1
|
Hurtado A, Ocejo M, Oporto B, Lavín JL, Rodríguez R, Marcos MÁ, Urrutikoetxea-Gutiérrez M, Alkorta M, Marimón JM. A One Health approach for the genomic characterization of antibiotic-resistant Campylobacter isolates using Nanopore whole-genome sequencing. Front Microbiol 2025; 16:1540210. [PMID: 39980694 PMCID: PMC11841381 DOI: 10.3389/fmicb.2025.1540210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025] Open
Abstract
In response to the growing threat posed by the spread of antimicrobial resistance in zoonotic Campylobacter, a One Health approach was used to examine the genomic diversity, phylogenomic relationships, and the distribution of genetic determinants of resistance (GDR) in C. jejuni and C. coli isolates from humans, animals (ruminants, swine, and chickens), and avian food products collected during a regionally (Basque Country, Spain) and temporally (mostly 2021-2022) restricted sampling. Eighty-three C. jejuni and seventy-one C. coli isolates, most exhibiting resistance to ciprofloxacin and/or erythromycin, were whole-genome sequenced using Oxford Nanopore Technologies long-fragment sequencing (ONT). Multilocus sequence typing (MLST) analysis identified a high genomic diversity among isolates. Phylogenomic analysis showed that clustering based on the core genome was aligned with MLST profiles, regardless of the sample source. In contrast, accessory genome content sometimes discriminated isolates within the same STs and occasionally differentiated isolates from different sources. The majority of the identified GDRs were present in isolates from different sources, and a good correlation was observed between GDR distribution and phenotypic susceptibility profiles (based on minimum inhibitory concentrations interpreted according to the EUCAST epidemiological cutoff values). Genotypic resistance profiles were independent of genotypes, indicating no apparent association between resistance and phylogenetic origin. This study demonstrates that ONT sequencing is a powerful tool for molecular surveillance of bacterial pathogens in the One Health framework.
Collapse
Affiliation(s)
- Ana Hurtado
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Medelin Ocejo
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - José Luis Lavín
- Applied Mathematics Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Ruth Rodríguez
- Laboratorio de Salud Pública en Gipuzkoa, Donostia-San Sebastián, Gipuzkoa, Spain
| | - María Ángeles Marcos
- Laboratorio de Salud Pública en Gipuzkoa, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Mikel Urrutikoetxea-Gutiérrez
- Clinical Microbiology Service, Basurto University Hospital, Organización Sanitaria Integrada Bilbao-Basurto, Bilbao, Bizkaia, Spain
- Biobizkaia Health Research Institute, Microbiology and Infection Control, Barakaldo, Bizkaia, Spain
| | - Miriam Alkorta
- Infectious Diseases Area, Microbiology Department, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Donostialdea Integrated Health Organization, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
- Faculty of Medicine, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Gipuzkoa, Spain
| | - José María Marimón
- Infectious Diseases Area, Microbiology Department, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Donostialdea Integrated Health Organization, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
| |
Collapse
|
2
|
Buiatte ABG, Souza SSR, Costa LRM, Peres PABM, de Melo RT, Sommerfeld S, Fonseca BB, Zac Soligno NI, Ikhimiukor OO, Armendaris PM, Andam CP, Rossi DA. Five centuries of genome evolution and multi-host adaptation of Campylobacter jejuni in Brazil. Microb Genom 2024; 10:001274. [PMID: 39028633 PMCID: PMC11316555 DOI: 10.1099/mgen.0.001274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Consumption of raw, undercooked or contaminated animal food products is a frequent cause of Campylobacter jejuni infection. Brazil is the world's third largest producer and a major exporter of chicken meat, yet population-level genomic investigations of C. jejuni in the country remain scarce. Analysis of 221 C. jejuni genomes from Brazil shows that the overall core and accessory genomic features of C. jejuni are influenced by the identity of the human or animal source. Of the 60 sequence types detected, ST353 is the most prevalent and consists of samples from chicken and human sources. Notably, we identified the presence of diverse bla genes from the OXA-61 and OXA-184 families that confer beta-lactam resistance as well as the operon cmeABCR related to multidrug efflux pump, which contributes to resistance against tetracyclines, macrolides and quinolones. Based on limited data, we estimated the most recent common ancestor of ST353 to the late 1500s, coinciding with the time the Portuguese first arrived in Brazil and introduced domesticated chickens into the country. We identified at least two instances of ancestral chicken-to-human infections in ST353. The evolution of C. jejuni in Brazil was driven by the confluence of clinically relevant genetic elements, multi-host adaptation and clonal population growth that coincided with major socio-economic changes in poultry farming.
Collapse
Affiliation(s)
- Ana Beatriz Garcez Buiatte
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Stephanie S. R. Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | | | | | - Roberta Torres de Melo
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Simone Sommerfeld
- Infectious Disease Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Nicole I. Zac Soligno
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Paulo Marcel Armendaris
- Federal Agriculture Defense Laboratory/RS - LFDA/RS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Daise Aparecida Rossi
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
3
|
Zang X, Pascoe B, Mourkas E, Kong K, Jiao X, Sheppard SK, Huang J. Evidence of potential Campylobacter jejuni zooanthroponosis in captive macaque populations. Microb Genom 2023; 9:001121. [PMID: 37877958 PMCID: PMC10634442 DOI: 10.1099/mgen.0.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Non-human primates share recent common ancestry with humans and exhibit comparable disease symptoms. Here, we explored the transmission potential of enteric bacterial pathogens in monkeys exhibiting symptoms of recurrent diarrhoea in a biomedical research facility in China. The common zoonotic bacterium Campylobacter jejuni was isolated from macaques (Macaca mulatta and Macaca fascicularis) and compared to isolates from humans and agricultural animals in Asia. Among the monkeys sampled, 5 % (44/973) tested positive for C. jejuni, 11 % (5/44) of which displayed diarrhoeal symptoms. Genomic analysis of monkey isolates, and 1254 genomes from various sources in Asia, were used to identify the most likely source of human infection. Monkey and human isolates shared high average nucleotide identity, common MLST clonal complexes and clustered together on a phylogeny. Furthermore, the profiles of putative antimicrobial resistance genes were similar between monkeys and humans. Taken together these findings suggest that housed macaques became infected with C. jejuni either directly from humans or via a common contamination source.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ke Kong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
4
|
Rodrigues JA, Blankenship HM, Cha W, Mukherjee S, Sloup RE, Rudrik JT, Soehnlen M, Manning SD. Pangenomic analyses of antibiotic-resistant Campylobacter jejuni reveal unique lineage distributions and epidemiological associations. Microb Genom 2023; 9:mgen001073. [PMID: 37526649 PMCID: PMC10483415 DOI: 10.1099/mgen.0.001073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Application of whole-genome sequencing (WGS) to characterize foodborne pathogens has advanced our understanding of circulating genotypes and evolutionary relationships. Herein, we used WGS to investigate the genomic epidemiology of Campylobacter jejuni, a leading cause of foodborne disease. Among the 214 strains recovered from patients with gastroenteritis in Michigan, USA, 85 multilocus sequence types (STs) were represented and 135 (63.1 %) were phenotypically resistant to at least one antibiotic. Horizontally acquired antibiotic resistance genes were detected in 128 (59.8 %) strains and the genotypic resistance profiles were mostly consistent with the phenotypes. Core-gene phylogenetic reconstruction identified three sequence clusters that varied in frequency, while a neighbour-net tree detected significant recombination among the genotypes (pairwise homoplasy index P<0.01). Epidemiological analyses revealed that travel was a significant contributor to pangenomic and ST diversity of C. jejuni, while some lineages were unique to rural counties and more commonly possessed clinically important resistance determinants. Variation was also observed in the frequency of lineages over the 4 year period with chicken and cattle specialists predominating. Altogether, these findings highlight the importance of geographically specific factors, recombination and horizontal gene transfer in shaping the population structure of C. jejuni. They also illustrate the usefulness of WGS data for predicting antibiotic susceptibilities and surveillance, which are important for guiding treatment and prevention strategies.
Collapse
Affiliation(s)
- Jose A. Rodrigues
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Heather M. Blankenship
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, Michigan, USA
| | - Wonhee Cha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Present address: National Veterinary Institute, Uppsala, Sweden
| | - Sanjana Mukherjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Present address: Center for Global Health Science and Security, Georgetown University, Washington, USA
| | - Rebekah E. Sloup
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - James T. Rudrik
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, Michigan, USA
| | - Marty Soehnlen
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, Michigan, USA
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Hojo M, Nagahara A. Current perspectives on irritable bowel syndrome: a narrative review. J Int Med Res 2022; 50:3000605221126370. [PMID: 36171718 PMCID: PMC9523849 DOI: 10.1177/03000605221126370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The pathophysiology of irritable bowel syndrome (IBS) has not yet been fully elucidated. We reviewed articles addressing IBS that have been published in the last 2 years and selected papers related to IBS pathophysiology and treatment. Studies of intestinal bacteria, low-grade mucosal inflammation, and increased mucosal permeability—factors involved in the pathophysiology of IBS—have been conducted. In addition, the involvement of intestinal bacteria in IBS pathology has been clarified; many studies of treatments related to intestinal bacteria have been reported. Moreover, several studies address the effect on IBS of antidepressants and psychotherapy through the brain–gut axis. The contents of these papers are described in this narrative review.
