1
|
Unal Turhan E, Koca EE. Predictive Modeling for Inactivation of Escherichia coli Biofilm with Combined Treatment of Thermosonication and Organic Acid on Polystyrene Surface. Foods 2024; 13:4002. [PMID: 39766943 PMCID: PMC11675406 DOI: 10.3390/foods13244002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The present study aimed to evaluate the antibiofilm effect of combined sonication treatment with organic acids on polystyrene surfaces and to develop a predictive model for the inactivation of Escherichia coli biofilms. Polystyrene plates containing E. coli biofilms were subjected to sonication using different inactivation solutions (PBS, lactic acid, and acetic acid) at varying temperatures (20 °C, 40 °C, and 50 °C) and durations (2 and 5 min). The effects of temperature, treatment duration, and inactivation solution on E. coli biofilm removal were statistically significant (p < 0.05). The use of organic acids, along with increased treatment time and temperature, led to a significant reduction in viable cell counts (0.43-6.21 log CFU/mL) and optical density (0.13-0.72 at OD600) of E. coli biofilms (p < 0.05). The highest E. coli biofilm inactivation, with a reduction of 6.21 CFU/mL and 0.72 OD, was achieved by combining organic acid and thermosonication at 50 °C for 5 min. A significant positive correlation was observed between test methods based on viable cell count and optical density (OD) measurements. According to multiple linear regression analysis results, the R2 values of the predictive models for biofilm inactivation, based on viable cell count and OD measurements, were 0.84 and 0.80, respectively. Due to its higher accuracy, the predictive model developed using viable cell count data is recommended for applications in the food industry and processing sectors.
Collapse
Affiliation(s)
- Emel Unal Turhan
- Department of Food Technology, Faculty of Kadirli Applied Sciences, Osmaniye Korkut Ata University, 80760 Kadirli, Osmaniye, Turkey;
| | | |
Collapse
|
2
|
Hong H, Rizzi MF, Wang D, McLandsborough L, Lu J. A Meta-Analysis on the Antimicrobial Effectiveness of Ozonated Water Treatments for Fresh Produce Washing-Effect of Ozonation Methods. Foods 2024; 13:3906. [PMID: 39682978 DOI: 10.3390/foods13233906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Due to the lack of a pathogen-killing process, foodborne outbreaks from contaminated fresh produce have been increasing worldwide. Hence, it is increasingly recognized that the washing step with sanitizers is important to control microbial contamination. Ozonated water is suggested as a substitute for chlorine-based sanitizers, addressing concerns about the effectiveness and environmental impact of chlorine-based sanitizers. However, using ozone as a sanitizer in the fresh produce washing process is still challenging because of its unstable and inconsistent antimicrobial effectiveness under various testing conditions. A meta-analysis was focused on the comparison of antimicrobial effectiveness between different ozonation methods commonly adopted in laboratory settings, including stationary pre-ozonated water, agitated pre-ozonated water, and sparging. The meta-analysis showed that the sparging method results in the highest microbial log reduction compared to other methods. We further developed meta-regression models based on three ozonation methods to identify key processing variables influencing the antimicrobial effectiveness of ozonated water. Attempts were made to link key processing variables to ozone stability and the mass transport phenomena involved in the washing process. This research will contribute to designing and developing a washing process to increase fresh produce safety by identifying key factors in each ozonation method and facilitate interlaboratory comparison studies.
Collapse
Affiliation(s)
- Haknyeong Hong
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA
| | - Marissa Faye Rizzi
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA
| | - Danhui Wang
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76204, USA
| | | | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, MA 01002, USA
| |
Collapse
|
3
|
Unal Turhan E, Polat S, Erginkaya Z, Konuray G. Investigation of synergistic antibacterial effect of organic acids and ultrasound against pathogen biofilms on lettuce. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Aslam R, Alam MS, Singh S, Kumar S. Aqueous ozone sanitization of whole peeled onion: Process optimization and evaluation of keeping quality during refrigerated storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Pounraj S, Bhilwadikar T, Manivannan S, Rastogi NK, Negi PS. Effect of ozone, lactic acid and combination treatments on the control of microbial and pesticide contaminants of fresh vegetables. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3422-3428. [PMID: 33289115 DOI: 10.1002/jsfa.10972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fruit and vegetable consumption has increased due to their tremendous health benefits. However, recent studies have shown that contaminated products may serve as vehicles for foodborne pathogens and harmful chemicals. Therefore, fresh vegetables must be decontaminated before consumption to ensure food safety. RESULTS In this study, the combined decontamination treatment of lactic acid (2.5 mL L-1 ) and ozone (9 mg L-1 ) for 10 min showed better efficacy in the removal of contaminants from fresh vegetables as compared to individual treatments. The combined treatment resulted in a reduction of 1.5-3.5 log CFU of native mesophilic bacteria per gram and 1.6-2.9 log CFU of artificially inoculated Escherichia coli per gram from tomato, cucumber, carrot and lettuce. The combined treatment also removed spiked pesticides, which represent artificial chemical contamination (28-97% chlorpyrifos and 62-100% λ-cyhalothrin residues), from fresh vegetables. No significant difference (P > 0.05) in various sensory attributes of vegetables was observed between untreated and treated (lactic acid and ozone) vegetables. CONCLUSIONS The combination treatment provides a novel approach to target two groups of contaminants using a single procedure. The combination treatment can be used as an alternative to currently used decontamination techniques for the supply of safe vegetables to consumers. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Saranya Pounraj
