1
|
Kehoe DM, Biswas A, Chen B, Dufour L, Grébert T, Haney AM, Joseph KL, Kumarapperuma I, Nguyen AA, Ratin M, Sanfilippo JE, Shukla A, Garczarek L, Yang X, Schluchter WM, Partensky F. Light Color Regulation of Photosynthetic Antennae Biogenesis in Marine Phytoplankton. PLANT & CELL PHYSIOLOGY 2025; 66:168-180. [PMID: 39361137 DOI: 10.1093/pcp/pcae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 03/06/2025]
Abstract
Photosynthesis in the world's oceans is primarily conducted by phytoplankton, microorganisms that use many different pigments for light capture. Synechococcus is a unicellular cyanobacterium estimated to be the second most abundant marine phototroph, with a global population of 7 × 1026 cells. This group's success is partly due to the pigment diversity in their photosynthetic light harvesting antennae, which maximize photon capture for photosynthesis. Many Synechococcus isolates adjust their antennae composition in response to shifts in the blue:green ratio of ambient light. This response was named type 4 chromatic acclimation (CA4). Research has made significant progress in understanding CA4 across scales, from its global ecological importance to its molecular mechanisms. Two forms of CA4 exist, each correlated with the occurrence of one of two distinct but related genomic islands. Several genes in these islands are differentially transcribed by the ambient blue:green light ratio. The encoded proteins control the addition of different pigments to the antennae proteins in blue versus green light, altering their absorption characteristics to maximize photon capture. These genes are regulated by several putative transcription factors also encoded in the genomic islands. Ecologically, CA4 is the most abundant of marine Synechococcus pigment types, occurring in over 40% of the population oceanwide. It predominates at higher latitudes and at depth, suggesting that CA4 is most beneficial under sub-saturating photosynthetic light irradiances. Future CA4 research will further clarify the ecological role of CA4 and the molecular mechanisms controlling this globally important form of phenotypic plasticity.
Collapse
Affiliation(s)
- David M Kehoe
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Avijit Biswas
- Department of Biological Sciences, Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Bo Chen
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Louison Dufour
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| | - Théophile Grébert
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| | - Allissa M Haney
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Kes Lynn Joseph
- Department of Biological Sciences, Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Indika Kumarapperuma
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60612, USA
| | - Adam A Nguyen
- Department of Biological Sciences, Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Morgane Ratin
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| | - Joseph E Sanfilippo
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Animesh Shukla
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Laurence Garczarek
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60612, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Frédéric Partensky
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| |
Collapse
|
2
|
Mainas E, Curtin GM, Riddles SD, Pieri E. Biliverdin's Propionic Chains Influence Oligomerization in Sandercyanin. J Phys Chem B 2024; 128:12443-12455. [PMID: 39651944 DOI: 10.1021/acs.jpcb.4c06722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Sandercyanin is a mildly fluorescent biliprotein with a large Stokes shift, a tetrameric quaternary structure, and a biliverdin (BV) chromophore that does not covalently bond to the protein. To adapt this promising protein for use in bioimaging, it is necessary to produce monomeric mutants that retain the spectroscopic properties while increasing the fluorescence quantum yield. Modulating these properties through the protonation state of BV's propionic tails is a possible avenue, if detailed mechanistic information on the role of such chains becomes available. In this study, we use a microstate model for the titration process of BV and couple it with constant pH molecular dynamics to study protonation states in the apo protein, the artificial monomer, and the tetramer and identify shifts. Our results indicate that several residues might have a central role in oligomerization as a response to the presence of BV and especially to the protonation state of the propionic tails. While the absorption properties are not strongly impacted by the tails, their protonation state has an impact on the chromophore geometry, which likely influences the fluorescence.
Collapse
Affiliation(s)
- Eleftherios Mainas
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gregory M Curtin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Shaena D Riddles
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Elisa Pieri
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Zhou LJ, Höppner A, Wang YQ, Hou JY, Scheer H, Zhao KH. Crystallographic and biochemical analyses of a far-red allophycocyanin to address the mechanism of the super-red-shift. PHOTOSYNTHESIS RESEARCH 2024; 162:171-185. [PMID: 38182842 DOI: 10.1007/s11120-023-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
Far-red absorbing allophycocyanins (APC), identified in cyanobacteria capable of FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP), absorb far-red light, functioning in energy transfer as light-harvesting proteins. We report an optimized method to obtain high purity far-red absorbing allophycocyanin B, AP-B2, of Chroococcidiopsis thermalis sp. PCC7203 by synthesis in Escherichia coli and an improved purification protocol. The crystal structure of the trimer, (PCB-ApcD5/PCB-ApcB2)3, has been resolved to 2.8 Å. The main difference to conventional APCs absorbing in the 650-670 nm range is a largely flat chromophore with the co-planarity extending, in particular, from rings BCD to ring A. This effectively extends the conjugation system of PCB and contributes to the super-red-shifted absorption of the α-subunit (λmax = 697 nm). On complexation with the β-subunit, it is even further red-shifted (λmax, absorption = 707 nm, λmax, emission = 721 nm). The relevance of ring A for this shift is supported by mutagenesis data. A variant of the α-subunit, I123M, has been generated that shows an intense FR-band already in the absence of the β-subunit, a possible model is discussed. Two additional mechanisms are known to red-shift the chromophore spectrum: lactam-lactim tautomerism and deprotonation of the chromophore that both mechanisms appear inconsistent with our data, leaving this question unresolved.
Collapse
Affiliation(s)
- Li-Juan Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Yi-Qing Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Jian-Yun Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China.
| |
Collapse
|
4
|
Mondal S, Pandey D, Singh SP. Chromatic acclimation in cyanobacteria renders robust photosynthesis and fitness in dynamic light environment: Recent advances and future perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14536. [PMID: 39323055 DOI: 10.1111/ppl.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are photoautotrophic organisms that use light and water as a source of energy and electrons, respectively, to fix atmospheric carbon dioxide and release oxygen as a by-product during photosynthesis. However, photosynthesis and fitness of organisms are challenged by seasonal and diurnal fluctuations in light environments. Also, the distribution of cyanobacteria in a water column is subject to changes in the light regime. The quality and quantity of light change significantly in low and bright light environments that either limit photochemistry or result in photoinhibition due to an excess amount of light reaching reaction centers. Therefore, cyanobacteria have to adjust their light-harvesting machinery and cell morphology for the optimal harvesting of light. This adjustment of light-harvesting involves remodeling of the light-harvesting complex called phycobilisome or incorporation of chlorophyll molecules such as chlorophyll d and f into their light-harvesting machinery. Thus, photoacclimation responses of cyanobacteria at the level of pigment composition and cell morphology maximize their photosynthetic ability and fitness under a dynamic light environment. Cyanobacteria exhibit different types of photoacclimation responses that are commonly known as chromatic acclimation (CA). In this work, we discuss different types of CA reported in cyanobacteria and present a molecular mechanism of well-known type 3 CA where phycoerythrin and phycocyanin of phycobilisome changes according to light signals. We also include other aspects of type 3 CA that have been recently studied at a molecular level and highlight the importance of morphogenes, cytoskeleton, and carboxysome proteins. In summary, CA gives a unique competitive benefit to cyanobacteria by increasing their resource utilization ability and fitness.