Collapse
Affiliation(s)
- Mariko Hojo
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Šoprek S, Duvnjak S, Kompes G, Jurinović L, Tambić Andrašević A. Resistome Analysis of Campylobacter jejuni Strains Isolated from Human Stool and Primary Sterile Samples in Croatia. Microorganisms 2022; 10:1410. [PMID: 35889129 PMCID: PMC9322926 DOI: 10.3390/microorganisms10071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacteriosis represents a global health challenge due to continuously increasing trends of antimicrobial resistance in Campylobacter jejuni. C. jejuni can sometimes cause life-threatening and severe systematic infections (bacteremia, meningitis, and other extraintestinal infections) with very few antibiotics left as treatment options. Bearing in mind that C. jejuni is the predominant species in humans, in this paper, we present a study of the C. jejuni differences in antimicrobial resistance and genotype distribution between strains isolated from stool and primary sterile sites. We compared the genomic data obtained through whole genome sequencing (WGS) and phenotypic susceptibility data of C. jejuni strains. Once antimicrobial susceptibility testing of C. jejuni strains was carried out by the broth microdilution method for six of interest, results were compared to the identified genotypic determinants derived from WGS. The high rate of resistance to fluoroquinolones presented in this study is in accordance with national surveillance data. The proportion of strains with acquired resistance was 71% for ciprofloxacin and 20% for tetracycline. When invasive isolates were analysed separately, 40% exhibited MIC values of ciprofloxacin higher than the ECOFFs, suggesting a lower flouroquinolone resistance rate in invasive isolates. All isolates demonstrated wilde-type phenotype for chloramphenicol, erythromycin, gentamicin, and ertapenem. A special focus and review in this study was performed on a group of C.jejuni strains found in primary sterile samples. Apart from demonstrating a lower resistance rate, these isolates seem genetically more uniform, showing epidemiologically more homogenous patterns, which cluster to several clonal complexes, with CC49 being the most represented clonal complex.
Collapse
Affiliation(s)
- Silvija Šoprek
- Department of Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", 10000 Zagreb, Croatia
| | - Sanja Duvnjak
- Laboratory for Bacterial Zoonoses and Molecular Diagnostics of Bacterial Diseases, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Gordan Kompes
- Laboratory for General Bacteriology and Mycology, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Luka Jurinović
- Laboratory for Bacteriology, Poultry Centre, Croatian Veterinary Institute, 10000 Zagreb, Croatia
| | - Arjana Tambić Andrašević
- Department of Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Wang X, Zhuo Q, Hong Y, Wu Y, Gu Q, Yuan D, Dong Q, Shao J. Correlation between Multilocus Sequence Typing and Antibiotic Resistance, Virulence Potential of Campylobacter jejuni Isolates from Poultry Meat. Foods 2022; 11:foods11121768. [PMID: 35741967 PMCID: PMC9222796 DOI: 10.3390/foods11121768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen and can be transmitted to human beings via the consumption of poultry products. This study aimed to determine antibiotic resistance and virulence potential of one hundred C. jejuni isolates from poultry meat and to explore the correlation between them and the multilocus sequence types (MLST). A total of 29 STs and 13 CCs were identified by MLST, of which 8 STs were first identified. The dominant ST was ST583 (21%), followed by ST42 (15%), ST61 (12%), and ST2276 (10%). Eighty-eight isolates showed resistance to at least one antibiotic. The resistance rate to fluoroquinolones was the highest (81%), followed by tetracycline (59%), whereas all the isolates were susceptible to erythromycin and telithromycin. Multi-antibiotic resistance was detected in 18 C. jejuni isolates. Great variability in the adhesion and invasion ability to Caco-2 cells was observed for the 100 isolates, with adhesion rates varying between 0.02% and 28.48%, and invasion rates varied from 0 to 6.26%. A correlation between STs and antibiotic resistance or virulence was observed. The ST61 isolates were significantly sensitive to CIP, while the TET resistance was significantly associated with ST354 and ST6175 complex. ST11326 showed substantially higher resistance to gentamicin and higher adhesion and invasion abilities to Caco-2 cells. The results helped improve our understanding of the potential hazard of different genotypes C. jejuni and provided critical information for the risk assessment of campylobacteriosis infection.
Collapse
Affiliation(s)
- Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.W.); (Q.Z.); (Y.H.); (Q.D.)
| | - Qiyun Zhuo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.W.); (Q.Z.); (Y.H.); (Q.D.)
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.W.); (Q.Z.); (Y.H.); (Q.D.)
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Technology Center of Zhangjiagang Customs, Suzhou 215600, China; (Q.G.); (D.Y.)
- Correspondence: (Y.W.); (J.S.); Tel.: +86-21-64252849 (Y.W.); +86-512-56302785 (J.S.)
| | - Qiang Gu
- Technology Center of Zhangjiagang Customs, Suzhou 215600, China; (Q.G.); (D.Y.)
| | - Dawei Yuan
- Technology Center of Zhangjiagang Customs, Suzhou 215600, China; (Q.G.); (D.Y.)
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (X.W.); (Q.Z.); (Y.H.); (Q.D.)
| | - Jingdong Shao
- Technology Center of Zhangjiagang Customs, Suzhou 215600, China; (Q.G.); (D.Y.)
- Correspondence: (Y.W.); (J.S.); Tel.: +86-21-64252849 (Y.W.); +86-512-56302785 (J.S.)
| |
Collapse
|
8
|
Zang X, Huang P, Li J, Jiao X, Huang J. Genomic Relatedness, Antibiotic Resistance and Virulence Traits of Campylobacter jejuni HS19 Isolates From Cattle in China Indicate Pathogenic Potential. Front Microbiol 2021; 12:783750. [PMID: 34956150 PMCID: PMC8698899 DOI: 10.3389/fmicb.2021.783750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Although campylobacteriosis is a zoonotic foodborne illness, high-risk isolates from animal sources are rarely characterized, and the pathogenic potential of zoonotic strains remains an obstacle to effective intervention against human infection. HS19 has been acknowledged as a maker serotype represented by Campylobacter jejuni (C. jejuni) isolates from patients with post-infection Guillain-Barré syndrome (GBS), which is circulation in developed countries. However, a previous serotype epidemiological study of C. jejuni isolates in an animal population revealed that HS19 was also prevalent in isolates from cattle in China. In this study, to investigate the hazardous potential of zoonotic strains, 14 HS19 isolates from cattle were systematically characterized both by genotype and phenotype. The results showed that all of these cattle isolates belonged to the ST-22 complex, a high-risk lineage represented by 77.2% HS19 clinical isolates from patients worldwide in the PubMLST database, indicating that the ST-22 complex is the prominent clonal complex of HS19 isolates, as well as the possibility of clonal spread of HS19 isolates across different regions and hosts. Nevertheless, these cattle strains clustered closely with the HS19 isolates from patients, suggesting a remarkable phylogenetic relatedness and genomic similarity. Importantly, both tetracycline genes tet(O) and gyrA (T86I) reached a higher proportional representation among the cattle isolates than among the human clinical isolates. A worrying level of multidrug resistance (MDR) was observed in all the cattle isolates, and two MDR profiles of the cattle isolates also existed in human clinical isolates. Notably, although shared with the same serotype HS19 and sequence type ST-22, 35.7% of cattle isolates induced severe gastrointestinal pathology in the IL-10–/– C57BL/6 mice model, indicating that some bacteria could change due to host adaptation to induce a disease epidemic, thus the associated genetic elements deserve further investigation. In this study, HS19 isolates from cattle were first characterized by a systematic evaluation of bacterial genomics and in vitro virulence, which improved our understanding of the potential zoonotic hazard from food animal isolates with high-risk serotypes, and provided critical information for the development of targeted C. jejuni mitigation strategies.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Pingyu Huang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Jie Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
- *Correspondence: Jinlin Huang,
| |
Collapse
|
9
|
Truccollo B, Whyte P, Burgess CM, Bolton DJ. Genomic Characterisation of Campylobacter jejuni Isolates Recovered During Commercial Broiler Production. Front Microbiol 2021; 12:716182. [PMID: 34721320 PMCID: PMC8552067 DOI: 10.3389/fmicb.2021.716182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/23/2021] [Indexed: 11/26/2022] Open
Abstract
Background:Campylobacter is commonly transmitted to humans from chickens. Campylobacter jejuni is the species most frequently associated with human illness, and the most prevalent species recovered from poultry. Objective: The objective of this study was to analyse a sub-population of C. jejuni from two broiler flocks on the farm and at slaughter using whole-genome sequencing to gain insights into the changes in the Campylobacter population during broiler production, including changes in virulence and antimicrobial resistance profiles. Methods: In this study, ten composite faecal samples (n=10), obtained by pooling ten fresh faecal samples (n=10), were collected in the broiler house on two farms on days 14, 21, 28, and 34 (n=80) and ten composite (n=10) caecal samples were collected at the time of slaughter for each flock (n=20). These were tested for C. jejuni using the ISO 10272-2:2016 method. Seven isolates were randomly selected from each of the nine Campylobacter-positive sampling points (n=63) and were subjected to antimicrobial susceptibility tests. Their genomes were sequenced and the data obtained was used to characterise the population structure, virulence, antimicrobial resistance determinants and inter-strain variation. Results: The Farm 1 isolates had three MLST types (ST257-257, ST814-661 and ST48-48) while those on Farm 2 were ST6209-464 and ST9401. Interestingly, only the MLST types positive for most of the virulence genes tested in this study persisted throughout the production cycle, and the detection of antimicrobial resistance determinants (gyrA T86I and tetO) increased after thinning and at slaughter, with the detection of new strains. Conclusion: The persistence of the most virulent strains detected in this study throughout the production cycle has important implications for the risk to consumers and requires further investigation. The detection of new strains within the population corresponding with the time of thinning and transportation reflects previous reports and provides further evidence that these activities pose a risk of introducing new Campylobacter strains to broiler batches.