- Department of Fruit and Vegetable Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
| | - Tanmayee Bhilwadikar
- Department of Fruit and Vegetable Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
| | - Selladurai Manivannan
- Department of Food Protectant and Infestation Control, CSIR - Central Food Technological Research Institute, Mysuru, India
| | - Navin K Rastogi
- Department of Food Engineering, CSIR - Central Food Technological Research Institute, Mysuru, India
| | - Pradeep S Negi
- Department of Fruit and Vegetable Technology, CSIR - Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
6
|
A Double-Edged Sword of Surfactant Effect on Hydrophobic Surface Broccoli Leaf as a Model Plant: Promotion of Pathogenic Microbial Contamination and Improvement to Disinfection Efficiency of Ozonated Water. Processes (Basel) 2021. [DOI: 10.3390/pr9040679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pathogenic microbial contamination is significantly influenced by the crop surface properties and surfactant use, which are crucial factors for the postharvest washing process. However, there is little information on the interaction between surfactant and food pathogens on food crops. Thus, this study (1) investigated whether the attachment of Salmonella increases as pesticides denature epicuticular wax crystals and (2) tested if the antibacterial effect of ozonated water can be improved on waxy produce surfaces by adding surfactant to ozonated water. As a result, significantly lower levels of Salmonella Typhimurium attached to waxy leaf surfaces than they did to glossy and pesticide-treated waxy leaf surfaces (3.28 as opposed to 4.10 and 4.32 Log colony forming units (CFU)/cm2, respectively), suggesting that the pesticide containing a surfactant application increased the attachment of S. Typhiumurium on waxy leaf surfaces. There was no significant washing effect on waxy leaf surfaces washed with ozonated water. On the other hand, S. Typhimurium were not detected on waxy leaf surfaces after washing with surfactant-added ozonated water.
Collapse
|
7
|
Cho GL, Ha JW. Synergistic effect of citric acid and xenon light for inactivating foodborne pathogens on spinach leaves. Food Res Int 2021; 142:110210. [PMID: 33773673 DOI: 10.1016/j.foodres.2021.110210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate the synergistic antimicrobial effect of xenon light (XL) and citric acid (CA) combination against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on spinach leaves and determine the effect of XL-CA combination on quality of spinach leaves. The XL-CA combined treatment for 8 min synergistically decreased the cell counts of E. coli O157:H7 and S. Typhimurium by 5.25 and 5.05 log CFU/cm2, respectively, and additively decreased the L. monocytogenes cells by 5.02 log unit on spinach. The mechanisms underlying synergistic lethal effect of the XL-CA combination were investigated. Qualitative and quantitative analyses revealed that the bacterial cell membrane damage was strongly associated with the synergistic antimicrobial effect of the XL-CA combination. Additionally, treatment with XL-CA combination for 8 min did not affect the quality attributes (color, total phenol contents, and texture) of spinach leaves. These results suggest that the XL-CA combination treatment can be effectively used to control major pathogens on fresh produce.
Collapse
Affiliation(s)
- Ga-Lam Cho
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si 17579, South Korea
| | - Jae-Won Ha
- Department of Food Science and Biotechnology, Global K-Food Research Center, Hankyong National University, Anseong-si 17579, South Korea.
| |
Collapse
|
8
|
Sarron E, Gadonna-Widehem P, Aussenac T. Ozone Treatments for Preserving Fresh Vegetables Quality: A Critical Review. Foods 2021; 10:605. [PMID: 33809297 PMCID: PMC8000956 DOI: 10.3390/foods10030605] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 01/23/2023] Open
Abstract
Ozone is recognized as an antimicrobial agent for vegetables storage, washing, and processing. This strong disinfectant is now being used in the food industry. In this review, the chemical and physical properties of ozone, its generation, and factors affecting ozone processing efficiency were explained as well as recent regulatory developments in the food industry. By then selecting three vegetables, we show that ozone avoids and controls biological growth on vegetables, keeping their attractive appearance and sensorial qualities, assuring nutritional characteristics' retention and maintaining and increasing the shelf-life. In liquid solution, ozone can be used to disinfect processing water and vegetables, and in gaseous form, ozone helps to sanitize and preserve vegetables during storage. The multifunctionality of ozone makes it a promising food processing agent. However, if ozone is improperly used, it causes some deleterious effects on products, such as losses in their sensory quality. For an effective and a safe use of ozone, specific treatment conditions should be determined for all kinds of vegetables. In a last step, we propose highlighting the different essential characteristics of ozone treatment in order to internationally harmonize the data relating to the treatments carried-out.
Collapse
Affiliation(s)
| | | | - Thierry Aussenac
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, 19 Rue Pierre Waguet, BP 30313, 60026 Beauvais, France; (E.S.); (P.G.-W.)
