1
|
Saxena R, Gottlin EB, Campa MJ, He YW, Patz EF. Complement regulators as novel targets for anti-cancer therapy: A comprehensive review. Semin Immunol 2025; 77:101931. [PMID: 39826189 DOI: 10.1016/j.smim.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Cancer remains a formidable global health challenge requiring the continued exploration of innovative therapeutic approaches. While traditional treatment strategies including surgery, chemotherapy, and radiation therapy have had some success, primarily in early-stage disease, the quest for more targeted, personalized, safer, and effective therapies remains an ongoing pursuit. Over the past decade, significant advances in the field of tumor immunology have dramatically shifted a focus towards immunotherapy, although the ability to harness and coopt the immune system to treat cancer is still just beginning to be realized. One important area that has yet to be fully explored is the complement system, an integral part of innate immunity that has gathered attention recently as a source of potential targets for anti-cancer therapy. The complement system has a complex and context dependent role in cancer biology in that it not only contributes to immune surveillance but also may promote tumor progression. Complement regulators, including CD46, CD55, CD59, and complement factor H, exercise defined control over complement activation, and have also been acknowledged for their role in the tumor microenvironment. This review explores the intricate role of complement regulators in cancer development and progression, examining their potential as therapeutic targets, current strategies, challenges, and the evolving landscape of clinical research.
Collapse
Affiliation(s)
- Ruchi Saxena
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth B Gottlin
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael J Campa
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - You-Wen He
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Edward F Patz
- Department of Radiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Thomsen AK, Steffensen MA, Villarruel Hinnerskov JM, Nielsen AT, Vorum H, Honoré B, Nissen MH, Sørensen TL. Complement proteins and complement regulatory proteins are associated with age-related macular degeneration stage and treatment response. J Neuroinflammation 2024; 21:284. [PMID: 39487449 PMCID: PMC11531117 DOI: 10.1186/s12974-024-03273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Dysregulation of the complement system is involved in development of age-related macular degeneration (AMD). The complement cascade is regulated by membrane bound complement regulatory proteins (Cregs) on mononuclear leukocytes among others. This study aims to investigate systemic complement proteins and Cregs in AMD stages and their association with treatment response in neovascular AMD (nAMD). METHODS In this clinical prospective study, treatment-naïve patients with nAMD, intermediate AMD (iAMD) and healthy controls were recruited and systemic complement proteins C3, C3a and C5a were investigated with electrochemiluminescence immunoassays, and Creg expression (CD35, CD46 and CD59) on T cells (CD4 + and CD8+) and monocytes (classical, intermediate and non-classical) investigated with flow cytometry. Treatment response in nAMD patients was evaluated after loading dose and after one year, and categorized as good, partial or poor. Complement proteins and Creg expression levels were compared between healthy controls, iAMD and nAMD, as well as between good, partial and poor nAMD treatment response groups. Polymorphisms in the CFH and ARMS2 genes were analyzed and compared to complement proteins and Creg expression levels in nAMD patients. RESULTS One hundred patients with nAMD, 34 patients with iAMD and 61 healthy controls were included. 94 nAMD patients completed the 1-year follow-up. Distribution of treatment response in nAMD was 61 (65%) good, 26 (28%) partial, and 7 (7%) poor responders. The distribution of 1-year treatment response was 50 (53%) good, 33 (36%) partial, and 11 (11%) poor responders. The concentrations of systemic C3, C3a, and the C3a/C3-ratio were significantly increased in patients with nAMD compared to healthy controls (P < 0.001, P = 0.002, and P = 0.035, respectively). Systemic C3 was also increased in iAMD compared to healthy controls (P = 0.031). The proportion of CD46 + CD4 + T cells and CD59 + intermediate monocytes were significantly decreased in patients with nAMD compared to healthy controls (P = 0.018 and P = 0.042, respectively). The post-loading dose partial treatment response group had significantly lower concentrations of C3a and C5a compared to the good response group (P = 0.005 and P = 0.042, respectively). The proportion of CD35 + monocytes was significantly lower in the 1-year partial response group compared to the 1-year good response group (P = 0.039). High-risk CFH genotypes in nAMD patients was associated with increased C3a, C3a/C3-ratio, and expression levels of CD35 + CD8 + T cells and CD46 + classical monocytes, while expression level of CD46 + non-classical monocytes was decreased. CONCLUSION Elevated concentrations of systemic complement proteins were found in patients with iAMD and nAMD. Decreased Creg expression levels were found in patients with nAMD. Partially responding nAMD patients had a dysregulated complement system and Cregs compared to good responders.
Collapse
Affiliation(s)
- Alexander Kai Thomsen
- Department of Ophthalmology, Zealand University Hospital, Sygehusvej 10, Roskilde, 4000, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jenni Martinez Villarruel Hinnerskov
- Department of Ophthalmology, Zealand University Hospital, Sygehusvej 10, Roskilde, 4000, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Amalie Thomsen Nielsen
- Department of Ophthalmology, Zealand University Hospital, Sygehusvej 10, Roskilde, 4000, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mogens Holst Nissen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Sygehusvej 10, Roskilde, 4000, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Athanasiadou V, Ampelakiotou K, Grigoriou E, Psarra K, Tsirogianni A, Valsami S, Pittaras T, Grapsa E, Detsika MG. Erythropoietin Effect on Complement Activation in Chronic Kidney Disease. Biomedicines 2024; 12:1746. [PMID: 39200211 PMCID: PMC11351309 DOI: 10.3390/biomedicines12081746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
The complement system is an important part of innate immunity. Despite its known protective role, the complement system may contribute to increased inflammation and tissue injury in cases where its balanced activation is disrupted. The kidneys have been shown to be largely affected by complement dysregulation. The aim of the present study was to investigate the effect of erythropoietin administration, on the complement system, in chronic kidney disease patients. The study involved 20 patients with CKD who received erythropoietin and measurements of levels of complement factors C3a and C5a and complement regulatory proteins (CregPs) CD55, CD46, and CD59. An increase in serum C3a and C5a levels was observed in response to EPO therapy. The increase in C3a was statistically significant (p < 0.05) and concurrent with a statistically significant decrease in CD55 in CD4+ T cells (p < 0.05) and B cells (p < 0.05) and CD59 levels in CD4+ and CD8+ T cells (p < 0.05) at completion of EPO therapy compared with healthy controls. The above observations demonstrate that EPO induces complement activation in patients undergoing EPO therapy with a simultaneous restriction of CRegPs expression, thus possibly allowing the uncontrolled complement activation, which may contribute to tissue injury and disease progression.
Collapse
Affiliation(s)
- Virginia Athanasiadou
- Department of Nephrology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (V.A.); (E.G.)
| | - Kleio Ampelakiotou
- Department of Immunology and Histocompatibility, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (K.A.); (E.G.); (K.P.); (A.T.)
| | - Eirini Grigoriou
- Department of Immunology and Histocompatibility, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (K.A.); (E.G.); (K.P.); (A.T.)
| | - Katherina Psarra
- Department of Immunology and Histocompatibility, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (K.A.); (E.G.); (K.P.); (A.T.)
| | - Alexandra Tsirogianni
- Department of Immunology and Histocompatibility, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (K.A.); (E.G.); (K.P.); (A.T.)
| | - Serena Valsami
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (S.V.); (T.P.)
| | - Theodoros Pittaras
- Hematology Laboratory-Blood Bank, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (S.V.); (T.P.)
| | - Eirini Grapsa
- Department of Nephrology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (V.A.); (E.G.)
| | - Maria G. Detsika
- 1st Department of Critical Care Medicine and Pulmonary Services, GP Livanos and M. Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, 10675 Athens, Greece
| |
Collapse
|
4
|
Wei Y, Guo J, Meng T, Gao T, Mai Y, Zuo W, Yang J. The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. J Drug Target 2024; 32:485-498. [PMID: 38491993 DOI: 10.1080/1061186x.2024.2332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).
Collapse
Affiliation(s)
- Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tingting Meng
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Esposito P, Rodriguez C, Gandelman M, Liang J, Ismail N. CD46 expression in the central nervous system of male and female pubescent mice. J Neuroimmunol 2023; 385:578234. [PMID: 37944208 DOI: 10.1016/j.jneuroim.2023.578234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
CD46 is a complementary regulatory protein ubiquitously expressed in human cells, controlling complement system activation. CD46 has further been identified to have several other functions including regulatory T cell induction and intestinal epithelial (IEC) barrier regulation. Activation of CD46 in the IEC can impact intestinal barrier permeability and immune system functioning. CD46 has only been identified in the spermatozoa and retina of mice. In other murine cells, the homologue CRRY is identified to function as the complementary regulator. Due to the identification of CRRY across other wild-type mouse cells and the development of mouse strains transgenic for human CD46, no recent research has been conducted to determine if CD46 is present in non-transgenic mouse strains. Therefore, the current study investigated if CD46 is expressed in the substantia nigra (SN) and caudate putamen (CP) of pubescent CD1 mice and examined the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatment on CD46 expression in the brain. As of 5 weeks of age, mice were administered mixed antimicrobial solution or water with oral gavage twice daily for 7 days. At 6 weeks of age, mice received an intraperitoneal injection of LPS or saline. Mice were euthanized 8 h post-injection and brain samples were collected. Our results indicate that pubescent CD-1 mice express CD46 in the SN and CP. However, LPS-treated mice displayed significantly less CD46 expression in the SN in comparison to saline-treated mice. Furthermore, males displayed more CD46 in the CP compared to females, regardless of LPS and antimicrobial treatments. Our data suggest CD46 is present in CD1 mice and that LPS and antimicrobial treatments impact CD46 protein expression in a sex-dependent manner. These results have important implications for the expression of CD46 in the mouse brain and the understanding of its role in immune system regulation.
