1
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Sajonia IR, Olivieri JJ, Calhan OY, Deppmann CD, Campbell JN, Podyma B, Güler AD. Leptin receptor neurons in the dorsomedial hypothalamus input to the circadian feeding network. SCIENCE ADVANCES 2023; 9:eadh9570. [PMID: 37624889 PMCID: PMC10456850 DOI: 10.1126/sciadv.adh9570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
Salient cues, such as the rising sun or availability of food, entrain biological clocks for behavioral adaptation. The mechanisms underlying entrainment to food availability remain elusive. Using single-nucleus RNA sequencing during scheduled feeding, we identified a dorsomedial hypothalamus leptin receptor-expressing (DMHLepR) neuron population that up-regulates circadian entrainment genes and exhibits calcium activity before an anticipated meal. Exogenous leptin, silencing, or chemogenetic stimulation of DMHLepR neurons disrupts the development of molecular and behavioral food entrainment. Repetitive DMHLepR neuron activation leads to the partitioning of a secondary bout of circadian locomotor activity that is in phase with the stimulation and dependent on an intact suprachiasmatic nucleus (SCN). Last, we found a DMHLepR neuron subpopulation that projects to the SCN with the capacity to influence the phase of the circadian clock. This direct DMHLepR-SCN connection is well situated to integrate the metabolic and circadian systems, facilitating mealtime anticipation.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Elizabeth Godschall
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Charles D. Brennan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sydney P. Williams
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Taha Buğra Güngül
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Roberta Onoharigho
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Aleyna Buyukaksakal
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ricardo Salinas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Isabelle R. Sajonia
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Joey J. Olivieri
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - O. Yipkin Calhan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
2
|
Gangitano E, Baxter M, Voronkov M, Lenzi A, Gnessi L, Ray D. The interplay between macronutrients and sleep: focus on circadian and homeostatic processes. Front Nutr 2023; 10:1166699. [PMID: 37680898 PMCID: PMC10482045 DOI: 10.3389/fnut.2023.1166699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
Sleep disturbances are an emerging risk factor for metabolic diseases, for which the burden is particularly worrying worldwide. The importance of sleep for metabolic health is being increasingly recognized, and not only the amount of sleep plays an important role, but also its quality. In this review, we studied the evidence in the literature on macronutrients and their influence on sleep, focusing on the mechanisms that may lay behind this interaction. In particular, we focused on the effects of macronutrients on circadian and homeostatic processes of sleep in preclinical models, and reviewed the evidence of clinical studies in humans. Given the importance of sleep for health, and the role of circadian biology in healthy sleep, it is important to understand how macronutrients regulate circadian clocks and sleep homeostasis.
Collapse
Affiliation(s)
- Elena Gangitano
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Matthew Baxter
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Maria Voronkov
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - David Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
3
|
Tang Q, Godschall E, Brennan CD, Zhang Q, Abraham-Fan RJ, Williams SP, Güngül TB, Onoharigho R, Buyukaksakal A, Salinas R, Olivieri JJ, Deppmann CD, Campbell JN, Podyma B, Güler AD. A leptin-responsive hypothalamic circuit inputs to the circadian feeding network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529901. [PMID: 36865258 PMCID: PMC9980144 DOI: 10.1101/2023.02.24.529901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Salient cues, such as the rising sun or the availability of food, play a crucial role in entraining biological clocks, allowing for effective behavioral adaptation and ultimately, survival. While the light-dependent entrainment of the central circadian pacemaker (suprachiasmatic nucleus, SCN) is relatively well defined, the molecular and neural mechanisms underlying entrainment associated with food availability remains elusive. Using single nucleus RNA sequencing during scheduled feeding (SF), we identified a leptin receptor (LepR) expressing neuron population in the dorsomedial hypothalamus (DMH) that upregulates circadian entrainment genes and exhibits rhythmic calcium activity prior to an anticipated meal. We found that disrupting DMHLepR neuron activity had a profound impact on both molecular and behavioral food entrainment. Specifically, silencing DMHLepR neurons, mis-timed exogenous leptin administration, or mis-timed chemogenetic stimulation of these neurons all interfered with the development of food entrainment. In a state of energy abundance, repetitive activation of DMHLepR neurons led to the partitioning of a secondary bout of circadian locomotor activity that was in phase with the stimulation and dependent on an intact SCN. Lastly, we discovered that a subpopulation of DMHLepR neurons project to the SCN with the capacity to influence the phase of the circadian clock. This leptin regulated circuit serves as a point of integration between the metabolic and circadian systems, facilitating the anticipation of meal times.
