wild-type TAP. However, correlating with the observed reduction in tapasin binding, the tapasin-mediated increase in processing of HLA-B*2705 and HLA-B*4402 was lower for the truncated TAP constructs relative to the wild type. Together, these studies indicate that N-terminal domains of TAP1 and TAP2 are important for tapasin binding and for optimal peptide loading onto MHC class I molecules.
Collapse
Affiliation(s)
- Erik Procko
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
16
|
Rufer E, Leonhardt RM, Knittler MR. Molecular Architecture of the TAP-Associated MHC Class I Peptide-Loading Complex. THE JOURNAL OF IMMUNOLOGY 2007; 179:5717-27. [DOI: 10.4049/jimmunol.179.9.5717] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Stepensky D, Bangia N, Cresswell P. Aggregate Formation by ERp57-Deficient MHC Class I Peptide-Loading Complexes. Traffic 2007; 8:1530-42. [PMID: 17822402 DOI: 10.1111/j.1600-0854.2007.00639.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER)-resident proteins TAP, tapasin and ERp57 are the core components of the major histocompatibility complex (MHC) class I peptide-loading complex and play an important role in peptide loading by MHC class I-beta(2)microglobulin dimers. ERp57 and tapasin form a stable disulfide-linked heterodimer within the peptide-loading complex. We demonstrate that ERp57-deficient loading complexes, obtained by expression in a tapasin-negative cell line of a tapasin mutant (C95A) that is not able to form a disulfide bond with ERp57, are prone to aggregation. We studied the assembly, stability and aggregation of the core loading complex using cell lines stably expressing fluorescently tagged tapasin (wild type or C95A mutant) and TAP1. Part of the loading complexes containing the tagged C95A tapasin and TAP1 were sequestered in the ER, without change of their ER transmembrane topology, and were surrounded by a mesh of filaments at the cytosolic side, resulting in formation of protein aggregates with characteristic morphology. Protein aggregates were associated with changes in ER protein turnover but did not affect the cell viability and did not induce the unfolded protein response. Fluorescence resonance energy transfer analysis of the aggregate-free ER fraction revealed that lack of ERp57 did not affect the stoichiometry or stability of tapasin-TAP1 interactions in the assembled 'soluble' core loading complexes. We conclude that the presence of ERp57 is important for the stability of core loading complexes, and that in its absence, the core loading complexes may form stable aggregates within the ER.
Collapse
Affiliation(s)
- David Stepensky
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | | | | |
Collapse
|
18
|
Stepensky D. FRETcalc plugin for calculation of FRET in non-continuous intracellular compartments. Biochem Biophys Res Commun 2007; 359:752-8. [PMID: 17555710 DOI: 10.1016/j.bbrc.2007.05.180] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 05/26/2007] [Indexed: 11/27/2022]
Abstract
FRET has emerged as an important tool for studying intracellular processes and interactions between biomolecules. Intracellular donor and acceptor molecules are distributed in individual organelles that usually have complex non-continuous shape. Consequently, background pixels arising from fluorophore-free regions of the cell are proximal to FRET-positive pixels, leading to systemic errors in the estimated FRET values. This study introduces a new FRET(TH) algorithm for FRET estimation by acceptor photobleaching that separates the FRET-positive pixels from the background by applying user-defined thresholds for pixel selection. The FRET(TH) algorithm was validated by analysis of interactions between fluorescently tagged proteins in the endoplasmic reticulum using acquired and simulated images. The novel algorithm showed superior performance to the regular FRET calculation algorithm in acquired images and in most simulations. The developed algorithm was incorporated into the FRETcalc plugin for ImageJ program that enables user-defined choices of thresholds for calculation of FRET by acceptor photobleaching.
Collapse
Affiliation(s)
- David Stepensky
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, PO Box 208011, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Plewnia G, Schulze K, Hunte C, Tampé R, Koch J. Modulation of the antigenic peptide transporter TAP by recombinant antibodies binding to the last five residues of TAP1. J Mol Biol 2007; 369:95-107. [PMID: 17418234 DOI: 10.1016/j.jmb.2007.02.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/19/2007] [Accepted: 02/23/2007] [Indexed: 11/30/2022]
Abstract
The transporter associated with antigen processing (TAP) plays a pivotal role in the major histocompatibility complex (MHC) class I mediated immune response against infected or malignantly transformed cells. It belongs to the ATP-binding cassette (ABC) superfamily and consists of TAP1 (ABCB2) and TAP2 (ABCB3), each of which possesses a transmembrane and a nucleotide-binding domain (NBD). Here we describe the generation of recombinant Fv and Fab antibody fragments to human TAP from a hybridoma cell line expressing the TAP1-specific monoclonal antibody mAb148.3. The epitope of the antibody was mapped to the very last five C-terminal amino acid residues of TAP1 on solid-supported peptide arrays. The recombinant antibody fragments were heterologously expressed in Escherichia coli and purified to homogeneity from periplasmic extracts by affinity chromatography. The monoclonal and recombinant antibodies bind with nanomolar affinity to the last five C-terminal amino acid residues of TAP1 as demonstrated by ELISA and surface plasmon resonance. Strikingly, the recombinant antibody fragments confer thermal stability to the heterodimeric TAP complex. At the same time TAP is arrested in a peptide transport incompetent conformation, although ATP and peptide binding to TAP are not affected. Based on our results we suggest that the C terminus of TAP1 modulates TAP function presumably as part of the dimer interface of the NBDs.