Collapse
Affiliation(s)
- Pasquale Esposito
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Cloudia Rodriguez
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michelle Gandelman
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jacky Liang
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nafissa Ismail
- Neuroimmunology, Stress, and Endocrinology (NISE) Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada; LIFE Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
7
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
8
|
Ayoub I, Dauvilliers Y, Barateau L, Vermeulen T, Mouton-Barbosa E, Marcellin M, Gonzalez-de-Peredo A, Gross CC, Saoudi A, Liblau R. Cerebrospinal fluid proteomics in recent-onset Narcolepsy type 1 reveals activation of the complement system. Front Immunol 2023; 14:1108682. [PMID: 37122721 PMCID: PMC10130643 DOI: 10.3389/fimmu.2023.1108682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Narcolepsy type 1 (NT1) is a rare, chronic and disabling neurological disease causing excessive daytime sleepiness and cataplexy. NT1 is characterized pathologically by an almost complete loss of neurons producing the orexin neuropeptides in the lateral hypothalamus. Genetic and environmental factors strongly suggest the involvement of the immune system in the loss of orexin neurons. The cerebrospinal fluid (CSF), secreted locally and surrounding the central nervous system (CNS), represents an accessible window into CNS pathological processes. Methods To gain insight into the biological and molecular changes in NT1 patients, we performed a comparative proteomics analysis of the CSF from 21 recent-onset NT1 patients and from two control groups: group 1 with somatoform disorders, and group 2 patients with hypersomnia other than NT1, to control for any potential effect of sleep disturbances on CSF composition. To achieve an optimal proteomic coverage analysis, the twelve most abundant CSF proteins were depleted, and samples were analyzed by nano-flow liquid chromatography tandem mass spectrometry (nano-LC-MS/MS) using the latest generation of hybrid Orbitrap mass spectrometer. Results and discussion Our study allowed the identification and quantification of up to 1943 proteins, providing a remarkably deep analysis of the CSF proteome. Interestingly, gene set enrichment analysis indicated that the complement and coagulation systems were enriched and significantly activated in NT1 patients in both cohorts analyzed. Notably, the lectin and alternative complement pathway as well as the downstream lytic membrane attack complex were congruently increased in NT1. Our data suggest that the complement dysregulation in NT1 patients can contribute to immunopathology either by directly promoting tissue damage or as part of local inflammatory responses. We therefore reveal an altered composition of the CSF proteome in NT1 patients, which points to an ongoing inflammatory process contributed, at least in part, by the complement system.
Collapse
Affiliation(s)
- Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et De la Recherche Médicale (INSERM), Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, and Institute for Neurosciences of Montpellier, Montpellier, France
| | - Lucie Barateau
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, Centre Hospitalier Universitaire (CHU) de Montpellier, and Institute for Neurosciences of Montpellier, Montpellier, France
| | - Thaïs Vermeulen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et De la Recherche Médicale (INSERM), Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Marlène Marcellin
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Anne Gonzalez-de-Peredo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Catharina C. Gross
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et De la Recherche Médicale (INSERM), Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et De la Recherche Médicale (INSERM), Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Department of Immunology, Toulouse University Hospitals, Toulouse, France
- *Correspondence: Roland Liblau,
| |
Collapse
|
9
|
Deng J, Yang L, Wang Z, Ouyang H, Yu H, Yuan H, Pang D. Advance of genetically modified pigs in xeno-transplantation. Front Cell Dev Biol 2022; 10:1033197. [PMID: 36299485 PMCID: PMC9590650 DOI: 10.3389/fcell.2022.1033197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
As the standard of living improves, chronic diseases and end-stage organ failure have been a regular occurrence in human beings. Organ transplantation has become one of the hopes in the fight against chronic diseases and end-stage organ failure. However, organs available for transplantation are far from sufficient to meet the demand, leading to a major organ shortage crisis. To solve this problem, researchers have turned to pigs as their target since pigs have many advantages as xenograft donors. Pigs are considered the ideal organ donor for human xenotransplantation, but direct transplantation of porcine organs to humans faces many obstacles, such as hyperacute rejection, acute humoral xenograft rejection, coagulation dysregulation, inflammatory response, coagulation dysregulation, and endogenous porcine retroviral infection. Many transgenic strategies have been developed to overcome these obstacles. This review provides an overview of current advances in genetically modified pigs for xenotransplantation. Future genetic engineering-based delivery of safe and effective organs and tissues for xenotransplantation remains our goal.
Collapse
Affiliation(s)
- Jiacheng Deng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lin Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Ziru Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
- *Correspondence: Hongming Yuan, ; Daxin Pang,
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
- *Correspondence: Hongming Yuan, ; Daxin Pang,
| |
Collapse
|
10
|
Lupus nephritis with corticosteroid responsiveness: molecular changes of CD46-mediated type 1 regulatory T cells. Pediatr Res 2022; 92:1099-1107. [PMID: 34952938 DOI: 10.1038/s41390-021-01882-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND The engagement of the complement regulatory proteins CD46 and CD3 in human CD4+ T cells induces the type 1 regulatory T cells (Tr1) and interleukin-10 (IL-10) secretion. This study aimed to elucidate the molecular changes of Tr1 cells through CD46 cytoplasmic Cyt1 tail in lupus nephritis (LN) respond to intravenous methylprednisolone (ivMP) therapy. METHODS We enrolled 40 pediatric patients with LN and 30 healthy controls. Clinical characteristics and peripheral blood mononuclear cells were collected before and 3 days after the administration of ivMP. Kidney specimens were taken from five LN and five minimal-change nephrotic syndrome patients. RESULTS We found that defective CD46-mediated T-helper type 1 contraction (IL-10 switching) is present in active LN patients. The ivMP therapy enhanced LN remission, restored the production of IL-10, increased the CD46-Cyt1/Cyt2 ratio, AKT, and cAMP-responsive element-binding protein phosphorylation, and induced migration with the expression of chemokine receptor molecules CCR4, CCR6, and CCR7 of CD3/CD46-activated Tr1 cells. CONCLUSIONS Pharmacologic interventions that alter the patterns of CD46-Cyt1/Cyt2 expression and the secretion of IL-10 by CD3/CD46-activated Tr1 cells can be used in patients with active LN. IMPACT In patients with LN, ivMP was associated with increased IL-10 production and increased CD46-Cyt1/Cyt2 ratio and AKT phosphorylation by Tr1 cells, with enhanced potential to migration in response to CCL17. These results suggest that expression levels of CD46 isoforms Cyt1 and Cyt2 in CD4 + CD46 + Tr1 cells differ in patients with active LN but can be corrected by corticosteroid treatment. Enhancing the expression of functional CD4 + CD46 + Tr1 cells may be a useful therapeutic approach for LN.
Collapse
|
11
|
Liisborg C, Skov V, Kjær L, Hasselbalch HC, Sørensen TL. Patients with MPNs and retinal drusen show signs of complement system dysregulation and a high degree of chronic low-grade inflammation. EClinicalMedicine 2022; 43:101248. [PMID: 35128362 PMCID: PMC8808164 DOI: 10.1016/j.eclinm.2021.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The hematopoietic stem cell disorders, myeloproliferative neoplasms (MPNs), are characterised by chronic low-grade inflammation (CLI). Recently, we showed that patients with MPNs have an increased prevalence of drusen and age-related macular degeneration (AMD), and drusen prevalence seemed associated with higher CLI. Studying MPNs may reveal more about drusen pathophysiology. This study investigated CLI further by measuring cytokine levels and complement system markers, comparing these between patients with MPNs and AMD. METHODS This cross-sectional study, between July 2018 and November 2020 conducted at Zealand University Hospital (ZUH) - Roskilde, Denmark, included 29 patients with neovascular AMD (nAMD), 28 with intermediate-stage AMD (iAMD), 62 with MPNs (35 with drusen - MPNd and 27 with healthy retinas - MPNn). With flow cytometry, we measured complement-regulatory-proteins (Cregs). With immunoassays, we investigated cytokine levels combined into a summary-inflammation-score (SIS). FINDINGS The MPNd and nAMD groups had similar SIS, significantly higher than the MPNn and iAMD groups. Additionally, we found SIS to increase over the MPN biological continuum from early cancer stage, essential thrombocytaemia (ET), over polycythaemia vera (PV) to the late-stage primary myelofibrosis (PMF). MPNs showed signs of complement dysregulation, with Cregs expression lower in PV than ET and PMF and even lower in PV patients with drusen. INTERPRETATION This study suggests that MPNd have a higher CLI than MPNn and may indicate systemic CLI to play a greater part in, and even initiate drusen formation. We suggest using MPNs as a "Human Inflammation Model" of drusen development. The CLI in MPNs elicits drusen formation, triggering more CLI creating a vicious cycle, increasing the risk of developing AMD. FUNDING Fight for Sight, Denmark, and Region Zealand's research promotion fund.
