1
|
Liu J, Yang K, Lin X, Xu J, Cui X, Hao J, Wang W, Wang W, Li L, Hao M. IL-32/NFκB/miR-205 loop sustains the high expression of IL-32 and enhances the motility of cervical cancer cells. Hum Cell 2024; 37:1434-1445. [PMID: 38902566 DOI: 10.1007/s13577-024-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Human papillomavirus (HPV) infection is a major contributor to cervical cancer. Persistent HPV infection can trigger the expression of IL-32, yet the precise role of IL-32 in the occurrence and development of cervical cancer remains elusive. To investigate this, qRT‒PCR and western blotting were utilized to measure the mRNA and protein expression levels; bioinformatics analysis was used to screen differentially expressed miRNAs; wound healing and transwell assays were conducted to evaluate cell migration and invasion capabilities. Comparative analysis revealed significantly elevated IL-32 expression in cervical cancer tissues and cell lines compared to control groups. In SiHa and/or HeLa, overexpression of IL-32 and IL-32 exposure markedly upregulated miR-205, whereas its knockdown resulted in a substantial downregulation of miR-205. Furthermore, miR-205 also could significantly regulate the expression of IL-32 in HeLa and SiHa cells. Upregulation and downregulation of IL-32 led to a significant increase or decrease in NFκB expression, respectively. Treatment with BAY11-7082 (an NFκB inhibitor) notably decreased miR-205 expression but had no effect on IL-32 levels. qRT‒PCR and western blotting analyses demonstrated that both overexpression and underexpression of IL-32 and miR-205 significantly enhanced or reduced MMP2 and MMP9 expression in cervical cancer cells, respectively. Knockdown of IL-32 significantly inhibited the migration and invasion of HeLa and SiHa; conversely, treatment with rIL-32α and rIL-32γ notably promoted their migration and invasion. In brief, IL-32 is highly expressed via the formation of a positive regulatory loop with NFκB/miR-205, contributing to the persistence of inflammation and promoting the progression of cervical cancer.
Collapse
Affiliation(s)
- Jianbing Liu
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, 036000, Shanxi, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kai Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyu Lin
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Xu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaohua Cui
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Wei Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, 036000, Shanxi, China
| | - Wenhao Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, 036000, Shanxi, China
| | - Li Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Min Hao
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, 036000, Shanxi, China.
| |
Collapse
|
2
|
Zhang M, Zhong J, Song Z, Xu Q, Chen Y, Zhang Z. Regulatory mechanisms and potential therapeutic targets in precancerous lesions of gastric cancer: A comprehensive review. Biomed Pharmacother 2024; 177:117068. [PMID: 39018877 DOI: 10.1016/j.biopha.2024.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Precancerous lesions of gastric cancer (PLGC) represent a critical pathological stage in the transformation from normal gastric mucosa to gastric cancer (GC). The global incidence of PLGC has been rising over the past few decades, with a trend towards younger onset ages. Increasing evidence suggests that early prevention and treatment of PLGC can effectively reverse the malignant development of gastric mucosal epithelial cells. However, there is currently a lack of effective therapeutic drugs and methods. Recent years have witnessed substantial advancements in PLGC research, with the elucidation of novel regulatory mechanisms offering promising avenues for clinical intervention and drug development. This review aims to delineate potential targets for early prevention and diagnosis of GC while exploring innovative approaches to PLGC management. This article focuses on elucidating the regulatory mechanisms of the inflammatory microenvironment, bile acids (BA), glycolysis, autophagy, apoptosis, ferroptosis, and cellular senescence. We pay particular attention to potential therapeutic targets for PLGC, with the goal of providing insights and theoretical basis for clinical research on PLGC.
Collapse
Affiliation(s)
- Maofu Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jialin Zhong
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhongyang Song
- Department of Oncology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730020, China
| | - Qian Xu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yuchan Chen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730050, China.
| |
Collapse
|
3
|
Hough JT, Zhao L, Lequio M, Heslin AJ, Xiao H, Lewis CC, Zhang J, Bai Q, Wakefield MR, Fang Y. IL-32 and its Paradoxical Role in Neoplasia. Crit Rev Oncol Hematol 2023; 186:104011. [PMID: 37105370 DOI: 10.1016/j.critrevonc.2023.104011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Interleukin-32 (IL-32) is an interleukin cytokine usually linked to inflammation. In recent years, it has been found that IL-32 exhibits both pro- and anti-tumor effects. Although most of those effects from IL-32 appear to favor tumor growth, some isoforms have shown to favor tumor suppression. This suggests that the role of IL-32 in neoplasia is very complex. Thus, the role of IL-32 in these various cancers and protein pathways makes it a very crucial component to consider when looking at potential therapeutic options in tumor treatment. In this review, we will explore what is currently known about IL-32, including its relationship with tumorigenesis and the potential for IL-32 to enhance local and systemic anti-tumor immune responses. Such a study might be helpful to accelerate the development of IL-32-based immunotherapies.
Collapse
Affiliation(s)
- Jacob T Hough
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Lei Zhao
- The Department of Respiratory Medicine, the 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Marco Lequio
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Aidan J Heslin
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902
| | - Cade C Lewis
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Justin Zhang
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA, 50312; Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212.
| |
Collapse
|
4
|
Ribeiro-Dias F, Oliveira I. A Critical Overview of Interleukin 32 in Leishmaniases. Front Immunol 2022; 13:849340. [PMID: 35309341 PMCID: PMC8927017 DOI: 10.3389/fimmu.2022.849340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022] Open
Abstract
Interleukin-32 (IL-32) has several immune regulatory properties, which have driven its investigation in the context of various diseases. IL-32 expression is reported to be induced in the lesions of patients with American tegumentary leishmaniasis (ATL) by the New World Leishmania spp. that are responsible for causing ATL and visceral leishmaniasis (VL). IL-32 expression may elevate the inflammatory process through the induction of pro-inflammatory cytokines and also via mechanisms directed to kill the parasites. The genetic variants of IL-32 might be associated with the resistance or susceptibility to ATL, while different isoforms of IL-32 could be associated with distinct T helper lymphocyte profiles. IL-32 also determines the transcriptional profile in the bone marrow progenitor cells to mediate the trained immunity induced by β-glucan and BCG, thereby contributing to the resistance against Leishmania. IL-32γ is essential for the vitamin D-dependent microbicidal pathway for parasite control. In this context, the present review report briefly discusses the data retrieved from the studies conducted on IL-32 in leishmaniasis in humans and mice to highlight the current challenges to understanding the role of IL-32 in leishmaniasis.
Collapse
Affiliation(s)
- Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | |
Collapse
|
5
|
Hatatian N, Bosstani R, Mohammadi A, Mehraban S, Mahdifar M, Zemorshidi F, Mozhgani SH, Haji Ghadimi A, Foroughipour M, Rafatpanah H. Evaluation of interleukin-32 and cyclooxygenase-2 expression in HAM/TSP patients and HTLV-1 asymptomatic carriers. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:992-996. [PMID: 34712431 PMCID: PMC8528256 DOI: 10.22038/ijbms.2021.50821.11569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022]
Abstract
Objective(s): HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a neuroinflammatory disorder associated with HTLV-1. Cytokines and inflammatory mediators have a major role in forming inflammation in HAM/TSP patients. This study aimed to measure the levels of IL-32, a proinflammatory cytokine associated with autoinflammatory disorders, and also cyclooxygenase -2 (COX-2) as a key mediator of inflammatory pathways in HAM/TSP patients and HTLV-1 asymptomatic carriers (ACs). Materials and Methods: Peripheral blood monocyte cells (PBMCs) were isolated from HAM/TSP patients, ACs, and healthy controls (HCs), and DNA and RNA were extracted to evaluate HTLV-1 proviral load (PVL) and expression of IL-32 and COX-2, using real-time PCR. Serum levels of IL-32 were determined by using an ELISA assay. Results: The expression level of IL-32 was significantly higher in ACs compared with HAM/TSP patients and HCs (P<0.0001 and P>0.05, respectively). There were no statistically significant differences in the expression levels of Cox-2 and protein levels of IL-32 between the study groups. HTLV-1 PVL was higher in HAM/TSP patients compared with ACs. Conclusion: Results showed increased mRNA levels of IL-32 in ACs. Since HTLV-1 PVL in ACs is lower than in HAM/TSP patients, it could be concluded that IL-32 might be an HTLV-1 inhibitor that seems to control virus replication. Despite the difference in IL-32 mRNA levels between study groups, no statistically significant differences were observed in IL-32 serum levels. Also, there were no significant differences in COX-2 expression.
Collapse
Affiliation(s)
- Niayesh Hatatian
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Bosstani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saeedeh Mehraban
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Zemorshidi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohsen Foroughipour
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Carrero YN, Callejas DE, Mosquera JA. In situ immunopathological events in human cervical intraepithelial neoplasia and cervical cancer: Review. Transl Oncol 2021; 14:101058. [PMID: 33677234 PMCID: PMC7937982 DOI: 10.1016/j.tranon.2021.101058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neoplasia of the cervix represents one of the most common cancers in women. Clinical and molecular research has identified immunological impairment in squamous intraepithelial cervical lesions and cervical cancer patients. The in-situ expression of several cytokines by uterine epithelial cells and by infiltrating leukocytes occurs during the cervical intraepithelial neoplasia and cervical cancer. Some of these cytokines can prevent and others can induce the progression of the neoplasm. The infiltrating leukocytes also produce cytokines and growth factors relate to angiogenesis, chemotaxis, and apoptosis capable of modulating the dysplasia progression. In this review we analyzed several interleukins with an inductive effect or blocking effect on the neoplastic progression. We also analyze the genetic polymorphism of some cytokines and their relationship with the risk of developing cervical neoplasia. In addition, we describe the leukocyte cells that infiltrate the cervical uterine tissue during the neoplasia and their effects on neoplasia progression.