Collapse
Affiliation(s)
- Gabriele Plewnia
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-69438 Frankfurt a. M., Germany
| | | | | | | | | |
Collapse
|
20
|
Garbi N, Hämmerling G, Tanaka S. Interaction of ERp57 and tapasin in the generation of MHC class I-peptide complexes. Curr Opin Immunol 2006; 19:99-105. [PMID: 17150345 DOI: 10.1016/j.coi.2006.11.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 11/23/2006] [Indexed: 11/22/2022]
Abstract
Antigen presentation by MHC class I molecules is necessary for CD8 T-cell activation. Optimal peptide loading onto MHC class I molecules occurs mainly in the peptide-loading complex in the endoplasmic reticulum. The identification of a covalent association between the thiol oxidoreductase ERp57 and tapasin, and its impact on the loading complex, are important recent developments in this field of research. In the absence of ERp57, the recruitment of MHC class I molecules into this complex by tapasin is greatly impaired both in the number of molecules and in their interaction time, suggesting a key structural role for the ERp57-tapasin association in the peptide-loading complex. The role of ERp57 as a thiol oxidoreductase in the peptide-loading complex remains, however, controversial and further research regarding this subject is required.
Collapse
Affiliation(s)
- Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center DKFZ, Heidelberg, Germany.
| | | | | |
Collapse
|
21
|
Aisenbrey C, Sizun C, Koch J, Herget M, Abele R, Bechinger B, Tampé R. Structure and dynamics of membrane-associated ICP47, a viral inhibitor of the MHC I antigen-processing machinery. J Biol Chem 2006; 281:30365-72. [PMID: 16835230 DOI: 10.1074/jbc.m603000200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To evade the host's immune response, herpes simplex virus employs the immediate early gene product ICP47 (IE12) to suppress antigen presentation to cytotoxic T-lymphocytes by inhibition of the ATP-binding cassette transporter associated with antigen processing (TAP). ICP47 is a membrane-associated protein adopting an alpha-helical conformation. Its active domain was mapped to residues 3-34 and shown to encode all functional properties of the full-length protein. The active domain of ICP47 was reconstituted into oriented phospholipid bilayers and studied by proton-decoupled 15N and 2H solid-state NMR spectroscopy. In phospholipid bilayers, the protein adopts a helix-loop-helix structure, where the average tilt angle of the helices relative to the membrane surface is approximately 15 degrees (+/- 7 degrees ). The alignment of both structured domains exhibits a mosaic spread of approximately 10 degrees . A flexible dynamic loop encompassing residues 17 and 18 separates the two helices. Refinement of the experimental data indicates that helix 1 inserts more deeply into the membrane. These novel insights into the structure of ICP47 represent an important step toward a molecular understanding of the immune evasion mechanism of herpes simplex virus and are instrumental for the design of new therapeutics.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut/Faculté de Chimie, Université Louis Pasteur/CNRS LC3-Unité Mixte de Recherche 7177, 4 Rue Blaise Pascal, Strasbourg 67070, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Koch J, Guntrum R, Tampé R. The first N-terminal transmembrane helix of each subunit of the antigenic peptide transporter TAP is essential for independent tapasin binding. FEBS Lett 2006; 580:4091-6. [PMID: 16828748 DOI: 10.1016/j.febslet.2006.06.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/30/2006] [Accepted: 06/16/2006] [Indexed: 01/06/2023]
Abstract
The heterodimeric ABC transporter TAP translocates proteasomal degradation products from the cytosol into the lumen of the endoplasmic reticulum, where these peptides are loaded onto MHC class I molecules by a macromolecular peptide-loading complex (PLC) and subsequently shuttled to the cell surface for inspection by cytotoxic T lymphocytes. Tapasin recruits, as a central adapter protein, other components of the PLC at the unique N-terminal domains of TAP. We found that the N-terminal domains of human TAP1 and TAP2 can independently bind to tapasin, thus providing two separate loading platforms for PLC assembly. Moreover, tapasin binding is dependent on the first N-terminal transmembrane helix of TAP1 and TAP2, demonstrating that these two helices contribute independently to the recruitment of tapasin and associated factors.