Collapse
Affiliation(s)
- Charlotte Liisborg
- Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, Roskilde DK-4000, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Corresponding author.
| | - Vibe Skov
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Lasse Kjær
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Hans Carl Hasselbalch
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Haematology, Zealand University Hospital, Vestermarksvej 15-17, Roskilde 4000, Denmark
| | - Torben Lykke Sørensen
- Department of Ophthalmology, Zealand University Hospital, Vestermarksvej 23, Roskilde DK-4000, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
12
|
McCartney DL, Min JL, Richmond RC, Lu AT, Sobczyk MK, Davies G, Broer L, Guo X, Jeong A, Jung J, Kasela S, Katrinli S, Kuo PL, Matias-Garcia PR, Mishra PP, Nygaard M, Palviainen T, Patki A, Raffield LM, Ratliff SM, Richardson TG, Robinson O, Soerensen M, Sun D, Tsai PC, van der Zee MD, Walker RM, Wang X, Wang Y, Xia R, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Dugué PA, Durda P, Elliott HR, Gieger C, de Geus EJC, Harris SE, Hemani G, Imboden M, Kähönen M, Kardia SLR, Kresovich JK, Li S, Lunetta KL, Mangino M, Mason D, McIntosh AM, Mengel-From J, Moore AZ, Murabito JM, Ollikainen M, Pankow JS, Pedersen NL, Peters A, Polidoro S, Porteous DJ, Raitakari O, Rich SS, Sandler DP, Sillanpää E, Smith AK, Southey MC, Strauch K, Tiwari H, Tanaka T, Tillin T, Uitterlinden AG, Van Den Berg DJ, van Dongen J, Wilson JG, Wright J, Yet I, Arnett D, Bandinelli S, Bell JT, Binder AM, Boomsma DI, Chen W, Christensen K, Conneely KN, Elliott P, Ferrucci L, Fornage M, Hägg S, Hayward C, Irvin M, Kaprio J, Lawlor DA, Lehtimäki T, Lohoff FW, Milani L, Milne RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, et alMcCartney DL, Min JL, Richmond RC, Lu AT, Sobczyk MK, Davies G, Broer L, Guo X, Jeong A, Jung J, Kasela S, Katrinli S, Kuo PL, Matias-Garcia PR, Mishra PP, Nygaard M, Palviainen T, Patki A, Raffield LM, Ratliff SM, Richardson TG, Robinson O, Soerensen M, Sun D, Tsai PC, van der Zee MD, Walker RM, Wang X, Wang Y, Xia R, Xu Z, Yao J, Zhao W, Correa A, Boerwinkle E, Dugué PA, Durda P, Elliott HR, Gieger C, de Geus EJC, Harris SE, Hemani G, Imboden M, Kähönen M, Kardia SLR, Kresovich JK, Li S, Lunetta KL, Mangino M, Mason D, McIntosh AM, Mengel-From J, Moore AZ, Murabito JM, Ollikainen M, Pankow JS, Pedersen NL, Peters A, Polidoro S, Porteous DJ, Raitakari O, Rich SS, Sandler DP, Sillanpää E, Smith AK, Southey MC, Strauch K, Tiwari H, Tanaka T, Tillin T, Uitterlinden AG, Van Den Berg DJ, van Dongen J, Wilson JG, Wright J, Yet I, Arnett D, Bandinelli S, Bell JT, Binder AM, Boomsma DI, Chen W, Christensen K, Conneely KN, Elliott P, Ferrucci L, Fornage M, Hägg S, Hayward C, Irvin M, Kaprio J, Lawlor DA, Lehtimäki T, Lohoff FW, Milani L, Milne RL, Probst-Hensch N, Reiner AP, Ritz B, Rotter JI, Smith JA, Taylor JA, van Meurs JBJ, Vineis P, Waldenberger M, Deary IJ, Relton CL, Horvath S, Marioni RE. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol 2021; 22:194. [PMID: 34187551 PMCID: PMC8243879 DOI: 10.1186/s13059-021-02398-9] [Show More Authors] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. RESULTS Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. CONCLUSION This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.
Collapse
Affiliation(s)
- Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Josine L Min
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria K Sobczyk
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gail Davies
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Linda Broer
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ayoung Jeong
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jeesun Jung
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Silva Kasela
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pei-Lun Kuo
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Marianne Nygaard
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Matthijs D van der Zee
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Xiaochuan Wang
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Rui Xia
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zongli Xu
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05446, USA
| | - Hannah R Elliott
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Sarah E Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jacob K Kresovich
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Shengxu Li
- Children's Minnesota Research Institute, Children's Minnesota, Minneapolis, MN, 55404, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, SE1 9RT, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Ann Zenobia Moore
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Joanne M Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Polidoro
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Stephen S Rich
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Dale P Sandler
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Elina Sillanpää
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101, Mainz, Germany
- Chair of Genetic Epidemiology, Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hemant Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Therese Tillin
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Andre G Uitterlinden
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - David J Van Den Berg
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - James G Wilson
- Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Idil Yet
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Ankara, Turkey
| | - Donna Arnett
- Deans Office, College of Public Health, University of Kentucky, Lexington, UK
| | | | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawai'i Cancer Center, University of Hawai'i, Honolulu, HI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Wei Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Luigi Ferrucci
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Rd. South, Edinburgh, EH4 2XU, UK
| | - Marguerite Irvin
- Dept of Epidemiology, University of Alabama at Birmingham, Birmingham, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol NIHR Biomedical Research Centre, Bristol, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Falk W Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, 207 Bouverie Street, Melbourne, Victoria, 3010, Australia
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA
| | - Jack A Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Bavaria, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
13
|
Relevance of Autophagy and Mitophagy Dynamics and Markers in Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020149. [PMID: 33557057 PMCID: PMC7913851 DOI: 10.3390/biomedicines9020149] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
During the past few decades, considerable efforts have been made to discover and validate new molecular mechanisms and biomarkers of neurodegenerative diseases. Recent discoveries have demonstrated how autophagy and its specialized form mitophagy are extensively associated with the development, maintenance, and progression of several neurodegenerative diseases. These mechanisms play a pivotal role in the homeostasis of neural cells and are responsible for the clearance of intracellular aggregates and misfolded proteins and the turnover of organelles, in particular, mitochondria. In this review, we summarize recent advances describing the importance of autophagy and mitophagy in neurodegenerative diseases, with particular attention given to multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. We also review how elements involved in autophagy and mitophagy may represent potential biomarkers for these common neurodegenerative diseases. Finally, we examine the possibility that the modulation of autophagic and mitophagic mechanisms may be an innovative strategy for overcoming neurodegenerative conditions. A deeper knowledge of autophagic and mitophagic mechanisms could facilitate diagnosis and prognostication as well as accelerate the development of therapeutic strategies for neurodegenerative diseases.