| |
Collapse
|
9
|
Gobeil A, Shankar S, Lacroix M. Radiosensitivity of Feline Calicivirus F9 on Iceberg Lettuce Surface after Combined Treatments with γ-Radiation. J Food Prot 2020; 83:2134-2146. [PMID: 32692357 DOI: 10.4315/jfp-19-464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/18/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The surface of iceberg lettuce (Lactuca sativa L.) is favorable to the survival of pathogens such as bacteria, parasites, and viruses such as norovirus. The present study was conducted to investigate the antiviral properties of treatment with cranberry juice (CJ), ozone (O3), and γ-radiation alone or in combination against feline calicivirus (FCV) F9 present on the surface of iceberg lettuce. The lettuce leaves were inoculated with virus suspensions at ∼6 log TCID50 (50% tissue culture infective dose)/mL and treated with CJ, O3, and γ-radiation alone and in combination during storage at 4°C. The D10-values of 1.21 kGy, 2.23% CJ, and 14.93 ppm of O3 were obtained when samples were treated with various radiation doses, CJ, and O3, respectively. Relative radiosensitization of FCV-F9 virus on lettuce was 1.20, 1.50, 1.09, and 1.00 after combined CJ treatments of 0.1, 0.25, 0.50, and 1.50%, respectively. Optimum treatments were 5 ppm for 7.5 min for O3, 0.25% CJ, and γ-radiation at 1.5 kGy when each treatment was used alone. The combination of the three treatments produced the highest reduction of 2.15 log TCID50/mL (from initial inoculation of ∼7 log TCID50/mL) during 10 days of storage at 4°C. Antibacterial properties of treatments and physicochemical quality of lettuce were investigated during 13 days of storage at 4°C. The treatment of lettuce with γ-radiation alone (1.5 kGy) reduced the total flora by 3 log CFU/g; however, the combination of CJ (0.25%) with irradiation (1.5 kGy) reduced it by ∼5 log CFU/g after 13 days of storage at 4°C. The texture and color of the lettuce treated with the combined treatments changed slightly during storage, and chlorophyll increased by 3.81 μg/mL after 10 days of storage at 4°C. Significant differences in taste and color were observed in lettuce without treatments after 5 days of storage, whereas no difference was observed after the 0.25% CJ or the combined treatments. HIGHLIGHTS
Collapse
Affiliation(s)
- Alexandra Gobeil
- INRS, Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Shiv Shankar
- INRS, Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Monique Lacroix
- INRS, Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences Applied to Food, Canadian Irradiation Centre, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| |
Collapse
|
10
|
Nie M, Wu C, Xiao Y, Song J, Zhang Z, Li D, Liu C. Efficacy of aqueous ozone combined with sodium metasilicate on microbial load reduction of fresh-cut cabbage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1842446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yadong Xiao
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Chunquan Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Dissipation of Pesticide Residues on Grapes and Strawberries Using Plasma-Activated Water. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02515-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Zhang X, Wu J, Xu C, Lu N, Gao Y, Xue Y, Li Z, Xue C, Tang Q. Inactivation of microbes on fruit surfaces using photodynamic therapy and its influence on the postharvest shelf-life of fruits. FOOD SCI TECHNOL INT 2020; 26:696-705. [PMID: 32380848 DOI: 10.1177/1082013220921330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the disinfection effect of curcumin-mediated photodynamic therapy on the contact surfaces of fresh fruit was investigated. Our results showed that the optimum concentration of curcumin and the energy density required were 0.5 μM and 7.2 J/cm2, respectively. Photodynamic therapy showed an excellent disinfection rate for the fresh fruits with a reduction of more than 80% in the total bacteria and coliform counts. The photodynamic therapy inhibited species that belonged to the categories of gram-negative and facultative anaerobic bacteria, except for two species of the Trichoderma fungus. Importantly, photodynamic therapy prolonged the shelf-life of grapes for two days at room temperature. Therefore, photodynamic therapy should be commercialized as a high efficiency and non-thermal sterilization technology for use in the food industry.
Collapse
Affiliation(s)
- Xu Zhang
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Juan Wu
- Innovation Center for Marine Drug Screening and Evaluation, Marine Biomedical Research Institute of Qingdao, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & Fifth Affiliated Hospital, Guangzhou Medical University, China
| | - Na Lu
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Yuan Gao
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, PR China
| | - Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, PR China
| |
Collapse
|
13
|
Baggio A, Marino M, Innocente N, Celotto M, Maifreni M. Antimicrobial effect of oxidative technologies in food processing: an overview. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03447-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Wang J, Yu Y, Dong Y. Disinfection of Ready-to-Eat Lettuce Using Polyhexamethylene Guanidine Hydrochloride. Microorganisms 2020; 8:E272. [PMID: 32079354 PMCID: PMC7074769 DOI: 10.3390/microorganisms8020272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022] Open
Abstract
As a novel and safe sanitizer, polyhexamethylene guanidine hydrochloride (PHMG) has been used to inhibit the spoilage of agricultural products caused by fungi. However, little is known about its antibacterial effects on vegetables. In this study, we evaluated the disinfection efficacy of PHMG on ready-to-eat lettuce. PHMG (150-200 mg/L) treatment for 5 min was optimal for lettuce disinfection. Compared to several household sanitizers (vinegar: 1% acetic acid; kettle descaler: 1% citric acid; "84" disinfectant: 200 mg/L sodium hypochlorite), PHMG showed the greatest reductions in Escherichia coli O157:H7, Listeria monocytogenes, aerobic mesophilic counts, aerobic psychrotrophic counts and molds and yeasts. Quality analysis of color (as determined by L*, a* and b*) and determination of electrolyte leakage indicated that PHMG did not cause any additional quality loss as compared to other household sanitizers. These results provide a reference for the application of PHMG as a vegetable sanitizer at the ready-to-eat stage.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Yuemei Dong
- Shijiashike Co., Ltd., Liaoyang 111000, China;
| |
Collapse
|
15
|
|
16
|
Wang J, Sun Y, Tao D, Wang S, Li C, Zheng F, Wu Z. Reduction of Escherichia coli O157:H7, Listeria monocytogenes, and Naturally Present Microbe Counts on Lettuce using an Acid Mixture of Acetic and Lactic Acid. Microorganisms 2019; 7:E373. [PMID: 31547035 PMCID: PMC6843205 DOI: 10.3390/microorganisms7100373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 11/16/2022] Open
Abstract
Lactic acid (LA) and acetic acid (AA) are independently used to disinfect fresh leaf vegetables. LA has a higher efficacy but costs more than AA. Herein, we compared the disinfection efficacy of LA, AA, and their mixture on lettuce to determine whether the cheaper acid mixture shows similar or more efficacy than LA. Quality analysis indicated that the acid mixture and individual acids did not cause additional loss of instrument color and polyphenolic content compared with that of the control; however, visible defects were observed at AA concentrations exceeding 0.8%. Analysis of Escherichia coli O157:H7, Listeria monocytogenes, and naturally present microbes (aerobic mesophilic and psychrotrophic bacteria, coliforms, molds, and yeasts) showed that the acid mixture led to the highest reduction in microbial count during storage. 16S rRNA sequencing was further employed to understand the effects of the acid mixture and individual acids on lettuce microbial ecology. During storage, the acid mixture and individual acids significantly decreased the abundance of Massilia spp. and Alkanindiges spp. but there was a marked increase in Escherichia-Shigella abundance (LA: 0.003-58.82%; AA: 0.01-55.34%; acid mixture: undetected to 50.71%; control: 0.007-33.09%), indicating that acid disinfection altered the microbial ecology to stimulate Escherichia-Shigella growth. These results enhance our understanding of the relationship between lettuce disinfection and ecological changes.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food Science, Shenyang Agricultural University, 120 Dongling Rd., Shenyang 110866, China.