Collapse
Affiliation(s)
- Qijun Tang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Elizabeth Godschall
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Charles D. Brennan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Qi Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sydney P. Williams
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Taha Buğra Güngül
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Roberta Onoharigho
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Aleyna Buyukaksakal
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Ricardo Salinas
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Joey J. Olivieri
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Christopher D. Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22904, USA
- Department Biomedical Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - John N. Campbell
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Brandon Podyma
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Ali D. Güler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
- Program in Fundamental Neuroscience, Charlottesville, VA 22904, USA
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Wada T, Yamamoto Y, Takasugi Y, Ishii H, Uchiyama T, Saitoh K, Suzuki M, Uchiyama M, Yoshitane H, Fukada Y, Shimba S. Adiponectin regulates the circadian rhythm of glucose and lipid metabolism. J Endocrinol 2022; 254:121-133. [PMID: 35662074 PMCID: PMC9354065 DOI: 10.1530/joe-22-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Adiponectin is a cytokine secreted from adipocytes and regulates metabolism. Although serum adiponectin levels show diurnal variations, it is not clear if the effects of adiponectin are time-dependent. Therefore, this study conducted locomotor activity analyses and various metabolic studies using the adiponectin knockout (APN (-/-)) and the APN (+/+) mice to understand whether adiponectin regulates the circadian rhythm of glucose and lipid metabolism. We observed that the adiponectin gene deficiency does not affect the rhythmicity of core circadian clock genes expression in several peripheral tissues. In contrast, the adiponectin gene deficiency alters the circadian rhythms of liver and serum lipid levels and results in the loss of the time dependency of very-low-density lipoprotein-triglyceride secretion from the liver. In addition, the whole-body glucose tolerance of the APN (-/-) mice was normal at CT10 but reduced at CT22, compared to the APN (+/+) mice. The decreased glucose tolerance at CT22 was associated with insulin hyposecretion in vivo. In contrast, the gluconeogenesis activity was higher in the APN (-/-) mice than in the APN (+/+) mice throughout the day. These results indicate that adiponectin regulates part of the circadian rhythm of metabolism in the liver.
Collapse
Affiliation(s)
- Taira Wada
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Yukiko Yamamoto
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Yukiko Takasugi
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Hirotake Ishii
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Taketo Uchiyama
- Laboratory of Organic Chemistry, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
| | - Kaori Saitoh
- Department of Psychiatry, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Masahiro Suzuki
- Department of Psychiatry, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Makoto Uchiyama
- Department of Psychiatry, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
- Tokyo Adachi Hospital, Adachi, Tokyo, Japan
| | - Hikari Yoshitane
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biological Sciences, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeki Shimba
- Laboratory of Health Science, School of Pharmacy, Nihon University, Funabshi, Chiba, Japan
- Correspondence should be addressed to S Shimba:
| |
Collapse
|
5
|
Lee R, McGee A, Fernandez FX. Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure. Neuropsychopharmacology 2022; 47:866-879. [PMID: 34961774 PMCID: PMC8882192 DOI: 10.1038/s41386-021-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies. Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done using drugs thought to act directly on either the brain's central pacemaker, the suprachiasmatic nucleus (SCN), the SCN's primary relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet, or the brain's sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest, including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine, opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright light therapy. Future empirical research will be necessary to validate these possibilities.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Austin McGee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
6
|
de Assis LVM, Oster H. The circadian clock and metabolic homeostasis: entangled networks. Cell Mol Life Sci 2021; 78:4563-4587. [PMID: 33683376 PMCID: PMC8195959 DOI: 10.1007/s00018-021-03800-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.
Collapse
Affiliation(s)
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Marie Curie Street, 23562, Lübeck, Germany.
| |
Collapse
|
7
|
Abstract
Many molecular, physiological and behavioural processes display distinct 24-hour rhythms that are directed by the circadian system. The master clock, located in the suprachiasmatic nucleus region of the hypothalamus, is synchronized or entrained by the light-dark cycle and, in turn, synchronizes clocks present in peripheral tissues and organs. Other environmental cues, most importantly feeding time, also synchronize peripheral clocks. In this way, the circadian system can prepare the body for predictable environmental changes such as the availability of nutrients during the normal feeding period. This Review summarizes existing knowledge about the diurnal regulation of gastrointestinal processes by circadian clocks present in the digestive tract and its accessory organs. The circadian control of gastrointestinal digestion, motility, hormones and barrier function as well as of the gut microbiota are discussed. An overview is given of the interplay between different circadian clocks in the digestive system that regulate glucose homeostasis and lipid and bile acid metabolism. Additionally, the bidirectional interaction between the master clock and peripheral clocks in the digestive system, encompassing different entraining factors, is described. Finally, the possible behavioural adjustments or pharmacological strategies for the prevention and treatment of the adverse effects of chronodisruption are outlined.
Collapse
|
8
|
Ruiz-Gayo M, Olmo ND. Interaction Between Circadian Rhythms, Energy Metabolism, and Cognitive Function. Curr Pharm Des 2020; 26:2416-2425. [PMID: 32156228 DOI: 10.2174/1381612826666200310145006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/11/2020] [Indexed: 11/22/2022]
Abstract
The interaction between meal timing and light regulates circadian rhythms in mammals and not only determines the sleep-wake pattern but also the activity of the endocrine system. Related with that, the necessity to fulfill energy needs is a driving force that requires the participation of cognitive skills whose performance has been shown to undergo circadian variations. These facts have led to the concept that cognition and feeding behaviour can be analysed from a chronobiological perspective. In this context, research carried out during the last two decades has evidenced the link between feeding behaviour/nutritional habits and cognitive processes, and has highlighted the impact of circadian disorders on cognitive decline. All that has allowed hypothesizing a tight relationship between nutritional factors, chronobiology, and cognition. In this connection, experimental diets containing elevated amounts of fat and sugar (high-fat diets; HFDs) have been shown to alter in rodents the circadian distribution of meals, and to have a negative impact on cognition and motivational aspects of behaviour that disappear when animals are forced to adhere to a standard temporal eating pattern. In this review, we will present relevant studies focussing on the effect of HFDs on cognitive aspects of behaviour, paying particular attention to the influence that chronobiological alterations caused by these diets may have on hippocampaldependent cognition.