Collapse
|
14
|
Imami AS, O'Donovan SM, Creeden JF, Wu X, Eby H, McCullumsmith CB, Uvnäs-Moberg K, McCullumsmith RE, Andari E. Oxytocin's anti-inflammatory and proimmune functions in COVID-19: a transcriptomic signature-based approach. Physiol Genomics 2020; 52:401-407. [PMID: 32809918 PMCID: PMC7877479 DOI: 10.1152/physiolgenomics.00095.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic, infecting over 16 million people worldwide with a significant mortality rate. However, there is no current Food and Drug Administration-approved drug that treats coronavirus disease 2019 (COVID-19). Damage to T lymphocytes along with the cytokine storm are important factors that lead to exacerbation of clinical cases. Here, we are proposing intravenous oxytocin (OXT) as a candidate for adjunctive therapy for COVID-19. OXT has anti-inflammatory and proimmune adaptive functions. Using the Library of Integrated Network-Based Cellular Signatures (LINCS), we used the transcriptomic signature for carbetocin, an OXT agonist, and compared it to gene knockdown signatures of inflammatory (such as interleukin IL-1β and IL-6) and proimmune markers (including T cell and macrophage cell markers like CD40 and ARG1). We found that carbetocin’s transcriptomic signature has a pattern of concordance with inflammation and immune marker knockdown signatures that are consistent with reduction of inflammation and promotion and sustaining of immune response. This suggests that carbetocin may have potent effects in modulating inflammation, attenuating T cell inhibition, and enhancing T cell activation. Our results also suggest that carbetocin is more effective at inducing immune cell responses than either lopinavir or hydroxychloroquine, both of which have been explored for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ali S Imami
- University of Toledo, Department of Neurosciences, College of Medicine and Life Sciences, Toledo, Ohio
| | - Sinead M O'Donovan
- University of Toledo, Department of Neurosciences, College of Medicine and Life Sciences, Toledo, Ohio
| | - Justin F Creeden
- University of Toledo, Department of Neurosciences, College of Medicine and Life Sciences, Toledo, Ohio
| | - Xiaojun Wu
- University of Toledo, Department of Neurosciences, College of Medicine and Life Sciences, Toledo, Ohio
| | - Hunter Eby
- University of Toledo, Department of Neurosciences, College of Medicine and Life Sciences, Toledo, Ohio
| | - Cheryl B McCullumsmith
- University of Toledo, Department of Psychiatry, College of Medicine and Life Sciences, Toledo, Ohio
| | - Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Robert E McCullumsmith
- University of Toledo, Department of Neurosciences, College of Medicine and Life Sciences, Toledo, Ohio.,Neurosciences Institute, ProMedica, Toledo, Ohio
| | - Elissar Andari
- University of Toledo, Department of Psychiatry, College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
15
|
Westman J, Grinstein S, Marques PE. Phagocytosis of Necrotic Debris at Sites of Injury and Inflammation. Front Immunol 2020; 10:3030. [PMID: 31998312 PMCID: PMC6962235 DOI: 10.3389/fimmu.2019.03030] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Clearance of cellular debris is required to maintain the homeostasis of multicellular organisms. It is intrinsic to processes such as tissue growth and remodeling, regeneration and resolution of injury and inflammation. Most of the removal of effete and damaged cells is performed by macrophages and neutrophils through phagocytosis, a complex phenomenon involving ingestion and degradation of the disposable particles. The study of the clearance of cellular debris has been strongly biased toward the removal of apoptotic bodies; as a result, the mechanisms underlying the removal of necrotic cells have remained relatively unexplored. Here, we will review the incipient but growing knowledge of the phagocytosis of necrotic debris, from their recognition and engagement to their internalization and disposal. Critical insights into these events were gained recently through the development of new in vitro and in vivo models, along with advances in live-cell and intravital microscopy. This review addresses the classes of "find-me" and "eat-me" signals presented by necrotic cells and their cognate receptors in phagocytes, which in most cases differ from the extensively characterized counterparts in apoptotic cell engulfment. The roles of damage-associated molecular patterns, chemokines, lipid mediators, and complement components in recruiting and activating phagocytes are reviewed. Lastly, the physiological importance of necrotic cell removal is emphasized, highlighting the key role of impaired debris clearance in autoimmunity.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Charvet B, Reynaud JM, Gourru-Lesimple G, Perron H, Marche PN, Horvat B. Induction of Proinflammatory Multiple Sclerosis-Associated Retrovirus Envelope Protein by Human Herpesvirus-6A and CD46 Receptor Engagement. Front Immunol 2018; 9:2803. [PMID: 30574140 PMCID: PMC6291489 DOI: 10.3389/fimmu.2018.02803] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of human endogenous retrovirus (HERV) elements of the HERV-W family has been associated with different diseases, including multiple sclerosis (MS). In particular, the expression of the envelope protein (Env) from the multiple sclerosis-associated retrovirus (MSRV), a member of HERV-W family and known for its potent proinflammatory activity, is repeatedly detected in the brain lesions and blood of MS patients. Furthermore, human herpesvirus 6 (HHV-6) infection has long been suspected to play a role in the pathogenesis of MS and neuroinflammation. We show here that both HHV-6A and stimulation of its receptor, transmembrane glycoprotein CD46, induce the expression of MSRV-Env. The engagement of extracellular domains SCR3 and SCR4 of CD46-Cyt1 isoform was required for MSRV-env transactivation, limiting thus the MSRV-Env induction to the CD46 ligands binding these domains, including C3b component of complement, specific monoclonal antibodies, and both infectious and UV-inactivated HHV-6A, but neither HHV-6B nor measles virus vaccine strain. Induction of MSRV-Env required CD46 Cyt-1 singling and was abolished by the inhibitors of protein kinase C. Finally, both membrane-expressed and secreted MSRV-Env trigger TLR4 signaling, displaying thus a proinflammatory potential, characteristic for this viral protein. These data expand the specter of HHV-6A effects in the modulation of the immune response and support the hypothesis that cross-talks between exogenous and endogenous viruses may contribute to inflammatory diseases and participate in neuroinflammation. Furthermore, they reveal a new function of CD46, known as an inhibitor of complement activation and receptor for several pathogens, in transactivation of HERV env genes, which may play an important role in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Benjamin Charvet
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,GeNeuro Innovation, Lyon, France
| | - Josephine M Reynaud
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Geraldine Gourru-Lesimple
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | | | - Patrice N Marche
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble-Alpes, IAPC, La Tronche, France
| | - Branka Horvat
- International Centre for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| |
Collapse
|
17
|
Martinez-Martin N, Marcandalli J, Huang CS, Arthur CP, Perotti M, Foglierini M, Ho H, Dosey AM, Shriver S, Payandeh J, Leitner A, Lanzavecchia A, Perez L, Ciferri C. An Unbiased Screen for Human Cytomegalovirus Identifies Neuropilin-2 as a Central Viral Receptor. Cell 2018; 174:1158-1171.e19. [PMID: 30057110 DOI: 10.1016/j.cell.2018.06.028] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 02/09/2023]
Abstract
Characterizing cell surface receptors mediating viral infection is critical for understanding viral tropism and developing antiviral therapies. Nevertheless, due to challenges associated with detecting protein interactions on the cell surface, the host receptors of many human pathogens remain unknown. Here, we build a library consisting of most single transmembrane human receptors and implement a workflow for unbiased and high-sensitivity detection of receptor-ligand interactions. We apply this technology to elucidate the long-sought receptor of human cytomegalovirus (HCMV), the leading viral cause of congenital birth defects. We identify neuropilin-2 (Nrp2) as the receptor for HCMV-pentamer infection in epithelial/endothelial cells and uncover additional HCMV interactors. Using a combination of biochemistry, cell-based assays, and electron microscopy, we characterize the pentamer-Nrp2 interaction and determine the architecture of the pentamer-Nrp2 complex. This work represents an important approach to the study of host-pathogen interactions and provides a framework for understanding HCMV infection, neutralization, and the development of novel anti-HCMV therapies.
Collapse
Affiliation(s)
| | - Jessica Marcandalli
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | | | - Michela Perotti
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Mathilde Foglierini
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Hoangdung Ho
- Structural Biology, Genentech, South San Francisco, CA, USA
| | - Annie M Dosey
- Structural Biology, Genentech, South San Francisco, CA, USA
| | | | - Jian Payandeh
- Structural Biology, Genentech, South San Francisco, CA, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Antonio Lanzavecchia
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Laurent Perez
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | - Claudio Ciferri
- Structural Biology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
18
|
Liszewski MK, Java A, Schramm EC, Atkinson JP. Complement Dysregulation and Disease: Insights from Contemporary Genetics. ANNUAL REVIEW OF PATHOLOGY 2017; 12:25-52. [PMID: 27959629 PMCID: PMC6020056 DOI: 10.1146/annurev-pathol-012615-044145] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The vertebrate complement system consists of sequentially interacting proteins that provide for a rapid and powerful host defense. Nearly 60 proteins comprise three activation pathways (classical, alternative, and lectin) and a terminal cytolytic pathway common to all. Attesting to its potency, nearly half of the system's components are engaged in its regulation. An emerging theme over the past decade is that variations in these inhibitors predispose to two scourges of modern humans. One, occurring most often in childhood, is a rare but deadly thrombomicroangiopathy called atypical hemolytic uremic syndrome. The other, age-related macular degeneration, is the most common form of blindness in the elderly. Their seemingly unrelated clinical presentations and pathologies share the common theme of overactivity of the complement system's alternative pathway. This review summarizes insights gained from contemporary genetics for understanding how dysregulation of this powerful innate immune system leads to these human diseases.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Anuja Java
- Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | - John P Atkinson
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|
19
|
Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Sci Rep 2016; 6:33714. [PMID: 27666019 PMCID: PMC5036054 DOI: 10.1038/srep33714] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane was shown, however, its behaviour and connection with other sperm proteins has not been explored further. Using super resolution microscopy, we demonstrated a dynamic CD46 reorganisation over the sperm head during the AR, and its interaction with transmembrane protein integrins, which was confirmed by proximity ligation assay. Furthermore, we propose their joint involvement in actin network rearrangement. Moreover, CD46 and β1 integrins with subunit α3, but not α6, are localized into the apical acrosome and are expected to be involved in signal transduction pathways directing the acrosome stability and essential protein network rearrangements prior to gamete fusion.