Collapse
Affiliation(s)
- Yenddy N Carrero
- Facultad de Ciencias de la Salud. Carrera de Medicina, Universidad Técnica de Ambato, Ambato, Ecuador.
| | - Diana E Callejas
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas Dr. Américo Negrette. Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela.
| |
Collapse
|
7
|
Wu K, Zeng J, Shi X, Xie J, Li Y, Zheng H, Peng G, Zhu G, Tang D, Wu S. Targeting TIGIT Inhibits Bladder Cancer Metastasis Through Suppressing IL-32. Front Pharmacol 2021; 12:801493. [PMID: 35069212 PMCID: PMC8766971 DOI: 10.3389/fphar.2021.801493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Bladder cancer is a highly metastatic tumor and one of the most common malignancies originating in the urinary tract. Despite the efficacy of immune checkpoints, including programmed cell death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), the effect of immunotherapy for bladder cancer remains unsatisfactory. Therefore, it is urgent to develop new targets to expand immunotherapeutic options. In this study, we utilized single-cell sequencing to explore the cell composition of tumors and detected a subset of Treg cells with high expression of T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and interleukin (IL)-32. The antitumor immune response was suppressed by this subset of Treg cells, while IL-32 promoted bladder cancer metastasis. Nevertheless, targeting TIGIT not only reversed immunosuppression by restoring the antitumor immune response mediated by T cells but also suppressed the secretion of IL-32 and inhibited the metastasis of bladder cancer cells. Thus, our study provided novel insights into immunosuppression in bladder cancer and highlighted TIGIT as a novel target for immunotherapy of bladder cancer. We also illustrated the mechanism of the dual effect of targeting TIGIT and revealed the metastasis-promoting effect of IL-32 in bladder cancer. Collectively, these findings raise the possibility of utilizing TIGIT as a target against bladder cancer from the bench to the bedside.
Collapse
Affiliation(s)
- Kang Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xulian Shi
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Jiajia Xie
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Yuqing Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Haoxiang Zheng
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Guoyu Peng
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Guanghui Zhu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Dongdong Tang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Shenzhen Following Precision Medicine Research Institute, Shenzhen, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
- Medical Laboratory of Shenzhen Luohu People’s Hospital, Shenzhen, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, China
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Song Wu,
| |
Collapse
|
8
|
Henrique T, Zanon CDF, Girol AP, Stefanini ACB, Contessoto NSDA, da Silveira NJF, Bezerra DP, Silveira ER, Barbosa-Filho JM, Cornélio ML, Oliani SM, Tajara EH. Biological and physical approaches on the role of piplartine (piperlongumine) in cancer. Sci Rep 2020; 10:22283. [PMID: 33335138 PMCID: PMC7746756 DOI: 10.1038/s41598-020-78220-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation provides a favorable microenvironment for tumorigenesis, which opens opportunities for targeting cancer development and progression. Piplartine (PL) is a biologically active alkaloid from long peppers that exhibits anti-inflammatory and antitumor activity. In the present study, we investigated the physical and chemical interactions of PL with anti-inflammatory compounds and their effects on cell proliferation and migration and on the gene expression of inflammatory mediators. Molecular docking data and physicochemical analysis suggested that PL shows potential interactions with a peptide of annexin A1 (ANXA1), an endogenous anti-inflammatory mediator with therapeutic potential in cancer. Treatment of neoplastic cells with PL alone or with annexin A1 mimic peptide reduced cell proliferation and viability and modulated the expression of MCP-1 chemokine, IL-8 cytokine and genes involved in inflammatory processes. The results also suggested an inhibitory effect of PL on tubulin expression. In addition, PL apparently had no influence on cell migration and invasion at the concentration tested. Considering the role of inflammation in the context of promoting tumor initiation, the present study shows the potential of piplartine as a therapeutic immunomodulator for cancer prevention and progression.
Collapse
Affiliation(s)
- Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil
| | - Caroline de F Zanon
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Ana P Girol
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
- Integrated College Padre Albino Foundation (FIPA), Catanduva, SP, 15806-310, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil
- Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Nayara S de A Contessoto
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Nelson J F da Silveira
- Laboratory of Molecular Modeling and Computer Simulation/MolMod-CS, Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, BA, 40296-710, Brazil
| | - Edilberto R Silveira
- Department of Chemistry, Federal University of Ceará, Fortaleza, CE, 60020-181, Brazil
| | - José M Barbosa-Filho
- Laboratory of Pharmaceutics Technology, Federal University of Paraiba, João Pessoa, PB, 58051-900, Brazil
| | - Marinonio L Cornélio
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Sonia M Oliani
- Department of Biology, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE) - Campus São José do Rio Preto, Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), Av Brigadeiro Faria Lima 5416, São José do Rio Preto, SP, CEP 15090-000, Brazil.
- Department of Genetics and Evolutive Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
9
|
Aass KR, Kastnes MH, Standal T. Molecular interactions and functions of IL-32. J Leukoc Biol 2020; 109:143-159. [PMID: 32869391 DOI: 10.1002/jlb.3mr0620-550r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
IL-32 is a multifaceted cytokine associated with several diseases and inflammatory conditions. Its expression is induced in response to cellular stress such as hypoxia, infections, and pro-inflammatory cytokines. IL-32 can be secreted from cells and can induce the production of pro-inflammatory cytokines from several cell types but are also described to have anti-inflammatory functions. The intracellular form of IL-32 is shown to play an important role in various cellular processes, including the defense against intracellular bacteria and viruses and in modulation of cell metabolism. In this review, we discuss current literature on molecular interactions of IL-32 with other proteins. We also review data on the role of intracellular IL-32 as a metabolic regulator and its role in antimicrobial host defense.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Martin H Kastnes
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research (CEMIR), Trondheim, Norway.,Department of Hematology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
10
|
Admission IL-32 concentration predicts severity and mortality of severe community-acquired pneumonia independently of etiology. Clin Chim Acta 2020; 510:647-653. [PMID: 32860786 DOI: 10.1016/j.cca.2020.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Severe community-acquired pneumonia (SCAP) is a critical disorder with high morbidity and mortality, usually manifested as acute respiratory failure and septic shock generally caused by exaggerated systemic inflammation. Interleukin-32 (IL-32), a pro-inflammatory cytokine, has been reported involved in various infectious diseases. We investigated the efficacy of the plasma IL-32 as a biomarker for evaluating the severity and clinical outcomes in SCAP patients. METHODS A total of 124 adult immunocompetent SCAP patients and 87 healthy controls were enrolled in this observational, prospective cohort study. RESULTS We found that PBMCs IL-32 mRNA and plasma IL-32 concentrations on admission of SCAP patients were significantly higher than healthy controls. Plasma IL-32 concentrations closely correlated with increasing severity scores, the need for vasopressor support or invasive mechanical ventilation but not with the etiology. The area under the curve (AUC) for predicting 30-day mortality using IL-32 was 0.812, is superior to WBCs and CRP. Incorporation of IL-32 with the severity scores were shown to improve the prognostic accuracy considerably. Furthermore, the 30-day cumulative survival rate in high IL-32 concentration group was significantly lower than that in the low concentration group. In a multivariate Cox regression analysis, higher IL-32 concentration and higher PSI score were recognized as the independent risk factors for survival, and the relative risks were 2.568 and 3.362, respectively. CONCLUSIONS Admission IL-32 concentration closely related to the severity and mortality of SCAP, and it may be served as a potential biomarker to help clinical judgment and management.
Collapse
|
11
|
Pavlovic M, Jovanovic I, Arsenijevic N. Interleukin-32 in Infection, Inflammation and Cancer Biology. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.1515/sjecr-2016-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Cytokines are small pleiotropic polypeptids secreted dominantly by the cells of the immune system. These polypeptids are main mediators of innate and acquired immunity, responsible for clonal expansion and differentiation of immune cells, initiation of immune response and enhancing of effector functions of leukocytes. Cytokine-related effects are most studied in the fields of inflammation, immunology, and cancer biology. In this review we discuss one of the most intriguing, recently discovered proinflammatory cytokine, interleukin 32.