Collapse
Affiliation(s)
- Joachim Koch
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Marie-Curie Strasse 9, D-69439 Frankfurt a.M., Germany.
| | | | | |
Collapse
|
23
|
Landis ED, Palti Y, Dekoning J, Drew R, Phillips RB, Hansen JD. Identification and regulatory analysis of rainbow trout tapasin and tapasin-related genes. Immunogenetics 2006; 58:56-69. [PMID: 16447046 DOI: 10.1007/s00251-005-0070-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Tapasin (TAPBP) is a key member of MHC class Ia antigen-loading complexes, bridging the class Ia molecule to the transporter associated with antigen presentation (TAP). As part of an ongoing study of MHC genomics in rainbow trout, we have identified two rainbow trout TAPBP genes (Onmy-TAPBP.a and .b) and a similar but distinct TAPBP-related gene (Onmy-TAPBP-R) that had previously only been described in mammals. Physical and genetic mapping indicate that Onmy-TAPBP.a is on chromosome 18 in the MHC class Ia region and that Onmy-TAPBP.b resides on chromosome 14 in the MHC class Ib region. There are also at least two copies of TAPBP-R, Onmy-TAPBP-R.a and Onmy-TAPBP-R.b, located on chromosomes 2 and 3, respectively. Due to the central role of TAPBP expression during acute viral infection, we have characterized the transcriptional profile and regulatory regions for both Onmy-TAPBP and Onmy-TAPBP-R. Transcription of both genes increased during acute infection with infectious hematapoeitic necrosis virus (IHNV) in a fashion indicative of interferon-mediated regulation. Promoter-reporter assays in STE-137 cells demonstrate that the trout TAPBP and TAPBP-R promoters respond to interferon regulatory factors, Onmy-IRF1 and Onmy-IRF2. Overall, TAPBP is expressed at higher levels than TAPBP-R in naïve tissues and TAPBP transcription is more responsive to viral infection and IRF1 and 2 binding.
Collapse
Affiliation(s)
- Eric D Landis
- Molecular Medicine Program, University of Maryland Medical School, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abele R, Tampé R. Modulation of the antigen transport machinery TAP by friends and enemies. FEBS Lett 2005; 580:1156-63. [PMID: 16359665 DOI: 10.1016/j.febslet.2005.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The transporter associated with antigen processing (TAP) is a key factor of the major histocompatibility complex (MHC) class I antigen presentation pathway. This ABC transporter translocates peptides derived mainly from proteasomal degradation from the cytosol into the ER lumen for loading onto MHC class I molecules. Manifold mechanisms have evolved to regulate TAP activity. During infection, TAP expression is upregulated by interferon-gamma. Furthermore, the assembly and stability of the transport complex is promoted by various auxiliary factors. However, tumors and viruses have developed sophisticated strategies to escape the immune surveillance by suppressing TAP function. The activity of TAP can be impaired on the transcriptional or translational level, by enhanced degradation or by inhibition of peptide translocation. In this review, we briefly summarize existing data concerning the regulation of the TAP complex.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt/M., Germany
| | | |
Collapse
|
25
|
Garbi N, Tanaka S, van den Broek M, Momburg F, Hämmerling GJ. Accessory molecules in the assembly of major histocompatibility complex class I/peptide complexes: how essential are they for CD8+ T-cell immune responses? Immunol Rev 2005; 207:77-88. [PMID: 16181328 DOI: 10.1111/j.0105-2896.2005.00303.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Assembly of major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum is a highly coordinated process that results in abundant class I/peptide complexes at the cell surface for recognition by CD8(+) T cells and natural killer cells. During the assembly process, a number of chaperones and accessory molecules, such as transporter associated with antigen processing, tapasin, ER60, and calreticulin, assist newly synthesized class I molecules to facilitate loading of antigenic peptides and to optimize the repertoire of surface class I/peptide complexes. This review focuses on the relative importance of these accessory molecules for CD8(+) T-cell responses in vivo and discusses reasons that may help explain why some CD8(+) T-cell responses develop normally in mice deficient in components of class I assembly, despite impaired antigen presentation.
Collapse
Affiliation(s)
- Natalio Garbi
- Division of Molecular Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|