Collapse
|
20
|
Talaei F. Pathophysiological Concepts in Multiple Sclerosis and the Therapeutic Effects of Hydrogen Sulfide. Basic Clin Neurosci 2016; 7:121-36. [PMID: 27303607 PMCID: PMC4892317 DOI: 10.15412/j.bcn.03070206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction: Multiple sclerosis (MS) is generally known as a manageable but not yet curable autoimmune disease affecting central nervous system. A potential therapeutic approach should possess several properties: Prevent immune system from damaging the brain and spinal cord, promote differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes to produce myelin, prevent the formation of fibronectin aggregates by astrocytes to inhibit scar formation, and enhance function of healthy endothelial cells (ECs). Methods: To determine if an increase in sulfur contents through H2S, a potent antioxidant known to induce protective autophagy in cells, could provide the above desired outcomes, peripheral blood mononuclear cells (PBMNCs), OCPs, astrocytes, and ECs were treated with NaHS (50 μM) in vitro. Results: Transmigration assay using EC monolayer showed that serotonin increased migration of PBMNC while pretreatment of EC with NaHS inhibited the migration induced by serotonin treatment. NaHS upregulated proteins involved in immune system response and downregulated PBMNCs- and EC-related adhesion molecules (LFA-1 and VCAM-1). Furthermore, it had a cell expansion inducing effect, altering EC morphology. The effects of NaHS on OPCs and astrocytes were studied compared to mTOR inhibitor rapamycin. In NaHS treated astrocytes the induced fibronectin production was partially inhibited while rapamycin almost fully inhibited fibronectin production. NaHS slowed but did not inhibit the differentiation of OCPs or the production of myelin compared to rapamycin. Conclusion: The in vitro results point to the potential therapeutic application of hydrogen sulfide releasing molecules or health-promoting sulfur compounds in MS.
Collapse
Affiliation(s)
- Fatemeh Talaei
- Novel Drug Delivery Systems Lab, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
King BC, Esguerra JLS, Golec E, Eliasson L, Kemper C, Blom AM. CD46 Activation Regulates miR-150-Mediated Control of GLUT1 Expression and Cytokine Secretion in Human CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1636-45. [PMID: 26746193 DOI: 10.4049/jimmunol.1500516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023]
Abstract
CD46 is a cell surface complement inhibitor widely expressed in human tissues, in contrast to mice, where expression is limited to the testes. In humans, it has been identified as an important T cell costimulatory receptor, and patients deficient in CD46 or its endogenous ligands are unable to mount effective Th1 T cell responses. Stimulation of human CD4(+) T cells with CD3 and CD46 also leads to the differentiation of a "switched" Th1 population, which shuts down IFN-γ secretion and upregulates IL-10 and is thought to be important for negative feedback regulation of the Th1 response. In the present study, we show that CD46 costimulation leads to amplified microRNA (miR) expression changes in human CD4(+) T cells, with associated increases in activation more potent than those mediated by the "classic" costimulator CD28. Blockade of cell surface CD46 inhibited CD28-mediated costimulation, identifying autocrine CD46 signaling as downstream of CD28. We also identify a downregulation of miR-150 in CD46-costimulated T cells and identify the glucose transporter 1 encoding transcript SLC2A1 as a target of miR-150 regulation, connecting miR-150 with modulation of glucose uptake. We also investigated microRNA expression profiles of CD46-induced switched IL-10-secreting Th1 T cells and found increased expression of miR-150, compared with IFN-γ-secreting Th1 cells. Knockdown of miR-150 led to a reduction in IL-10 but not IFN-γ. CD46 therefore controls both Th1 activation and regulation via a miR-150-dependent mechanism.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis Unit, Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, 205-02 Malmö, Sweden; and
| | - Ewelina Golec
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, 205-02 Malmö, Sweden; and
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden;
| |
Collapse
|
22
|
Monocyte:T-cell interaction regulates human T-cell activation through a CD28/CD46 crosstalk. Immunol Cell Biol 2015; 93:796-803. [PMID: 25787182 PMCID: PMC4519525 DOI: 10.1038/icb.2015.42] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/20/2015] [Accepted: 03/15/2015] [Indexed: 01/20/2023]
Abstract
T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation.
Collapse
|
23
|
Hayes CE, Hubler SL, Moore JR, Barta LE, Praska CE, Nashold FE. Vitamin D Actions on CD4(+) T Cells in Autoimmune Disease. Front Immunol 2015; 6:100. [PMID: 25852682 PMCID: PMC4364365 DOI: 10.3389/fimmu.2015.00100] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 12/11/2022] Open
Abstract
This review summarizes and integrates research on vitamin D and CD4+ T-lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene–environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T-cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data are summarized to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ T-regulatory cell and CD4+ T-regulatory cell type 1 (Tr1) cell functions, and a Th1–Tr1 switch. The proposed Th1–Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell–cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, unanswered questions and potentially informative future research directions are highlighted to speed delivery of etiology-based strategies to reduce autoimmune disease.
Collapse
Affiliation(s)
- Colleen Elizabeth Hayes
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Shane L Hubler
- Department of Statistics, College of Letters and Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Jerott R Moore
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Lauren E Barta
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Corinne E Praska
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| | - Faye E Nashold
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison , Madison, WI , USA
| |
Collapse
|
24
|
Hay J, Carter D, Lieber A, Astier AL. Recombinant Ad35 adenoviral proteins as potent modulators of human T cell activation. Immunology 2014; 144:453-460. [PMID: 25251258 PMCID: PMC4557682 DOI: 10.1111/imm.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022] Open
Abstract
The protein CD46 protects cells from complement attack by regulating cleavage of C3b and C3d. CD46 also regulates the adaptive immune response by controlling T cell activation and differentiation. Co-engagement of the T cell receptor and CD46 notably drives T cell differentiation by switching production of IFNγ to secretion of anti-inflammatory IL-10. This regulatory pathway is altered in several chronic inflammatory diseases highlighting its key role for immune homeostasis. The manipulation of the CD46 pathway may therefore provide a powerful means to regulate immune responses. Herein, we investigated the effect of recombinant proteins derived from the fiber knob of the adenovirus serotype 35 (Ad35) that uses CD46 as its entry receptor, on human T cell activation. We compared the effects of Ad35K++, engineered to exhibit enhanced affinity to CD46, and of Ad35K-, mutated in the binding site for CD46. Ad35K++ profoundly affects T cell activation by decreasing the levels of CD46 at the surface of primary T cells, and impairing T cell co-activation, shown by decreased CD25 expression, reduced proliferation and lower secretion of IL-10 and IFNγ. In contrast, Ad35K- acts a potent coactivator of T cells, enhancing T cell proliferation and cytokine production. These data show that recombinant Ad35 proteins are potent modulators of human T cell activation, and support their further development as potential drugs targeting T cell responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joanne Hay
- MRC Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research InstituteEdinburgh, UK
| | - Darrick Carter
- PAI Life Sciences Inc.Seattle, WA, USA
- Compliment Corp.Seattle, WA, USA
| | - André Lieber
- Department of Medical Genetics, University of WashingtonSeattle, WA, USA
| | - Anne L Astier
- MRC Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research InstituteEdinburgh, UK
| |
Collapse
|
25
|
Kesselring R, Thiel A, Pries R, Fichtner-Feigl S, Brunner S, Seidel P, Bruchhage KL, Wollenberg B. The complement receptors CD46, CD55 and CD59 are regulated by the tumour microenvironment of head and neck cancer to facilitate escape of complement attack. Eur J Cancer 2014; 50:2152-61. [PMID: 24915776 DOI: 10.1016/j.ejca.2014.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 05/05/2014] [Accepted: 05/09/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Membrane-bound complement restriction proteins (mCRPs) CD46, CD55 and CD59 enable tumour cells to evade complement dependent cytotoxicity and antibody-dependent killing mechanisms. But less is known about the role of these mCRPs in head and neck cancer. METHODS In this study we determined the expression of the mCRPs on head and neck squamous cell carcinoma (HNSCC) cell lines, on tumour tissue and TDLNs (tumour-draining lymph nodes) as well as on lymphocytes from HNSCC patients. The influence of the HNSCC microenvironment on the mCRP regulation was analysed using Flow Cytometry, Western blotting and small interfering RNAs (siRNA) transfection studies. RESULTS We examined the effects of the HNSCC tumour milieu on the expression levels of CD46, CD55 and CD59. We investigated the susceptibility of HNSCC cells to CDC (complement-dependent cytotoxicity) while silencing the mCRPs. Our results demonstrate a huge influence of the HNSCC tumour microenvironment on the regulation of mCRP expression and show a reciprocal regulation between the different mCRPs themselves. CONCLUSIONS In summary, our data indicate that HNSCC has evolved different strategies to evade complement attacks and that the tumour microenvironment leads to the enhancement of complement resistance of the surrounding tissue.