Collapse
Affiliation(s)
- Mladen Pavlovic
- Department of Surgery, Faculty of Medical Sciences , University of Kragujevac , Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research , Faculty of Medical Sciences , University of Kragujevac , Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research , Faculty of Medical Sciences , University of Kragujevac , Serbia
| |
Collapse
|
12
|
Nahand JS, Moghoofei M, Salmaninejad A, Bahmanpour Z, Karimzadeh M, Nasiri M, Mirzaei HR, Pourhanifeh MH, Bokharaei‐Salim F, Mirzaei H, Hamblin MR. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer 2020; 146:305-320. [PMID: 31566705 PMCID: PMC6999596 DOI: 10.1002/ijc.32688] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is the fourth most common cause of cancer death in women. The most important risk factor for the development of CC is cervical infection with human papilloma virus (HPV). Inflammation is a protective strategy that is triggered by the host against pathogens such as viral infections that acts rapidly to activate the innate immune response. Inflammation is beneficial if it is brief and well controlled; however, if the inflammation is excessive or it becomes of chronic duration, it can produce detrimental effects. HPV proteins are involved, both directly and indirectly, in the development of chronic inflammation, which is a causal factor in the development of CC. However, other factors may also have a potential role in stimulating chronic inflammation. MicroRNAs (miRNAs) (a class of noncoding RNAs) are strong regulators of gene expression. They have emerged as key players in several biological processes, including inflammatory pathways. Abnormal expression of miRNAs may be linked to the induction of inflammation that occurs in CC. Exosomes are a subset of extracellular vesicles shed by almost all types of cells, which can function as cargo transfer vehicles. Exosomes contain proteins and genetic material (including miRNAs) derived from their parent cells and can potentially affect recipient cells. Exosomes have recently been recognized to be involved in inflammatory processes and can also affect the immune response. In this review, we discuss the role of HPV proteins, miRNAs and exosomes in the inflammation associated with CC.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nasiri
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Farah Bokharaei‐Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
13
|
Abstract
Interleukin-32 (IL-32) was originally identified in natural killer (NK) cells activated by IL-2 in 1992. Thus, it was named NK cell transcript 4 (NK4) because of its unknown function at that time. The function of IL-32 has been elucidated over the last decade. IL-32 is primarily considered to be a booster of inflammatory reactions because it is induced by pro-inflammatory cytokines and stimulates the production of those cytokines and vice versa. Therefore, many studies have been devoted to studying the roles of IL-32 in inflammation-associated cancers, including gastric, colon cancer, and hepatocellular carcinoma. At the same time, roles of IL-32 have also been discovered in other cancers. Collectively, IL-32 fosters the tumor progression by nuclear factor-κB (NF-κB)-mediated cytokines and metalloproteinase production, as well as stimulation of differentiation into immunosuppressive cell types in some cancer types. However, it is also able to induce tumor cell apoptosis and enhance NK and cytotoxic T cell sensitivity in other cancer types. In this review, we will address the function of each IL-32 isoform in different cancer types studied to date, and suggest further strategies to comprehensively elucidate the roles of IL-32 in a context-dependent manner.
Collapse
Affiliation(s)
- Sora Han
- Research Institute for Women's Health, Sookmyung Women's University, Seoul 04310, Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
14
|
The Biology and Role of Interleukin-32 in Tuberculosis. J Immunol Res 2018; 2018:1535194. [PMID: 30426023 PMCID: PMC6217754 DOI: 10.1155/2018/1535194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/08/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains a leading cause of morbidity and mortality globally, with nearly 10.4 million new cases of incidence and over 1.7 million deaths annually. Drug-resistant M. tuberculosis strains, especially multidrug-resistant or extensively drug-resistant strains, have further intensified the problem associated with tuberculosis control. Host-directed therapy is a promising alternative for tuberculosis control. IL-32 is increasingly recognized as an important host molecule against tuberculosis. In this review, we highlight the proinflammatory properties of IL-32 and the mode of action of IL-32 in mycobacterial infections to inspire the development of novel immunity-based countermeasures and host-directed therapies against tuberculosis.
Collapse
|
15
|
Tian ZJ, Shen Y, Li XR, Wei YN, Fan H, Ren QK. Increased interleukin-32, interleukin-1, and interferon-γ levels in serum from hepatitis B patients and in HBV-stimulated peripheral blood mononuclear cells from healthy volunteers. J Infect Public Health 2018; 12:7-12. [PMID: 30006119 DOI: 10.1016/j.jiph.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Few studies showed the changes in cytokine profiles after infection by hepatitis B virus (HBV), the most common viral liver disease worldwide. This study examined the relationship between interleukin (IL)-32, IL-1, and interferon (IFN)-γ levels and HBV load. METHODS IL-32, IL-1, and IFN-γ levels in hepatitis B patients serum and HBV-stimulated PBMCs were measured by ELISA. Gene transcripts in PBMCs from hepatitis B patients and HBV-stimulated PBMCs from healthy controls were measured by real-time PCR. RESULTS IL-32, IL-1, and IFN-γ protein levels in serum from hepatitis B patients were significantly higher than those in healthy volunteers (P<0.05). Hepatitis B patients showed significantly higher expression of IL-32, IL-1, and IFN-γ transcripts than healthy volunteers (P<0.05). IL-32, IL-1, and IFN-γ levels in PBMCs stimulated by different amounts of HBV were significantly higher than those in HBV-unstimulated PBMCs (P<0.05). Real-time PCR results were consistent with the ELISA results. CONCLUSIONS The levels of IL-32, IL-1, and IFN-γ protein and transcripts in serum and PBMCs from hepatitis B patients were higher than those in healthy volunteers. Similarly, both were higher in PBMCs from healthy volunteers stimulated by HBV in vitro. However, the changes in cytokine levels were not proportional to the viral load.
Collapse
Affiliation(s)
- Zhao-Ju Tian
- The Public Health Medicine, Taishan Medical University, Tai'an 271016, China.
| | - Yu Shen
- The Public Health Medicine, Taishan Medical University, Tai'an 271016, China; The Eighty-Eighth Hospital of the Chinese People Liberation Army, Tai'an 271000, China
| | - Xin-Rui Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ya-Nan Wei
- The Public Health Medicine, Taishan Medical University, Tai'an 271016, China
| | - Hua Fan
- The Public Health Medicine, Taishan Medical University, Tai'an 271016, China
| | - Qi-Kui Ren
- The Public Health Medicine, Taishan Medical University, Tai'an 271016, China
| |
Collapse
|
16
|
Yan H, He D, Huang X, Zhang E, Chen Q, Xu R, Liu X, Zi F, Cai Z. Role of interleukin-32 in cancer biology. Oncol Lett 2018; 16:41-47. [PMID: 29930712 DOI: 10.3892/ol.2018.8649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Interleukin-32 (IL-32), a novel proinflammatory cytokine, is highly expressed in various cancer tissues and in established cancer cell lines. IL-32 has been revealed to serve a crucial role in human cancer development, including tumour initiation, proliferation and maintenance. The expression of IL-32 is regulated by numerous factors, including genetic variations, hypoxia and acidosis in the tumour microenvironment. Understanding the underlying mechanisms of IL-32 expression and its function are critical for the discovery of novel therapeutic strategies that target IL-32. This is a review of the current literature on the regulation and function of IL-32 in cancer progression, focusing on the molecular pathways linking IL-32 and tumour development.
Collapse
Affiliation(s)
- Haimeng Yan
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Donghua He
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xi Huang
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Enfan Zhang
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qingxiao Chen
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ruyi Xu
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinling Liu
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Fuming Zi
- Department of Haematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Zhen Cai
- Bone Marrow Transplantation Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
17
|
Abstract
Interleukin 32 (IL-32) is a proinflammatory cytokine involved in the development of several diseases, including cancer. IL-32 is a rather peculiar cytokine because its protein structure does not show resemblance with any of the known cytokines, and an IL-32 receptor to facilitate extracellular signaling has not yet been identified. Thus far, 9 isoforms of IL-32 have been described, all of which show differences in terms of effects and in potency to elicit a specific effect. Since the first report of IL-32 in 2005, there is increasing evidence that IL-32 plays an important role in the pathophysiology of both hematologic malignancies and solid tumors. Some IL-32 isoforms have been linked to disease outcome and were shown to positively influence tumor development and progression in various different malignancies, including gastric, breast and lung cancers. However, there are other reports suggesting a tumor suppressive role for some of IL-32 as well. For example, IL-32γ and IL-32β expression is associated with increased cancer cell death in colon cancer and melanoma, whereas expression of these isoforms is associated with increased invasion and migration in breast cancer cells. Furthermore, IL-32 isoforms α, β and γ also play an important role in regulating the anti-tumor immune response, thus also influencing tumor progression. In this review, we provide an overview of the role of IL-32 and its different isoforms in carcinogenesis, invasion and metastasis, angiogenesis and regulation of the anti-tumor immune response.
Collapse
|
18
|
Kim SJ, Song YS, Pham TH, Bak Y, Lee HP, Hong JT, Yoon DY. (E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol attenuates PMA-induced inflammatory responses in human monocytic cells through PKCδ/JNK/AP-1 pathways. Eur J Pharmacol 2018; 825:19-27. [PMID: 29371085 DOI: 10.1016/j.ejphar.2018.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/20/2022]
Abstract
(E)-2-Methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a new (E)-2,4-bis(p-hydroxyphenyl)-2 - butenal derivative, reportedly has therapeutic effects such as anti-arthritic properties. Although previous studies showed that MMPP has anti-arthritic effects on rheumatoid arthritis (RA), the anti-inflammation mechanism of MMPP remains unclear. In this study, phorbol-12-myristate 13-acetate (PMA) was used as an inflammatory stimulus to evaluate the detailed mechanism of the MMPP-mediated anti-inflammatory effect in human monocytic THP-1 cells. We investigated the effects of MMPP on inflammation-related pathways including protein kinase Cδ (PKCδ), mitogen-activated protein kinase, and activator protein-1 (AP-1). PMA induced the translocation of PKCs from the cytosol to the membrane and phosphorylated JNK. MMPP inhibited PMA-induced membrane translocation of PKCδ, phosphorylation of JNK, and nuclear translocation of AP-1, resulting in downregulation of cyclooxygenase-2 and chemokine ligand 5 production. These findings indicate that MMPP inhibits inflammatory responses in THP-1 cells by mitigating PMA-induced activation of PKCδ and JNK and nuclear translocation of AP-1. Therefore, MMPP may be useful as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Seok Song
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin-Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
19
|
Semango G, Heinhuis B, Plantinga TS, Blokx WAM, Kibiki G, Sonda T, Mavura D, Masenga EJ, Nyindo M, van der Ven AJAM, Joosten LAB. Exploring the Role of IL-32 in HIV-Related Kaposi Sarcoma. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:196-203. [PMID: 29037857 DOI: 10.1016/j.ajpath.2017.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/17/2022]
Abstract
The intracellular proinflammatory mediator IL-32 is associated with tumor progression; however, the mechanisms remain unknown. We studied IL-32 mRNA expression as well as expression of other proinflammatory cytokines and mediators, including IL-1α, IL-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, the proangiogenic and antiapoptotic enzyme cyclooxygenase-2, the IL-8 receptor C-X-C chemokine receptor (CXCR) 1, and the intracellular kinase focal adhesion kinase-1. The interaction of IL-32 expression with expression of IL-6, TNF-α, IL-8, and cyclooxygenase-2 was also investigated. Biopsy specimens of 11 HIV-related, 7 non-HIV-related Kaposi sarcoma (KS), and 7 normal skin tissues (NSTs) of Dutch origin were analyzed. RNA was isolated from the paraffin material, and gene expression levels of IL-32 α, β, and γ isoforms, IL1a, IL1b, IL6, IL8, TNFA, PTGS2, CXCR1, and PTK2 were determined using real-time quantitative PCR. Significantly higher expression of IL-32β and IL-32γ isoforms was observed in HIV-related KS biopsy specimens compared with non-HIV-related KS and NST. The splicing ratio of the IL-32 isoforms showed IL-32γ as the highest expressed isoform, followed by IL-32β, in HIV-related KS cases compared with non-HIV-related KS and NST. Our data suggest a possible survival mechanism by the splicing of IL-32γ to IL-32β and also IL-6, IL-8, and CXCR1 signaling pathways to reverse the proapoptotic effect of the IL-32γ isoform, leading to tumor cell survival and thus favoring tumor progression.