Collapse
Affiliation(s)
- Soumila Mondal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepa Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shailendra P Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Gillespie W, Zhang Y, Ruiz OE, Cerda J, Ortiz-Guzman J, Turner WD, Largoza G, Sherman M, Mosser LE, Fujimoto E, Chien CB, Kwan KM, Arenkiel BR, Devine WP, Wythe JD. Multisite Assembly of Gateway Induced Clones (MAGIC): a flexible cloning toolbox with diverse applications in vertebrate model systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603267. [PMID: 39026881 PMCID: PMC11257631 DOI: 10.1101/2024.07.13.603267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.
Collapse
|
6
|
Minić S, Gligorijević N, Veličković L, Nikolić M. Narrative Review of the Current and Future Perspectives of Phycobiliproteins' Applications in the Food Industry: From Natural Colors to Alternative Proteins. Int J Mol Sci 2024; 25:7187. [PMID: 39000294 PMCID: PMC11241428 DOI: 10.3390/ijms25137187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Vivid-colored phycobiliproteins (PBPs) have emerging potential as food colors and alternative proteins in the food industry. However, enhancing their application potential requires increasing stability, cost-effective purification processes, and consumer acceptance. This narrative review aimed to highlight information regarding the critical aspects of PBP research that is needed to improve their food industry potential, such as stability, food fortification, development of new PBP-based food products, and cost-effective production. The main results of the literature review show that polysaccharide and protein-based encapsulations significantly improve PBPs' stability. Additionally, while many studies have investigated the ability of PBPs to enhance the techno-functional properties, like viscosity, emulsifying and stabilizing activity, texture, rheology, etc., of widely used food products, highly concentrated PBP food products are still rare. Therefore, much effort should be invested in improving the stability, yield, and sensory characteristics of the PBP-fortified food due to the resulting unpleasant sensory characteristics. Considering that most studies focus on the C-phycocyanin from Spirulina, future studies should concentrate on less explored PBPs from red macroalgae due to their much higher production potential, a critical factor for positioning PBPs as alternative proteins.
Collapse
Affiliation(s)
- Simeon Minić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Department of Chemistry, Institute of Chemistry, Technology, and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Luka Veličković
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Department of Biochemistry and Center of Excellence for Molecular Food Sciences, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Guo R, Xu YL, Zhu JX, Scheer H, Zhao KH. Assembly of CpcL-phycobilisomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1207-1217. [PMID: 38319793 DOI: 10.1111/tpj.16666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three β82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and β153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.
Collapse
Affiliation(s)
- Rui Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Li Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jun-Xun Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
8
|
Dodson EJ, Ma J, Suissa Szlejf M, Maroudas-Sklare N, Paltiel Y, Adir N, Sun S, Sui SF, Keren N. The structural basis for light acclimation in phycobilisome light harvesting systems systems in Porphyridium purpureum. Commun Biol 2023; 6:1210. [PMID: 38012412 PMCID: PMC10682464 DOI: 10.1038/s42003-023-05586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Photosynthetic organisms adapt to changing light conditions by manipulating their light harvesting complexes. Biophysical, biochemical, physiological and genetic aspects of these processes are studied extensively. The structural basis for these studies is lacking. In this study we address this gap in knowledge by focusing on phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. In this study we focus on the phycobilisomes (PBS), which are large structures found in cyanobacteria and red algae. Specifically, we examine red algae (Porphyridium purpureum) grown under a low light intensity (LL) and a medium light intensity (ML). Using cryo-electron microscopy, we resolve the structure of ML-PBS and compare it to the LL-PBS structure. The ML-PBS is 13.6 MDa, while the LL-PBS is larger (14.7 MDa). The LL-PBS structure have a higher number of closely coupled chromophore pairs, potentially the source of the red shifted fluorescence emission from LL-PBS. Interestingly, these differences do not significantly affect fluorescence kinetics parameters. This indicates that PBS systems can maintain similar fluorescence quantum yields despite an increase in LL-PBS chromophore numbers. These findings provide a structural basis to the processes by which photosynthetic organisms adapt to changing light conditions.
Collapse
Affiliation(s)
- Emma Joy Dodson
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Maayan Suissa Szlejf
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Naama Maroudas-Sklare
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University in Jerusalem, Jerusalem, Israel
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 32000, Haifa, Israel
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Nir Keren
- Department of Plant and Environmental Science, The Alexander Silberman Institute of Life Sciences, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Rathbone HW, Laos AJ, Michie KA, Iranmanesh H, Biazik J, Goodchild SC, Thordarson P, Green BR, Curmi PMG. Molecular dissection of the soluble photosynthetic antenna from the cryptophyte alga Hemiselmis andersenii. Commun Biol 2023; 6:1158. [PMID: 37957226 PMCID: PMC10643455 DOI: 10.1038/s42003-023-05508-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Cryptophyte algae have a unique phycobiliprotein light-harvesting antenna that fills a spectral gap in chlorophyll absorption from photosystems. However, it is unclear how the antenna transfers energy efficiently to these photosystems. We show that the cryptophyte Hemiselmis andersenii expresses an energetically complex antenna comprising three distinct spectrotypes of phycobiliprotein, each composed of two αβ protomers but with different quaternary structures arising from a diverse α subunit family. We report crystal structures of the major phycobiliprotein from each spectrotype. Two-thirds of the antenna consists of open quaternary form phycobiliproteins acting as primary photon acceptors. These are supplemented by a newly discovered open-braced form (~15%), where an insertion in the α subunit produces ~10 nm absorbance red-shift. The final components (~15%) are closed forms with a long wavelength spectral feature due to substitution of a single chromophore. This chromophore is present on only one β subunit where asymmetry is dictated by the corresponding α subunit. This chromophore creates spectral overlap with chlorophyll, thus bridging the energetic gap between the phycobiliprotein antenna and the photosystems. We propose that the macromolecular organization of the cryptophyte antenna consists of bulk open and open-braced forms that transfer excitations to photosystems via this bridging closed form phycobiliprotein.
Collapse
Affiliation(s)
- Harry W Rathbone
- School of Physics, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
- UMR144 Cell Biology and Cancer, Institut Curie, Paris, 75005, France
| | - Alistair J Laos
- UNSW RNA Institute and School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Katharine A Michie
- School of Physics, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hasti Iranmanesh
- School of Physics, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joanna Biazik
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sophia C Goodchild
- School of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Pall Thordarson
- UNSW RNA Institute and School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Beverley R Green
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Paul M G Curmi
- School of Physics, The University of New South Wales, Sydney, NSW, 2052, Australia.