| | - Yeting Sun
- College of Food Science, Shenyang Agricultural University, 120 Dongling Rd., Shenyang 110866, China.
- Vegetable Research Center, Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, 120 Dongling Rd., Shenyang 110866, China.
| | - Shan Wang
- College of Food Science, Shenyang Agricultural University, 120 Dongling Rd., Shenyang 110866, China.
| | - Chen Li
- College of Food Science, Shenyang Agricultural University, 120 Dongling Rd., Shenyang 110866, China.
| | - Fenge Zheng
- Shenyang Product Quality Supervision and Inspection Institute, Glide Rd, Shenyang 110136, China.
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, 120 Dongling Rd., Shenyang 110866, China.
| |
Collapse
|
17
|
Wang J, Wang S, Sun Y, Li C, Li Y, Zhang Q, Wu Z. Reduction of Escherichia coli O157:H7 and naturally present microbes on fresh-cut lettuce using lactic acid and aqueous ozone. RSC Adv 2019; 9:22636-22643. [PMID: 35519499 PMCID: PMC9067095 DOI: 10.1039/c9ra03544c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Lactic acid (LA) is an effective sanitizer for disinfection of fresh produce. Tap water is generally used to wash disinfected fresh produce because sanitizer residues negatively affect the quality and organoleptic properties of the produce. However, tap water is ineffective for secondary disinfection compared with sanitizers. Thus, we propose a disinfection method using LA plus aqueous ozone (AO), an oxidizing sanitizer that does not lead to secondary residue. We compared the proposed method of 1% LA (90 s) plus 1 mg L-1 AO (30 s) or 2 mg L-1 AO (30 s) with the traditional method of 100 ppm chlorine (120 s) or 1% LA (120 s) plus tap water (30 s) and 2 mg L-1 AO (150 s). Microbial analysis showed that LA plus AO led to the greatest reductions in microbes (Escherichia coli O157:H7, aerobic mesophilic counts, aerobic psychrophilic counts, moulds, and yeasts) during storage (0-5 days at 5 °C). Quality analysis (colour, sensory qualities, electrolyte leakage, polyphenolic content, and weight loss) showed that LA + AO did not cause additional quality loss compared with tap water treatment. These results indicate that the hurdle technology proposed (LA plus AO) has a good potential for use in fresh produce disinfection.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Shan Wang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Yeting Sun
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| | - Chen Li
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Yanru Li
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Qi Zhang
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University 120 Dongling Rd. Shenyang 110866 China +86-130-6668-6988
| |
Collapse
|
18
|
Bhilwadikar T, Pounraj S, Manivannan S, Rastogi NK, Negi PS. Decontamination of Microorganisms and Pesticides from Fresh Fruits and Vegetables: A Comprehensive Review from Common Household Processes to Modern Techniques. Compr Rev Food Sci Food Saf 2019; 18:1003-1038. [DOI: 10.1111/1541-4337.12453] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Tanmayee Bhilwadikar
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - Saranya Pounraj
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - S. Manivannan
- Dept. of Food Protectant and Infestation ControlCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - N. K. Rastogi
- Dept. of Food EngineeringCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| | - P. S. Negi
- Dept. of Fruit and Vegetable TechnologyCSIR ‐ Central Food Technological Research Inst. Mysuru 570020 India
| |
Collapse
|
19
|
Bridges DF, Tadepalli S, Anderson R, Zhang R, Wu VCH. Reduction of Listeria monocytogenes and Salmonella Typhimurium on Blueberries through Brief Exposure to Antimicrobial Solutions Coupled with Freezing. J Food Prot 2019; 82:926-930. [PMID: 31081691 DOI: 10.4315/0362-028x.jfp-18-433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIGHLIGHTS Freezing after brief exposure to antimicrobial solutions increases bacterial reduction. Lactic acid combined with freezing reduced L. monocytogenes to unrecoverable levels. Most wash treatments maintained visual qualities of blueberries.