Collapse
Affiliation(s)
- George Semango
- Kilimanjaro Christian Medical University College, Moshi, Tanzania; School of Life Sciences, Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania.
| | - Bas Heinhuis
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Center of Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Theo S Plantinga
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Willeke A M Blokx
- Department of Pathology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gibson Kibiki
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Tolbert Sonda
- Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Daudi Mavura
- Regional Dermatology Training Centre, Moshi, Tanzania
| | | | - Mramba Nyindo
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andre J A M van der Ven
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Center of Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Center of Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Xuan W, Huang W, Wang R, Chen C, Chen Y, Wang Y, Tan X. Elevated circulating IL-32 presents a poor prognostic outcome in patients with heart failure after myocardial infarction. Int J Cardiol 2017; 243:367-373. [PMID: 28747035 DOI: 10.1016/j.ijcard.2017.03.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/20/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Interleukin-32 (IL-32) is a newly discovered proinflammatory cytokine. However, there are limited data regarding IL-32 as a biomarker for heart failure (HF). In this study, we assessed the prognostic value of IL-32 in patients with chronic HF after myocardial infarction (MI). METHODS AND RESULTS Over a period of 1.8years, we prospectively enrolled 100 patients with chronic HF after MI. IL-32, NT-proBNP, Matrix metallopeptidase 9 (MMP-9), procollagen type I (PI) and type III (PIII) were measured at baseline. Study endpoint was adverse cardiac events. High IL-32 levels were associated with numerous factors that are related to deteriorate cardiac function and cardiac fibrosis. Strong expression of IL-32 was detected in human cardiomyocytes from HF tissue. ROC curve revealed the area under the curve of IL-32 for predicting negative outcome of HF was 0.72 (95% CI: 0.60-0.83, P<0.01). Kaplan-Meier statistics showed that the risk of adverse cardiac event was 5.75 fold (hazard ratio 5.75, 95% CI 1.53-21.58, P=0.009), which increased in the highest quartile (>296pg/mL). Cox regression analysis revealed IL-32 was an independent predictor for cardiac events (hazard ratio 2.78, 95% CI 1.02-7.57, P=0.046). Recombinant IL-32 significantly exacerbated infarct size in a mouse model of MI. IL-32 upregulated expression of MMP-9, PIII and transforming growth factor beta in rat fibroblasts. CONCLUSION IL-32 might be a novel predictor of adverse cardiac event in patients with HF after MI. The pro-fibrotic effect of IL-32 may contribute to adverse cardiac remodeling and progression to HF.
Collapse
Affiliation(s)
- Wanling Xuan
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weixing Huang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ruijie Wang
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chang Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yequn Chen
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Wang
- Department of Radiology, University of California San Francisco, San Francisco, CA, United States
| | - Xuerui Tan
- Department of Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
21
|
Bhat S, Gardi N, Hake S, Kotian N, Sawant S, Kannan S, Parmar V, Desai S, Dutt A, Joshi NN. Impact of intra-tumoral IL17A and IL32 gene expression on T-cell responses and lymph node status in breast cancer patients. J Cancer Res Clin Oncol 2017; 143:1745-1756. [PMID: 28470472 PMCID: PMC5863950 DOI: 10.1007/s00432-017-2431-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Pro-inflammatory cytokines such as Interleukin-17A (IL17A) and Interleukin-32 (IL32), known to enhance natural killer and T cell responses, are also elevated in human malignancies and linked to poor clinical outcomes. To address this paradox, we evaluated relation between IL17A and IL32 expression and other inflammation- and T cell response-associated genes in breast tumors. METHODS TaqMan-based gene expression analysis was carried out in seventy-eight breast tumors. The association between IL17A and IL32 transcript levels and T cell response genes, ER status as well as lymph node status was also examined in breast tumors from TCGA dataset. RESULTS IL17A expression was detected in 32.7% ER-positive and 84.6% ER-negative tumors, with higher expression in the latter group (26.2 vs 7.1-fold, p < 0.01). ER-negative tumors also showed higher expression of IL32 as opposed to ER-positive tumors (8.7 vs 2.5-fold, p < 0.01). Expression of both IL17A and IL32 genes positively correlated with CCL5, GNLY, TBX21, IL21 and IL23 transcript levels (p < 0.01). Amongst ER-positive tumors, higher IL32 expression significantly correlated with lymph node metastases (p < 0.05). Conversely, in ER-negative subtype, high IL17A and IL32 expression was seen in patients with negative lymph node status (p < 0.05). Tumors with high IL32 and IL17A expression showed higher expression of TH1 response genes studied, an observation validated by similar analysis in the TCGA breast tumors (n=1041). Of note, these tumors were characterized by low expression of a potentially immunosuppressive isoform of IL32 (IL32γ). CONCLUSION These results suggest that high expression of both IL17A and IL32 leads to enhancement of T cell responses. Our study, thus, provides basis for the emergence of strong T cell responses in an inflammatory milieu that have been shown to be associated with better prognosis in ER-negative breast cancer.
Collapse
Affiliation(s)
- Shreyas Bhat
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Nilesh Gardi
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Sujata Hake
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Nirupama Kotian
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sharada Sawant
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Sadhana Kannan
- Epidemiology and Clinical Trials Unit, Clinical Research Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Vani Parmar
- Department of Surgical Oncology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Sangeeta Desai
- Department of Pathology, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, 400012, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Amit Dutt
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Narendra N Joshi
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.
| |
Collapse
|
22
|
Abstract
Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. IL-32 gene consists of eight small exons, and IL-32 mRNA has nine alternative spliced isoforms, and was thought to be secreted because it contains an internal signal sequence and lacks a transmembrane region. IL-32 is initially expressed selectively in activated T cells by mitogen and activated NK cells and their expression is strongly augmented by microbes, mitogens, and other cytokines. The IL-32 is induced mainly by pathogens and pro-inflammatory cytokines, but IL-32 is more prominent in immune cells than in non-immune tissues. The IL-32 transcript is expressed in various human tissues and organs such as the spleen, thymus, leukocyte, lung, small intestine, colon, prostate, heart, placenta, liver, muscle, kidney, pancreas, and brain. Cytokines are critical components of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and a variety of other physiological functions. Earlier studies have demonstrated that IL-32 regulates cell growth, metabolism and immune regulation and is therefore involved in the pathologic regulator or protectant of inflammatory diseases. Previous studies defined that IL-32 is upregulated in the patients with several inflammatory diseases, and is induced by inflammatory responses. However, several reports suggested that IL-32 is downregulated in several inflammatory diseases including asthma, HIV infection disease, neuronal diseases, metabolic disorders, experimental colitis and metabolic disorders. IL-32 is also involved in various cancer malignancies including renal cancer, esophageal cancer and hepatocellular carcinoma, lung cancer, gastric cancer, breast cancer, pancreatic cancer, lymphoma, osteosarcoma, breast cancer, colon cancer and thyroid carcinoma. Other studies suggested that IL-32 decreases tumor development including cervical cancer, colon cancer and prostate cancer, melanoma, pancreatic cancer, liver cancer and chronic myeloid leukemia. Nevertheless, review articles that discuss the roles and its mechanism of IL-32 isoforms focusing on the therapeutic approaches have not yet been reported. In this review article, we will discuss recent findings regarding IL-32 in the development of diseases and further discuss therapeutic approaches targeting IL-32. Moreover, we will suggest that IL-32 could be the target of several diseases and the therapeutic agents for targeting IL-32 may have potential beneficial effects for the treatment of inflammatory diseases and cancers. Future research should open new avenues for the design of novel therapeutic approaches targeting IL-32.