Collapse
Affiliation(s)
- Brendha Truccollo
- Food Safety Department, Teagasc Food Research Centre, Dublin, Ireland.,School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | | | - Declan J Bolton
- Food Safety Department, Teagasc Food Research Centre, Dublin, Ireland
| |
Collapse
|
10
|
Arning N, Sheppard SK, Bayliss S, Clifton DA, Wilson DJ. Machine learning to predict the source of campylobacteriosis using whole genome data. PLoS Genet 2021; 17:e1009436. [PMID: 34662334 PMCID: PMC8553134 DOI: 10.1371/journal.pgen.1009436] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/28/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis is among the world's most common foodborne illnesses, caused predominantly by the bacterium Campylobacter jejuni. Effective interventions require determination of the infection source which is challenging as transmission occurs via multiple sources such as contaminated meat, poultry, and drinking water. Strain variation has allowed source tracking based upon allelic variation in multi-locus sequence typing (MLST) genes allowing isolates from infected individuals to be attributed to specific animal or environmental reservoirs. However, the accuracy of probabilistic attribution models has been limited by the ability to differentiate isolates based upon just 7 MLST genes. Here, we broaden the input data spectrum to include core genome MLST (cgMLST) and whole genome sequences (WGS), and implement multiple machine learning algorithms, allowing more accurate source attribution. We increase attribution accuracy from 64% using the standard iSource population genetic approach to 71% for MLST, 85% for cgMLST and 78% for kmerized WGS data using the classifier we named aiSource. To gain insight beyond the source model prediction, we use Bayesian inference to analyse the relative affinity of C. jejuni strains to infect humans and identified potential differences, in source-human transmission ability among clonally related isolates in the most common disease causing lineage (ST-21 clonal complex). Providing generalizable computationally efficient methods, based upon machine learning and population genetics, we provide a scalable approach to global disease surveillance that can continuously incorporate novel samples for source attribution and identify fine-scale variation in transmission potential.
Collapse
Affiliation(s)
- Nicolas Arning
- Big Data institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
- * E-mail:
| | - Samuel K. Sheppard
- The Milner Centre of Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Sion Bayliss
- The Milner Centre of Evolution, Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - David A. Clifton
- Department of Engineering Science, University of Oxford, Oxford, UK; Oxford-Suzhou Centre for Advanced Research, Suzhou, China
| | - Daniel J. Wilson
- Big Data institute, Nuffield Department of Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, United Kingdom
| |
Collapse
|
11
|
Peters S, Pascoe B, Wu Z, Bayliss SC, Zeng X, Edwinson A, Veerabadhran-Gurunathan S, Jawahir S, Calland JK, Mourkas E, Patel R, Wiens T, Decuir M, Boxrud D, Smith K, Parker CT, Farrugia G, Zhang Q, Sheppard SK, Grover M. Campylobacter jejuni genotypes are associated with post-infection irritable bowel syndrome in humans. Commun Biol 2021; 4:1015. [PMID: 34462533 PMCID: PMC8405632 DOI: 10.1038/s42003-021-02554-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Campylobacter enterocolitis may lead to post-infection irritable bowel syndrome (PI-IBS) and while some C. jejuni strains are more likely than others to cause human disease, genomic and virulence characteristics promoting PI-IBS development remain uncharacterized. We combined pangenome-wide association studies and phenotypic assays to compare C. jejuni isolates from patients who developed PI-IBS with those who did not. We show that variation in bacterial stress response (Cj0145_phoX), adhesion protein (Cj0628_CapA), and core biosynthetic pathway genes (biotin: Cj0308_bioD; purine: Cj0514_purQ; isoprenoid: Cj0894c_ispH) were associated with PI-IBS development. In vitro assays demonstrated greater adhesion, invasion, IL-8 and TNFα secretion on colonocytes with PI-IBS compared to PI-no-IBS strains. A risk-score for PI-IBS development was generated using 22 genomic markers, four of which were from Cj1631c, a putative heme oxidase gene linked to virulence. Our finding that specific Campylobacter genotypes confer greater in vitro virulence and increased risk of PI-IBS has potential to improve understanding of the complex host-pathogen interactions underlying this condition. Stephanie Peters, Ben Pascoe, et al. use whole-genome sequencing and phenotypic analysis of clinical strains from patients to identify potential genetic factors involved in irritable bowel syndrome resulting from Campylobacter jejuni infection. Their data suggest that genes involved in the bacterial stress response and biosynthetic pathways may contribute toward irritable bowel syndrome, providing further insight into links between Campylobacter genotypes and risk of disease.
Collapse
Affiliation(s)
- Stephanie Peters
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Ximin Zeng
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adam Edwinson
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Terra Wiens
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marijke Decuir
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David Boxrud
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kirk Smith
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Craig T Parker
- United States Department of Agriculture, Albany, CA, USA
| | - Gianrico Farrugia
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
| | - Madhusudan Grover
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Truccollo B, Whyte P, Burgess C, Bolton D. Genetic characterisation of a subset of Campylobacter jejuni isolates from clinical and poultry sources in Ireland. PLoS One 2021; 16:e0246843. [PMID: 33690659 PMCID: PMC7943001 DOI: 10.1371/journal.pone.0246843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Campylobacter spp. is a significant and prevalent public health hazard globally. Campylobacter jejuni is the most frequently recovered species from human cases and poultry are considered the most important reservoir for its transmission to humans. In this study, 30 Campylobacter jejuni isolates were selected from clinical (n = 15) and broiler (n = 15) sources from a larger cohort, based on source, virulence, and antimicrobial resistance profiles. The objective of this study was to further characterise the genomes of these isolates including MLST types, population structure, pan-genome, as well as virulence and antimicrobial resistance determinants. A total of 18 sequence types and 12 clonal complexes were identified. The most common clonal complex was ST-45, which was found in both clinical and broiler samples. We characterised the biological functions that were associated with the core and accessory genomes of the isolates in this study. No significant difference in the prevalence of virulence or antimicrobial resistance determinants was observed between clinical and broiler isolates, although genes associated with severe illness such as neuABC, wlaN and cstIII were only detected in clinical isolates. The ubiquity of virulence factors associated with motility, invasion and cytolethal distending toxin (CDT) synthesis in both clinical and broiler C. jejuni genomes and genetic similarities between groups of broiler and clinical C. jejuni reaffirm that C. jejuni from poultry remains a significant threat to public health.
Collapse
Affiliation(s)
- Brendha Truccollo
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
| | - Declan Bolton
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland
| |
Collapse
|
13
|
Sarhangi M, Bakhshi B, Peeraeyeh SN. High prevalence of Campylobacter jejuni CC21 and CC257 clonal complexes in children with gastroenteritis in Tehran, Iran. BMC Infect Dis 2021; 21:108. [PMID: 33485317 PMCID: PMC7824915 DOI: 10.1186/s12879-021-05778-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni) is a leading cause of acute gastroenteritis in human worldwide. The aim of study was to assess the distribution of sialylated lipooligosaccharide (LOS) classes and capsular genotypes in C. jejuni isolated from Iranian children with gastroenteritis. Furthermore, the level of dnaK gene expression in C. jejuni strains with selected capsular genotypes and LOS classes was intended. Moreover, a comprehensive study of C. jejuni MLST-genotypes and inclusive comparison with peer sequences worldwide was intended. METHODS Twenty clinical C. jejuni strains were isolated from fecal specimens of 280 children aged 0-5 years, suspected of bacterial gastroenteritis, which admitted to 3 children hospitals from May to October, 2018. Distribution of sialylated LOS classes and specific capsular genotypes were investigated in C. jejuni of clinical origin. The expression of dnaK in C. jejuni strains was measured by Real-Time-PCR. MLST-genotyping was performed to investigate the clonal relationship of clinical C. jejuni strains and comparison with inclusive sequences worldwide. RESULTS C. jejuni HS23/36c was the predominant genotype (45%), followed by HS2 (20%), and HS19 and HS4 (each 10%). A total of 80% of isolates were assigned to LOS class B and C. Higher expression level of dnaK gene was detected in strains with HS23/36c, HS2 and HS4 capsular genotypes and sialylated LOS classes B or C. MLST analysis showed that isolates were highly diverse and represented 6 different sequence types (STs) and 3 clonal complexes (CCs). CC21 and CC257 were the most dominant CCs (75%) among our C. jejuni strains. No new ST and no common ST with our neighbor countries was detected. CONCLUSIONS The C. jejuni isolates with LOS class B or C, and capsular genotypes of HS23/36, HS2, HS4 and HS19 were dominant in population under study. The CC21 and CC257 were the largest CCs among our isolates. In overall picture, CC21 and CC353 complexes were the most frequently and widely distributed clonal complexes worldwide, although members of CC353 were not detected in our isolates. This provides a universal picture of movement of dominant Campylobacter strains worldwide.
Collapse
Affiliation(s)
- Mahnaz Sarhangi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Shahin Najar Peeraeyeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| |
Collapse
|
14
|
Mouftah SF, Cobo-Díaz JF, Álvarez-Ordóñez A, Mousa A, Calland JK, Pascoe B, Sheppard SK, Elhadidy M. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiol 2020; 95:103706. [PMID: 33397624 DOI: 10.1016/j.fm.2020.103706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
One of the emerging conundrums of Campylobacter food-borne illness is the bacterial ability to survive stressful environmental conditions. We evaluated the heterogeneity among 90 C. jejuni and 21 C. coli isolates from different sources in Egypt with respect to biofilm formation capabilities (under microaerobic and aerobic atmosphere) and resistance to a range of stressors encountered along the food chain (aerobic stress, refrigeration, freeze-thaw, heat, peracetic acid, and osmotic stress). High prevalence (63%) of hyper-aerotolerant (HAT) isolates was observed, exhibiting also a significantly high tolerance to heat, osmotic stress, refrigeration, and freeze-thaw stress, coupled with high biofilm formation ability which was clearly enhanced under aerobic conditions, suggesting a potential link between stress adaptation and biofilm formation. Most HAT multi-stress resistant and strong biofilm producing C. jejuni isolates belonged to host generalist clonal complexes (ST-21, ST-45, ST-48 and ST-206). These findings highlight the potential role of oxidative stress response systems in providing cross-protection (resistance to other multiple stress conditions) and enhancing biofilm formation in Campylobacter and suggest that selective pressures encountered in hostile environments have shaped the epidemiology of C. jejuni in Egypt by selecting the transmission of highly adapted isolates, thus promoting the colonization of multiple host species by important disease-causing lineages.