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
10
|
Characterization of Molecular Diversity and Organization of Phycobilisomes in Thermophilic Cyanobacteria. Int J Mol Sci 2023; 24:ijms24065632. [PMID: 36982707 PMCID: PMC10053587 DOI: 10.3390/ijms24065632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Thermophilic cyanobacteria are cosmopolitan and abundant in the thermal environment. Their light-harvesting complexes, phycobilisomes (PBS), are highly important in photosynthesis. To date, there is limited information on the PBS composition of thermophilic cyanobacteria whose habitats are challenging for survival. Herein, genome-based methods were used to investigate the molecular components of PBS in 19 well-described thermophilic cyanobacteria. These cyanobacteria are from the genera Leptolyngbya, Leptothermofonsia, Ocullathermofonsia, Thermoleptolyngbya, Trichothermofonsia, Synechococcus, Thermostichus, and Thermosynechococcus. According to the phycobiliprotein (PBP) composition of the rods, two pigment types are observed in these thermophiles. The amino acid sequence analysis of different PBP subunits suggests several highly conserved cysteine residues in these thermophiles. Certain amino acid contents in the PBP of thermophiles are significantly higher than their mesophilic counterparts, highlighting the potential roles of specific substitutions of amino acid in the adaptive thermostability of light-harvesting complexes in thermophilic cyanobacteria. Genes encoding PBS linker polypeptides vary among the thermophiles. Intriguingly, motifs in linker apcE indicate a photoacclimation of a far-red light by Leptolyngbya JSC-1, Leptothermofonsia E412, and Ocullathermofonsia A174. The composition pattern of phycobilin lyases is consistent among the thermophiles, except for Thermostichus strains that have extra homologs of cpcE, cpcF, and cpcT. In addition, phylogenetic analyses of genes coding for PBPs, linkers, and lyases suggest extensive genetic diversity among these thermophiles, which is further discussed with the domain analyses. Moreover, comparative genomic analysis suggests different genomic distributions of PBS-related genes among the thermophiles, indicating probably various regulations of expression. In summary, the comparative analysis elucidates distinct molecular components and organization of PBS in thermophilic cyanobacteria. These results provide insights into the PBS components of thermophilic cyanobacteria and fundamental knowledge for future research regarding structures, functions, and photosynthetic improvement.
Collapse
|
11
|
Jackson PJ, Hitchcock A, Brindley AA, Dickman MJ, Hunter CN. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2023; 155:219-245. [PMID: 36542271 PMCID: PMC9958174 DOI: 10.1007/s11120-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.
Collapse
Affiliation(s)
- Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
12
|
Guo R, Wang S, Niu NN, Xu YL, Zhu JX, Scheer H, Noy D, Zhao KH. Dichromic Allophycocyanin Trimer Covering a Broad Spectral Range (550-660 nm). Chemistry 2023; 29:e202203367. [PMID: 36382427 DOI: 10.1002/chem.202203367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, are a resource for photosynthetic, photonic and fluorescence labeling elements. They cover an exceptionally broad spectral range, but the complex superstructure and assembly have been an obstacle. By replacing in Synechocystis sp. PCC 6803 the biliverdin reductases, we studied the role of chromophores in the assembly of the phycobilisome core. Introduction of the green-absorbing phycoerythrobilin instead of the red-absorbing phycocyanobilin inhibited aggregation. A novel, trimeric allophycocyanin (Dic-APC) was obtained. In the small (110 kDa) unit, the two chromophores, phycoerythrobilin and phytochromobilin, cover a wide spectral range (550 to 660 nm). Due to efficient energy transfer, it provides an efficient artificial light-harvesting element. Dic-APC was generated in vitro by using the contained core-linker, LC , for template-assisted purification and assembly. Labeling the linker provides a method for targeting Dic-APC.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Si Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jun-Xun Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Dror Noy
- MIGAL-Galilee Research Institute S. Industrial Zone, Kiryat Shmona, Israel.,Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
13
|
Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis. Int J Mol Sci 2023; 24:ijms24032290. [PMID: 36768613 PMCID: PMC9916406 DOI: 10.3390/ijms24032290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out to be arranged in the same way. Pigment-protein complexes of photosystem I (PS I) and photosystem II (PS II) are characterized by uniform structures, while the light-harvesting antennae have undergone a series of changes. The phycobilisome (PBS) antenna present in cyanobacteria was replaced by Chl a/b- or Chl a/c-containing pigment-protein complexes in most groups of photosynthetics. In the form of PBS or phycobiliprotein aggregates, it was inherited by members of Cyanophyta, Cryptophyta, red algae, and photosynthetic amoebae. Supramolecular organization and architectural modifications of phycobiliprotein antennae in various algal phyla in line with the endosymbiotic theory of chloroplast origin are the subject of this review.
Collapse
|
14
|
Yuan B, Li Z, Shan H, Dashnyam B, Xu X, McClements DJ, Zhang B, Tan M, Wang Z, Cao C. A review of recent strategies to improve the physical stability of phycocyanin. Curr Res Food Sci 2022; 5:2329-2337. [PMID: 36467748 PMCID: PMC9712502 DOI: 10.1016/j.crfs.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/10/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
There is an increasing demand for more healthy and sustainable diets, which led to an interest in replacing synthetic colors with natural plant-based ones. Phycocyanin, which is commonly extracted from Spirulina platensis, has been explored as a natural blue pigment for application in the food industry. It is also used as a nutraceutical in food, cosmetic, and pharmaceutical products because of its potentially beneficial biological properties, such as radical scavenging, immune modulating, and lipid peroxidase activities. The biggest challenges to the widespread application of phycocyanin for this purpose are its high sensitivity to chemical degradation when exposed to heat, light, acids, high pressure, heavy metal cations, and denaturants. Consequently, it is of considerable importance to improve its chemical stability, which requires a thorough knowledge of the relationship between the structure, environment, and chemical reactivity of phycocyanin. To increase the application of this natural pigment and nutraceutical within foods and other products, the structure, biological activities, and factors affecting its stability are reviewed, as well as strategies that have been developed to improve its stability. The information contained in this article is intended to stimulate further studies on the development of effective strategies to improve phycocyanin stability and performance.
Collapse
Affiliation(s)
- Biao Yuan
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Zhuxin Li
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Honghong Shan
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Badamkhand Dashnyam
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, 312000, China
| | | | - Bingquan Zhang
- Zhejiang Binmei Biotechnology Co. LTD, Linhai, Zhejiang, 318000, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Zhixiang Wang
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/ National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| |
Collapse
|
15
|
Carrigee LA, Frick JP, Liu X, Karty JA, Trinidad JC, Tom IP, Yang X, Dufour L, Partensky F, Schluchter WM. The phycoerythrobilin isomerization activity of MpeV in Synechococcus sp. WH8020 is prevented by the presence of a histidine at position 141 within its phycoerythrin-I β-subunit substrate. Front Microbiol 2022; 13:1011189. [PMID: 36458192 PMCID: PMC9705338 DOI: 10.3389/fmicb.2022.1011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Marine Synechococcus efficiently harvest available light for photosynthesis using complex antenna systems, called phycobilisomes, composed of an allophycocyanin core surrounded by rods, which in the open ocean are always constituted of phycocyanin and two phycoerythrin (PE) types: PEI and PEII. These cyanobacteria display a wide pigment diversity primarily resulting from differences in the ratio of the two chromophores bound to PEs, the green-light absorbing phycoerythrobilin and the blue-light absorbing phycourobilin. Prior to phycobiliprotein assembly, bilin lyases post-translationally catalyze the ligation of phycoerythrobilin to conserved cysteine residues on α- or β-subunits, whereas the closely related lyase-isomerases isomerize phycoerythrobilin to phycourobilin during the attachment reaction. MpeV was recently shown in Synechococcus sp. RS9916 to be a lyase-isomerase which doubly links phycourobilin to two cysteine residues (C50 and C61; hereafter C50, 61) on the β-subunit of both PEI and PEII. Here we show that Synechococcus sp. WH8020, which belongs to the same pigment type as RS9916, contains MpeV that demonstrates lyase-isomerase activity on the PEII β-subunit but only lyase activity on the PEI β-subunit. We also demonstrate that occurrence of a histidine at position 141 of the PEI β-subunit from WH8020, instead of a leucine in its counterpart from RS9916, prevents the isomerization activity by WH8020 MpeV, showing for the first time that both the substrate and the enzyme play a role in the isomerization reaction. We propose a structural-based mechanism for the role of H141 in blocking isomerization. More generally, the knowledge of the amino acid present at position 141 of the β-subunits may be used to predict which phycobilin is bound at C50, 61 of both PEI and PEII from marine Synechococcus strains.