Collapse
Affiliation(s)
- Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Nuria D Olmo
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
9
|
Gnocchi D, Custodero C, Sabbà C, Mazzocca A. Circadian rhythms: a possible new player in non-alcoholic fatty liver disease pathophysiology. J Mol Med (Berl) 2019; 97:741-759. [PMID: 30953079 DOI: 10.1007/s00109-019-01780-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/16/2022]
Abstract
Over the last decades, a better knowledge of the molecular machinery supervising the regulation of circadian clocks has been achieved, and numerous findings have helped in unravelling the outstanding significance of the molecular clock for the proper regulation of our physiologic and metabolic homeostasis. Non-alcoholic fatty liver disease (NAFLD) is currently considered as one of the emerging liver pathologies in the Western countries due to the modification of eating habits and lifestyle. Although NAFLD is considered a pretty benign condition, it can progress towards non-alcoholic steatohepatitis (NASH) and eventually hepatocellular carcinoma (HCC). The pathogenic mechanisms involved in NAFLD development are complex, since this disease is a multifactorial condition. Major metabolic deregulations along with a genetic background are believed to take part in this process. In this light, the aim of this review is to give a comprehensive description of how our circadian machinery is regulated and to describe to what extent our internal clock is involved in the regulation of hormonal and metabolic homeostasis, and by extension in the development and progression of NAFLD/NASH and eventually in the onset of HCC.
Collapse
Affiliation(s)
- Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Custodero
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
10
|
Mechanisms of Communication in the Mammalian Circadian Timing System. Int J Mol Sci 2019; 20:ijms20020343. [PMID: 30650649 PMCID: PMC6359556 DOI: 10.3390/ijms20020343] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
24-h rhythms in physiology and behaviour are organized by a body-wide network of endogenous circadian clocks. In mammals, a central pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) integrates external light information to adapt cellular clocks in all tissues and organs to the external light-dark cycle. Together, central and peripheral clocks co-regulate physiological rhythms and functions. In this review, we outline the current knowledge about the routes of communication between the environment, the main pacemakers and the downstream clocks in the body, focusing on what we currently know and what we still need to understand about the communication mechanisms by which centrally and peripherally controlled timing signals coordinate physiological functions and behaviour. We highlight recent findings that shed new light on the internal organization and function of the SCN and neuroendocrine mechanisms mediating clock-to-clock coupling. These findings have implications for our understanding of circadian network entrainment and for potential manipulations of the circadian clock system in therapeutic settings.
Collapse
|
11
|
Angelousi A, Kassi E, Nasiri-Ansari N, Weickert MO, Randeva H, Kaltsas G. Clock genes alterations and endocrine disorders. Eur J Clin Invest 2018; 48:e12927. [PMID: 29577261 DOI: 10.1111/eci.12927] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Various endocrine signals oscillate over the 24-hour period and so does the responsiveness of target tissues. These daily oscillations do not occur solely in response to external stimuli but are also under the control of an intrinsic circadian clock. DESIGN We searched the PubMed database to identify studies describing the associations of clock genes with endocrine diseases. RESULTS Various human single nucleotide polymorphisms of brain and muscle ARNT-like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) genes exhibited significant associations with type 2 diabetes mellitus. ARNTL2 gene expression and upregulation of BMAL1 and PER1 were associated with the development of type 1 diabetes mellitus. Thyroid hormones modulated PER2 expression in a tissue-specific way, whereas BMAL1 regulated the expression of type 2 iodothyronine deiodinase in specific tissues. Adrenal gland and adrenal adenoma expressed PER1, PER2, CRY2, CLOCK and BMAL1 genes. Adrenal sensitivity to adrenocorticotrophin was also affected by circadian oscillations. A significant correlation between the expression of propio-melanocorticotrophin and PER 2, as well as between prolactin and CLOCK, was found in corticotroph and lactosomatotroph cells, respectively, in the pituitary. Clock genes and especially BMAL1 showed an important role in fertility, whereas oestradiol and androgens exhibited tissue-specific effects on clock gene expression. Metabolic disorders were also associated with circadian dysregulation according to studies in shift workers. CONCLUSIONS Clock genes are associated with various endocrine disorders through complex mechanisms. However, data on humans are scarce. Moreover, clock genes exhibit a tissue-specific expression representing an additional level of regulation. Their specific role in endocrine disorders and their potential implications remain to be further clarified.