Collapse
Affiliation(s)
- David F Bridges
- 1 Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710 (ORCID: https://orcid.org/0000-0002-1525-1078 [V.C.H.W.])
| | - Shravani Tadepalli
- 2 Pathogenic Microbiology Laboratory, University of Maine, Orono, Maine 04469, USA (ORCID: https://orcid.org/0000-0001-6190-479X [S.T.])
| | - Ryan Anderson
- 2 Pathogenic Microbiology Laboratory, University of Maine, Orono, Maine 04469, USA (ORCID: https://orcid.org/0000-0001-6190-479X [S.T.])
| | - Rong Zhang
- 2 Pathogenic Microbiology Laboratory, University of Maine, Orono, Maine 04469, USA (ORCID: https://orcid.org/0000-0001-6190-479X [S.T.])
| | - Vivian C H Wu
- 1 Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710 (ORCID: https://orcid.org/0000-0002-1525-1078 [V.C.H.W.])
| |
Collapse
|
20
|
Fan X, Gurtler JB, Sokorai KJB. Tomato type and post-treatment water rinse affect efficacy of acid washes against Salmonella enterica inoculated on stem scars of tomatoes and product quality. Int J Food Microbiol 2018; 280:57-65. [PMID: 29783044 DOI: 10.1016/j.ijfoodmicro.2018.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
A study was conducted to evaluate the effects of post-treatment rinsing with water on the inactivation efficacy of acid treatments against Salmonella inoculated onto stem scar areas of two types of tomatoes. In addition, impact on fruit quality was investigated during 21 days post-treatment storage at 10 °C. A four-strain cocktail of Salmonella enterica (S. Montevideo, S. Newport, S. Saintpaul, and S. Typhimurium) was inoculated onto stem scar areas of grape and large round tomatoes. The inoculated fruits were then treated for 2 min with the following solutions: water, 2% lactic acid +2% acetic acid +2% levulinic acid, 1.7% lactic acid +1.7% acetic acid +1.7% levulinic acid, and 3% lactic acid +3% acetic acid. After treatments, half of the fruits were rinsed with water while another half were not rinsed. Non-inoculated grape tomatoes for quality analysis were treated with the same solutions with and without subsequent water rinse. Results demonstrated that the acid combinations reduced populations of Salmonella enterica on the stem scar area of grape tomatoes by 1.52-1.90 log CFU/fruit, compared with the non-treated control while water wash and rinse removed the bacterium by only 0.23-0.30 log CFU/fruit. On the stem scar of large round tomatoes, the same acid treatments achieved 3.54 log CFU/fruit reduction of the pathogen. The varying response to the acid washes between grape and large round tomatoes seems to be related to the differences in surface characteristics of stem scar areas observed with SEM. Rinsing with water after acid combination treatments did not significantly affect the efficacy of the treatments in either grape or large round tomatoes. Acidic off-odor was detected on fruits treated with acid combination without water rinse 1 day after treatment while water rinse eliminated the off-odor. The acid treatments with and without water rinse did not consistently affect appearance, color, firmness, or lycopene or ascorbic acid contents of tomatoes during 21-days storage at 10 °C. Considering the similarity in antimicrobial efficacy between the fruits with and without water rinse following acid treatments, and the elimination of acidic odor by water rinse, fruits should be rinsed with water after acid treatments. Overall, our results demonstrated that the acids were more effective in inactivating Salmonella on large round tomatoes than on grape tomatoes, and water rinses following acid treatments eliminated the acidic odor without affecting the efficacy of the acids against Salmonella.
Collapse
Affiliation(s)
- Xuetong Fan
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, United States.
| | - Joshua B Gurtler
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, United States
| | - Kimberly J B Sokorai
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, United States
| |
Collapse
|
21
|
Toti M, Carboni C, Botondi R. Postharvest gaseous ozone treatment enhances quality parameters and delays softening in cantaloupe melon during storage at 6 °C. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:487-494. [PMID: 28612399 DOI: 10.1002/jsfa.8485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND A trial was conducted to evaluate the effect of postharvest gaseous ozone (O3 ) treatment on quality parameters and cell wall enzymes of cantaloupe melon cv. Caldeo during storage at 6 °C for 13 days. Fruits were kept in cold storage and treated with 0.15 ppm gaseous O3 during the day and 0.3 ppm overnight; control fruits (CK) were stored in normal atmosphere. RESULTS Firmness was higher and ethylene concentration significantly lower in O3 fruits compared with CK fruits. During storage, microbial counts were lower in both O3 and CK fruits; from day 9, O3 fruits showed a significant decrease in mesophilic aerobes. Additionally, total carotenoids had a tendency to be higher, with no significant differences between CK and O3 fruits. The same trend was observed for ascorbic acid, colour, total soluble solids content and acidity. Finally, O3 treatment reduced the activities of cell wall enzymes α-arabinopyranosidase, β-galactopyranosidase and polygalacturonase starting from day 3 of storage. Pectin methyl esterase activity did not seem to be affected by O3 treatment. CONCLUSION Gaseous O3 treatment during cold storage was effective in decreasing ethylene production and delaying fruit softening in cantaloupe melon by extending quality maintenance. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mauro Toti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | | | - Rinaldo Botondi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
22
|
Amrutha B, Sundar K, Shetty PH. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables. Microb Pathog 2017; 111:156-162. [PMID: 28867627 DOI: 10.1016/j.micpath.2017.08.042] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 01/19/2023]
Abstract
Organic acids are known to be used as food preservatives due to their antimicrobial potential. This study evaluated the ability of three organic acids, namely, acetic acid, citric acid and lactic acid to manage E. coli and Salmonella sp. from fresh fruits and vegetables. Effect of these organic acids on biofilm forming ability and anti-quorum potential was also investigated. The effect of organic acids on inactivation of E. coli and Salmonella sp. on the surface of a selected vegetable (cucumber) was determined. The minimum inhibitory concentration of the organic acids were found to be 1.5, 2 and 0.2% in E. coli while it was observed to be 1, 1.5 and 1% in Salmonella sp. for acetic, citric and lactic acids respectively. Maximum inhibition of biofilm formation was recorded at 39.13% with lactic acid in E. coli and a minimum of 22.53% with citric acid in Salmonella sp. EPS production was affected in E. coli with lactic acid showing reduction by 13.42% while citric acid and acetic acid exhibited only 6.25% and 10.89% respectively. Swimming and swarming patterns in E. coli was notably affected by both acetic and lactic acids. Lactic and acetic acids showed higher anti-quorum sensing (QS) potential when compared to citric acid. 2% lactic acid showed a maximum inhibition of violacein production by 37.7%. Organic acids can therefore be used as potential quorum quenching agents in food industry. 2% lactic acid treatment on cucumber demonstrated that it was effective in inactivating E. coli and Salmonella sp. There was 1 log reduction in microbial count over a period of 6 days after the lactic acid treatment. Thus, organic acids can act as effective potential sanitizers in reducing the microbial load associated with fresh fruits and vegetables.