Collapse
Affiliation(s)
- Shaimaa F Mouftah
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Spain
| | - Ahmed Mousa
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Jessica K Calland
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand
| | - Samuel K Sheppard
- The Milner Centre of Evolution, University of Bath, Claverton Down, Bath, UK; Chiang Mai University, Chiang Mai, Thailand; Department of Zoology, University of Oxford, Oxford, UK
| | - Mohamed Elhadidy
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
15
|
Pascoe B, Schiaffino F, Murray S, Méric G, Bayliss SC, Hitchings MD, Mourkas E, Calland JK, Burga R, Yori PP, Jolley KA, Cooper KK, Parker CT, Olortegui MP, Kosek MN, Sheppard SK. Genomic epidemiology of Campylobacter jejuni associated with asymptomatic pediatric infection in the Peruvian Amazon. PLoS Negl Trop Dis 2020; 14:e0008533. [PMID: 32776937 PMCID: PMC7440661 DOI: 10.1371/journal.pntd.0008533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/20/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Campylobacter is the leading bacterial cause of gastroenteritis worldwide and its incidence is especially high in low- and middle-income countries (LMIC). Disease epidemiology in LMICs is different compared to high income countries like the USA or in Europe. Children in LMICs commonly have repeated and chronic infections even in the absence of symptoms, which can lead to deficits in early childhood development. In this study, we sequenced and characterized C. jejuni (n = 62) from a longitudinal cohort study of children under the age of 5 with and without diarrheal symptoms, and contextualized them within a global C. jejuni genome collection. Epidemiological differences in disease presentation were reflected in the genomes, specifically by the absence of some of the most common global disease-causing lineages. As in many other countries, poultry-associated strains were likely a major source of human infection but almost half of local disease cases (15 of 31) were attributable to genotypes that are rare outside of Peru. Asymptomatic infection was not limited to a single (or few) human adapted lineages but resulted from phylogenetically divergent strains suggesting an important role for host factors in the cryptic epidemiology of campylobacteriosis in LMICs.
Collapse
Affiliation(s)
- Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Francesca Schiaffino
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Susan Murray
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sion C. Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jessica K. Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Rosa Burga
- Bacteriology Department, Naval Medical Research Unit-6 (NAMRU-6), Iquitos, Peru
| | - Pablo Peñataro Yori
- The Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- Asociacion Benefica Prisma, Loreto, Peru
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, US Department of Agriculture, Albany, California, United States of America
| | | | - Margaret N. Kosek
- The Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- Asociacion Benefica Prisma, Loreto, Peru
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
16
|
Wieczorek K, Wołkowicz T, Osek J. MLST-based genetic relatedness of Campylobacter jejuni isolated from chickens and humans in Poland. PLoS One 2020; 15:e0226238. [PMID: 31978059 PMCID: PMC6980552 DOI: 10.1371/journal.pone.0226238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/24/2019] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni infection is one of the most frequently reported foodborne bacterial diseases worldwide. The main transmission route of these microorganisms to humans is consumption of contaminated food, especially of chicken origin. The aim of this study was to analyze the genetic relatedness of C. jejuni from chicken sources (feces, carcasses, and meat) and from humans with diarrhea as well as to subtype the isolates to gain better insight into their population structure present in Poland. C. jejuni were genotyped using multilocus sequence typing (MLST) and sequence types (STs) were assigned in the MLST database. Among 602 isolates tested, a total of 121 different STs, including 70 (57.9%) unique to the isolates' origin, and 32 STs that were not present in the MLST database were identified. The most prevalent STs were ST464 and ST257, with 58 (9.6%) and 52 (8.6%) C. jejuni isolates, respectively. Isolates with some STs (464, 6411, 257, 50) were shown to be common in chickens, whereas others (e.g. ST21 and ST572) were more often identified among human C. jejuni. It was shown that of 47 human sequence types, 26 STs (106 isolates), 23 STs (102 isolates), and 29 STs (100 isolates) were also identified in chicken feces, meat, and carcasses, respectively. These results, together with the high and similar proportional similarity indexes (PSI) calculated for C. jejuni isolated from patients and chickens, may suggest that human campylobacteriosis was associated with contaminated chicken meat or meat products or other kinds of food cross-contaminated with campylobacters of chicken origin. The frequency of various sequence types identified in the present study generally reflects of the prevalence of STs in other countries which may suggest that C. jejuni with some STs have a global distribution, while other genotypes may be more restricted to certain countries.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| | - Tomasz Wołkowicz
- Department of Bacteriology and Biocontamination Control, National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
17
|
Gomes CN, Frazão MR, Passaglia J, Duque SS, Medeiros MIC, Falcão JP. Molecular Epidemiology and Resistance Profile of Campylobacter jejuni and Campylobacter coli Strains Isolated from Different Sources in Brazil. Microb Drug Resist 2019; 26:1516-1525. [PMID: 31794692 DOI: 10.1089/mdr.2019.0266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: The objectives of this study were to genotype a total of 48 Campylobacter jejuni and 39 Campylobacter coli strains isolated in Brazil from 1995 to 2016 by multilocus sequence typing (MLST) and to determine their resistance profile. The presence or points of mutation in the related resistance genes was verified. Results: By MLST, C. jejuni strains were typed into 36 STs and C. coli strains were typed into 27 STs. A total of 70.8% of C. jejuni and 35.9% of C. coli were resistant to at least one antimicrobial tested. The tet(O) gene was detected in 43.7% C. jejuni and in 12.8% C. coli. The ermB gene was not detected and one C. jejuni presented the mutation in the 23S rRNA gene. Besides, 58.3% C. jejuni presented the substitution T86I in the quinolone resistance-determining region of gyrA and 15.4% C. coli presented the substitution T38I. The cmeB gene was detected in 97.9% C. jejuni and in 97.4% C. coli. Conclusion: The presence of C. jejuni and C. coli resistant to some antimicrobial agents of clinical use is of public health concern. The presence of STs shared between Brazilian strains and isolates of different countries is of concern since it might suggest a possible spread of these shared types.
Collapse
Affiliation(s)
- Carolina N Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Miliane R Frazão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Passaglia
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sheila S Duque
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto Oswaldo Cruz-IOC, Pavilhão Rocha Lima, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
18
|
Impact of Eimeria tenella Coinfection on Campylobacter jejuni Colonization of the Chicken. Infect Immun 2019; 87:IAI.00772-18. [PMID: 30510107 DOI: 10.1128/iai.00772-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Eimeria tenella can cause the disease coccidiosis in chickens. The direct and often detrimental impact of this parasite on chicken health, welfare, and productivity is well recognized; however, less is known about the secondary effects that infection may have on other gut pathogens. Campylobacter jejuni is the leading cause of human bacterial foodborne disease in many countries and has been demonstrated to exert negative effects on poultry welfare and production in some broiler lines. Previous studies have shown that concurrent Eimeria infection can influence the colonization and replication of bacteria, such as Clostridium perfringens and Salmonella enterica serovar Typhimurium. Through a series of in vivo coinfection experiments, this study evaluated the impact that E. tenella infection had on C. jejuni colonization of chickens, including the influence of variations in parasite dose and sampling time after bacterial challenge. Coinfection with E. tenella resulted in a significant increase in C. jejuni colonization in the cecum in a parasite dose-dependent manner but a significant decrease in C. jejuni colonization in the spleen and liver of chickens. The results were reproducible at 3 and 10 days after bacterial infection. This work highlights that E. tenella not only has a direct impact on the health and well-being of chickens but can have secondary effects on important zoonotic pathogens.
Collapse
|
19
|
An JU, Ho H, Kim J, Kim WH, Kim J, Lee S, Mun SH, Guk JH, Hong S, Cho S. Dairy Cattle, a Potential Reservoir of Human Campylobacteriosis: Epidemiological and Molecular Characterization of Campylobacter jejuni From Cattle Farms. Front Microbiol 2018; 9:3136. [PMID: 30619204 PMCID: PMC6305296 DOI: 10.3389/fmicb.2018.03136] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Campylobacter jejuni is a major foodborne pathogen that is increasingly found worldwide and that is transmitted to humans through meat or dairy products. A detailed understanding of the prevalence and characteristics of C. jejuni in dairy cattle farms, which are likely to become sources of contamination, is imperative and is currently lacking. In this study, a total of 295 dairy cattle farm samples from 15 farms (24 visits) in Korea were collected. C. jejuni prevalence at the farm level was 60% (9/15) and at the animal level was 23.8% (68/266). Using the multivariable generalized estimating equation (GEE) model based on farm-environmental factors, we estimated that a high density of cattle and average environmental temperature (7 days prior to sampling) below 24°C affects the presence and survival of C. jejuni in the farm environment. Cattle isolates, together with C. jejuni from other sources (chicken and human), were genetically characterized based on analysis of 10 virulence and survival genes. A total of 19 virulence profile types were identified, with type 01 carrying eight genes (all except hcp and virB11) being the most prevalent. The prevalence of virB11 and hcp was significantly higher in isolates from cattle than in those from other sources (p < 0.05). Multilocus sequence typing (MLST) of C. jejuni isolates from three different sources mainly clustered in the CC-21 and CC-48. Within the CC-21 and CC-48 clusters, cattle isolates shared an indistinguishable pattern with human isolates according to pulsed-field gel electrophoresis (PFGE) and flaA-restriction fragment length polymorphism (RFLP) typing. This suggests that CC-21 and CC-48 C. jejuni from dairy cattle are genetically related to clinical campylobacteriosis isolates. In conclusion, the farm environment influences the presence and survival of C. jejuni, which may play an important role in cycles of cattle re-infection, and dairy cattle represent potential reservoirs of human campylobacteriosis. Thus, environmental management practices could be implemented on cattle farms to reduce the shedding of C. jejuni from cattle, subsequently reducing the potential risk of the spread of cattle-derived C. jejuni to humans through the food chain.