Collapse
Affiliation(s)
- Anna Angelousi
- Department of Pathophysiology, Endocrine Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biochemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biochemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Applied Biological & Exercise Sciences, Coventry University, Coventry, UK
| | - Harpal Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Division of Translational and Experimental Medicine, Warwick Medical School, University of Warwick, Coventry, UK
- Centre for Applied Biological & Exercise Sciences, Coventry University, Coventry, UK
| | - Gregory Kaltsas
- 1st Department of Propaedeutic Internal Medicine, Medical School, Laikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Crew RC, Waddell BJ, Maloney SK, Mark PJ. Diet-induced obesity reduces core body temperature across the estrous cycle and pregnancy in the rat. Chronobiol Int 2018; 35:1077-1087. [PMID: 29659304 DOI: 10.1080/07420528.2018.1458035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Obesity during pregnancy causes adverse maternal and fetal health outcomes and programs offspring for adult-onset diseases, including cardiovascular disease. Obesity also disrupts core body temperature (Tc) regulation in nonpregnant rodents; however, it is unknown whether obesity alters normal maternal Tc adaptations to pregnancy. Since Tc is influenced by the circadian system, and both obesity and pregnancy alter circadian biology, it was hypothesized that obesity disrupts the normal rhythmic patterns of Tc before and during gestation. Obesity was induced by cafeteria (CAF) feeding in female Wistar rats for 8 weeks prior to and during gestation, whereas control (CON) animals had free access to chow. Intraperitoneal temperature loggers measured daily Tc profiles throughout the study, while maternal body composition and leptin levels were assessed near term. Daily temperature profiles were examined for rhythmic features (mesor, amplitude and acrophase) by cosine regression analysis. CAF animals exhibited increased fat mass (93%) and associated hyperleptinemia (3.2-fold increase) compared to CON animals. CAF consumption reduced the average Tc (by up to 0.29°C) across the estrous cycle and most of pregnancy; however, Tc for CAF and CON animals converged toward the end of gestation. Obesity reduced the amplitude of Tc rhythms at estrus and proestrus and on day 8 of pregnancy, but increased the amplitude at day 20 of pregnancy. Photoperiod analysis revealed that obesity reduced Tc exclusively in the light period during pre-pregnancy but only during the dark period in late gestation. In conclusion, obesity alters rhythmic Tc profiles and reduces the magnitude of the Tc decline late in rat gestation, which may have implications for maternal health and fetal development.
Collapse
Affiliation(s)
- Rachael C Crew
- a School of Human Sciences , The University of Western Australia , Perth , Australia
| | - Brendan J Waddell
- a School of Human Sciences , The University of Western Australia , Perth , Australia
| | - Shane K Maloney
- a School of Human Sciences , The University of Western Australia , Perth , Australia
| | - Peter J Mark
- a School of Human Sciences , The University of Western Australia , Perth , Australia
| |
Collapse
|
13
|
Touati H, Ouali-Hassenaoui S, Dekar-Madoui A, Challet E, Pévet P, Vuillez P. Diet-induced insulin resistance state disturbs brain clock processes and alters tuning of clock outputs in the Sand rat, Psammomys obesus. Brain Res 2017; 1679:116-124. [PMID: 29196219 DOI: 10.1016/j.brainres.2017.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Abstract
Reciprocal interactions closely connect energy metabolism with circadian rhythmicity. Altered clockwork and circadian desynchronization are often linked with impaired energy regulation. Conversely, metabolic disturbances have been associated with altered autonomic and hormonal rhythms. The effects of high-energy (HE) diet on the master clock in the suprachiasmatic nuclei (SCN) remain unclear.This question was addressed in the Sand rat (Psammomys obesus), a non-insulin-dependent diabetes mellitus (NIDDM) animal model. The aim of this work was to determine whether enriched diet in Psammomys affects locomotor activity rhythm, as well as daily oscillations in the master clock of the SCN and in an extra-SCN brain oscillator, the piriform cortex. Sand rats were fed during 3 months with either low or HE diet. Vasoactive intestinal peptide (VIP), vasopressin (AVP) and CLOCK protein cycling were studied by immunohistochemistry and running wheel protocol was used for behavioral analysis. High energy feeding dietary triggered hyperinsulinemia, impaired insulin/glucose ratio and disruption in pancreatic hormonal rhythms. Circadian disturbances in hyper-insulinemic animals include a lengthened rest/activity rhythm in constant darkness, as well as disappearance of daily rhythmicity of VIP, AVP and the circadian transcription factor CLOCK within the suprachiasmatic clock. In addition, daily rhythmicity of VIP and CLOCK was abolished by HE diet in a secondary brain oscillator, the piriform cortex. Our findings highlight a major impact of diabetogenic diet on central and peripheral rhythmicity. The Psammomys model will be instrumental to better understand the functional links between circadian clocks, glucose intolerance and insulin resistance state.
Collapse
Affiliation(s)
- Hanane Touati
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France; USTHB, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology Team, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
| | - Saliha Ouali-Hassenaoui
- USTHB, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology Team, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
| | - Aicha Dekar-Madoui
- USTHB, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology Team, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
| | - Etienne Challet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France.
| | - Paul Pévet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France.
| | - Patrick Vuillez
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
14
|
Abstract
Most hormones display daily fluctuations of secretion during the 24-h cycle. This is also the case for adipokines, in particular the anorexigenic hormone, leptin. The temporal organization of the endocrine system is principally controlled by a network of circadian clocks. The circadian network comprises a master circadian clock, located in the suprachiasmatic nucleus of the hypothalamus, synchronized to the ambient light, and secondary circadian clocks found in various peripheral organs, such as the adipose tissues. Besides circadian clocks, other factors such as meals and metabolic status impact daily profiles of hormonal levels. In turn, the precise daily pattern of hormonal release provides temporal signaling information. This review will describe the reciprocal links between the circadian clocks and rhythmic secretion of leptin, and discuss the metabolic impact of circadian desynchronization and altered rhythmic leptin.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de La Recherche Scientifique (CNRS), University of Strasbourg, France.
| |
Collapse
|
15
|
Bainier C, Mateo M, Felder-Schmittbuhl MP, Mendoza J. Circadian rhythms of hedonic drinking behavior in mice. Neuroscience 2017; 349:229-238. [DOI: 10.1016/j.neuroscience.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/15/2017] [Accepted: 03/01/2017] [Indexed: 10/20/2022]
|
16
|
Isorna E, de Pedro N, Valenciano AI, Alonso-Gómez ÁL, Delgado MJ. Interplay between the endocrine and circadian systems in fishes. J Endocrinol 2017; 232:R141-R159. [PMID: 27999088 DOI: 10.1530/joe-16-0330] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022]
Abstract
The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light-darkness and feeding-fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light-darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.