Collapse
Affiliation(s)
- Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Chong Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dong Hun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea; Department of Pediatrics, Children's Heart Research and Outcomes (HeRO) Center, Emory University School of Medicine, 2015 Uppergate Drive, Lab 260, Atlanta, GA, 30322, United States
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 361-951, Republic of Korea.
| |
Collapse
|
23
|
Acosta-Rios MP, Sauer-Ramírez E, Castro-Muñoz LJ, García-Solís M, Gómez-García C, Ocadiz-Delgado R, Martinez-Martinez A, Sánchez-Monroy V, Pérez-De la Mora C, Correa-Meza B, Perez-Ishiwara DG. Effect of Dialyzable Leukocyte Extract on chronic cervicitis in patients with HPV infection. J Med Life 2017; 10:237-243. [PMID: 29362599 PMCID: PMC5771637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The objective of the study was to assess the clinical, histopathological and immunochemical changes induced by dialyzable leukocyte extract (DLE) treatment in patients with chronic cervicitis associated to HPV infection. Fifty-four female Mexican patients diagnosed with chronic cervicitis, cervical intra-epithelial neoplasia grade 1 (CIN 1) and HPV infection were divided into two groups: patients treated with placebo and patients treated with DLE. Clinical and colposcopy evaluations were performed before and after treatments. Cervix biopsies were obtained to analyze histopathological features and to determine the local immunological changes by immunohistochemistry analyses. Placebo-treated patients showed no significant changes in the evaluated parameters. Interestingly, in DLE-treated patients, clinical manifestations of cervicitis diminished and 89% of them remitted the colposcopic lesions. Histological analyses of biopsies from DLE-treated patients showed a decreasing leukocyte infiltrate. Immunochemical analyses showed an increased expression of TGF-β, while expression of IFN-γ, PCNA, and IL-32 decreased. Our results suggest that DLE can stimulate innate immunity of cervical mucosae, diminishing chronic cervicitis in HPV-infected patients. TRIAL REGISTRATION Register ISRCTN16429164 Abbreviations: HPV = Human Papilloma Virus; DLE = Dialyzable leukocyte extract.
Collapse
Affiliation(s)
- MP Acosta-Rios
- PLaboratory of Molecular Biomedicine I, ENMyH, Instituto Politécnico Nacional, Mexico
| | - E Sauer-Ramírez
- Mexican College of Obstetrics and Gynecology Specialists, A.C. Mexico
| | - LJ Castro-Muñoz
- PLaboratory of Molecular Biomedicine I, ENMyH, Instituto Politécnico Nacional, Mexico
| | | | - C Gómez-García
- PLaboratory of Molecular Biomedicine I, ENMyH, Instituto Politécnico Nacional, Mexico
| | - R Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados IPN, Mexico
| | - A Martinez-Martinez
- Department of Chemical and Biological Sciences, Universidad Autónoma de Ciudad Juarez, Mexico
| | - V Sánchez-Monroy
- PLaboratory of Molecular Biomedicine I, ENMyH, Instituto Politécnico Nacional, Mexico
| | | | | | - DG Perez-Ishiwara
- PLaboratory of Molecular Biomedicine I, ENMyH, Instituto Politécnico Nacional, Mexico
| |
Collapse
|
24
|
Heinhuis B, Plantinga TS, Semango G, Küsters B, Netea MG, Dinarello CA, Smit JW, Netea-Maier RT, Joosten LA. Alternatively spliced isoforms of IL-32 differentially influence cell death pathways in cancer cell lines. Carcinogenesis 2015; 37:197-205. [DOI: 10.1093/carcin/bgv172] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/02/2015] [Indexed: 12/14/2022] Open
|
25
|
Cui Y, Sun Z, Li X, Leng C, Zhang L, Fu X, Li L, Zhang X, Chang YU, Nan F, Li Z, Yan J, Zhang M, Li W, Wang G, Zhang D, Ma Y. Expression and clinical significance of cyclooxygenase-2 and interleukin-32 in primary gastric B-cell lymphoma. Oncol Lett 2015; 11:693-698. [PMID: 26870269 DOI: 10.3892/ol.2015.3950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) and interleukin-32 (IL-32) expression has been examined in various carcinomas and inflammations, and has been suggested to be significant in tumor progression and prognosis. The present study was conducted to investigate the expression of COX-2 and IL-32 in primary gastric B-cell lymphoma in order to define their clinical significance and their association with Helicobacter pylori (Hp) infection. COX-2 and IL-32 protein expression was detected in 31 primary gastric B-cell lymphoma patients and 19 chronic gastritis patients with immunohistochemistry. COX-2 and IL-32 expression was significantly higher in primary gastric lymphoma (PGL) tissues compared with gastritis tissues (51.6 vs. 21.1% for COX-2, P=0.032; and 58.1 vs. 26.3% for IL-32, P=0.029) and was significantly higher in Hp+ lymphoma tissues compared with Hp- lymphoma tissues (66.7 vs. 20% for COX-2, P=0.015; and 71.4 vs. 30% for IL-32, P=0.029). In the PGL tissues, the expression level of COX-2 was positively correlated with the expression level of IL-32, and the two were each positively correlated with Hp infection (P=0.004 for COX-2 and IL-32; P=0.01 for COX-2 and Hp infection; and P=0.003 for IL-32 and Hp infection). COX-2 expression was found to be significantly associated (P<0.05) with an aggressive tumor type, higher expression of Ki-67, frequent lymph node metastasis and advanced stage. IL-32 expression was found to be significantly correlated (P<0.05) with frequent lymph node metastasis and an advanced stage. The survival time was longer in the COX-2- and IL-32- lymphoma patients compared with the COX-2+ and IL-32+ lymphoma patients, but these differences were not statistically significant. These results suggested that Hp infection and the expression of COX-2 and IL-32 were closely linked with each other, and that the overexpression of COX-2 and IL-32 was correlated with tumor progression in primary gastric B-cell lymphoma, thus indicating potential novel therapeutic target.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenchang Sun
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Changsen Leng
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan 450008, P.R. China
| | - Lei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaorui Fu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ling Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Y U Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Feifei Nan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yaozhen Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
26
|
Piktel E, Niemirowicz K, Wnorowska U, Wątek M, Wollny T, Głuszek K, Góźdź S, Levental I, Bucki R. The Role of Cathelicidin LL-37 in Cancer Development. Arch Immunol Ther Exp (Warsz) 2015; 64:33-46. [PMID: 26395996 PMCID: PMC4713713 DOI: 10.1007/s00005-015-0359-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 01/04/2023]
Abstract
LL-37 is a C-terminal peptide proteolytically released from 18 kDa human cathelicidin protein (hCAP18). Chronic infections, inflammation, tissue injury and tissue regeneration are all linked with neoplastic growth, and involve LL-37 antibacterial and immunomodulatory functions. Such a link points to the possible involvement of LL-37 peptide in carcinogenesis. An increasing amount of evidence suggests that LL-37 can have two different and contradictory effects--promotion or inhibition of tumor growth. The mechanisms are tissue-specific, complex, and depend mostly on the ability of LL-37 to act as a ligand for different membrane receptors whose expression varies on different cancer cells. Overexpression of LL-37 was found to promote development and progression of ovarian, lung and breast cancers, and to suppress tumorigenesis in colon and gastric cancer. This review explores and summarizes the current views on how LL-37 contributes to immunity, pathophysiology and cell signaling involved in malignant tumor growth.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland
| | - Marzena Wątek
- Holy Cross Oncology Center of Kielce, Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Kielce, Poland
| | | | - Stanisław Góźdź
- The Faculty of Health Sciences of The Jan Kochanowski University in Kielce, Kielce, Poland
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, The University of Texas Medical School, Houston, TX, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2c, 15-222, Białystok, Poland.
- Department of Physiology, Pathophysiology and Microbiology of Infections, Faculty of Health Sciences of The Jan Kochanowski University in Kielce, Kielce, Poland.
| |
Collapse
|
27
|
Important Role of the IL-32 Inflammatory Network in the Host Response against Viral Infection. Viruses 2015; 7:3116-29. [PMID: 26087456 PMCID: PMC4488729 DOI: 10.3390/v7062762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/11/2015] [Indexed: 12/11/2022] Open
Abstract
The pro-inflammatory cytokine interleukin (IL)-32 has gained much attention recently because of its important role in the inflammatory network. Since the discovery of IL-32 in 2005, our appreciation for its diverse roles continues to grow. Recent studies have discovered the antiviral effects induced by IL-32 and its associated regulatory mechanisms. The interactions between IL-32 and various cytokines including cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interferon (IFN)-λ1, interleukin (IL)-6, and soluble IL-6 receptor have been described. This review aims to integrate these new findings into explicit concepts and raises the intriguing possibility of IL-32 as a therapeutic target.
Collapse
|
28
|
Li D, Chen D, Zhang X, Wang H, Song Z, Xu W, He Y, Yin Y, Cao J. c-Jun N-terminal kinase and Akt signalling pathways regulating tumour necrosis factor-α-induced interleukin-32 expression in human lung fibroblasts: implications in airway inflammation. Immunology 2015; 144:282-90. [PMID: 25157456 DOI: 10.1111/imm.12374] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022] Open
Abstract
Airway inflammatory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are associated with elevated expression of interleukin-32 (IL-32), a recently described cytokine that appears to play a critical role in inflammation. However, so far, the regulation of pulmonary IL-32 production has not been fully established. We examined the expression of IL-32 by tumour necrosis factor-α (TNF-α) in primary human lung fibroblasts. Human lung fibroblasts were cultured in the presence or absence of TNF-α and/or other cytokines/Toll-like receptor (TLR) ligands or various signalling molecule inhibitors to analyse the expression of IL-32 by quantitative RT-PCR and ELISA. Next, activation of Akt and c-Jun N-terminal kinase (JNK) signalling pathways was investigated by Western blot. Interleukin-32 mRNA of four spliced isoforms (α, β, γ and δ) was up-regulated upon TNF-α stimulation, which was associated with a significant IL-32 protein release from TNF-α-activated human lung fibroblasts. The combination of interferon-γ and TNF-α induced enhanced IL-32 release in human lung fibroblasts, whereas IL-4, IL-17A, IL-27 and TLR ligands did not alter IL-32 release in human lung fibroblasts either alone, or in combination with TNF-α. Furthermore, the activation of Akt and JNK pathways regulated TNF-α-induced IL-32 expression in human lung fibroblasts, and inhibition of the Akt and JNK pathways was able to suppress the increased release of IL-32 to nearly the basal level. These data suggest that TNF-α may be involved in airway inflammation via the induction of IL-32 by activating Akt and JNK signalling pathways. Therefore, the TNF-α/IL-32 axis may be a potential therapeutic target for airway inflammatory diseases.