Collapse
Affiliation(s)
- Lyndsay A. Carrigee
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
- Environmental Laboratory, Engineering and Research Development Center, US Army Corps of Engineers, Vicksburg, MS, United States
| | - Jacob P. Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Xindi Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Jonathan A. Karty
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | | | - Irin P. Tom
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Louison Dufour
- Ecology of Marine Plankton Team, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université, CNRS, Roscoff, France
| | - Frédéric Partensky
- Ecology of Marine Plankton Team, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université, CNRS, Roscoff, France
| | - Wendy M. Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
- *Correspondence: Wendy M. Schluchter,
| |
Collapse
|
16
|
Patel SN, Sonani RR, Roy D, Singh NK, Subudhi S, Pabbi S, Madamwar D. Exploring the structural aspects and therapeutic perspectives of cyanobacterial phycobiliproteins. 3 Biotech 2022; 12:224. [PMID: 35975025 PMCID: PMC9375810 DOI: 10.1007/s13205-022-03284-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/28/2022] [Indexed: 11/01/2022] Open
Abstract
Phycobiliproteins (PBPs) of cyanobacteria and algae possess unique light harvesting capacity which expand the photosynthetically active region (PAR) and allow them to thrive in extreme niches where higher plants cannot. PBPs of cyanobacteria/algae vary in abundance, types, amino acid composition and in structure as a function of species and the habitat that they grow in. In the present review, the key aspects of structure, stability, and spectral properties of PBPs, and their correlation with ecological niche of cyanobacteria are discussed. Besides their role in light-harvesting, PBPs possess antioxidant, anti-aging, neuroprotective, hepatoprotective and anti-inflammatory properties, which can be used in therapeutics. Recent developments in therapeutic applications of PBPs are reviewed with special focus on 'route of PBPs administration' and 'therapeutic potential of PBP-derived peptide and chromophores'.
Collapse
Affiliation(s)
- Stuti N. Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
- Post-Graduate Department of Biosciences, UGC-Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat 388315 India
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Ravi R. Sonani
- Present Address: Małopolska Centre of Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 USA
| | - Diya Roy
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Niraj Kumar Singh
- Department of Biotechnology, Shree A. N. Patel PG Institute of Science and Research, Sardar Patel University, Anand, Gujarat 388001 India
- Present Address: Gujarat Biotechnology Research Centre (GBRC), Deaprtment of Science and Technology (DST), Government of Gujarat, Gandhinagar, Gujarat 382011 India
| | - Sanjukta Subudhi
- The Energy and Resources Institute Darbari Seth Block, India Habitat Centre, Lodi Road, New Delhi, 110003 India
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat 388421 India
| |
Collapse
|
17
|
AlFadhly NKZ, Alhelfi N, Altemimi AB, Verma DK, Cacciola F, Narayanankutty A. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules 2022; 27:5584. [PMID: 36080350 PMCID: PMC9458102 DOI: 10.3390/molecules27175584] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 01/14/2023] Open
Abstract
Spirulina is a kind of blue-green algae (BGA) that is multicellular, filamentous, and prokaryotic. It is also known as a cyanobacterium. It is classified within the phylum known as blue-green algae. Despite the fact that it includes a high concentration of nutrients, such as proteins, vitamins, minerals, and fatty acids-in particular, the necessary omega-3 fatty acids and omega-6 fatty acids-the percentage of total fat and cholesterol that can be found in these algae is substantially lower when compared to other food sources. This is the case even if the percentage of total fat that can be found in these algae is also significantly lower. In addition to this, spirulina has a high concentration of bioactive compounds, such as phenols, phycocyanin pigment, and polysaccharides, which all take part in a number of biological activities, such as antioxidant and anti-inflammatory activity. As a result of this, spirulina has found its way into the formulation of a great number of medicinal foods, functional foods, and nutritional supplements. Therefore, this article makes an effort to shed light on spirulina, its nutritional value as a result of its chemical composition, and its applications to some food product formulations, such as dairy products, snacks, cookies, and pasta, that are necessary at an industrial level in the food industry all over the world. In addition, this article supports the idea of incorporating it into the food sector, both from a nutritional and health perspective, as it offers numerous advantages.
Collapse
Affiliation(s)
- Nawal K. Z. AlFadhly
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Nawfal Alhelfi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Arunaksharan Narayanankutty
- Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673008, Kerala, India
| |
Collapse
|
18
|
Otsu T, Eki T, Hirose Y. A hybrid type of chromatic acclimation regulated by the dual green/red photosensory systems in cyanobacteria. PLANT PHYSIOLOGY 2022; 190:779-793. [PMID: 35751608 PMCID: PMC9434153 DOI: 10.1093/plphys/kiac284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are phototrophic bacteria that perform oxygenic photosynthesis. They use a supermolecular light-harvesting antenna complex, the phycobilisome (PBS), to capture and transfer light energy to photosynthetic reaction centers. Certain cyanobacteria alter the absorption maxima and/or overall structure of their PBSs in response to the ambient light wavelength-a process called chromatic acclimation (CA). One of the most well-known CA types is the response to green and red light, which is controlled by either the RcaEFC or CcaSR photosensory system. Here, we characterized a hybrid type of CA in the cyanobacterium Pleurocapsa sp. Pasteur Culture Collection (PCC) 7319 that uses both RcaEFC and CcaSR systems. In vivo spectroscopy suggested that strain PCC 7319 alters the relative composition of green-absorbing phycoerythrin and red-absorbing phycocyanin in the PBS. RNA sequencing and promoter motif analyses suggested that the RcaEFC system induces a gene operon for phycocyanin under red light, whereas the CcaSR system induces a rod-membrane linker gene under green light. Induction of the phycoerythrin genes under green light may be regulated through a yet unidentified photosensory system called the Cgi system. Spectroscopy analyses of the isolated PBSs suggested that hemidiscoidal and rod-shaped PBSs enriched with phycoerythrin were produced under green light, whereas only hemidiscoidal PBSs enriched with phycocyanin were produced under red light. PCC 7319 uses the RcaEFC and CcaSR systems to regulate absorption of green or red light (CA3) and the amount of rod-shaped PBSs (CA1), respectively. Cyanobacteria can thus flexibly combine diverse CA types to acclimate to different light environments.
Collapse
Affiliation(s)
- Takuto Otsu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
19
|
Khani-Juyabad F, Mohammadi P, Zarrabi M. Insights from cyanobacterial genomic and transcriptomic analyses into adaptation strategies in terrestrial environments. Genomics 2022; 114:110438. [PMID: 35902068 DOI: 10.1016/j.ygeno.2022.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
Phylogenomic analysis of Nostoc sp. MG11, a terrestrial cyanobacterium, and some terrestrial and freshwater Nostoc strains showed that the terrestrial strains grouped together in a distinctive clade, which reveals the effect of habitat on shaping Nostoc genomes. Terrestrial strains showed larger genomes and had higher predicted CDS contents than freshwater strains. Comparative genomic analysis demonstrated that genome expansion in the terrestrial Nostoc is supported by an increase in copy number of the core genes and acquisition of shared genes. Transcriptomic profiling analysis under desiccation stress revealed that Nostoc sp. MG11 protected its cell by induction of catalase, proteases, sucrose synthase, trehalose biosynthesis and maltodextrin utilization genes and maintained its normal metabolism during this condition by up-regulation of genes related to phycobilisomes and light reactions of photosynthesis, CO2 fixation and protein metabolism. These results provide insights into the strategies related to survival and adaptation of Nostoc strains to terrestrial environments.