Collapse
Affiliation(s)
- Esther Isorna
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Nuria de Pedro
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I Valenciano
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Ángel L Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
17
|
Gnocchi D, Bruscalupi G. Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. BIOLOGY 2017; 6:biology6010010. [PMID: 28165421 PMCID: PMC5372003 DOI: 10.3390/biology6010010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Over recent years, a deeper comprehension of the molecular mechanisms that control biological clocks and circadian rhythms has been achieved. In fact, many studies have contributed to unravelling the importance of the molecular clock for the regulation of our physiology, including hormonal and metabolic homeostasis. Here we will review the structure, organisation and molecular machinery that make our circadian clock work, and its relevance for the proper functioning of physiological processes. We will also describe the interconnections between circadian rhythms and endocrine homeostasis, as well as the underlying consequences that circadian dysregulations might have in the development of several pathologic affections. Finally, we will discuss how a better knowledge of such relationships might prove helpful in designing new therapeutic approaches for endocrine and metabolic diseases.
Collapse
Affiliation(s)
- Davide Gnocchi
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm 14186, Sweden.
| | - Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
18
|
Differences in Photic Entrainment of Circadian Locomotor Activity Between Lean and Obese Volcano Mice ( Neotomodon alstoni). J Circadian Rhythms 2017; 15:1. [PMID: 30210555 PMCID: PMC5356206 DOI: 10.5334/jcr.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Obesity is a growing problem worldwide with a clear impact on health status. It is also a condition that negatively affects circadian rhythms. When the mouse Neotomodon alstoni is fed a regular rodent chow, some individuals develop obesity, representing an opportunity to compare the effects of spontaneous obesity upon the circadian organization in this species with that observed in other rodents with induced obesity. We report differences in the free running circadian locomotor activity rhythm and in the effects of light pulses between lean and obese mice. Also, the photo-induced expression of the c-Fos protein and vasoactive intestinal peptide (VIP) in the suprachiasmatic nucleus (SCN) were examined at circadian time (CT) 14 and 22. We show that obese mice have a larger dispersion of the period of circadian locomotor rhythm in constant darkness. Photic induced phase shifts are nearly 50% shorter at CT 14, and 50% larger at CT 22 than in lean mice. The photoinduction of VIP in the SCN at CT 22 was larger in obese mice, which may be related to the differences observed in photic phase shifting. Our work indicates that the obesity in Neotomodon has effects on the neural mechanisms that regulate the circadian system.
Collapse
|
19
|
Tsang AH, Astiz M, Friedrichs M, Oster H. Endocrine regulation of circadian physiology. J Endocrinol 2016; 230:R1-R11. [PMID: 27106109 DOI: 10.1530/joe-16-0051] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Endogenous circadian clocks regulate 24-h rhythms of behavior and physiology to align with external time. The endocrine system serves as a major clock output to regulate various biological processes. Recent findings suggest that some of the rhythmic hormones can also provide feedback to the circadian system at various levels, thus contributing to maintaining the robustness of endogenous rhythmicity. This delicate balance of clock-hormone interaction is vulnerable to modern lifestyle factors such as shiftwork or high-calorie diets, altering physiological set points. In this review, we summarize the current knowledge on the communication between the circadian timing and endocrine systems, with a focus on adrenal glucocorticoids and metabolic peptide hormones. We explore the potential role of hormones as systemic feedback signals to adjust clock function and their relevance for the maintenance of physiological and metabolic circadian homeostasis.
Collapse
Affiliation(s)
| | - Mariana Astiz
- Medical Department IUniversity of Lübeck, Lübeck, Germany
| | | | - Henrik Oster
- Medical Department IUniversity of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Pijut SS, Corbett DE, Wang Y, Li J, Charnigo RJ, Graf GA. Effect of peripheral circadian dysfunction on metabolic disease in response to a diabetogenic diet. Am J Physiol Endocrinol Metab 2016; 310:E900-11. [PMID: 27048996 PMCID: PMC4935143 DOI: 10.1152/ajpendo.00328.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/31/2016] [Indexed: 11/22/2022]
Abstract
BMAL1 is a core component of the transcription/translation machinery that regulates central and peripheral circadian rhythms that coordinate behavior and metabolism, respectively. Our objective was to determine the impact of BMAL1 in adipose alone or in combination with liver on metabolic phenotypes. Control, adipose-Bmal1 knockout (ABKO), and liver- and adipose-Bmal1 knockout (LABKO) female mice were placed in TSE System metabolic chambers for metabolic phenotyping. A second cohort of male mice was fed a control or diabetogenic diet, and body weight and composition, glucose tolerance, insulin sensitivity, and serum and hepatic lipids were measured. Both female ABKO and LABKO mice exhibited increased food consumption compared with control mice. ABKO mice also exhibited increased overall activity predominantly during the light phase compared with both control and LABKO mice and were protected from increased weight gain. When the male cohort was challenged with a diabetogenic diet, LABKO mice had increased body weight due to increased fat mass compared with control and ABKO mice. However, these mice did not present further impairments in glycemic control, adipose inflammation, or liver injury. LABKO mice had increased hepatic cholesterol and elevated expression of cholesterol synthesis and uptake genes. Our data indicate that deletion of this allele in adipose or in combination with liver alters feeding behavior and locomotor activity. However, obesity is exacerbated only with the combination of liver and adipose deletion.