Collapse
Affiliation(s)
- Dagen Li
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maintenance of Epstein-Barr Virus Latent Status by a Novel Mechanism, Latent Membrane Protein 1-Induced Interleukin-32, via the Protein Kinase Cδ Pathway. J Virol 2015; 89:5968-80. [PMID: 25810549 DOI: 10.1128/jvi.00168-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), an oncogenic herpesvirus, has the potential to immortalize primary B cells into lymphoblastoid cell lines (LCLs) in vitro. During immortalization, several EBV products induce cytokines or chemokines, and most of these are required for the proliferation of LCLs. Interleukin-32 (IL-32), a recently discovered proinflammatory cytokine, is upregulated after EBV infection, and this upregulation is detectable in all LCLs tested. EBV latent membrane protein 1 (LMP1) is responsible for inducing IL-32 expression at the mRNA and protein levels. Mechanistically, we showed that this LMP1 induction is provided by the p65 subunit of NF-κB, which binds to and activates the IL-32 promoter. Furthermore, the short hairpin RNA (shRNA)-mediated depletion of endogenous LMP1 and p65 in LCLs suppressed IL-32 expression, further suggesting that LMP1 is the key factor that stimulates IL-32 in LCLs via the NF-κB p65 pathway. Functionally, knockdown of IL-32 in LCLs elicits viral reactivation and affects cytokine expression, but it has no impact on cell proliferation and apoptosis. Of note, we reveal the mechanism whereby IL-32 is involved in the maintenance of EBV viral latency by inactivation of Zta promoter activity. This atypical cytoplasmic IL-32 hijacks the Zta activator protein kinase Cδ (PKCδ) and inhibits its translocation from the cytoplasm to the nucleus, where PKCδ binds to the Zta promoter and activates lytic cycle progression. These novel findings reveal that IL-32 is involved in the maintenance of EBV latency in LCLs. This finding may provide new information to explain how EBV maintains latency, in addition to viral chromatin structure and epigenetic modification. IMPORTANCE EBV persists in two states, latency and lytic replication, which is a unique characteristic of human infections. So far, little is known about how herpesviruses maintain latency in particular tissues or cell types. EBV is an excellent model to study this question because more than 90% of people are latently infected. EBV can immortalize primary B cells into lymphoblastoid cell lines in vitro. Expression of IL-32, a novel atypical cytoplasmic proinflammatory cytokine, increased after infection. The expression of IL-32 was controlled by LMP1. In investigating the regulatory mechanism, we demonstrated that the p65 subunit of NF-κB is required for this upregulation. Of note, the important biological activity of IL-32 was to trap protein kinase Cδ in the cytoplasm and prevent it from binding to the Zta promoter, which is the key event for EBV reaction. So, the expression of LMP1-induced IL-32 plays a role in the maintenance of EBV latency.
Collapse
|
30
|
Wang IT, Chou SC, Lin YC. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells. Tumour Biol 2014; 35:11913-20. [PMID: 25142231 DOI: 10.1007/s13277-014-2460-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/06/2014] [Indexed: 01/04/2023] Open
Abstract
Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.
Collapse
Affiliation(s)
- I-Te Wang
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
31
|
Bang BR, Kwon HS, Kim SH, Yoon SY, Choi JD, Hong GH, Park S, Kim TB, Moon HB, Cho YS. Interleukin-32γ Suppresses Allergic Airway Inflammation in Mouse Models of Asthma. Am J Respir Cell Mol Biol 2014; 50:1021-30. [DOI: 10.1165/rcmb.2013-0234oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
32
|
Monteleone K, Di Maio P, Cacciotti G, Falasca F, Fraulo M, Falciano M, Mezzaroma I, D'Ettorre G, Turriziani O, Scagnolari C. Interleukin-32 isoforms: expression, interaction with interferon-regulated genes and clinical significance in chronically HIV-1-infected patients. Med Microbiol Immunol 2014; 203:207-16. [PMID: 24553842 DOI: 10.1007/s00430-014-0329-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/28/2014] [Indexed: 11/25/2022]
Abstract
Given the growing evidence for a role of interleukin-32 (IL-32) in the immune response to HIV-1 infection and its interplay with type I and III interferons (IFNs), we studied the gene expression of IL-32 isoforms (α and nonα) in untreated chronically HIV-1-infected patients and in gender- and age-matched healthy individuals. To further characterize both the anti-HIV properties of IL-32 and the cytokine's relationship with host antiviral innate immune responses, we evaluated whether IL-32 can induce ex vivo the expression of antiviral IFN-induced genes (ISGs), namely myxovirus resistance A (MxA), and apolipoprotein B mRNA-editing enzyme catalytic (APOBEC)3G and APOBEC3F. We also investigated whether in vivo IL-32 (α and nonα) mRNA levels were correlated with those of MxA and APOBEC3G/3F. Results indicated that IL-32 (α and nonα) mRNA levels were significantly higher in HIV-1-infected patients than in healthy individuals. Furthermore, IL-32 (α and nonα) mRNA levels correlated negatively with HIV RNA levels, but not with the CD4(+) T-cell count. Our ex vivo studies disclosed that ISGs mRNA levels were increased after IL-32γ treatment of peripheral blood mononuclear cells. Interestingly, significant positive correlations were found between transcript levels of both IL-32α and IL-32nonα and those of MxA and APOBEC3G/3F in untreated chronically HIV-1-infected patients. Overall, our results demonstrated that IL-32 isoforms are highly expressed during chronic HIV-1 infection and that IL-32 could have a central role in the antiviral immune response against HIV-1.
Collapse
Affiliation(s)
- Katia Monteleone
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Viale di Porta Tiburtina n 28, 00185, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hayashi S, Ueno N, Murase A, Takada J. Design, synthesis and structure-activity relationship studies of novel and diverse cyclooxygenase-2 inhibitors as anti-inflammatory drugs. J Enzyme Inhib Med Chem 2014; 29:846-67. [PMID: 24517373 DOI: 10.3109/14756366.2013.864650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because of the pivotal role of cyclooxygenase (COX) in the inflammatory processes, non-steroidal anti-inflammatory drugs (NSAIDs) that suppress COX activities have been used clinically for the treatment of inflammatory diseases/syndromes; however, traditional NSAIDs exhibit serious side-effects such as gastrointestinal damage and hyper sensitivity owing to their COX-1 inhibition. Also, COX-2 inhibition-derived suppressive or preventive effects against initiation/proliferation/invasion/motility/recurrence/metastasis of various cancers/tumours such as colon, gastric, skin, lung, liver, pancreas, breast, prostate, cervical and ovarian cancers are significant. In this study, design, synthesis and structure-activity relationship (SAR) of various novel {2-[(2-, 3- and/or 4-substituted)-benzoyl, (bicyclic heterocycloalkanophenyl)carbonyl or cycloalkanecarbonyl]-(5- or 6-substituted)-1H-indol-3-yl}acetic acid analogues were investigated to seek and identify various chemotypes of potent and selective COX-2 inhibitors for the treatment of inflammatory diseases, resulting in the discovery of orally potent agents in the peripheral-inflammation model rats. The SARs and physicochemical properties for the analogues are described as significant findings. For graphical abstract: see Supplementary Material. ( www.informahealthcare.com/enz ).
Collapse
Affiliation(s)
- Shigeo Hayashi
- Pfizer Global Research & Development, Nagoya Laboratories, Pfizer Japan Inc. , Taketoyo, Aichi , Japan
| | | | | | | |
Collapse
|
34
|
Deivendran S, Marzook KH, Radhakrishna Pillai M. The role of inflammation in cervical cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:377-99. [PMID: 24818731 DOI: 10.1007/978-3-0348-0837-8_15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Knowledge regarding cervical cancer and human papillomavirus is expanding rapidly. Inflammation subsequent to viral infection is a driving force that accelerates cancer development. The infiltrated immune cells and their secretory cytokines along with chemokines and growth factors greatly contribute the malignant traits of cervical cancer. A better understanding of the mechanisms related to inflammation and cancer progression in terms of pathogen survival, cancer development, progression, and metastasis will lead to innovative approach for treating cancer.