Collapse
Affiliation(s)
- Balagopal Amrutha
- Department of Food Science and Technology, Pondicherry Central University, R V Nagar, Kalapet, Puducherry 605 014, India
| | - Kothandapani Sundar
- Department of Food Science and Technology, Pondicherry Central University, R V Nagar, Kalapet, Puducherry 605 014, India
| | - Prathapkumar Halady Shetty
- Department of Food Science and Technology, Pondicherry Central University, R V Nagar, Kalapet, Puducherry 605 014, India.
| |
Collapse
|
23
|
Papachristodoulou M, Koukounaras A, Siomos AS, Liakou A, Gerasopoulos D. The effects of ozonated water on the microbial counts and the shelf life attributes of fresh-cut spinach. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Athanasios Koukounaras
- Department of Horticulture; Aristotle University of Thessaloniki; 54124 Thessaloniki, Greece
| | - Anastasios S. Siomos
- Department of Horticulture; Aristotle University of Thessaloniki; 54124 Thessaloniki, Greece
| | - Aglaia Liakou
- Department of Horticulture; Aristotle University of Thessaloniki; 54124 Thessaloniki, Greece
| | - Dimitrios Gerasopoulos
- Department of Horticulture; Aristotle University of Thessaloniki; 54124 Thessaloniki, Greece
| |
Collapse
|
24
|
Jiang Y, Fan X, Li X, Gurtler JB, Mukhopadhyay S, Jin T. Inactivation of Salmonella Typhimurium and quality preservation of cherry tomatoes by in-package aerosolization of antimicrobials. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
|
26
|
Tzortzakis N, Chrysargyris A. Postharvest ozone application for the preservation of fruits and vegetables. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1175015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
|
28
|
Glowacz M, Colgan R, Rees D. The use of ozone to extend the shelf-life and maintain quality of fresh produce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:662-671. [PMID: 24913013 DOI: 10.1002/jsfa.6776] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Fresh produce has been recognised as a healthy food, thus there is increasing consumer demand for fresh fruit and vegetables. The shelf-life of fresh produce, however, is relatively short and is limited by microbial contamination or visual, textural and nutritional quality loss. There are many methods to reduce/eliminate microorganisms present in food and ozone treatment is one of them. The use of ozone by the fresh produce industry is a good alternative to chemical treatments, e.g. the use of chlorine. The effectiveness of ozone as an antimicrobial agent has previously been reviewed and has been updated here, with the latest findings. The main focus of this review is on the effects of ozone on the fresh produce quality, defined by maintenance of texture, visual quality, taste and aroma, and nutritional content. Furthermore, ozone has been found to be efficient in reducing pesticide residues from the produce. The treatments that have the ability to reduce microbial contamination of the product without having an adverse effect on its visual, textural and nutritional quality can be recommended and subsequently incorporated into the supply chain. A good understanding of all the benefits and limitations related to the use of ozone is needed, and relevant information has been reviewed in this paper.
Collapse
Affiliation(s)
- Marcin Glowacz
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | | | | |
Collapse
|
29
|
Hoelzer K, Pouillot R, Van Doren J, Dennis S. Reduction of Listeria monocytogenes contamination on produce – A quantitative analysis of common liquid fresh produce wash compounds. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Alwi NA, Ali A. Reduction of Escherichia coli O157, Listeria monocytogenes and Salmonella enterica sv. Typhimurium populations on fresh-cut bell pepper using gaseous ozone. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Severino R, Vu KD, Donsì F, Salmieri S, Ferrari G, Lacroix M. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int J Food Microbiol 2014; 191:82-8. [DOI: 10.1016/j.ijfoodmicro.2014.09.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 02/03/2023]
|
32
|
Severino R, Vu KD, Donsì F, Salmieri S, Ferrari G, Lacroix M. Antimicrobial effects of different combined non-thermal treatments against Listeria monocytogenes in broccoli florets. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2013.09.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Horvitz S, Cantalejo MJ. Application of Ozone for the Postharvest Treatment of Fruits and Vegetables. Crit Rev Food Sci Nutr 2013; 54:312-39. [DOI: 10.1080/10408398.2011.584353] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Forghani F, Oh DH. Hurdle enhancement of slightly acidic electrolyzed water antimicrobial efficacy on Chinese cabbage, lettuce, sesame leaf and spinach using ultrasonication and water wash. Food Microbiol 2013; 36:40-5. [PMID: 23764218 DOI: 10.1016/j.fm.2013.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/06/2013] [Accepted: 04/02/2013] [Indexed: 11/21/2022]
Abstract
Slightly acidic electrolyzed water (SAEW) is well known as a good sanitizer against foodborne pathogens on fresh vegetables. However, microbial reductions from SAEW treatment are not enough to ensure produce safety. Therefore, it is necessary to improve its antimicrobial efficiency by combining it with other appropriate approaches. This study examined the microbicidal activity of SAEW (pH 5.2-5.5, oxidation reduction potential 500-600 mV, available chlorine concentration 21-22 mg/l) on Chinese cabbage, lettuce, sesame leaf and spinach, four common fresh vegetables in Korea under same laboratory conditions. Subsequently, effects of ultrasonication and water wash to enhance the sanitizing efficacy of SAEW were studied, separately. Finally, an optimized simple and easy approach consisting of simultaneous SAEW treatment with ultrasonication (3 min) followed by water wash (150 rpm, 1 min) was developed (SAEW + US-WW). This newly developed hurdle treatment significantly enhanced the microbial reductions compared to SAEW treatment alone, SAEW treatment with ultrasonication (SAEW + US) and SAEW treatment followed by water wash (SAEW-WW) at room temperature (23 ± 2 °C). Microbial reductions of yeasts and molds, total bacteria count and inoculated Escherichia coli O157:H7 and Listeria monocytogenes were in the range of 1.76-2.8 log cfu/g on different samples using the new hurdle approach.