Collapse
Affiliation(s)
- Rebecca Kesselring
- Department of Otorhinolaryngology and Plastic Surgery, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany; Department of Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Annette Thiel
- Department of Otorhinolaryngology and Plastic Surgery, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany; Department of Internal Medicine, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology and Plastic Surgery, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Stefan Fichtner-Feigl
- Department of Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Stefan Brunner
- Department of Surgery, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Philipp Seidel
- Department of Otorhinolaryngology and Plastic Surgery, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology and Plastic Surgery, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology and Plastic Surgery, University of Luebeck, Ratzeburger Allee 160, 23562 Luebeck, Germany.
| |
Collapse
|
26
|
Nur I, Harada H, Tsujikura M, Somamoto T, Nakao M. Molecular characterization and expression analysis of three membrane-bound complement regulatory protein isoforms in the ginbuna crucian carp Carassius auratus langsdorfii. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1333-1337. [PMID: 23954695 DOI: 10.1016/j.fsi.2013.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Regulators of complement activation (RCA) play a role in protecting cells from excessive complement activation in humans. cDNA corresponding to three isoforms of teleost membrane-bound RCA protein (gTecrem) have been identified in the ginbuna crucian carp. gTecrem-1 consists of seven short consensus repeats (SCRs), whereas gTecrem-2 and gTecrem-3 have four SCRs. While gTecrem-1 possesses a tyrosine phosphorylation site in its cytoplasmic region, gTecrem-2 and gTecrem-3 lack the site. Tissue distribution analysis showed that gTecrem-1 and gTecrem-2 mRNAs were expressed in almost all tissues examined, whereas gTecrem-2 expression was not significantly detected in gill, liver, or intestine. Furthermore, analysis showed that gTecrem-1 was expressed in both peripheral blood leukocytes (PBLs) and erythrocytes and was also expressed in T cell subsets such as CD4(+), CD8(+) T cells, and IgM(+) B cells. gTecrem-2 expression was not detected in either PBLs or erythrocytes, whereas gTecrem-3 was expressed only in erythrocytes. These results suggested that gTecrem isoforms may serve different functional roles; gTecrem-1, which is expressed in T cells and possesses a tyrosine phosphorylation site, may act as a complement regulator and a cellular receptor in adaptive immunity.
Collapse
Affiliation(s)
- Indriyani Nur
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
27
|
Membrane-bound complement regulatory proteins as biomarkers and potential therapeutic targets for SLE. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:55-81. [PMID: 23402019 DOI: 10.1007/978-1-4614-4118-2_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
For the last two decades, there had been remarkable advancement in understanding the role of complement regulatory proteins in autoimmune disorders and importance of complement inhibitors as therapeutics. Systemic lupus erythematosus is a prototype of systemic autoimmune disorders. The disease, though rare, is potentially fatal and afflicts women at their reproductive age. It is a complex disease with multiorgan involvement, and each patient presents with a different set of symptoms. The diagnosis is often difficult and is based on the diagnostic criteria set by the American Rheumatology Association. Presence of antinuclear antibodies and more specifically antidouble-stranded DNA indicates SLE. Since the disease is multifactorial and its phenotypes are highly heterogeneous, there is a need to identify multiple noninvasive biomarkers for SLE. Lack of validated biomarkers for SLE disease activity or response to treatment is a barrier to the efficient management of the disease, drug discovery, as well as development of new therapeutics. Recent studies with gene knockout mice have suggested that membrane-bound complement regulatory proteins (CRPs) may critically determine the sensitivity of host tissues to complement injury in autoimmune and inflammatory disorders. Case-controlled and followup studies carried out in our laboratory suggest an intimate relation between the level of DAF, MCP, CR1, and CD59 transcripts and the disease activity in SLE. Based on comparative evaluation of our data on these four membrane-bound complement regulatory proteins, we envisaged CR1 and MCP transcripts as putative noninvasive disease activity markers and the respective proteins as therapeutic targets for SLE. Following is a brief appraisal on membrane-bound complement regulatory proteins DAF, MCP, CR1, and CD59 as biomarkers and therapeutic targets for SLE.
Collapse
|
28
|
The Completed Self: An Immunological View of the Human-Microbiome Superorganism and Risk of Chronic Diseases. ENTROPY 2012. [DOI: 10.3390/e14112036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Tsai YG, Niu DM, Yang KD, Hung CH, Yeh YJ, Lee CY, Lin CY. Functional defects of CD46-induced regulatory T cells to suppress airway inflammation in mite allergic asthma. J Transl Med 2012; 92:1260-9. [PMID: 22751347 DOI: 10.1038/labinvest.2012.86] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Defective recruitment of regulatory T cells (Treg) function to the airway is important in the pathogenesis of allergic asthma. Complement regulatory protein (CD46) is a newly defined costimulatory molecule for Treg activation, which together with IL-10/granzyme B production may aid in suppressing asthmatic inflammation. This study examines chemotaxis and adhesion molecule expression on CD3/CD46-activated CD4(+) T cells (Tregs) from patients with and without asthma to suppress mite allergen-induced respiratory epithelial cells inflammation and to elucidate the mechanism of CD46-mediated Treg activation. Diminished IL-10/granzyme B and CCR4 expression from CD3/CD46-activated Tregs appeared in asthmatic subjects. CD3/CD46-activated Tregs from asthma patients co-cultured with BEAS-2B cells suppressed Dermatophagoides pteronyssinus 2 induced nuclear factor-κB/p65 by cell contact inhibition. Decreased interaction of CD3/CD46-mediated Tregs and BEAS-2B cells from asthmatics was associated with downregulated phosphorylation of protein kinase B (AKT) expression. Results provide the first evidence that decreased interaction between CD46-mediated Tregs and lung epithelial cells with less IL-10/granzyme B production may cause airway inflammation in allergic asthma.
Collapse
Affiliation(s)
- Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Hospital, Changhua, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen Y, Sjölinder M, Wang X, Altenbacher G, Hagner M, Berglund P, Gao Y, Lu T, Jonsson AB, Sjölinder H. Thyroid hormone enhances nitric oxide-mediated bacterial clearance and promotes survival after meningococcal infection. PLoS One 2012; 7:e41445. [PMID: 22844479 PMCID: PMC3402396 DOI: 10.1371/journal.pone.0041445] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/21/2012] [Indexed: 12/04/2022] Open
Abstract
Euthyroid sick syndrome characterized by reduced levels of thyroid hormones (THs) is observed in patients with meningococcal shock. It has been found that the level of THs reflects disease severity and is predictive for mortality. The present study was conducted to investigate the impact of THs on host defense during meningococcal infection. We found that supplementation of thyroxine to mice infected with Neisseria meningitidis enhanced bacterial clearance, attenuated the inflammatory responses and promoted survival. In vitro studies with macrophages revealed that THs enhanced bacteria-cell interaction and intracellular killing of meningococci by stimulating inducible nitric oxide synthase (iNos)-mediated NO production. TH treatment did not activate expression of TH receptors in macrophages. Instead, the observed TH-directed actions were mediated through nongenomic pathways involving the protein kinases PI3K and ERK1/2 and initiated at the membrane receptor integrin αvβ3. Inhibition of nongenomic TH signaling prevented iNos induction, NO production and subsequent intracellular bacterial killing by macrophages. These data demonstrate a beneficial role of THs in macrophage-mediated N. meningitidis clearance. TH replacement might be a novel option to control meningococcal septicemia.
Collapse
Affiliation(s)
- Yao Chen
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Mikael Sjölinder
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Xiao Wang
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Georg Altenbacher
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Matthias Hagner
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Pernilla Berglund
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Yumin Gao
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Ting Lu
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Hong Sjölinder
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
31
|
Ni Choileain S, Astier AL. CD46 processing: a means of expression. Immunobiology 2011; 217:169-75. [PMID: 21742405 DOI: 10.1016/j.imbio.2011.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 12/15/2022]
Abstract
CD46 is a ubiquitously expressed type I transmembrane protein, first identified as a regulator of complement activation, and later as an entry receptor for a variety of pathogens. The last decade has also revealed the role of CD46 in regulating the adaptive immune response, acting as an additional costimulatory molecule for human T cells and inducing their differentiation into Tr1 cells, a subset of regulatory T cells. Interestingly, CD46 regulatory pathways are defective in T cells from patients with multiple sclerosis, asthma and rheumatoid arthritis, illustrating its importance in regulating T cell homeostasis. Indeed, CD46 expression at the cell surface is tightly regulated in many different cell types, highlighting its importance in several biological processes. Notably, CD46 is the target of enzymatic processing, being cleaved by metalloproteinases and by the presenilin/gamma secretase complex. This processing is required for its functions, at least in T cells. This review will summarize the latest updates on the regulation of CD46 expression and on its effects on T cell activation.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- MRC Centre for Inflammation Research, Centre for MS Research, University of Edinburgh, UK
| | | |
Collapse
|
32
|
Abstract
CD46 was discovered in 1986 during a search for novel C3b-binding proteins. CD46 is expressed ubiquitously and functions as a co-factor in the factor I-mediated proteolytic cleavage of C3b and C4b. Its vital role in preventing complement deposition on host tissue is underpinned by the fact that deficiency of CD46 is a predisposing factor for numerous disease conditions arising from complement-mediated 'self-attack'. However, in the last 10 years, it has become apparent that CD46 is also heavily involved in a new and somewhat surprising functional aspect of the complement system: the down-modulation of adaptive T helper type 1 (Th1) immune responses by regulating the production of interferon (IFN)-γ versus interleukin (IL)-10 within these cells. Specifically, this latter function of CD46 is a tantalizing discovery - it may not only have delivered the explanation as to why so many pathogens use and abuse CD46 as cell entry receptor but clearly has important clinical implications for the better understanding of Th1-mediated disease states and novel therapeutic approaches for their amelioration. Here, we summarize and discuss the current knowledge about CD46 and its expanding roles in the immune system.