Collapse
Affiliation(s)
- Fatemeh Khani-Juyabad
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Parisa Mohammadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran; Research Center for Applied Microbiology and Microbial Biotechnology, Alzahra University, Tehran, Iran.
| | - Mahbubeh Zarrabi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
20
|
Chen H, Qi H, Xiong P. Phycobiliproteins-A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar Drugs 2022; 20:md20070450. [PMID: 35877743 PMCID: PMC9318637 DOI: 10.3390/md20070450] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Phycobiliproteins (PBPs) are colored and water-soluble biliproteins found in cyanobacteria, rhodophytes, cryptomonads and cyanelles. They are divided into three main types: allophycocyanin, phycocyanin and phycoerythrin, according to their spectral properties. There are two methods for PBPs preparation. One is the extraction and purification of native PBPs from Cyanobacteria, Cryptophyta and Rhodophyta, and the other way is the production of recombinant PBPs by heterologous hosts. Apart from their function as light-harvesting antenna in photosynthesis, PBPs can be used as food colorants, nutraceuticals and fluorescent probes in immunofluorescence analysis. An increasing number of reports have revealed their pharmaceutical potentials such as antioxidant, anti-tumor, anti-inflammatory and antidiabetic effects. The advances in PBP biogenesis make it feasible to construct novel PBPs with various activities and produce recombinant PBPs by heterologous hosts at low cost. In this review, we present a critical overview on the productions, characterization and pharmaceutical potentials of PBPs, and discuss the key issues and future perspectives on the exploration of these valuable proteins.
Collapse
Affiliation(s)
- Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
- Correspondence:
| | - Hongtao Qi
- School of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
| |
Collapse
|
21
|
Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome. Nat Commun 2022; 13:3389. [PMID: 35715389 PMCID: PMC9205905 DOI: 10.1038/s41467-022-30962-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Cyanobacteria, glaucophytes, and rhodophytes utilize giant, light-harvesting phycobilisomes (PBSs) for capturing solar energy and conveying it to photosynthetic reaction centers. PBSs are compositionally and structurally diverse, and exceedingly complex, all of which pose a challenge for a comprehensive understanding of their function. To date, three detailed architectures of PBSs by cryo-electron microscopy (cryo-EM) have been described: a hemiellipsoidal type, a block-type from rhodophytes, and a cyanobacterial hemidiscoidal-type. Here, we report cryo-EM structures of a pentacylindrical allophycocyanin core and phycocyanin-containing rod of a thermophilic cyanobacterial hemidiscoidal PBS. The structures define the spatial arrangement of protein subunits and chromophores, crucial for deciphering the energy transfer mechanism. They reveal how the pentacylindrical core is formed, identify key interactions between linker proteins and the bilin chromophores, and indicate pathways for unidirectional energy transfer. Phycobilisome (PBS) absorbs solar energy and transfer the energy to photosynthetic membrane proteins. In this study, the structures of the pentacylindrical core and rod in PBS from a thermophilic cyanobacterium by cryo-electron microscopy.
Collapse
|
22
|
Muth-Pawlak D, Kreula S, Gollan PJ, Huokko T, Allahverdiyeva Y, Aro EM. Patterning of the Autotrophic, Mixotrophic, and Heterotrophic Proteomes of Oxygen-Evolving Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2022; 13:891895. [PMID: 35694301 PMCID: PMC9175036 DOI: 10.3389/fmicb.2022.891895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Proteomes of an oxygenic photosynthetic cyanobacterium, Synechocystis sp. PCC 6803, were analyzed under photoautotrophic (low and high CO2, assigned as ATLC and ATHC), photomixotrophic (MT), and light-activated heterotrophic (LAH) conditions. Allocation of proteome mass fraction to seven sub-proteomes and differential expression of individual proteins were analyzed, paying particular attention to photosynthesis and carbon metabolism–centered sub-proteomes affected by the quality and quantity of the carbon source and light regime upon growth. A distinct common feature of the ATHC, MT, and LAH cultures was low abundance of inducible carbon-concentrating mechanisms and photorespiration-related enzymes, independent of the inorganic or organic carbon source. On the other hand, these cells accumulated a respiratory NAD(P)H dehydrogenase I (NDH-11) complex in the thylakoid membrane (TM). Additionally, in glucose-supplemented cultures, a distinct NDH-2 protein, NdbA, accumulated in the TM, while the plasma membrane-localized NdbC and terminal oxidase decreased in abundance in comparison to both AT conditions. Photosynthetic complexes were uniquely depleted under the LAH condition but accumulated under the ATHC condition. The MT proteome displayed several heterotrophic features typical of the LAH proteome, particularly including the high abundance of ribosome as well as amino acid and protein biosynthesis machinery-related components. It is also noteworthy that the two equally light-exposed ATHC and MT cultures allocated similar mass fractions of the total proteome to the seven distinct sub-proteomes. Unique trophic condition-specific expression patterns were likewise observed among individual proteins, including the accumulation of phosphate transporters and polyphosphate polymers storing energy surplus in highly energetic bonds under the MT condition and accumulation under the LAH condition of an enzyme catalyzing cyanophycin biosynthesis. It is concluded that the rigor of cell growth in the MT condition results, to a great extent, by combining photosynthetic activity with high intracellular inorganic carbon conditions created upon glucose breakdown and release of CO2, besides the direct utilization of glucose-derived carbon skeletons for growth. This combination provides the MT cultures with excellent conditions for growth that often exceeds that of mere ATHC.
Collapse
|
23
|
Grébert T, Garczarek L, Daubin V, Humily F, Marie D, Ratin M, Devailly A, Farrant GK, Mary I, Mella-Flores D, Tanguy G, Labadie K, Wincker P, Kehoe DM, Partensky F. Diversity and Evolution of Pigment Types in Marine Synechococcus Cyanobacteria. Genome Biol Evol 2022; 14:evac035. [PMID: 35276007 PMCID: PMC8995045 DOI: 10.1093/gbe/evac035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Synechococcus cyanobacteria are ubiquitous and abundant in the marine environment and contribute to an estimated 16% of the ocean net primary productivity. Their light-harvesting complexes, called phycobilisomes (PBS), are composed of a conserved allophycocyanin core, from which radiates six to eight rods with variable phycobiliprotein and chromophore content. This variability allows Synechococcus cells to optimally exploit the wide variety of spectral niches existing in marine ecosystems. Seven distinct pigment types or subtypes have been identified so far in this taxon based on the phycobiliprotein composition and/or the proportion of the different chromophores in PBS rods. Most genes involved in their biosynthesis and regulation are located in a dedicated genomic region called the PBS rod region. Here, we examine the variability of gene content and organization of this genomic region in a large set of sequenced isolates and natural populations of Synechococcus representative of all known pigment types. All regions start with a tRNA-PheGAA and some possess mobile elements for DNA integration and site-specific recombination, suggesting that their genomic variability relies in part on a "tycheposon"-like mechanism. Comparison of the phylogenies obtained for PBS and core genes revealed that the evolutionary history of PBS rod genes differs from the core genome and is characterized by the co-existence of different alleles and frequent allelic exchange. We propose a scenario for the evolution of the different pigment types and highlight the importance of incomplete lineage sorting in maintaining a wide diversity of pigment types in different Synechococcus lineages despite multiple speciation events.