Collapse
Affiliation(s)
| | | | | | - Jianing Li
- Department of Pharmacology and Nutritional Sciences
| | | | - Gregory A Graf
- Department of Pharmaceutical Sciences, Barnstable Brown Kentucky Diabetes and Obesity Center, and Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
21
|
Performing a hepatic timing signal: glucocorticoids induce gper1a and gper1b expression and repress gclock1a and gbmal1a in the liver of goldfish. J Comp Physiol B 2015; 186:73-82. [DOI: 10.1007/s00360-015-0936-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
|
22
|
Abstract
Daily variations of metabolism, physiology and behaviour are controlled by a network of coupled circadian clocks, comprising a master clock in the suprachiasmatic nuclei of the hypothalamus and a multitude of secondary clocks in the brain and peripheral organs. Light cues synchronize the master clock that conveys temporal cues to other body clocks via neuronal and hormonal signals. Feeding at unusual times can reset the phase of most peripheral clocks. While the neuroendocrine aspect of circadian regulation has been underappreciated, this review aims at showing that the role of hormonal rhythms as internal time-givers is the rule rather than the exception. Adrenal glucocorticoids, pineal melatonin and adipocyte-derived leptin participate in internal synchronization (coupling) within the multi-oscillatory network. Furthermore, pancreatic insulin is involved in food synchronization of peripheral clocks, while stomach ghrelin provides temporal signals modulating behavioural anticipation of mealtime. Circadian desynchronization induced by shift work or chronic jet lag has harmful effects on metabolic regulation, thus favouring diabetes and obesity. Circadian deregulation of hormonal rhythms may participate in internal desynchronization and associated increase in metabolic risks. Conversely, adequate timing of endocrine therapies can promote phase-adjustment of the master clock (e.g. via melatonin agonists) and peripheral clocks (e.g. via glucocorticoid agonists).
Collapse
Affiliation(s)
- E Challet
- Institute of Cellular and Integrative Neurosciences, UPR3212 Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Grosbellet E, Gourmelen S, Pévet P, Criscuolo F, Challet E. Leptin normalizes photic synchronization in male ob/ob mice, via indirect effects on the suprachiasmatic nucleus. Endocrinology 2015; 156:1080-90. [PMID: 25521581 DOI: 10.1210/en.2014-1570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mounting evidence indicates a strong link between metabolic diseases and circadian dysfunctions. The metabolic hormone leptin, substantially increased in dietary obesity, displays chronobiotic properties. Here we investigated whether leptin is involved in the alteration of timing associated with obesity, via direct or indirect effects on the suprachiasmatic nucleus (SCN), the site of the master clock. Photic synchronization was studied in obese ob/ob mice (deficient in leptin), either injected or not with high doses of recombinant murine leptin (5 mg/kg). This was performed first at a behavioral level, by shifting the light-dark cycle and inducing phase shifts by 30-minute light pulses and then at molecular levels (c-FOS and P-ERK1/2). Moreover, to characterize the targets mediating the chronomodulatory effects of leptin, we studied the induction of phosphorylated signal transducer and activator of transcription 3 (P-STAT3) in the SCN and in different structures projecting to the SCN, including the medial hypothalamus. Ob/ob mice showed altered photic synchronization, including augmented light-induced phase delays. Acute leptin treatment normalized the photic responses of the SCN at both the behavioral and molecular levels (decrease of light-induced c-FOS). Leptin-induced P-STAT3 was modulated by light in the arcuate nucleus and both the ventromedial and dorsomedial hypothalamic nuclei, whereas its expression was independent of the presence of leptin in the SCN. These results suggest an indirect action of leptin on the SCN, possibly mediated by the medial hypothalamus. Taken together, these results highlight a central role of leptin in the relationship between metabolic disturbances and circadian disruptions.