Collapse
Affiliation(s)
- Fereidoun Forghani
- Department of Food Science and Biotechnology, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea
| | | |
Collapse
|
35
|
Smetanska I, Hunaefi D, Barbosa-Cánovas GV. Nonthermal Technologies to Extend the Shelf Life of Fresh-Cut Fruits and Vegetables. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-7906-2_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
36
|
Miller FA, Silva CLM, Brandão TRS. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. FOOD ENGINEERING REVIEWS 2013. [DOI: 10.1007/s12393-013-9064-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Ultrasonication enhanced low concentration electrolyzed water efficacy on bacteria inactivation and shelf life extension on lettuce. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0018-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
38
|
Hoelzer K, Pouillot R, Dennis S. Listeria monocytogenesGrowth Dynamics on Produce: A Review of the Available Data for Predictive Modeling. Foodborne Pathog Dis 2012; 9:661-73. [DOI: 10.1089/fpd.2011.1087] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Karin Hoelzer
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Régis Pouillot
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Sherri Dennis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| |
Collapse
|
39
|
Efficacy of washing with hydrogen peroxide followed by aerosolized antimicrobials as a novel sanitizing process to inactivate Escherichia coli O157:H7 on baby spinach. Int J Food Microbiol 2011; 153:306-13. [PMID: 22177228 DOI: 10.1016/j.ijfoodmicro.2011.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/03/2011] [Accepted: 11/19/2011] [Indexed: 11/21/2022]
Abstract
Aerosolization was investigated as a potential way to apply allyl isothiocyanate (AIT), hydrogen peroxide (H(2)O(2)), acetic acid (AA) and lactic acid (LA) on fresh baby spinach to control Escherichia coli O157:H7 during refrigeration storage. In this study, baby spinach leaves were dip-inoculated with E. coli O157:H7 to a level of 6 log CFU/g and stored at 4°C for 24 h before treatment. Antimicrobials were atomized into fog-like micro-particles by an ultrasonic nebulizer and routed into a jar and a scale-up model system where samples were treated. Samples were stored at 4°C for up to 10 days before the survival of the cells was determined. A 2-min treatment with 5% AIT resulted in a >5-log reduction of E. coli O157:H7 on spinach after 2 days refrigeration regardless if the samples were pre-washed or not; however, this treatment impaired the sensory quality of leaves. Addition of LA to AIT improved the antimicrobial efficacy of AIT. In the jar system, washing with 3% H(2)O(2) followed by a 2-min treatment of 2.5% LA+1% AIT or 2.5% LA+2% AIT reduced E. coli O157:H7 population by 4.7 and >5 log CFU/g, respectively, after 10 days refrigeration. In the scale-up system, up to 4-log reduction of bacterial population was achieved for the same treatments without causing noticeable adverse effect on the appearance of leaves. Thus, this study demonstrates the potential of aerosolized AIT+LA as a new post-washing intervention strategy to control E. coli O157:H7 on baby spinach during refrigeration storage.
Collapse
|
40
|
Das BK, Kim JG, Choi JW. Efficacy of different washing solutions and contact times on the microbial quality and safety of fresh-cut paprika. FOOD SCI TECHNOL INT 2011; 17:471-9. [PMID: 21954309 DOI: 10.1177/1082013211398842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of different washing solutions and contact times was investigated to determine their use as potential sanitizers for maintaining the microbial quality and food safety of fresh-cut paprika. Samples were cut into small pieces, washed for both 90 and 180 s by different washing solutions: tap water, chlorinated water (100 mg/L and pH 6.5-7), electrolyzed water (pH 7.2) and ozonized water (4 mg/L). Then, samples were packaged in 50 µm polypropylene bags and stored at 5 °C for 12 days, followed by an evaluation of the antimicrobial efficacy of the treatments. Various quality and safety parameters, such as gas composition, color, off-odor, electrical conductivity and microbial numbers, were evaluated during storage. Results revealed insignificant differences in gas composition, and no off-odor was observed in any of the samples during the storage period. However, longer contact time resulted in slightly lower hue angle value than a short one for all washing solutions. Moreover, samples washed with ozone washings showed lower electrolyte leakage than other washing solutions. Samples washed for longer contact time except those washed in ozonized water showed increased microbial numbers during storage. Hence, it has been concluded that longer contact time with ozone has positive effects, whereas the other washing solutions adversely affect the microbial quality and safety aspects of fresh-cut paprika.