Collapse
Affiliation(s)
- Théophile Grébert
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Laurence Garczarek
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Vincent Daubin
- UMR 5558 Biometry and Evolutionary Biology, Université Lyon 1, Villeurbanne 69622, France
| | - Florian Humily
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Dominique Marie
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Morgane Ratin
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Alban Devailly
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Gregory K Farrant
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Isabelle Mary
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Daniella Mella-Flores
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| | - Gwenn Tanguy
- Centre National de la Recherche Scientifique, FR 2424, Station Biologique, Roscoff 29680, France
| | - Karine Labadie
- Genoscope, Institut de biologie François-Jacob, Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université d’Evry, Université Paris-Saclay, Evry, France
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Frédéric Partensky
- Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Roscoff 29680, France
| |
Collapse
|
24
|
Kumarapperuma I, Joseph KL, Wang C, Biju LM, Tom IP, Weaver KD, Grébert T, Partensky F, Schluchter WM, Yang X. Crystal structure and molecular mechanism of an E/F type bilin lyase-isomerase. Structure 2022; 30:564-574.e3. [PMID: 35148828 PMCID: PMC8995348 DOI: 10.1016/j.str.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
Abstract
Chromophore attachment of the light-harvesting apparatus represents one of the most important post-translational modifications in photosynthetic cyanobacteria. Extensive pigment diversity of cyanobacteria critically depends on bilin lyases that covalently attach chemically distinct chromophores to phycobiliproteins. However, how bilin lyases catalyze bilin ligation reactions and how some lyases acquire additional isomerase abilities remain elusive at the molecular level. Here, we report the crystal structure of a representative bilin lyase-isomerase MpeQ. This structure has revealed a "question-mark" protein architecture that unambiguously establishes the active site conserved among the E/F-type bilin lyases. Based on structural, mutational, and modeling data, we demonstrate that stereoselectivity of the active site plays a critical role in conferring the isomerase activity of MpeQ. We further advance a tyrosine-mediated reaction scheme unifying different types of bilin lyases. These results suggest that lyases and isomerase actions of bilin lyases arise from two coupled molecular events of distinct origin.
Collapse
Affiliation(s)
| | - Kes Lynn Joseph
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Cong Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Linta M Biju
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Irin P Tom
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Kourtney D Weaver
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Théophile Grébert
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université, CNRS, 29680 Roscoff, France
| | - Frédéric Partensky
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université, CNRS, 29680 Roscoff, France
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA; Department of Ophthalmology and Vision Sciences, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
25
|
Li Y, Chen M. The specificity of the bilin lyase CpcS for chromophore attachment to allophycocyanin in the chlorophyll f-containing cyanobacterium Halomicronima hongdechloris. PHOTOSYNTHESIS RESEARCH 2022; 151:213-223. [PMID: 34564824 DOI: 10.1007/s11120-021-00878-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Phycobilisomes are light-harvesting antenna complexes of cyanobacteria and red algae that are comprised of chromoproteins called phycobiliproteins. PBS core structures are made up of allophycocyanin subunits. Halomicronema hongdechloris (H. hongdechloris) is one of the cyanobacteria that produce chlorophyll f (Chl f) under far-red light and is regulated by the Far-Red Light Photoacclimation gene cluster. There are five genes encoding APC in this specific gene cluster, and they are responsible for assembling the red-shifted PBS in H. hongdechloris grown under far-red light. In this study, the five apc genes located in the FaRLiP gene cluster were heterologously expressed in an Escherichia coli reconstitution system. The canonical APC-encoding genes were also constructed in the same system for comparison. Additionally, five annotated phycobiliprotein lyase-encoding genes (cpcS) from the H. hongdechloris genome were phylogenetically classified and experimentally tested for their catalytic properties including their contribution to the shifted absorption of PBS. Through analysis of recombinant proteins, we determined that the heterodimer of CpcS-I and CpcU are able to ligate a chromophore to the APC-α/APC-β subunits. We discuss some hypotheses towards understanding the roles of the specialised APC and contributions of PBP lyases.
Collapse
Affiliation(s)
- Yaqiong Li
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Min Chen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
26
|
Dagnino-Leone J, Figueroa CP, Castañeda ML, Youlton AD, Vallejos-Almirall A, Agurto-Muñoz A, Pavón Pérez J, Agurto-Muñoz C. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Comput Struct Biotechnol J 2022; 20:1506-1527. [PMID: 35422968 PMCID: PMC8983314 DOI: 10.1016/j.csbj.2022.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Phycobiliproteins (PBPs) are fluorescent proteins of various colors, including fuchsia, purple-blue and cyan, that allow the capture of light energy in auxiliary photosynthetic complexes called phycobilisomes (PBS). PBPs have several highly preserved structural and physicochemical characteristics. In the PBS context, PBPs function is capture luminous energy in the 450-650 nm range and delivers it to photosystems allowing photosynthesis take place. Besides the energy harvesting function, PBPs also have shown to have multiple biological activities, including antioxidant, antibacterial and antitumours, making them an interesting focus for different biotechnological applications in areas like biomedicine, bioenergy and scientific research. Nowadays, the main sources of PBPs are cyanobacteria and micro and macro algae from the phylum Rhodophyta. Due to the diverse biological activities of PBPs, they have attracted the attention of different industries, such as food, biomedical and cosmetics. This is why a large number of patents related to the production, extraction, purification of PBPs and their application as cosmetics, biopharmaceuticals or diagnostic applications have been generated, looking less ecological impact in the natural prairies of macroalgae and less culture time or higher productivity in cyanobacteria to satisfy the markets and applications that require high amounts of these molecules. In this review, we summarize the main structural characteristics of PBPs, their biosynthesys and biotechnological applications. We also address current trends and future perspectives of the PBPs market.
Collapse
Affiliation(s)
- Jorge Dagnino-Leone
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristina Pinto Figueroa
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Mónica Latorre Castañeda
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrea Donoso Youlton
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrés Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Jessy Pavón Pérez
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| | - Cristian Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| |
Collapse
|
27
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Tomazic N, Overkamp KE, Wegner H, Gu B, Mahler F, Aras M, Keller S, Pierik AJ, Hofmann E, Frankenberg-Dinkel N. Exchange of a single amino acid residue in the cryptophyte phycobiliprotein lyase GtCPES expands its substrate specificity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148493. [PMID: 34537203 DOI: 10.1016/j.bbabio.2021.148493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Cryptophytes are among the few eukaryotes employing phycobiliproteins (PBP) for light harvesting during oxygenic photosynthesis. In contrast to cyanobacterial PBP that are organized in membrane-associated phycobilisomes, those from cryptophytes are soluble within the chloroplast thylakoid lumen. Their light-harvesting capacity is due to covalent linkage of several open-chain tetrapyrrole chromophores (phycobilins). Guillardia theta utilizes the PBP phycoerythrin 545 with 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB) as chromophores. The assembly of PBPs in cryptophytes involves the action of PBP-lyases as shown for cyanobacterial PBP. PBP-lyases facilitate the attachment of the chromophore in the right configuration and stereochemistry. Here we present the functional characterization of the eukaryotic S-type PBP lyase GtCPES. We show GtCPES-mediated transfer and covalent attachment of PEB to the conserved Cys82 of the acceptor PBP β-subunit (PmCpeB) of Prochlorococcus marinus MED4. On the basis of the previously solved crystal structure, the GtCPES binding pocket was investigated using site-directed mutagenesis. Thereby, amino acid residues involved in phycobilin binding and transfer were identified. Interestingly, exchange of a single amino acid residue Met67 to Ala extended the substrate specificity to phycocyanobilin (PCB), most likely by enlarging the substrate-binding pocket. Variant GtCPES_M67A binds both PEB and PCB forming a stable, colored complex in vitro and produced in Escherichia coli. GtCPES_M67A is able to mediate PCB transfer to Cys82 of PmCpeB. Based on these findings, we postulate that this single amino acid residue has a crucial role for bilin binding specificity of S-type phycoerythrin lyases but additional factors regulate handover to the target protein.