Collapse
Affiliation(s)
- Jae-Uk An
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Hungwui Ho
- Veterinary Research Institute, Ipoh, Malaysia
| | - Jonghyun Kim
- Division of Bacterial Disease Research, Center for Infectious Diseases Research, Korea National Institute of Health, Centers for Disease Control and Prevention, Cheongju-si, South Korea
| | - Woo-Hyun Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Junhyung Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Soomin Lee
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Hyun Mun
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jae-Ho Guk
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Sahyun Hong
- Division of Bacterial Disease, Center for Laboratory Control of Infectious Diseases, Centers for Disease Control and Prevention, Cheongju-si, South Korea
| | - Seongbeom Cho
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
A Cotransformation Method To Identify a Restriction-Modification Enzyme That Reduces Conjugation Efficiency in Campylobacter jejuni. Appl Environ Microbiol 2018; 84:AEM.02004-18. [PMID: 30242003 DOI: 10.1128/aem.02004-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023] Open
Abstract
Conjugation is an important mechanism for horizontal gene transfer in Campylobacter jejuni, the leading cause of human bacterial gastroenteritis in developed countries. However, to date, the factors that significantly influence conjugation efficiency in Campylobacter spp. are still largely unknown. Given that multiple recombinant loci could independently occur within one recipient cell during natural transformation, the genetic materials from a high-frequency conjugation (HFC) C. jejuni strain may be cotransformed with a selection marker into a low-frequency conjugation (LFC) recipient strain, creating new HFC transformants suitable for the identification of conjugation factors using a comparative genomics approach. To test this, an erythromycin resistance selection marker was created in an HFC C. jejuni strain; subsequently, the DNA of this strain was naturally transformed into NCTC 11168, an LFC C. jejuni strain, leading to the isolation of NCTC 11168-derived HFC transformants. Whole-genome sequencing analysis and subsequent site-directed mutagenesis identified Cj1051c, a putative restriction-modification enzyme (aka CjeI) that could drastically reduce the conjugation efficiency of NCTC 11168 (>5,000-fold). Chromosomal complementation of three diverse HFC C. jejuni strains with CjeI also led to a dramatic reduction in conjugation efficiency (∼1,000-fold). The purified recombinant CjeI could effectively digest the Escherichia coli-derived shuttle vector pRY107. The endonuclease activity of CjeI was abolished upon short heat shock treatment at 50°C, which is consistent with our previous observation that heat shock enhanced conjugation efficiency in C. jejuni Together, in this study, we successfully developed and utilized a unique cotransformation strategy to identify a restriction-modification enzyme that significantly influences conjugation efficiency in C. jejuni IMPORTANCE Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. Campylobacter jejuni, the leading foodborne bacterial organism, displays significant strain diversity due to horizontal gene transfer; however, the molecular components influencing conjugation efficiency in C. jejuni are still largely unknown. In this study, we developed a cotransformation strategy for comparative genomics analysis and successfully identified a restriction-modification enzyme that significantly influences conjugation efficiency in C. jejuni The new cotransformation strategy developed in this study is also expected to be broadly applied in other naturally competent bacteria for functional comparative genomics research.
Collapse
|
21
|
Andreasen RA, Kristensen LE, Ellingsen T, Christensen R, Baraliakos X, Wied J, Aalykke C, Ulstrup T, Schiøttz-Christensen B, Horn HC, Emamifar A, Duerlund B, Fischer L, Hansen IMJ. Clinical characteristics of importance to outcome in patients with axial spondyloarthritis: protocol for a prospective descriptive and exploratory cohort study. BMJ Open 2017; 7:e015536. [PMID: 28698330 PMCID: PMC5734256 DOI: 10.1136/bmjopen-2016-015536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Spondyloarthritis (SpA) is a heterogeneous spectrum of rheumatic diseases with either predominantly axial inflammatory symptoms of the spine and sacroiliac joints or predominantly peripheral arthritis. The two main entities of axial SpA (axSpA) are ankylosing spondylitis or non-radiographic axSpA (nr-axSpA). Tumour necrosis factor-α inhibitors have revolutionised the treatment of patients with axSpA who failed to respond to non-steroidal anti-inflammatory drugs and physical therapy. Chronic pain is common in patients with SpA and may still persist despite the lack of signs of inflammation. This has led researchers to hypothesise that central pain sensitisation may play a role in the generation of chronic pain in SpA. The painDETECT Questionnaire (PDQ) is a screening tool developed to detect neuropathic pain components. The primary objective is to explore the prognostic value of the PDQ regarding treatment response in patients with axSpA 3 months after initiating a biological agent. Secondary aim is to evaluate the impact of extra-articular manifestations, comorbidities and patient-reported outcomes and elucidate if these factors influence treatment response. METHOD AND ANALYSIS We will include 60 participants (≥18 years of age) diagnosed with axSpA independent of main entity, who initiate or switch treatment of a biologic. Data will be collected at baseline and at endpoint following Danish clinical practice (≥3 months) of treatment with biologics. We will explore whether the PDQ and other phenotypical patient characteristics are prognostically important for response to biological therapy according to established response criteria like 50% improvement in the Bath Ankylosing Spondylitis Disease Activity Index (50%) and Ankylosing Spondylitis Disease Activity Score. ETHICS AND DISSEMINATION The study is approved by the Region of Southern Denmark's Ethics committee (S-20160094) and has been designed in cooperation with patient representatives. The study is registered at clinicaltrials.gov (NCT02948608, pre-results). Dissemination will occur through publication(s) in international peer-reviewed journal(s).
Collapse
Affiliation(s)
- Rikke Asmussen Andreasen
- Department of Medicine, Section of Rheumatology, Odense University Hospital, Svendborg, Denmark
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Lars Erik Kristensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Torkell Ellingsen
- Patient Data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Robin Christensen
- Musculoskeletal Statistics Unit, The Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | | | - Jimmi Wied
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark
| | - Claus Aalykke
- Department of Medicine, Section of Gastroenterology, Odense University Hospital, Svendborg, Denmark
| | - Thomas Ulstrup
- Department of Medicine, Section of Gastroenterology, Odense University Hospital, Svendborg, Denmark
| | - Berit Schiøttz-Christensen
- Department of Spine Centre of Southern Denmark, Hospital Lillebaelt, Institute of Regional Health Research, University of Southern Denmark, Middelfart, Denmark
| | | | - Amir Emamifar
- Department of Medicine, Section of Rheumatology, Odense University Hospital, Svendborg, Denmark
| | - Bent Duerlund
- Department of Medicine, Section of Rheumatology, Odense University Hospital, Svendborg, Denmark
| | - Lars Fischer
- Department of Medicine, Section of Rheumatology, Odense University Hospital, Svendborg, Denmark
| | - Inger Marie Jensen Hansen
- Department of Medicine, Section of Rheumatology, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
22
|
Oh E, McMullen LM, Chui L, Jeon B. Differential Survival of Hyper-Aerotolerant Campylobacter jejuni under Different Gas Conditions. Front Microbiol 2017; 8:954. [PMID: 28611753 PMCID: PMC5447730 DOI: 10.3389/fmicb.2017.00954] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/12/2017] [Indexed: 01/14/2023] Open
Abstract
Campylobacter jejuni accounts for a significant number of foodborne illnesses around the world. C. jejuni is microaerophilic and typically does not survive efficiently in oxygen-rich conditions. We recently reported that hyper-aerotolerant (HAT) C. jejuni are highly prevalent in retail poultry meat. To assess the capabilities of HAT C. jejuni in foodborne transmission and infection, in this study, we investigated the prevalence of virulence genes in HAT C. jejuni and the survival in poultry meat in atmosphere at a refrigeration temperature. When we examined the prevalence of eight virulence genes in 70 C. jejuni strains from raw poultry meat, interestingly, the frequencies of detecting virulence genes were significantly higher in HAT C. jejuni strains than aerosenstive C. jejuni strains. This suggests that HAT C. jejuni would potentially be more pathogenic than aerosensitive C. jejuni. Under aerobic conditions, aerosensitive C. jejuni survived at 4°C in raw poultry meat for 3 days, whereas HAT C. jejuni survived in poultry meat for a substantially extended time; there was a five-log CFU reduction over 2 weeks. In addition, we measured the effect of other gas conditions, including N2 and CO2, on the viability of HAT C. jejuni in comparison with aerosensitive and aerotolerant strains. N2 marginally affected the viability of C. jejuni. However, CO2 significantly reduced the viability of C. jejuni both in culture media and poultry meat. Based on the results, modified atmosphere packaging using CO2 may help us to control poultry contamination with HAT C. jejuni.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta, EdmontonAB, Canada
| | - Lynn M McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta, EdmontonAB, Canada.,Provincial Laboratory for Public Health, EdmontonAB, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta, EdmontonAB, Canada
| |
Collapse
|
23
|
Wieczorek K, Denis E, Lachtara B, Osek J. Distribution of Campylobacter jejuni multilocus sequence types isolated from chickens in Poland. Poult Sci 2017; 96:703-709. [DOI: 10.3382/ps/pew343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022] Open
|
24
|
Genomic Comparison of Campylobacter spp. and Their Potential for Zoonotic Transmission between Birds, Primates, and Livestock. Appl Environ Microbiol 2016; 82:7165-7175. [PMID: 27736787 DOI: 10.1128/aem.01746-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/30/2016] [Indexed: 12/30/2022] Open
Abstract
Campylobacter is the leading cause of human gastroenteritis worldwide. Wild birds, including American crows, are abundant in urban, suburban, and agricultural settings and are likely zoonotic vectors of Campylobacter Their proximity to humans and livestock increases the potential spreading of Campylobacter via crows between the environment, livestock, and humans. However, no studies have definitively demonstrated that crows are a vector for pathogenic Campylobacter We used genomics to evaluate the zoonotic and pathogenic potential of Campylobacter from crows to other animals with 184 isolates obtained from crows, chickens, cows, sheep, goats, humans, and nonhuman primates. Whole-genome analysis uncovered two distinct clades of Campylobacter jejuni genotypes; the first contained genotypes found only in crows, while a second genotype contained "generalist" genomes that were isolated from multiple host species, including isolates implicated in human disease, primate gastroenteritis, and livestock abortion. Two major β-lactamase genes were observed frequently in these genomes (oxa-184, 55%, and oxa-61, 29%), where oxa-184 was associated only with crows and oxa-61 was associated with generalists. Mutations in gyrA, indicative of fluoroquinolone resistance, were observed in 14% of the isolates. Tetracycline resistance (tetO) was present in 22% of the isolates, yet it occurred in 91% of the abortion isolates. Virulence genes were distributed throughout the genomes; however, cdtC alleles recapitulated the crow-only and generalist clades. A specific cdtC allele was associated with abortion in livestock and was concomitant with tetO These findings indicate that crows harboring a generalist C. jejuni genotype may act as a vector for the zoonotic transmission of Campylobacter IMPORTANCE: This study examined the link between public health and the genomic variation of Campylobacter in relation to disease in humans, primates, and livestock. Use of large-scale whole-genome sequencing enabled population-level assessment to find new genes that are linked to livestock disease. With 184 Campylobacter genomes, we assessed virulence traits, antibiotic resistance susceptibility, and the potential for zoonotic transfer to observe that there is a "generalist" genotype that may move between host species.