Collapse
Affiliation(s)
- S Deivendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | |
Collapse
|
35
|
Zeng Q, Li S, Zhou Y, Ou W, Cai X, Zhang L, Huang W, Huang L, Wang Q. Interleukin-32 contributes to invasion and metastasis of primary lung adenocarcinoma via NF-kappaB induced matrix metalloproteinases 2 and 9 expression. Cytokine 2014; 65:24-32. [DOI: 10.1016/j.cyto.2013.09.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/08/2013] [Accepted: 09/23/2013] [Indexed: 02/03/2023]
|
36
|
Nold-Petry CA, Rudloff I, Baumer Y, Ruvo M, Marasco D, Botti P, Farkas L, Cho SX, Zepp JA, Azam T, Dinkel H, Palmer BE, Boisvert WA, Cool CD, Taraseviciene-Stewart L, Heinhuis B, Joosten LAB, Dinarello CA, Voelkel NF, Nold MF. IL-32 promotes angiogenesis. THE JOURNAL OF IMMUNOLOGY 2013; 192:589-602. [PMID: 24337385 DOI: 10.4049/jimmunol.1202802] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-32 is a multifaceted cytokine with a role in infections, autoimmune diseases, and cancer, and it exerts diverse functions, including aggravation of inflammation and inhibition of virus propagation. We previously identified IL-32 as a critical regulator of endothelial cell (EC) functions, and we now reveal that IL-32 also possesses angiogenic properties. The hyperproliferative ECs of human pulmonary arterial hypertension and glioblastoma multiforme exhibited a markedly increased abundance of IL-32, and, significantly, the cytokine colocalized with integrin αVβ3. Vascular endothelial growth factor (VEGF) receptor blockade, which resulted in EC hyperproliferation, increased IL-32 three-fold. Small interfering RNA-mediated silencing of IL-32 negated the 58% proliferation of ECs that occurred within 24 h in scrambled-transfected controls. Reduction of IL-32 neither affected apoptosis (insignificant changes in Bak-1, Bcl-2, Bcl-xL, lactate dehydrogenase, annexin V, and propidium iodide) nor VEGF or TGF-β levels, but siIL-32-transfected adult and neonatal ECs produced up to 61% less NO, IL-8, and matrix metalloproteinase-9, and up to 3-fold more activin A and endostatin. In coculture-based angiogenesis assays, IL-32γ dose-dependently increased tube formation up to 3-fold; an αVβ3 inhibitor prevented this activity and reduced IL-32γ-induced IL-8 by 85%. In matrigel plugs loaded with IL-32γ, VEGF, or vehicle and injected into live mice, we observed the anticipated VEGF-induced increase in neocapillarization (8-fold versus vehicle), but unexpectedly, IL-32γ was equally angiogenic. A second signal such as IFN-γ was required to render cells responsive to exogenous IL-32γ; importantly, this was confirmed using a completely synthetic preparation of IL-32γ. In summary, we add angiogenic properties that are mediated by integrin αVβ3 but VEGF-independent to the portfolio of IL-32, implicating a role for this versatile cytokine in pulmonary arterial hypertension and neoplastic diseases.
Collapse
Affiliation(s)
- Claudia A Nold-Petry
- Ritchie Centre, Monash Institute of Medical Research, Monash University, Melbourne, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Evaluation of the effect of kaempferol in a murine allergic rhinitis model. Eur J Pharmacol 2013; 718:48-56. [DOI: 10.1016/j.ejphar.2013.08.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 11/20/2022]
|
38
|
Huang Y, Qi Y, Ma Y, He R, Ji Y, Sun Z, Ruan Q. The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. Virol J 2013; 10:51. [PMID: 23402302 PMCID: PMC3598236 DOI: 10.1186/1743-422x-10-51] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/28/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interleukin-32 (IL-32) is an important factor in innate and adaptive immune responses, which activates the p38MAPK, NF-kappa B and AP-1 signaling pathways. Recent reports have highlighted that IL-32 is regulated during viral infection in humans. METHODS Enzyme-linked immunosorbent assays (ELISA) were carried out to detect IL-32 levels in serum samples. Detailed kinetics of the transcription of IL-32 mRNA and expression of IL-32 protein during human cytomegalovirus (HCMV) infection were determined by semi-quantitative RT-PCR and western blot, respectively. The expression levels of hcmv-miR-UL112-1 were detected using TaqMan® miRNA assays during a time course of 96 hours. The effects of hcmv-miR-UL112-1 on IL-32 expression were demonstrated by luciferase assay and western blot, respectively. RESULTS Serum levels of IL-32 in HCMV-IgM positive patients (indicating an active HCMV infection) were significantly higher than those in HCMV-IgM negative controls. HCMV infection activated cellular IL-32 transcription mainly in the immediately early (IE) phase and elevated IL-32 protein levels between 6 and 72 hours post infection (hpi) in the human embryonic lung fibroblast cell line, MRC-5. The expression of hcmv-miR-UL112-1 was detected at 24 hpi and increased gradually as the HCMV-infection process was prolonged. In addition, it was demonstrated that hcmv-miR-UL112-1 targets a sequence in the IL-32 3'-UTR. The protein level of IL-32 in HEK293 cells could be functionally down-regulated by transfected hcmv-miR-UL112-1. CONCLUSIONS IL-32 expression was induced by active HCMV infection and could be functionally down-regulated by ectopically expressed hcmv-miR-UL112-1. Our data may indicate a new strategy of immune evasion by HCMV through post-transcriptional regulation.
Collapse
Affiliation(s)
- Yujing Huang
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Ying Qi
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Rong He
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Yaohua Ji
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Zhengrong Sun
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Qiang Ruan
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
39
|
Guenin S, Mouallif M, Hubert P, Jacobs N, Krusy N, Duray A, Ennaji MM, Saussez S, Delvenne P. Interleukin-32 expression is associated with a poorer prognosis in head and neck squamous cell carcinoma. Mol Carcinog 2013; 53:667-73. [PMID: 23359495 DOI: 10.1002/mc.21996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 12/29/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represent the sixth most common malignancy diagnosed worldwide. Patient's survival is low due the high frequency of tumor recurrence. Inflammation promotes carcinogenesis as well as the formation of metastasis. Indeed, proinflammatory mediators are known to stimulate the expression of specific transcription factors such as Snai1 and to increase the ability of tumor cells to migrate into distant organs. The atypical interleukin-32 (IL32) was mainly described to exacerbate inflammatory responses in rheumatoid arthritis and inflammatory bowel diseases. IL32 is expressed in various cancers but its role in HNSCC physiology is still unexplored. Here, we analyzed the expression of IL32 and its implication on HNSCC aggressiveness. We showed that patients with tumor expressing high amounts of IL32 exhibit decreased disease-free periods (20.5 mo vs. 41 mo, P = 0.0041) and overall survival (P = 0.0359) in comparison with individuals with weak IL32 tumor expression. This overexpression was negatively correlated with gender (P = 0.0292) and p53 expression (P = 0.0307). In addition, in vitro data linked IL32 expression to metastasis formation since IL32 inhibition decreased Snai1 expression and tumor cell migration in a Boyden chamber assay. Our data provide new insight into the role of IL32 in HNSCC aggressiveness.
Collapse
Affiliation(s)
- S Guenin
- Laboratory of Experimental Pathology, GIGA Cancer, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jeong HJ, Nam SY, Oh HA, Han NR, Kim YS, Moon PD, Shin SY, Kim MH, Kim HM. Interleukin-32-induced thymic stromal lymphopoietin plays a critical role in macrophage differentiation through the activation of caspase-1 in vitro. Arthritis Res Ther 2012. [PMID: 23190696 PMCID: PMC3674606 DOI: 10.1186/ar4104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction Interleukin (IL)-32 is an inflammatory cytokine induced by Mycobacterium tuberculosis and Mycobacterium bovis in a variety of cell types and discovered in the synovial of patients with rheumatoid arthritis (RA). Thymic stromal lymphopoietin (TSLP) play several roles in the pathogenesis of RA. However, the role of IL-32 and TSLP in RA has not been elucidated. Methods We evaluated the specific mechanism of between IL-32 and TSLP in RA using human monocyte cell line, THP-1 cells. Results Here we documented for the first time that IL-32 highly increased TSLP production in THP-1 cells and human blood monocytes. TSLP expression was induced by IL-32 via activation of caspase-1 and nuclear factor-κB. TSLP produced by IL-32 increased differentiation of monocytes but depletion of TSLP prevented differentiation of monocytes into macrophage-like cells. Chondroprotective drugs such as chondroitin sulfate (CS) and the traditional Korean medicine, BaekJeol-Tang (BT) decrease production of TSLP and activation of caspase-1 and nuclear factor-κB. In addition, CS and BT inhibited IL-32-induced monocytes differentiation. Conclusions Taken together, IL-32 and TSLP are important cytokines involved in the development of RA. The effects of CS and BT were associated with the downregulation of TSLP and caspase-1 through negative regulation of IL-32 pathways in RA.