Collapse
Affiliation(s)
- B Kumar Das
- National Institute of Horticultural and Herbal Science, RDA, Suwon 440706, Republic of Korea.
| | | | | |
Collapse
|
41
|
Park SH, Choi MR, Park JW, Park KH, Chung MS, Ryu S, Kang DH. Use of organic acids to inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on organic fresh apples and lettuce. J Food Sci 2011; 76:M293-8. [PMID: 21623781 DOI: 10.1111/j.1750-3841.2011.02205.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
UNLABELLED This study was undertaken to investigate the antimicrobial effect of organic acids against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on whole red organic apples and lettuce. Several studies have been conducted to evaluate organic acids as sanitizers. However, no studies have compared antimicrobial effects of various organic acids on organic fresh produce, including evaluation of color changes of produce. Apples and lettuce were inoculated with a cocktail of 3 strains each of 3 foodborne pathogens provided above and treated with 1% and 2% organic acids (propionic, acetic, lactic, malic, and citric acid) for 0, 0.5, 1, 5, and 10 min. With increasing treatment time and acid concentration, organic acid treatments showed significant reduction compared to the control treatment (distilled water), and differences in antimicrobial effects between organic acids were observed. After 10 min of treatment with 1% and 2% organic acids in apples, propionic (0.92 to 2.75 log reduction), acetic (0.52 to 2.78 log reduction), lactic (1.69 to >3.42 log reduction), malic (1.48 to >3.42 log reduction), and citric acid (1.52 to >3.42 log reduction) exhibited significant (P < 0.05) antibacterial effects against 3 foodborne pathogens compared to the control treatment. In lettuce, propionic (0.93 to 1.52 log reduction), acetic (1.13 to 1.74 log reduction), lactic (1.87 to 2.54 log reduction), malic (2.32 to 2.98 log reduction), and citric acid (1.85 to 2.86 log reduction) showed significant (P < 0.05) effects compared to the control treatment. Changes in sample color subjected to organic acids treatment were not significant during storage. PRACTICAL APPLICATION It is suggested that organic acids have a potential as sanitizers for organic fresh produce. These data may help the organic produce industry provide safe fresh produce for consumers.
Collapse
Affiliation(s)
- Sang-Hyun Park
- Dept. of Food and Animal Biotechnology, Center for Agricultural Biomaterials, and Research Inst. for Agriculture and Life Sciences, Seoul Natl. Univ., Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. Int J Food Microbiol 2011; 148:30-5. [DOI: 10.1016/j.ijfoodmicro.2011.04.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 04/16/2011] [Accepted: 04/20/2011] [Indexed: 11/23/2022]
|
43
|
Ozone inactivation of acid stressed Listeria monocytogenes and Listeria innocua in orange juice using a bubble column. Food Control 2010. [DOI: 10.1016/j.foodcont.2010.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Inactivation effect of newly developed low concentration electrolyzed water and other sanitizers against microorganisms on spinach. Food Control 2010. [DOI: 10.1016/j.foodcont.2010.03.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. Lebensm Wiss Technol 2009. [DOI: 10.1016/j.lwt.2008.08.001] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
|
47
|
Whipps JM, Hand P, Pink DA, Bending GD. Chapter 7 Human Pathogens and the Phyllosphere. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:183-221. [DOI: 10.1016/s0065-2164(08)00407-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Akbas MY, Olmez H. Effectiveness of organic acid, ozonated water and chlorine dippings on microbial reduction and storage quality of fresh-cut iceberg lettuce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2007; 87:2609-2616. [PMID: 20836169 DOI: 10.1002/jsfa.3016] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND The comparative effects of organic (citric and lactic) acids, ozone and chlorine on the microbiological population and quality parameters of fresh-cut lettuce during storage were evaluated. RESULTS Dipping of lettuce in 100 mg L(-1) chlorine solution reduced the numbers of mesophilic and psychrotrophic bacteria and Enterobacteriaceae by 1.7, 2.0 and 1.6 log(10) colony-forming units (CFU) g(-1) respectively. Treatment of lettuce with citric (5 g L(-1)) and lactic (5 mL L(-1)) acid solutions and ozonated water (4 mg L(-1)) reduced the populations of mesophilic and psychrotrophic bacteria by 1.7 and 1.5 log(10) CFU g(-1) respectively. Organic acid dippings resulted in lower mesophilic and psychrotrophic counts than ozonated water and chlorine dippings during 12 days of storage. Lactic acid dipping effectively reduced (by 2.2 log(10) CFU g(-1)) and maintained low populations of Enterobacteriaceae on lettuce for the first 6 days of storage. No significant (P > 0.05) changes were observed in the texture and moisture content of lettuce samples dipped in chlorine, organic acids and ozonated water during storage. Colour, β-carotene and vitamin C values of fresh-cut iceberg lettuce did not change significantly (P > 0.05) until day 8. CONCLUSION Lactic and citric acid and ozonated water dippings could be alternative treatments to chlorine dipping to prolong the shelf life of fresh-cut iceberg lettuce. Copyright © 2007 Society of Chemical Industry.
Collapse
Affiliation(s)
- Meltem Yesilcimen Akbas
- Department of Biology, Gebze Institute of Technology, PO Box 141, 41400 Gebze, Kocaeli, Turkey
| | | |
Collapse
|