Collapse
|
25
|
Insights into Campylobacter jejuni colonization and enteritis using a novel infant rabbit model. Sci Rep 2016; 6:28737. [PMID: 27357336 PMCID: PMC4928045 DOI: 10.1038/srep28737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/07/2016] [Indexed: 01/26/2023] Open
Abstract
A lack of relevant disease models for Campylobacter jejuni has long been an obstacle to research into this common enteric pathogen. Here we used an infant rabbit to study C. jejuni infection, which enables us to define several previously unknown but key features of the organism. C. jejuni is capable of systemic invasion in the rabbit, and developed a diarrhea symptom that mimicked that observed in many human campylobacteriosis. The large intestine was the most consistently colonized site and produced intestinal inflammation, where specific cytokines were induced. Genes preferentially expressed during C. jejuni infection were screened, and acs, cj1385, cj0259 seem to be responsible for C. jejuni invasion. Our results demonstrates that the infant rabbit can be used as an alternative experimental model for the study of diarrheagenic Campylobacter species and will be useful in exploring the pathogenesis of other related pathogens.
Collapse
|
26
|
Harvala H, Rosendal T, Lahti E, Engvall EO, Brytting M, Wallensten A, Lindberg A. Epidemiology of Campylobacter jejuni infections in Sweden, November 2011-October 2012: is the severity of infection associated with C. jejuni sequence type? Infect Ecol Epidemiol 2016; 6:31079. [PMID: 27059819 PMCID: PMC4826459 DOI: 10.3402/iee.v6.31079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Campylobacter jejuni is among the most frequent causes of bacterial gastroenteritis in Europe. Over 8,000 C. jejuni multilocus sequence typing sequence types (STs) have been described; ST-21 and ST-45 have been identified as the most frequent types in all human studies so far. In contrast to other STs, ST-22 has been associated with the Guillain-Barré syndrome and ST-677 was recently linked to severe systemic infections in Finland. We investigated risk factors associated with hospitalisation in individuals with C. jejuni infections acquired in Sweden. METHODS A total of 1,075 individuals with domestically acquired C. jejuni infection diagnosed between November 2011 and October 2012 in Sweden were included in this retrospective cohort study. Typing data for the isolates as well as clinical data including hospitalisation dates and diagnosis codes for individuals with C. jejuni infection were obtained. Factors associated with hospitalisation and length of hospitalisation were investigated by multivariable analysis. RESULTS A total of 289 individuals were hospitalised due to C. jejuni infection (26.8%); those with co-morbidities were over 14 times more likely to become hospitalised than those without (odds ratio [OR]: 14.39, 95% confidence interval [CI]: 6.84-30.26). Those with underlying co-morbidities were also hospitalised longer than those without (4.22 days vs. 2.86 days), although this was not statistically significant. C. jejuni ST-257 (OR: 2.38; CI: 1.08-5.23), but not ST-22 or ST-677, was significantly associated with hospitalisation. CONCLUSION ST-677 was not associated with increased hospitalisation or a longer hospital stay in our study whilst ST-257 was. However, individuals with C. jejuni infections were generally more frequently hospitalised than previously demonstrated; this requires further consideration including possible targeted interventions.
Collapse
Affiliation(s)
- Heli Harvala
- Public Health Agency of Sweden, Solna, Sweden
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden; ;
| | | | - Elina Lahti
- National Veterinary Institute of Sweden, Uppsala, Sweden
| | - Eva O Engvall
- National Veterinary Institute of Sweden, Uppsala, Sweden
| | | | - Anders Wallensten
- Public Health Agency of Sweden, Solna, Sweden
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ann Lindberg
- National Veterinary Institute of Sweden, Uppsala, Sweden
| |
Collapse
|
27
|
Oh E, McMullen L, Jeon B. High Prevalence of Hyper-Aerotolerant Campylobacter jejuni in Retail Poultry with Potential Implication in Human Infection. Front Microbiol 2015; 6:1263. [PMID: 26617597 PMCID: PMC4641907 DOI: 10.3389/fmicb.2015.01263] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses around the world. Since C. jejuni is microaerophilic and sensitive to oxygen, aerotolerance is important in the transmission of C. jejuni to humans via foods under aerobic conditions. In this study, 70 C. jejuni strains were isolated from retail raw chicken meats and were subject to multilocus sequence typing (MLST) analysis. In the aerotolerance testing by aerobic shaking at 200 rpm, 50 (71.4%) isolates survived after 12 h (i.e., aerotolerant), whereas 20 (28.6%) isolates did not (i.e., aerosensitive). Interestingly, further aerobic cultivation showed that 25 (35.7%) isolates still survived even after 24 h of vigorous aerobic shaking (i.e., hyper-aerotolerant). Compared to aerosensitive strains, the hyper-aerotolerant strains exhibited increased resistance to oxidative stress, both peroxide and superoxide. A mutation of ahpC in hyper-aerotolerant strains significantly impaired aerotolerance, indicating oxidative stress defense plays an important role in hyper-aerotolerance. The aerotolerant and hyper-aerotolerant strains were primarily classified into MLST clonal complexes (CCs)-21 and -45, which are known to be the major CCs implicated in human gastroenteritis. Compared to the aerosensitive strains, CC-21 was more dominant than CC-45 in aerotolerant and hyper-aerotolerant strains. The findings in this study revealed that hyper-aerotolerant C. jejuni is highly prevalent in raw chicken meats. The enhanced aerotolerance in C. jejuni would impact human infection by increasing possibilities of the foodborne transmission of C. jejuni under aerobic conditions.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta Edmonton, AB, Canada
| | - Lynn McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
28
|
Biomarkers of Guillain-Barré Syndrome: Some Recent Progress, More Still to Be Explored. Mediators Inflamm 2015; 2015:564098. [PMID: 26451079 PMCID: PMC4588351 DOI: 10.1155/2015/564098] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Guillain-Barré syndrome (GBS), the axonal subtype of which is mainly triggered by C. jejuni with ganglioside-mimicking lipooligosaccharides (LOS), is an immune-mediated disorder in the peripheral nervous system (PNS) accompanied by the disruption of the blood-nerve barrier (BNB) and the blood-cerebrospinal fluid barrier (B-CSF-B). Biomarkers of GBS have been extensively explored and some of them are proved to assist in the clinical diagnosis and in monitoring disease progression as well as in assessing the efficacy of immunotherapy. Herein, we systemically review the literature on biomarkers of GBS, including infection-/immune-/BNB, B-CSF-B, and PNS damage-associated biomarkers, aiming at providing an overview of GBS biomarkers and guiding further investigations. Furthermore, we point out further directions for studies on GBS biomarkers.