Collapse
Affiliation(s)
- Edith Grosbellet
- Regulation of Circadian Clocks Team (E.G., S.G., P.P., E.C.), Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique UPR3212, and Evolutionary Ecophysiology Team (E.G., F.C.), Department of Ecology, Physiology, and Ethology, Hubert Curien Pluridisciplinary Institute, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7178, University of Strasbourg, 67000 Strasbourg, France
| | | | | | | | | |
Collapse
|
24
|
Abstract
The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and dissipates chemical energy as heat. The development and activation of "brown-like" adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence: Xiaoyong Yang, Section of Comparative Medicine, Yale University School of Medicine, P.O. Box 208016, New Haven, CT 06520-8016, USA,
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
25
|
Oosterman JE, Kalsbeek A, la Fleur SE, Belsham DD. Impact of nutrients on circadian rhythmicity. Am J Physiol Regul Integr Comp Physiol 2014; 308:R337-50. [PMID: 25519730 DOI: 10.1152/ajpregu.00322.2014] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The suprachiasmatic nucleus (SCN) in the mammalian hypothalamus functions as an endogenous pacemaker that generates and maintains circadian rhythms throughout the body. Next to this central clock, peripheral oscillators exist in almost all mammalian tissues. Whereas the SCN is mainly entrained to the environment by light, peripheral clocks are entrained by various factors, of which feeding/fasting is the most important. Desynchronization between the central and peripheral clocks by, for instance, altered timing of food intake can lead to uncoupling of peripheral clocks from the central pacemaker and is, in humans, related to the development of metabolic disorders, including obesity and Type 2 diabetes. Diets high in fat or sugar have been shown to alter circadian clock function. This review discusses the recent findings concerning the influence of nutrients, in particular fatty acids and glucose, on behavioral and molecular circadian rhythms and will summarize critical studies describing putative mechanisms by which these nutrients are able to alter normal circadian rhythmicity, in the SCN, in non-SCN brain areas, as well as in peripheral organs. As the effects of fat and sugar on the clock could be through alterations in energy status, the role of specific nutrient sensors will be outlined, as well as the molecular studies linking these components to metabolism. Understanding the impact of specific macronutrients on the circadian clock will allow for guidance toward the composition and timing of meals optimal for physiological health, as well as putative therapeutic targets to regulate the molecular clock.
Collapse
Affiliation(s)
- Johanneke E Oosterman
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Departments of Physiology
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Hypothalamic Integration Mechanisms, The Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise D Belsham
- Departments of Physiology, Obstetrics and Gynaecology and Medicine, University of Toronto and Division of Cellular and Molecular Biology, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; and
| |
Collapse
|
26
|
Circadian Clocks and Inflammation: Reciprocal Regulation and Shared Mediators. Arch Immunol Ther Exp (Warsz) 2014; 62:303-18. [DOI: 10.1007/s00005-014-0286-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
|
27
|
Abstract
In most species, endogenous circadian clocks regulate 24-h rhythms of behavior and physiology. Clock disruption has been associated with decreased cognitive performance and increased propensity to develop obesity, diabetes, and cancer. Many hormonal factors show robust diurnal secretion rhythms, some of which are involved in mediating clock output from the brain to peripheral tissues. In this review, we describe the mechanisms of clock-hormone interaction in mammals, the contribution of different tissue oscillators to hormonal regulation, and how changes in circadian timing impinge on endocrine signalling and downstream processes. We further summarize recent findings suggesting that hormonal signals may feed back on circadian regulation and how this crosstalk interferes with physiological and metabolic homeostasis.
Collapse
Affiliation(s)
- Anthony H Tsang
- Circadian Rhythms Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany Chronophysiology Group, Medical Department I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
28
|
Chapnik N, Solomon G, Genzer Y, Miskin R, Gertler A, Froy O. A superactive leptin antagonist alters metabolism and locomotion in high-leptin mice. J Endocrinol 2013; 217:283-90. [PMID: 23482705 DOI: 10.1530/joe-13-0033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transgenic alpha murine urokinase-type plasminogen activator (αMUPA) mice are resistant to obesity and their locomotor activity is altered. As these mice have high leptin levels, our objective was to test whether leptin is responsible for these characteristics. αMUPA, their genetic background control (FVB/N), and C57BL mice were injected s.c. every other day with 20 mg/kg pegylated superactive mouse leptin antagonist (PEG-SMLA) for 6 weeks. We tested the effect of PEG-SMLA on body weight, locomotion, and bone health. The antagonist led to a rapid increase in body weight and subsequent insulin resistance in all treated mice. Food intake of PEG-SMLA-injected animals increased during the initial period of the experiment but then declined to a similar level to that of the control animals. Interestingly, αMUPA mice were found to have reduced bone volume (BV) than FVB/N mice, although PEG-SMLA increased bone mass in both strains. In addition, PEG-SMLA led to disrupted locomotor activity and increased corticosterone levels in C57BL but decreased levels in αMUPA or FVB/N mice. These results suggest that leptin is responsible for the lean phenotype and reduced BV in αMUPA mice; leptin affects corticosterone levels in mice in a strain-specific manner; and leptin alters locomotor activity, a behavior determined by the central circadian clock.
Collapse
Affiliation(s)
- Nava Chapnik
- Robert H Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Westfall S, Aguilar-Valles A, Mongrain V, Luheshi GN, Cermakian N. Time-dependent effects of localized inflammation on peripheral clock gene expression in rats. PLoS One 2013; 8:e59808. [PMID: 23527270 PMCID: PMC3603876 DOI: 10.1371/journal.pone.0059808] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/18/2013] [Indexed: 12/26/2022] Open
Abstract
Many aspects of the immune system, including circulating cytokine levels as well as counts and function of various immune cell types, present circadian rhythms. Notably, the mortality rate of animals subjected to high doses of lipopolysaccharide is dependent on the time of treatment. In addition, the severity of symptoms of various inflammatory conditions follows a daily rhythmic pattern. The mechanisms behind the crosstalk between the circadian and immune systems remain elusive. Here we demonstrate that localized inflammation induced by turpentine oil (TURP) causes a time-dependent induction of interleukin (IL)-6 and has time-, gene- and tissue-specific effects on clock gene expression. More precisely, TURP blunts the peak of Per1 and Per2 expression in the liver while in other tissues, the expression nadir is elevated. In contrast, Rev-erbα expression remains relatively unaffected by TURP treatment. Co-treatment with the anti-inflammatory agent IL-1 receptor antagonist (IL-1Ra) did not alter the response of Per2 to TURP treatment in liver, despite the reduced induction of fever and IL-6 serum levels. This indicates that the TURP-mediated changes of Per2 in the liver might be due to factors other than systemic IL-6 and fever. Accordingly, IL-6 treatment had no effect on clock gene expression in HepG2 liver carcinoma cells. Altogether, we show that localized inflammation causes significant time-dependent changes in peripheral circadian clock gene expression, via a mechanism likely involving mediators independent from IL-6 and fever.