Collapse
Affiliation(s)
- J Cardone
- MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | | | | |
Collapse
|
33
|
Jadidi-Niaragh F, Mirshafiey A. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol 2011; 33:545-67. [DOI: 10.3109/08923973.2010.513391] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Ni Choileain S, Astier AL. CD46 plasticity and its inflammatory bias in multiple sclerosis. Arch Immunol Ther Exp (Warsz) 2011; 59:49-59. [PMID: 21267793 DOI: 10.1007/s00005-010-0109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/16/2010] [Indexed: 01/13/2023]
Abstract
Known as a link to the adaptive immune system, a complement regulator, a "pathogen magnet" and more recently as an inducer of autophagy, CD46 is the human receptor that refuses to be put in a box. This review summarizes the current roles of CD46 during immune responses and highlights the role of CD46 as both a promoter and attenuator of the immune response. In patients with multiple sclerosis (MS), CD46 responses are overwhelmingly pro-inflammatory with notable defects in cytokine and chemokine production. Understanding the role of CD46 as an inflammatory regulator is a distant goal considering the darkness in which its regulatory mechanisms reside. Further research into the regulation of CD46 expression through its internalization and processing will undoubtedly extend our knowledge of how the balance is tipped in favor of inflammation in MS patients.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
35
|
The Reorientation of T-Cell Polarity and Inhibition of Immunological Synapse Formation by CD46 Involves Its Recruitment to Lipid Rafts. J Lipids 2011; 2011:521863. [PMID: 21490803 PMCID: PMC3067059 DOI: 10.1155/2011/521863] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/01/2010] [Indexed: 12/14/2022] Open
Abstract
Many infectious agents utilize CD46 for infection of human cells, and therapeutic applications of CD46-binding viruses are now being explored. Besides mediating internalization to enable infection, binding to CD46 can directly alter immune function. In particular, ligation of CD46 by antibodies or by measles virus can prevent activation of T cells by altering T-cell polarity and consequently preventing the formation of an immunological synapse. Here, we define a mechanism by which CD46 reorients T-cell polarity to prevent T-cell receptor signaling in response to antigen presentation. We show that CD46 associates with lipid rafts upon ligation, and that this reduces recruitment of both lipid rafts and the microtubule organizing centre to the site of receptor cross-linking. These data combined indicate that polarization of T cells towards the site of CD46 ligation prevents formation of an immunological synapse, and this is associated with the ability of CD46 to recruit lipid rafts away from the site of TCR ligation.
Collapse
|
36
|
Ni Choileain S, Weyand NJ, Neumann C, Thomas J, So M, Astier AL. The dynamic processing of CD46 intracellular domains provides a molecular rheostat for T cell activation. PLoS One 2011; 6:e16287. [PMID: 21283821 PMCID: PMC3023775 DOI: 10.1371/journal.pone.0016287] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022] Open
Abstract
Background Adequate termination of an immune response is as important as the induction of an appropriate response. CD46, a regulator of complement activity, promotes T cell activation and differentiation towards a regulatory Tr1 phenotype. This Tr1 differentiation pathway is defective in patients with MS, asthma and rheumatoid arthritis, underlying its importance in controlling T cell function and the need to understand its regulatory mechanisms. CD46 has two cytoplasmic tails, Cyt1 and Cyt2, derived from alternative splicing, which are co-expressed in all nucleated human cells. The regulation of their expression and precise functions in regulating human T cell activation has not been fully elucidated. Methodology/Principal Findings Here, we first report the novel role of CD46 in terminating T cell activation. Second, we demonstrate that its functions as an activator and inhibitor of T cell responses are mediated through the temporal processing of its cytoplasmic tails. Cyt1 processing is required to turn T cell activation on, while processing of Cyt2 switches T cell activation off, as demonstrated by proliferation, CD25 expression and cytokine secretion. Both tails require processing by Presenilin/γSecretase (P/γS) to exert these functions. This was confirmed by expressing wild-type Cyt1 and Cyt2 tails and uncleavable mutant tails in primary T cells. The role of CD46 tails was also demonstrated with T cells expressing CD19 ectodomain-CD46 C-Terminal Fragment (CTF) fusions, which allowed specific triggering of each tail individually. Conclusions/Significance We conclude that CD46 acts as a molecular rheostat to control human T cell activation through the regulation of processing of its cytoplasmic tails.
Collapse
Affiliation(s)
- Siobhan Ni Choileain
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Nathan J. Weyand
- BIO5 Institute and Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Christian Neumann
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joelle Thomas
- Université Lyon 1, Lyon, CNRS, UMR5534, Centre de Génétique Moléculaire et Cellulaire, Villeurbanne, France
| | - Magdalene So
- BIO5 Institute and Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anne L. Astier
- Institute of Immunology and Infection Research, Edinburgh, United Kingdom
- Centre for Inflammation Research, Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Persson BD, Schmitz NB, Santiago C, Zocher G, Larvie M, Scheu U, Casasnovas JM, Stehle T. Structure of the extracellular portion of CD46 provides insights into its interactions with complement proteins and pathogens. PLoS Pathog 2010; 6:e1001122. [PMID: 20941397 PMCID: PMC2947992 DOI: 10.1371/journal.ppat.1001122] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/26/2010] [Indexed: 12/30/2022] Open
Abstract
The human membrane cofactor protein (MCP, CD46) is a central component of the innate immune system. CD46 protects autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses, measles virus, human herpes virus 6 (HHV-6), Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4) that form an elongated structure resembling a hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion. Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system. The human membrane cofactor protein (MCP, CD46) is expressed on all nucleated cells and serves as a marker that prevents host cells from destruction by the immune system. It functions as a cofactor that helps to inactivate the C3b and C4b molecules, which are central components of the complement system. In addition to its role in regulation complement activation, CD46 is also used by a large number of pathogens, including measles virus and adenovirus, as a receptor to allow these pathogens to attach to the cell surface and initiate an infection. We have determined the three-dimensional structure of the bulk of the extracellular region of CD46 using X-ray crystallography. This structure provides detailed information about the location of previously identified residues that play a role in the interactions with C3b, C4b, and several pathogens, advancing an understanding of the function of the CD46 protein as a host and pathogen receptor. Moreover, the structure also reveals an unexpected, bent conformation of the protein that has implications for how the binding sites are presented at the cell surface.
Collapse
Affiliation(s)
| | | | - César Santiago
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autonóma, Madrid, Spain
| | | | - Mykol Larvie
- Laboratory of Developmental Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - José M. Casasnovas
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autonóma, Madrid, Spain
| | - Thilo Stehle
- University of Tuebingen, Tuebingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
38
|
Yao K, Graham J, Akahata Y, Oh U, Jacobson S. Mechanism of neuroinflammation: enhanced cytotoxicity and IL-17 production via CD46 binding. J Neuroimmune Pharmacol 2010; 5:469-78. [PMID: 20661655 DOI: 10.1007/s11481-010-9232-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/28/2010] [Indexed: 12/18/2022]
Abstract
The membrane co-factor protein CD46 is the cellular receptor for a number of pathogens including the human herpesvirus 6 (HHV-6). In addition to its function as an inhibitory complement receptor, engagement of CD46 in the context of T-cell receptor (TCR) signaling influences T-cell activation. Simultaneous cross-linking of the CD3/CD46 molecules led to differentiation of a unique population of CD4+ T-cell subset characterized by enhanced expressions of IFN-gamma, IL-10, granzyme B, adhesion molecule MAdCAM-1 (alpha-4-beta-7), surface-bound cytokine LIGHT, and chemokine receptor CCR9. Multiple sclerosis is a chronic inflammatory neurodegenerative disorder of the central nervous system (CNS) with unknown etiology. The HHV-6 is a candidate pathogen in MS and uses the CD46 molecule as its receptor. We hypothesize that binding of the HHV-6 glycoprotein to CD46 may trigger a pro-inflammatory response that could contribute to CNS tissue damage. To address this question, we examined immunological parameters such as proliferation, cytokine production and cytotoxic functions in CD4+ T cells of healthy individuals and MS patients following CD3/CD46 co-engagement by using anti-CD3 and anti-CD46 monoclonal antibodies as surrogates to mimic T-cell receptor and CD46 signaling. Our results demonstrated that CD3/CD46 cross-linking induced expression of IL-1beta and IL-17A in multiple sclerosis patient T cells. Additionally, increase in transient surface expression of lysosomal associated protein CD107a suggested enhanced CD4+ T-cell cytotoxic functions following CD3/CD46 co-stimulation. Collectively, this study demonstrated evidence to suggest a potential mechanism of virus-induced neuroinflammation that may be involved in MS disease pathogenesis.
Collapse
Affiliation(s)
- Karen Yao
- Viral Immunology Section, NINDS, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Gustafsson DJ, Andersson EK, Hu YL, Marttila M, Lindman K, Strand M, Wang L, Mei YF. Adenovirus 11p downregulates CD46 early in infection. Virology 2010; 405:474-82. [PMID: 20638094 DOI: 10.1016/j.virol.2010.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/13/2010] [Accepted: 06/11/2010] [Indexed: 01/25/2023]
Abstract
Adenovirus 11 prototype (Ad11p), belonging to species B, uses CD46 as an attachment receptor. CD46, a complement regulatory molecule, is expressed on all human nucleated cells. We show here that Ad11p virions downregulate CD46 on the surface of K562 cells as early as 5min p.i. Specific binding to CD46 by the Ad11p fiber knob was required to mediate downregulation. The complement regulatory factors CD55 and CD59 were also reduced to a significant extent as a consequence of Ad11p binding to K562 cells. In contrast, binding of Ad7p did not result in downregulation of CD46 early in infection. Thus, the presumed interaction between Ad7p and CD46 did not have the same consequences as the Ad11p-CD46 interaction, the latter virus (Ad11p) being a promising gene therapy vector candidate. These findings may lead to a better understanding of the pathogenesis of species B adenovirus infections.