Collapse
|
29
|
Kwan PSL, Xavier C, Santovenia M, Pruckler J, Stroika S, Joyce K, Gardner T, Fields PI, McLaughlin J, Tauxe RV, Fitzgerald C. Multilocus sequence typing confirms wild birds as the source of a Campylobacter outbreak associated with the consumption of raw peas. Appl Environ Microbiol 2014; 80:4540-6. [PMID: 24837383 PMCID: PMC4148789 DOI: 10.1128/aem.00537-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/07/2014] [Indexed: 11/20/2022] Open
Abstract
From August to September 2008, the Centers for Disease Control and Prevention (CDC) assisted the Alaska Division of Public Health with an outbreak investigation of campylobacteriosis occurring among the residents of Southcentral Alaska. During the investigation, pulsed-field gel electrophoresis (PFGE) of Campylobacter jejuni isolates from human, raw pea, and wild bird fecal samples confirmed the epidemiologic link between illness and the consumption of raw peas contaminated by sandhill cranes for 15 of 43 epidemiologically linked human isolates. However, an association between the remaining epidemiologically linked human infections and the pea and wild bird isolates was not established. To better understand the molecular epidemiology of the outbreak, C. jejuni isolates (n=130; 59 from humans, 40 from peas, and 31 from wild birds) were further characterized by multilocus sequence typing (MLST). Here we present the molecular evidence to demonstrate the association of many more human C.jejuni infections associated with the outbreak with raw peas and wild bird feces. Among all sequence types (STs) identified, 26 of 39 (67%) were novel and exclusive to the outbreak. Five clusters of overlapping STs (n=32 isolates; 17 from humans, 2 from peas, and 13 from wild birds) were identified. In particular, cluster E (n=7 isolates; ST-5049) consisted of isolates from humans,peas, and wild birds. Novel STs clustered closely with isolates typically associated with wild birds and the environment but distinct from lineages commonly seen in human infections. Novel STs and alleles recovered from human outbreak isolates allowed additional infections caused by these rare genotypes to be attributed to the contaminated raw peas.
Collapse
Affiliation(s)
- Patrick S. L. Kwan
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Catherine Xavier
- Alaska State Public Health Laboratories, Division of Public Health, Alaska Department of Health and Social Services, Anchorage, Alaska, USA
| | - Monica Santovenia
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Janet Pruckler
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Steven Stroika
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kevin Joyce
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tracie Gardner
- Epidemic Intelligence Service Assigned to the State of Alaska Section of Epidemiology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patricia I. Fields
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joe McLaughlin
- Alaska State Public Health Laboratories, Division of Public Health, Alaska Department of Health and Social Services, Anchorage, Alaska, USA
| | - Robert V. Tauxe
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Collette Fitzgerald
- Enteric Diseases Laboratory Branch, Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Feodoroff B, de Haan CP, Ellström P, Sarna S, Hänninen ML, Rautelin H. Clonal distribution and virulence of Campylobacter jejuni isolates in blood. Emerg Infect Dis 2014; 19:1653-5. [PMID: 24047729 PMCID: PMC3810732 DOI: 10.3201/eid1910.121537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni bacteria are highly diverse enteropathogens. Seventy-three C. jejuni isolates from blood collected in Finland were analyzed by multilocus sequence typing and serum resistance. Approximately half of the isolates belonged to the otherwise uncommon sequence type 677 clonal complex. Isolates of this clonal complex were more resistant than other isolates to human serum.
Collapse
|
31
|
Li Z, Lou H, Ojcius DM, Sun A, Sun D, Zhao J, Lin X, Yan J. Methyl-accepting chemotaxis proteins 3 and 4 are responsible for Campylobacter jejuni chemotaxis and jejuna colonization in mice in response to sodium deoxycholate. J Med Microbiol 2014; 63:343-354. [PMID: 24403598 DOI: 10.1099/jmm.0.068023-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methyl-accepting chemotaxis proteins (MCPs), also termed transducer-like proteins (Tlps), serve as sensors in bacterial chemotactic signalling, and detect attractants and promote bacterial movement towards suitable sites for colonization. Campylobacter jejuni is a leading cause of human enteritis, but the mechanisms responsible for bacterial chemotaxis and early colonization in the jejunum of hosts are poorly understood. In the present study, we identified several types of bile and sodium deoxycholate (SDC) acting as chemotactic attractants of C. jejuni strain NCTC 11168-O in
vitro, in which SDC was the most efficient chemoattractant. In mice with bile duct ligation, the wild-type strain displayed a markedly attenuated ability for colonization. Blockage of Tlp3 or Tlp4 protein with antibody or disruption of the tlp3 or tlp4 gene (Δtlp3 or Δtlp4) caused a significant inhibition of SDC-induced chemotaxis and attenuation for colonization on jejunal mucosa in mice of the bacterium. Disruption of both the genes (Δtlp3/Δtlp4) resulted in the absence of bacterial chemotaxis and colonization, while the tlp-gene-complemented mutants (CΔtlp3 and CΔtlp4) reacquired these abilities. The results indicate that SDC is an effective chemoattractant for C. jejuni, and Tlp3 and Tlp4 are the SDC-specific sensor proteins responsible for the bacterial chemoattraction.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Acute Infectious Diseases Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Nanjing 210009, PR China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Hongqiang Lou
- Medical School of Jinhua Occupational Technique College, Jinhua, Zhejiang 321007, PR China
| | - David M. Ojcius
- Molecular Cell Biology and Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Aihua Sun
- Faculty of Basic Medicine, Zhejiang Medical College, Hangzhou, Zhejiang 310053, PR China
| | - Dexter Sun
- Department of Neurology and Neuroscience, New York Presbyterian Hospital and Hospital For Special Surgery, Cornell University Weill Medical College, NY 10021, USA
| | - Jinfang Zhao
- Depatment of Clinical Laboratory, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, PR China
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| |
Collapse
|
32
|
Molecular Typing of Campylobacter jejuni and Campylobacter coli Isolated from Various Retail Meats by MLST and PFGE. Foods 2014; 3:82-93. [PMID: 28234305 PMCID: PMC5302303 DOI: 10.3390/foods3010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 11/17/2022] Open
Abstract
Campylobacter species are one of the leading causes of foodborne disease in the United States. Campylobacter jejuni and Campylobacter coli are the two main species of concern to human health and cause approximately 95% of human infections. Molecular typing methods, such as pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) are often used to source track foodborne bacterial pathogens. The aim of the present study was to compare PFGE and MLST in typing strains of C. jejuni and C. coli that were isolated from different Oklahoma retail meat sources. A total of 47 Campylobacter isolates (28 C. jejuni and 19 C. coli) isolated from various retail meat samples (beef, beef livers, pork, chicken, turkey, chicken livers, and chicken gizzards) were subjected to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). PFGE was able to group the 47 Campylobacter isolates into two major clusters (one for C. jejuni and one for C. coli) but failed to differentiate the isolates according to their source. MLST revealed 21 different sequence types (STs) that belonged to eight different clonal complexes. Twelve of the screened Campylobacter isolates (8 C. jejuni and 4 C. coli) did not show any defined STs. All the defined STs of C. coli isolates belonged to ST-828 complex. The majority of C. jejuni isolates belonged to ST-353, ST-607, ST-52, ST-61, and ST-21 complexes. It is worthy to mention that, while the majority of Campylobacter isolates in this study showed STs that are commonly associated with human infections along with other sources, most of the STs from chicken livers were solely reported in human cases. In conclusion, retail meat Campylobacter isolates tested in this study particularly those from chicken livers showed relatedness to STs commonly associated with humans. Molecular typing, particularly MLST, proved to be a helpful tool in suggesting this relatedness to Campylobacter human isolates.
Collapse
|
33
|
PREVALENCE OF THREE CAMPYLOBACTER SPECIES, C. JEJUNI, C. COLI, AND C. LARI, USING MULTILOCUS SEQUENCE TYPING IN WILD BIRDS OF THE MID-ATLANTIC REGION, USA. J Wildl Dis 2014; 50:31-41. [DOI: 10.7589/2013-06-136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Louwen R, Hays JP. Is there an unrecognised role for Campylobacter infections in (chronic) inflammatory diseases? World J Clin Infect Dis 2013; 3:58-69. [DOI: 10.5495/wjcid.v3.i4.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/30/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Campylobacter species are one of the major causes of global bacterial-related diarrheal disease worldwide. The disease is most frequently associated with the ingestion of contaminated meat, raw milk, pets, contaminated water, and the organism may be frequently cultured from the faeces of chicken and other domesticated farm animals. Of the 17 established Campylobacter species, the most important pathogens for humans are Campylobacter jejuni (C. jejuni), Campylobacter coli (C. coli) and Campylobacter fetus (C. fetus), which are all associated with diarrheal disease. Further, C. jejuni and C. coli are also associated with the neuroparalytic diseases Guillain-Barré syndrome and Miller Fischer syndrome, respectively, whereas C. fetus is linked with psoriatic arthritis. The discovery of both “molecular mimicry” and translocation-related virulence in the pathogenesis of C. jejuni-induced disease, indicates that Campylobacter-related gastrointestinal infections may not only generate localized, acute intestinal infection in the human host, but may also be involved in the establishment of chronic inflammatory diseases. Indeed, pathogenicity studies on several Campylobacter species now suggest that molecular mimicry and translocation-related virulence is not only related to C. jejuni, but may play a role in human disease caused by other Campylobacter spp. In this review, the authors provide a review based on the current literature describing the potential links between Campylobacter spp. and (chronic) inflammatory diseases, and provide their opinions on the likely role of Campylobacter in such diseases.
Collapse
|
35
|
Taboada EN, Clark CG, Sproston EL, Carrillo CD. Current methods for molecular typing of Campylobacter species. J Microbiol Methods 2013; 95:24-31. [PMID: 23871858 DOI: 10.1016/j.mimet.2013.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/11/2022]
Abstract
Campylobacter remains one of the most common bacterial causes of gastroenteritis worldwide. Tracking sources of this organism is challenging due to the large numbers of human cases, and the prevalence of this organism throughout the environment due to growth in a wide range of animal species. Many molecular subtyping methods have been developed to characterize Campylobacter species, but only a few are commonly used in molecular epidemiology studies. This review examines the applicability of these methods, as well as the role that emerging whole genome sequencing technologies will play in tracking sources of Campylobacter spp. infection.