Collapse
Affiliation(s)
- Susan Westfall
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Argel Aguilar-Valles
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Valérie Mongrain
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Giamal N. Luheshi
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- * E-mail:
| |
Collapse
|
30
|
Zanquetta MM, Correa-Giannella ML, Giannella-Neto D, Alonso PA, Guimarães LMMV, Meyer A, Villares SMF. Expression of clock genes in human subcutaneous and visceral adipose tissues. Chronobiol Int 2012; 29:252-60. [PMID: 22390238 DOI: 10.3109/07420528.2012.657319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 ± 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p < .0001) in SAT in comparison to VAT was PER1 of female (372%) and male (326%) subjects. Different patterns of expression between the AM and PM periods were observed, in particular REV-ERBα, which was reduced (p < .05) at the PM period in SAT and VAT of both women and men (women: ∼53% lower; men: ∼78% lower), whereas CLOCK expression was not altered. Relationships between clock genes were different in SAT vs. VAT. BMI was negatively correlated with SATPER1 (r = -.549; p = .001) and SATPER2 (r = -.613; p = .0001) and positively with VATCLOCK (r = .541; p = .001) and VATBMAL1 (r = .468; p = .007) only in women. These data suggest that the circadian clock machinery of adipose tissue depots differs between female and male subjects, with a sex-specific effect observed for some genes. BMI correlated with clock genes, but at this moment it is not possible to establish the cause-effect relationship.
Collapse
Affiliation(s)
- Melissa Moreira Zanquetta
- Laboratório de Endocrinologia Celular e Molecular (LIM/25), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In this chapter, we give an overview of the current status of the role of orexins in feeding and energy homeostasis. Orexins, also known as hypocretins, initially were discovered in 1998 as hypothalamic regulators of food intake. A little later, their far more important function as regulators of sleep and arousal came to light. Despite their restricted distribution, orexin neurons have projections throughout the entire brain, with dense projections especially to the paraventricular nucleus of the thalamus, the arcuate nucleus of the hypothalamus, and the locus coeruleus and tuberomammillary nucleus. Its two receptors are orexin receptor 1 and orexin receptor 2. These receptors show a specific and localized distribution in a number of brain regions, and a variety of different actions has been demonstrated upon their binding. Our group showed that through the autonomic nervous system, the orexin system plays a key role in the control of glucose metabolism, but it has also been shown to stimulate sympathetic outflow, to increase body temperature, heart rate, blood pressure, and renal sympathetic nerve activity. The well-known effects of orexin on the control of food intake, arousal, and wakefulness appear to be more extensive than originally thought, with additional effects on the autonomic nervous system, that is, to increase body temperature and energy metabolism.
Collapse
|
32
|
Carmona-Alcocer V, Fuentes-Granados C, Carmona-Castro A, Aguilar-González I, Cárdenas-Vázquez R, Miranda-Anaya M. Obesity alters circadian behavior and metabolism in sex dependent manner in the volcano mouse Neotomodon alstoni. Physiol Behav 2011; 105:727-33. [PMID: 22001494 DOI: 10.1016/j.physbeh.2011.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/29/2011] [Accepted: 09/29/2011] [Indexed: 01/12/2023]
Abstract
The aim of the present study is to evaluate whether circadian locomotor activity, and the daily profile of plasma parameters related to metabolic syndrome (nutrients: glucose and triacylglycerides, and hormones: insulin and leptin), differ between male and female Neotomodon alstoni mice, both lean and obese. Young adult animals were captured in the field and kept at the laboratory animal facility. After 6 to 7 months feeding the animals ad libitum with a regular diet for laboratory rodents, 50-60% of mice became obese. Comparisons between sexes indicated that lean females were more active than males; however obese females reduced their nocturnal activity either in LD or DD, and advanced the phase of their activity-onset with respect to lights off. No differences in food intake between lean and obese mice, either during the day or night, were observed. Daily profiles of metabolic syndrome-related plasma parameters showed differences between sexes, and obesity was associated with increased values, especially leptin (500% in females and 273% in males) and insulin (150% in both females and males), as compared with lean mice. Our results indicate that lean mice display behavioral and endocrine differences between sexes, and obesity affects the parameters tested in a sex-dependent manner. The aforementioned leads us to propose N. alstoni, studied in captivity, could be an interesting model for the study of sex differences in the effects of obesity.
Collapse
Affiliation(s)
- Vania Carmona-Alcocer
- Departamento de Biología Celular, Facultad de Ciencias, UNAM 04510, México D.F., México
| | | | | | | | | | | |
Collapse
|