Collapse
Affiliation(s)
- Dan J Gustafsson
- Department of Clinical Microbiology, Virology, Umeå University, SE-901 85 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chen D, Zhang Y, Li M, Zhang C, Chen G, Chen Z, Chen S, Zhang W. Suppression of allogeneic T cells proliferation by CD3/CD46-induced T-regulatory 1 cells. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2010; 30:332-336. [PMID: 20556577 DOI: 10.1007/s11596-010-0352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Indexed: 05/29/2023]
Abstract
CD46 is not only identified as a complement regulatory protein which protects host cells from complement attack, but also a new co-stimulatory molecule for human T cells. CD3/CD46 co-stimulation can induce a T-regulatory 1 cell (Tr1)-specific cytokine phenotype in human CD4+ T cells. However, the role of CD46 as a co-stimulatory molecule in the modulation of the acquired immunity, such as transplant immunology, remains unclear. In this study, CD4+ T cells were isolated from human CD46-transgenic C57BL/6 mice by magnetic-activated cell sorting, and further induced by anti-CD3, anti-CD28 and anti-CD46 antibodies respectively, and anti-CD3/anti-CD28 antibodies, anti-CD3/anti-CD46 antibodies, or the monoclonal antibody panel against CD3/CD28/CD46. The levels of interleukin-2 (IL-2), gamma-interferon (gamma-IFN), interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) were detected in the supernatants of different groups. Suppression of allogeneic T cell proliferation were assessed by using mixed lymphocyte reaction (MLR) assay, in which monoclonal antibodies against CD46 were added to the culture. The results showed that CD3/CD28, CD3/CD46 and CD3/CD28/CD46 co-stimulation could significantly induce stronger proliferation of T cells than CD3 stimulation (P<0.05), and CD3/CD28/CD46 co-stimulation significantly increased the proliferation of T cells when compared with CD3/CD28 or CD3/CD46 co-stimulation (P<0.05 for each). IL-2 and gamma-IFN levels were much higher in CD3/CD28 co-stimulation group than in CD3, CD28, CD46 and CD3/CD46 groups (P<0.05 for each). IL-10 and TGF-beta levels were dramatically increased in CD3/CD46 co-stimulation group as compared with those in the CD3, CD28, CD46 and CD3/CD28 groups (P<0.05 for each). CD3/CD46 co-stimulation significantly inhibited the T cell proliferation and allogenic immune responses through the secretion of IL-10 and TGF-beta in MLR (P<0.05). These results suggested that CD3/CD46 can induce Tr1 cells to modulate allogenic immune responses, and it may become a novel target for the development of new therapeutic approach for T-cell-mediated diseases. CD46 plays an important role in regulating the T cell-mediated immune responses by bridging innate and acquired immunity.
Collapse
Affiliation(s)
- Dong Chen
- Institute of Organ Transplantation, Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J Virol 2010; 84:5336-50. [PMID: 20237079 DOI: 10.1128/jvi.02494-09] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human adenovirus serotype 35 (HAdV-35; here referred to as Ad35) causes kidney and urinary tract infections and infects respiratory organs of immunocompromised individuals. Unlike other adenoviruses, Ad35 has a low seroprevalence, which makes Ad35-based vectors promising candidates for gene therapy. Ad35 utilizes CD46 and integrins as receptors for infection of epithelial and hematopoietic cells. Here we show that infectious entry of Ad35 into HeLa cells, human kidney HK-2 cells, and normal human lung fibroblasts strongly depended on CD46 and integrins but not heparan sulfate and variably required the large GTPase dynamin. Ad35 infections were independent of expression of the carboxy-terminal domain of AP180, which effectively blocks clathrin-mediated uptake. Ad35 infections were inhibited by small chemicals against serine/threonine kinase Pak1 (p21-activated kinase), protein kinase C (PKC), sodium-proton exchangers, actin, and acidic organelles. Remarkably, the F-actin inhibitor jasplakinolide, the Pak1 inhibitor IPA-3, or the sodium-proton exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) blocked endocytic uptake of Ad35. Dominant-negative proteins or small interfering RNAs against factors driving macropinocytosis, including the small GTPase Rac1, Pak1, or the Pak1 effector C-terminal binding protein 1 (CtBP1), potently inhibited Ad35 infection. Confocal laser scanning microscopy, electron microscopy, and live cell imaging showed that Ad35 colocalized with fluid-phase markers in large endocytic structures that were positive for CD46, alphanu integrins, and also CtBP1. Our results extend earlier observations with HAdV-3 (Ad3) and establish macropinocytosis as an infectious pathway for species B human adenoviruses in epithelial and hematopoietic cells.
Collapse
|
42
|
Abstract
Regulatory T cells (Treg cells) play critical roles in the induction of peripheral tolerance to self- and foreign antigens. Naturally occurring CD4(+)CD25(+) Treg cells, which characteristically express the transcription factor forkhead box protein P3 (Foxp3), have been studied intensively because their deficiency abrogates self-tolerance and causes autoimmune disease. However, several lines of evidence suggest that additional important mechanisms other than the Foxp3 system are required to enforce immunological self-tolerance in the periphery. Interleukin-10 (IL-10) is a regulatory cytokine that plays a central role in controlling inflammatory processes, and IL-10-secreting T cells may constitute an additional mechanism that are responsible for peripheral tolerance. Type-1 T regulatory (Tr1) cells, CD46-stimulated IL-10-secreting T cells, and IL-10-secreting T cells induced by vitamin D3 (VitD3) and dexamethasone (Dex) are induced populations with significant regulatory activities. However, assessing the detailed physiological function of these cells is difficult, because of the lack of specific markers that can reliably differentiate the population of IL-10-secreting Treg cells from other T cells. Recently, CD4(+)CD25(-)LAP(+) T cells, CD4(+)NKG2D(+) T cells, CD4(+)IL-7R(-) T cells, and CD4(+)CD25(-)LAG3(+) T cells have been reported as naturally present IL-10-secreting Treg cells. Although the relationship between these induced and naturally present IL-10-secreting Treg cells is unclear, elucidation of their respective roles in modulating immune responses is crucial to understand T cell-mediated tolerance. Furthermore, the identification of specific markers and molecular signatures will enable the purification or induction of IL-10-secreting Treg cells for the treatment of patients having inflammatory diseases.
Collapse
Affiliation(s)
- Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
43
|
Giraudon P, Bernard A. Chronic viral infections of the central nervous system: Aspects specific to multiple sclerosis. Rev Neurol (Paris) 2009; 165:789-95. [PMID: 19656540 PMCID: PMC7118785 DOI: 10.1016/j.neurol.2009.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The involvement of a viral infection in the physiopathology of multiple sclerosis has been said to cause certain viruses to target the central nervous system and induce neuroinflammation leading to cell dysfunction, as seen, for example, by demyelination or neuronal death. The most recent results of the literature have focused on the Herpes family viruses (HHV-6 and HHV-4/Epstein-Barr virus) and their possible role in the development of multiple sclerosis. Even if no virus has been identified so far as the multiple sclerosis etiological agent, our aim here is to show that some viruses may be responsible for triggering or sustaining neurological diseases. This is particularly the case for Paramyxoviruses, in the late appearance of functional alterations, Picornaviruses, in inducing a breakdown of immune tolerance, epitope spreading and demyelination, and Herpes viruses in inducing T and B lymphocyte activation, T lymphocytes dysregulation and autoimmunity after their reactivation. Therefore, “common” viruses can play a role as potential modulators of the immune and nervous systems which, in the specific context of dysimmunity and genetic susceptibility, stimulate a favorable background to the development of multiple sclerosis. Tracing and studying viruses in multiple sclerosis patients may improve our understanding of their actual involvement in multiple sclerosis physiopathology.
Collapse
|
44
|
Thorne M, Moore CS, Robertson GS. Lack of TIMP-1 increases severity of experimental autoimmune encephalomyelitis: Effects of darbepoetin alfa on TIMP-1 null and wild-type mice. J Neuroimmunol 2009; 211:92-100. [DOI: 10.1016/j.jneuroim.2009.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/02/2009] [Accepted: 04/08/2009] [Indexed: 12/27/2022]
|
45
|
Ma A, Xiong Z, Hu Y, Qi S, Song L, Dun H, Zhang L, Lou D, Yang P, Zhao Z, Wang X, Zhang D, Daloze P, Chen H. Dysfunction of IL-10-producing type 1 regulatory T cells and CD4+CD25+ regulatory T cells in a mimic model of human multiple sclerosis in Cynomolgus monkeys. Int Immunopharmacol 2009; 9:599-608. [DOI: 10.1016/j.intimp.2009.01.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
|