Collapse
Affiliation(s)
- Natascha Tomazic
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Kristina E Overkamp
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Helen Wegner
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Bin Gu
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Germany
| | - Marco Aras
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Germany; Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Antonio J Pierik
- Biochemistry, Faculty for Chemistry, Technische Universität Kaiserslautern (TUK), Germany
| | - Eckhard Hofmann
- Proteincrystallography, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
29
|
Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA. Uncovering Research Trends of Phycobiliproteins Using Bibliometric Approach. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112358. [PMID: 34834721 PMCID: PMC8622606 DOI: 10.3390/plants10112358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
Collapse
Affiliation(s)
- Hui Teng Tan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Fatimah Md. Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yam Sim Khaw
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.T.T.); (Y.S.K.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.A.A.); (N.A.S.)
| |
Collapse
|
30
|
Mishima K, Shoji M, Umena Y, Boero M, Shigeta Y. Estimation of the relative contributions to the electronic energy transfer rates based on Förster theory: The case of C-phycocyanin chromophores. Biophys Physicobiol 2021; 18:196-214. [PMID: 34552842 PMCID: PMC8421246 DOI: 10.2142/biophysico.bppb-v18.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
In the present study, we provide a reformulation of the theory originally proposed by Förster which allows for simple and convenient formulas useful to estimate the relative contributions of transition dipole moments of a donor and acceptor (chemical factors), their orientation factors (intermolecular structural factors), intermolecular center-to-center distances (intermolecular structural factors), spectral overlaps of absorption and emission spectra (photophysical factors), and refractive index (material factor) to the excitation energy transfer (EET) rate constant. To benchmark their validity, we focused on the EET occurring in C-phycocyanin (C-PC) chromophores. To this aim, we resorted to quantum chemistry calculations to get optimized molecular structures of the C-PC chromophores within the density functional theory (DFT) framework. The absorption and emission spectra, as well as transition dipole moments, were computed by using the time-dependent DFT (TDDFT). Our method was applied to several types of C-PCs showing that the EET rates are determined by an interplay of their specific physical, chemical, and geometrical features. These results show that our formulas can become a useful tool for a reliable estimation of the relative contributions of the factors regulating the EET transfer rate.
Collapse
Affiliation(s)
- Kenji Mishima
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.,JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yasufumi Umena
- Department of Physiology, Division of Biophysics, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, France
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
31
|
Assessment of Phycocyanin Extraction from Cyanidium caldarium by Spark Discharges, Compared to Freeze-Thaw Cycles, Sonication, and Pulsed Electric Fields. Microorganisms 2021; 9:microorganisms9071452. [PMID: 34361888 PMCID: PMC8303284 DOI: 10.3390/microorganisms9071452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/04/2022] Open
Abstract
Phycocyanin is a blue colored pigment, synthesized by several species of cyanobacteria and red algae. Besides the application as a food-colorant, the pigmented protein is of high interest as a pharmaceutically and nutritionally valuable compound. Since cyanobacteria-derived phycocyanin is thermolabile, red algae that are adapted to high temperatures are an interesting source for phycocyanin extraction. Still, the extraction of high quality phycocyanin from red algae is challenging due to the strong and rigid cell wall. Since standard techniques show low yields, alternative methods are needed. Recently, spark discharges have been shown to gently disintegrate microalgae and thereby enable the efficient extraction of susceptible proteins. In this study, the applicability of spark discharges for phycocyanin extraction from the red alga Cyanidium caldarium was investigated. The efficiency of 30 min spark discharges was compared with standard treatment protocols, such as three times repeated freeze-thaw cycles, sonication, and pulsed electric fields. Input energy for all physical methods were kept constant at 11,880 J to ensure comparability. The obtained extracts were evaluated by photometric and fluorescent spectroscopy. Highest extraction yields were achieved with sonication (53 mg/g dry weight (dw)) and disintegration by spark discharges (4 mg/g dw) while neither freeze-thawing nor pulsed electric field disintegration proved effective. The protein analysis via LC-MS of the former two extracts revealed a comparable composition of phycobiliproteins. Despite the lower total concentration of phycocyanin after application of spark discharges, the purity in the raw extract was higher in comparison to the extract attained by sonication.
Collapse
|
32
|
Kamo T, Eki T, Hirose Y. Pressurized Liquid Extraction of a Phycocyanobilin Chromophore and Its Reconstitution with a Cyanobacteriochrome Photosensor for Efficient Isotopic Labeling. PLANT & CELL PHYSIOLOGY 2021; 62:334-347. [PMID: 33386854 PMCID: PMC8112840 DOI: 10.1093/pcp/pcaa164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Linear tetrapyrrole compounds (bilins) are chromophores of the phytochrome and cyanobacteriochrome classes of photosensors and light-harvesting phycobiliproteins. Various spectroscopic techniques, such as resonance Raman, Fourier transform-infrared and nuclear magnetic resonance, have been used to elucidate the structures underlying their remarkable spectral diversity, in which the signals are experimentally assigned to specific structures using isotopically labeled bilin. However, current methods for isotopic labeling of bilins require specialized expertise, time-consuming procedures and/or expensive reagents. To address these shortcomings, we established a method for pressurized liquid extraction of phycocyanobilin (PCB) from the phycobiliprotein powder Lina Blue and also the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). PCB was efficiently cleaved in ethanol with three extractions (5 min each) under nitrogen at 125�C and 100 bars. A prewash at 75�C was effective for removing cellular pigments of Synechocystis without PCB cleavage. Liquid chromatography and mass spectrometry suggested that PCB was cleaved in the C3-E (majority) and C3-Z (partial) configurations. 15N- and 13C/15N-labeled PCBs were prepared from Synechocystis cells grown with NaH13CO3 and/or Na15NO3, the concentrations of which were optimized based on cell growth and pigmentation. Extracted PCB was reconstituted with a recombinant apoprotein of the cyanobacteriochrome-class photosensor RcaE. Yield of the photoactive holoprotein was improved by optimization of the expression conditions and cell disruption in the presence of Tween 20. Our method can be applied for the isotopic labeling of other PCB-binding proteins and for the commercial production of non-labeled PCB for food, cosmetic and medical applications.