Collapse
Affiliation(s)
- Eduardo N Taboada
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, PO Box 640, Township Rd. 9-1, Lethbridge, AB T1J 3Z4, Canada.
| | | | | | | |
Collapse
|
36
|
Colles FM, Maiden MCJ. Campylobacter sequence typing databases: applications and future prospects. Microbiology (Reading) 2012; 158:2695-2709. [DOI: 10.1099/mic.0.062000-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- F. M. Colles
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - M. C. J. Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
37
|
Shin E, Oh Y, Kim M, Jung J, Lee Y. Antimicrobial resistance patterns and corresponding multilocus sequence types of the Campylobacter jejuni isolates from human diarrheal samples. Microb Drug Resist 2012; 19:110-6. [PMID: 23098555 DOI: 10.1089/mdr.2012.0099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A total of 121 Campylobacter isolates from 4,788 humans with gastroenteritis were identified and characterized by biochemical detection methods, polymerase chain reaction, and multilocus sequence typing (MLST). These samples were obtained during a 3-year period, from January 2007 to December 2009, using the National Notifiable Diseases Surveillance System at the Research Institute of Public Health and Environment in Seoul Metropolitan, Korea. Antimicrobial susceptibilities of the bacterium were also determined with the agar dilution method. All 121 isolates were identified as Campylobacter jejuni, with all (100%) of them having two virulence genes (ceuE and cadF) and a toxin gene (cdtB). Twenty-three different sequence types (STs), including 9 new STs, were determined by MLST. The most prevalent ST and clonal complex (CC) observed in this study were ST-45 (28.9%) and ST-45 CC (53.7%), respectively. Percentages of antimicrobial-resistant isolates were 1.9% for ampicillin, 0.8% for chloramphenicol, 24% for ciprofloxacin, 46.3% for enrofloxacin, 0.8% for erythromycin, 6.6% for gentamicin, and 46.3% for tetracycline. This study demonstrated that the majority of the Campylobacter isolates obtained from human samples in Korea were C. jejuni with ST-45 CC, which has been detected mainly in broilers worldwide, and all strains with new STs were uniformly resistant to enrofloxacin and tetracycline. This study indicates that broilers may be a breeding ground for bacteria as well as an important potential source of human campylobacteriosis.
Collapse
Affiliation(s)
- Eunju Shin
- Culture Collection of Antimicrobial Resistant Microbes, Department of Biology, Seoul Women's University, Seoul, Korea
| | | | | | | | | |
Collapse
|
38
|
Revez J, Rossi M, Ellström P, de Haan C, Rautelin H, Hänninen ML. Finnish Campylobacter jejuni strains of multilocus sequence type ST-22 complex have two lineages with different characteristics. PLoS One 2011; 6:e26880. [PMID: 22039552 PMCID: PMC3200363 DOI: 10.1371/journal.pone.0026880] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the major cause of human bacterial gastroenteritis worldwide, and in a minority of cases, post-infectious complications may occur. ST-22 complex (usually Penner serotype 19) strains have been overrepresented among patients with postinfectious complications of campylobacteriosis. We here present a characterization of a collection of 27 Finnish C. jejuni strains of ST-22 complex, from humans (22 strains) and animal sources (five strains), with the aim of contributing to our knowledge of the pathogenesis of C. jejuni infections. METHODOLOGY/PRINCIPAL FINDINGS All strains were analyzed by pulsed-field gel electrophoresis (PFGE) genotyping, lipo-oligosaccharide (LOS) locus class, Y-glutamyl transpeptidase (GGT) activity, in vitro biofilm formation ability, invasion and adhesion in HeLa cells and induction of IL-8 production. ST-22 complex contained five STs (ST-22; ST-1947; ST-1966; ST-3892; ST-3996) which were homogeneous in having sialylated LOS class A(1) but on the other hand were distinguished into two major lineages according to the major STs (ST-22 and ST-1947) by different PFGE genotypes and certain other characteristics. All ST-22 strains had similar SmaI PFGE profiles, were GGT positive, and formed biofilms, except one strain, while ST-1947 strains were all GGT negative, did not form biofilm, had significantly higher motility than ST-22 (p<0.05) and had their SmaI PFGE profile. Invasion and adhesion as well as induction of IL-8 production on HeLa cells were strain-dependent characteristics. CONCLUSIONS/SIGNIFICANCE ST-22 complex strains, reveal potential for molecular mimicry in host interactions upon infection as they all express sialylated LOS class A(1). The two major STs, ST-22 and ST-1947 formed two homogeneous lineages, which differed from each other both phenotypically and genetically, suggesting that the strains may have evolved separately, perhaps by interacting with different spectra of hosts. Further studies are needed in order to understand if these two lineages are associated with different disease outcomes.
Collapse
Affiliation(s)
- Joana Revez
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
39
|
Mortensen NP, Schiellerup P, Boisen N, Klein BM, Locht H, Abuoun M, Newell D, Krogfelt KA. The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis: toxin detection, antibody production, and clinical outcome. APMIS 2011; 119:626-34. [PMID: 21851421 DOI: 10.1111/j.1600-0463.2011.02781.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The role of Campylobacter jejuni cytolethal distending toxin (CDT) on clinical outcome after gastroenteritis was investigated. Clinical data, blood serum samples, and Campylobacter spp. isolated, from each of 30 patients were collected over a period of 6 months. The CDT encoding genes, cdtABC, characterized by PCR, revealed that all but one of the C. jejuni strains had the wild-type sequence. Sequencing of cdtABC from this strain showed two major deletions. From all of the strains, CDT titers were determined, and toxin neutralizing antibodies were documented using an in vitro assay. Three of the thirty clinical isolates, including the one with the mutant cdtABC coding genes, did not have a detectable CDT activity. Analyzing the relationship between CDT titer, serum neutralization of CDT, and the clinical outcome showed that campylobacteriosis caused by CDT-negative strains was clinically indistinguishable from that of patients infected with an isolate that produced high levels of CDT. These results suggest that CDT does not solely determine severity of infection and clinical outcome.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Department of Microbial Research and Surveillance, Statens Serum Institut, Denmark
| | - Peter Schiellerup
- Department of Microbial Research and Surveillance, Statens Serum Institut, Denmark
| | - Nadia Boisen
- Department of Microbial Research and Surveillance, Statens Serum Institut, Denmark
| | | | - Henning Locht
- Department of Autoimmunology and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Manal Abuoun
- Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - Diane Newell
- Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey, UK
| | - Karen A Krogfelt
- Department of Microbial Research and Surveillance, Statens Serum Institut, Denmark
| |
Collapse
|
40
|
Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011; 69:240-7. [PMID: 21387369 DOI: 10.1002/ana.22344] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian gastrointestinal track harbors a highly heterogeneous population of microbial organisms that are essential for the complete development of the immune system. The gut microbes or "microbiota," coupled with host genetics, determine the development of both local microbial populations and the immune system to create a complex balance recently termed the "microbiome." Alterations of the gut microbiome may lead to dysregulation of immune responses both in the gut and in distal effector immune sites such as the central nervous system (CNS). Recent findings in experimental autoimmune encephalomyelitis, an animal model of human multiple sclerosis, suggest that altering certain bacterial populations present in the gut can lead to a proinflammatory condition that may result in the development of autoimmune diseases, in particular human multiple sclerosis. In contrast, other commensal bacteria and their antigenic products, when presented in the correct context, can protect against inflammation within the CNS.
Collapse
|
41
|
Senior NJ, Bagnall MC, Champion OL, Reynolds SE, La Ragione RM, Woodward MJ, Salguero FJ, Titball RW. Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol 2011; 60:661-669. [PMID: 21233296 DOI: 10.1099/jmm.0.026658-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Larvae of Galleria mellonella (Greater Wax Moth) have been shown to be susceptible to Campylobacter jejuni infection and our study characterizes this infection model. Following infection with C. jejuni human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut. Bacteria were found in the extracellular and cell-associated fraction in the haemocoel, and it was shown that C. jejuni can survive in insect cells. Finally, we have used the model to screen a further 67 C. jejuni isolates belonging to different MLST types. Isolates belonging to ST257 were the most virulent in the Galleria model, whereas those belonging to ST21 were the least virulent.
Collapse
Affiliation(s)
- Nicola J Senior
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Mary C Bagnall
- Veterinary Laboratories Agency, Woodham Lane, Addlestone, UK
| | - Olivia L Champion
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Stuart E Reynolds
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Roberto M La Ragione
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Veterinary Laboratories Agency, Woodham Lane, Addlestone, UK
| | | | | | - Richard W Titball
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| |
Collapse
|
42
|
Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595. [PMID: 21143983 PMCID: PMC3004885 DOI: 10.1186/1471-2105-11-595] [Citation(s) in RCA: 1768] [Impact Index Per Article: 117.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023] Open
Abstract
Background The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms. These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner. Results The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens. The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences. These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses. Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches. LIMS functionality of the software enables linkage to and organisation of laboratory samples. The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database. Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus. The BIGSDB source code and documentation are available at http://pubmlst.org/software/database/bigsdb/. Conclusions Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies. BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Collapse
|
43
|
Oporto B, Juste RA, López-Portolés JA, Hurtado A. Genetic Diversity among Campylobacter jejuni Isolates from Healthy Livestock and Their Links to Human Isolates in Spain. Zoonoses Public Health 2010; 58:365-75. [DOI: 10.1111/j.1863-2378.2010.01373.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|