Collapse
|
41
|
Zaman MS, Thamminana S, Shahryari V, Chiyomaru T, Deng G, Saini S, Majid S, Fukuhara S, Chang I, Arora S, Hirata H, Ueno K, Singh K, Tanaka Y, Dahiya R. Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One 2012. [PMID: 23189187 PMCID: PMC3506541 DOI: 10.1371/journal.pone.0050203] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND miR-23b is located on chromosome number 9 and plays different roles in different organs especially with regards to cancer development. However, the functional significance of miR-23b-3p in renal cell carcinoma (RCC) has not been reported. METHODS AND RESULTS We measured miR-23b-3p levels in 29 pairs of renal cell carcinoma and their normal matched tissues using real-time PCR. The expression level of miR-23b-3p was correlated with the 5 year survival rate of renal cancer patients. In 15 cases (52%), miR-23b-3p expression was found to be high. All patients with moderate to low miR-23b-3p expression survived 5 years, while those with high miR-23b-3p expression, only 50% survived. After knocking down miRNA-23b-3p expression in RCC cell lines, there was an induction of apoptosis and reduced invasive capabilities. MiR-23b-3p was shown to directly target PTEN gene through 3'UTR reporter assays. Inhibition of miR-23b-3p induces PTEN gene expression with a concomitant reduction in PI3-kinase, total Akt and IL-32. Immunohistochemistry showed the lack of PTEN protein expression in cancerous regions of tissue samples where the expression of miR-23b-3p was high. We studied the in vitro effects of the dietary chemo preventive agent genistein on miR-23b-3p expression and found that it inhibited expression of miR-23b-3p in RCC cell lines. CONCLUSIONS The current study shows that miR-23b-3p is an oncogenic miRNA and inhibits PTEN tumor suppressor gene in RCC. Therefore, inhibition of miR-23b-3p may be a useful therapeutic target for the treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Mohd Saif Zaman
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Sobha Thamminana
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Varahram Shahryari
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Takeshi Chiyomaru
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Guoren Deng
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Sharanjot Saini
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Shahana Majid
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Shinichiro Fukuhara
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Inik Chang
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Sumit Arora
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Hiroshi Hirata
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Koji Ueno
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Kamaldeep Singh
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Yuichiro Tanaka
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
| | - Rajvir Dahiya
- Department of Urology, San Francisco Veterans Affairs Medical Center and University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Xu Q, Pan X, Shu X, Cao H, Li X, Zhang K, Lu J, Zou Y, Li X, Liu H, Zhang Y, Yang D, Ning Q, Shen G, Li G. Increased interleukin-32 expression in chronic hepatitis B virus-infected liver. J Infect 2012; 65:336-42. [DOI: 10.1016/j.jinf.2012.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/14/2012] [Accepted: 05/29/2012] [Indexed: 01/12/2023]
|
43
|
LEE HYUNJUNG, LIANG ZHELONG, HUANG SONGMEI, LIM JAESUNG, YOON DOYOUNG, LEE HYOJIN, KIM JINMAN. Overexpression of IL-32 is a novel prognostic factor in patients with localized clear cell renal cell carcinoma. Oncol Lett 2012; 3:490-496. [PMID: 22740938 PMCID: PMC3362389 DOI: 10.3892/ol.2011.511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/03/2011] [Indexed: 01/23/2023] Open
Abstract
Interleukin-32 (IL-32) is a proinflammatory cytokine that acts as a significant pathogenetic factor in various diseases and malignancies. However, the clinical effect of IL-32 expression in renal cell carcinoma (RCC) has not previously been investigated. The aim of the present study was to examine the significance of IL-32 overexpression in localized clear cell RCC (CCRCC). We examined 112 patients with localized CCRCC who underwent nephrectomy. The clinicopathological data were obtained by retrospective review and the expression levels of IL-32 were studied by immunohistochemistry. Tumors were classified according to staining intensity (0, no staining intensity; 1, weak; 2, intermediate; 3, strong). The cases with staining intensities from 0 to 2 comprised the IL-32 low-expression group (LEG), whereas those with a staining intensity of 3 comprised the IL-32 high-expression group (HEG). Correlations between IL-32 expression and clinicopathological parameters were determined. Staining intensities were determined for all cases as follows: 26 cases (23.2%) (score 0), 43 cases (38.4%) (score 1), 31 cases (27.7%) (score 2) and 12 cases (10.7%) (score 3). IL-32 HEG exhibited a higher recurrence rate compared to the IL-32 LEG (50 vs. 13%, P=0.001). For survival rates, the 5-year recurrence-free survival (RFS), disease-specific survival (DSS) and overall survival (OS) rates were lower in the IL-32 HEG group compared with the IL-32 LEG group (RFS, P=0.001; DSS, P<0.001; OS, P=0.026, respectively). Univariate analyses revealed that Fuhrman nuclear grade and a high IL-32 expression were significant prognostic factors for predicting RFS, DSS and OS in CCRCC, whereas multivariate analyses indicated that Fuhrman nuclear grade and high IL-32 expression were still independent risk factors. In conclusion, IL-32 overexpression was associated with high recurrence rates and low RFS, DSS and OS, indicating that it may be a novel prognostic factor for predicting outcomes in patients with CCRCC.
Collapse
Affiliation(s)
- HYUN-JUNG LEE
- Department of Pathology, Chungnam National University School of Medicine, Daejeon
| | - ZHE LONG LIANG
- Department of Pathology, Chungnam National University School of Medicine, Daejeon
| | - SONG MEI HUANG
- Department of Pathology, Chungnam National University School of Medicine, Daejeon
| | - JAE-SUNG LIM
- Department of Urology, Chungnam National University School of Medicine, Daejeon
| | - DO-YOUNG YOON
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul
| | - HYO-JIN LEE
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - JIN MAN KIM
- Department of Pathology, Chungnam National University School of Medicine, Daejeon
- Regional Cancer Center and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
44
|
Qu Y, Taylor JL, Bose A, Storkus WJ. Therapeutic effectiveness of intratumorally delivered dendritic cells engineered to express the pro-inflammatory cytokine, interleukin (IL)-32. Cancer Gene Ther 2011; 18:663-73. [PMID: 21760628 PMCID: PMC3348582 DOI: 10.1038/cgt.2011.37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interleukin-32 (IL-32) is a pro-inflammatory cytokine conditionally produced by T cells, natural killer (NK) cells, monocytes, epithelial cells and keratinocytes, which has an important role in host resistance against infectious disease. Interestingly, elevated levels of IL-32 transcripts in fine needle aspirates of tumor tissue have also been correlated with objective clinical responses in cancer patients receiving immunotherapy. To evaluate the antitumor impact of IL-32 gene therapy, we treated BALB/c mice bearing established subcutaneous CMS4 sarcomas with intratumoral (i.t.) injections of syngenic dendritic cells (DCs) engineered to express human IL-32β complementary DNA (that is, DC.IL32). Although ectopic expression of IL-32β by DC resulted in only modest phenotypic changes in these antigen-presenting cells, DC.IL32 produced higher levels of IL-12p70 than control DC. DC.IL32 were more potent activators of type-1 T-cell responses in vitro and in vivo, with i.t. administration of DC.IL32 leading to the CD8(+) T-cell-dependent (but CD4(+) T-cell- and NK cell-independent) suppression of tumor growth. Effective DC.IL32-based therapy promoted infiltration of tumors by type-1 (that is, CXCR3(+)VLA-4(+)GrB(+)) CD8(+) T cells and CD11b(+)CD11c(+) host myeloid DC, but led to reductions in the prevalence of CD11b(+)Gr1(+) myeloid-derived suppressor cells and CD31(+) blood vessels.
Collapse
Affiliation(s)
- Y Qu
- Department of Dermatology, University of Pittsburgh School of Medicine, PA, USA
| | | | | | | |
Collapse
|
45
|
Lee S, Kim H, Kang JW, Kim JH, Lee DH, Kim MS, Yang Y, Woo ER, Kim YM, Hong J, Yoon DY. The Biflavonoid Amentoflavone Induces Apoptosis via Suppressing E7 Expression, Cell Cycle Arrest at Sub-G1Phase, and Mitochondria-Emanated Intrinsic Pathways in Human Cervical Cancer Cells. J Med Food 2011; 14:808-16. [DOI: 10.1089/jmf.2010.1428] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Sojung Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Heejong Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Jeong-Woo Kang
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Jung-Hee Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Dong Hun Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Man-Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Young Yang
- Department of Biological Science, Sookmyung Women's University, Seoul, Korea
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Gwangju, Korea
| | - Yang Mi Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| | - Jintae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Korea
| |
Collapse
|
46
|
Jeong HJ, Shin SY, Oh HA, Kim MH, Cho JS, Kim HM. IL-32 up-regulation is associated with inflammatory cytokine production in allergic rhinitis. J Pathol 2011; 224:553-63. [DOI: 10.1002/path.2899] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/10/2011] [Accepted: 03/11/2011] [Indexed: 12/12/2022]
|
47
|
Pan X, Cao H, Lu J, Shu X, Xiong X, Hong X, Xu Q, Zhu H, Li G, Shen G. Interleukin-32 expression induced by hepatitis B virus protein X is mediated through activation of NF-κB. Mol Immunol 2011; 48:1573-7. [PMID: 21481941 DOI: 10.1016/j.molimm.2011.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/17/2011] [Accepted: 03/14/2011] [Indexed: 01/12/2023]
Abstract
HBV replicates noncytopathically in hepatocytes, but HBV or proteins encoded by HBV genome could induce cytokines, chemokines expression by hepatocytes. Moreover, liver damage in patients with HBV infection is immune-mediated and cytokines play important roles in immune-mediated liver damage after HBV infection. Interleukin-32 (IL-32) is a proinflammatory cytokine and plays a critical role in inflammation. However, the role of HBV in IL-32 expression remains unclear. In the present study, we demonstrate that hepatitis B virus protein X (HBx) increases IL-32 expression through the promoter of IL-32 at positions from -746 to +25 and in a dose-dependent manner. Furthermore, we demonstrate that increase of NF-κB subunits p65 and p50 in Huh7 cells also augments IL-32 expression, and the NF-κB inhibitor blocks the effect of HBx on IL-32 induction. These results indicate that NF-κB activation is required for HBx-induced IL-32 expression. In conclusion, IL-32 is induced by HBx in Huh7 cells. Our results suggest that IL-32 might play an important role in inflammatory response after HBV infection.
Collapse
Affiliation(s)
- Xingfei Pan
- Department of Infectious Diseases, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
INTRODUCTION Antisense oligonucleotides (ASOs) are short synthetic single-stranded DNA sequences that bind to and induce the cleavage of homologous stretches of mRNA sequences. These result in targeted destruction of mRNA and correction of genetic aberrations. ASOs thus can act as drug molecules and potentially rectify many disease conditions. The broad range of applications reported in the literature highlights the advances in the field. AREAS COVERED This review covers different areas in which use of ASOs has been shown to have therapeutic effects. Some drugs in different stages of preclinical and clinical trials are discussed in detail. The problems faced and the strategies to surmount them are also described. The readers will gain an understanding of the recent developments in the field of ASOs with emphasis on their therapeutic applications. They will also become aware of the different strategies used for targeted delivery of ASOs and their stabilization, which may be useful for their work in this field, or in the area of nucleic acid therapeutics in general. EXPERT OPINION The design and application of ASOs for recognition of target mRNA sequences have become a fairly straightforward protocol. The main problem lies in designing ASOs which are stable in in vivo milieu. The delivery and bioavailability of the oligonucleotide to the site of action continue to be hurdles in the development of ASOs and therapeutic molecules.
Collapse
Affiliation(s)
- Ravinder Malik
- National Institute of Pharmaceutical Education and Research (NIPER), Department of Biotechnology , Sector 67, S.A.S. Nagar, Punjab 160 062 , India
| | | |
Collapse
|