Collapse
Affiliation(s)
- Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580 Japan
| |
Collapse
|
33
|
Carrigee LA, Frick JP, Karty JA, Garczarek L, Partensky F, Schluchter WM. MpeV is a lyase isomerase that ligates a doubly linked phycourobilin on the β-subunit of phycoerythrin I and II in marine Synechococcus. J Biol Chem 2021; 296:100031. [PMID: 33154169 PMCID: PMC7948978 DOI: 10.1074/jbc.ra120.015289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
Synechococcus cyanobacteria are widespread in the marine environment, as the extensive pigment diversity within their light-harvesting phycobilisomes enables them to utilize various wavelengths of light for photosynthesis. The phycobilisomes of Synechococcus sp. RS9916 contain two forms of the protein phycoerythrin (PEI and PEII), each binding two chromophores, green-light absorbing phycoerythrobilin and blue-light absorbing phycourobilin. These chromophores are ligated to specific cysteines via bilin lyases, and some of these enzymes, called lyase isomerases, attach phycoerythrobilin and simultaneously isomerize it to phycourobilin. MpeV is a putative lyase isomerase whose role in PEI and PEII biosynthesis is not clear. We examined MpeV in RS9916 using recombinant protein expression, absorbance spectroscopy, and tandem mass spectrometry. Our results show that MpeV is the lyase isomerase that covalently attaches a doubly linked phycourobilin to two cysteine residues (C50, C61) on the β-subunit of both PEI (CpeB) and PEII (MpeB). MpeV activity requires that CpeB or MpeB is first chromophorylated by the lyase CpeS (which adds phycoerythrobilin to C82). Its activity is further enhanced by CpeZ (a homolog of a chaperone-like protein first characterized in Fremyella diplosiphon). MpeV showed no detectable activity on the α-subunits of PEI or PEII. The mechanism by which MpeV links the A and D rings of phycourobilin to C50 and C61 of CpeB was also explored using site-directed mutants, revealing that linkage at the A ring to C50 is a critical step in chromophore attachment, isomerization, and stability. These data provide novel insights into β-PE biosynthesis and advance our understanding of the mechanisms guiding lyase isomerases.
Collapse
Affiliation(s)
- Lyndsay A Carrigee
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Laurence Garczarek
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université & CNRS, UMR 7144, Roscoff, France
| | - Frédéric Partensky
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université & CNRS, UMR 7144, Roscoff, France
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA.
| |
Collapse
|
34
|
Nguyen AA, Joseph KL, Bussell AN, Pokhrel S, Karty JA, Kronfel CM, Kehoe DM, Schluchter WM. CpeT is the phycoerythrobilin lyase for Cys-165 on β-phycoerythrin from Fremyella diplosiphon and the chaperone-like protein CpeZ greatly improves its activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148284. [PMID: 32777305 DOI: 10.1016/j.bbabio.2020.148284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific cysteine residues on light harvesting proteins present in cyanobacteria and red algae. The lyases responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the biosynthesis of PE in the cyanobacterium Fremyella diplosiphon. Recombinant protein studies show that CpeT alone can bind phycoerythrobilin (PEB), but CpeZ, a chaperone-like protein, is needed in order to correctly and efficiently attach PEB to the β-subunit of PE. MS analyses of the recombinant β-subunit of PE coexpressed with CpeT and CpeZ show that PEB is attached at Cys-165. Purified phycobilisomes from a cpeT knockout mutant and wild type (WT) samples from F. diplosiphon were analyzed and compared. The cpeT mutant contained much less PE and more phycocyanin than WT cells grown under green light, conditions which should maximize the production of PE. In addition, Northern blot analyses showed that the cpeCDESTR operon mRNAs were upregulated while the cpeBcpeA mRNAs were downregulated in the cpeT mutant strain when compared with WT, suggesting that CpeT may also play a direct or indirect regulatory role in transcription of these operons or their mRNA stability, in addition to its role as a PEB lyase for Cys-165 on β-PE.
Collapse
Affiliation(s)
- Adam A Nguyen
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Kes Lynn Joseph
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Adam N Bussell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Suman Pokhrel
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Christina M Kronfel
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
35
|
Wang F, Fang J, Guan K, Luo S, Dogra V, Li B, Ma D, Zhao X, Lee KP, Sun P, Xin J, Liu T, Xing W, Kim C. The Arabidopsis CRUMPLED LEAF protein, a homolog of the cyanobacterial bilin lyase, retains the bilin-binding pocket for a yet unknown function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:964-978. [PMID: 32860438 DOI: 10.1111/tpj.14974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The photosynthetic bacterial phycobiliprotein lyases, also called CpcT lyases, catalyze the biogenesis of phycobilisome, a light-harvesting antenna complex, through the covalent attachment of chromophores to the antenna proteins. The Arabidopsis CRUMPLED LEAF (CRL) protein is a homolog of the cyanobacterial CpcT lyase. Loss of CRL leads to multiple lesions, including localized foliar cell death, constitutive expression of stress-related nuclear genes, abnormal cell cycle, and impaired plastid division. Notwithstanding the apparent phenotypes, the function of CRL still remains elusive. To gain insight into the function of CRL, we examined whether CRL still retains the capacity to bind with the bacterial chromophore phycocyanobilin (PCB) and its plant analog phytochromobilin (PΦB). The revealed structure of the CpcT domain of CRL is comparable to that of the CpcT lyase, despite the low sequence identity. The subsequent in vitro biochemical assays found, as shown for the CpcT lyase, that PCB/PΦB binds to the CRL dimer. However, some mutant forms of CRL, substantially compromised in their bilin-binding ability, still restore the crl-induced multiple lesions. These results suggest that although CRL retains the bilin-binding pocket, it seems not functionally associated with the crl-induced multiple lesions.
Collapse
Affiliation(s)
- Fangfang Wang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Fang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaoling Guan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengji Luo
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Vivek Dogra
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bingqi Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Demin Ma
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyan Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Keun Pyo Lee
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pengkai Sun
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jian Xin
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Liu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiman Xing
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chanhong Kim
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
36
|
Mogany T, Kumari S, Swalaha FM, Bux F. An in silico structural and physiochemical analysis of C-Phycocyanin of halophile Euhalothece sp. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Puzorjov A, McCormick AJ. Phycobiliproteins from extreme environments and their potential applications. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3827-3842. [PMID: 32188986 DOI: 10.1093/jxb/eraa139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment-proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
38
|
Sonani RR, Roszak AW, Liu H, Gross ML, Blankenship RE, Madamwar D, Cogdell RJ. Revisiting high-resolution crystal structure of Phormidium rubidum phycocyanin. PHOTOSYNTHESIS RESEARCH 2020; 144:349-360. [PMID: 32303893 PMCID: PMC7491960 DOI: 10.1007/s11120-020-00746-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The crystal structure of phycocyanin (pr-PC) isolated from Phormidium rubidum A09DM (P. rubidum) is described at a resolution of 1.17 Å. Electron density maps derived from crystallographic data showed many clear differences in amino acid sequences when compared with the previously obtained gene-derived sequences. The differences were found in 57 positions (30 in α-subunit and 27 in β-subunit of pr-PC), in which all residues except one (β145Arg) are not interacting with the three phycocyanobilin chromophores. Highly purified pr-PC was then sequenced by mass spectrometry (MS) using LC-MS/MS. The MS data were analyzed using two independent proteomic search engines. As a result of this analysis, complete agreement between the polypeptide sequences and the electron density maps was obtained. We attribute the difference to multiple genes in the bacterium encoding the phycocyanin apoproteins and that the gene sequencing sequenced the wrong ones. We are not implying that protein sequencing by mass spectrometry is more accurate than that of gene sequencing. The final 1.17 Å structure of pr-PC allows the chromophore interactions with the protein to be described with high accuracy.
Collapse
Affiliation(s)
- Ravi R Sonani
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388 315, India
- Małopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Aleksander W Roszak
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Haijun Liu
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Robert E Blankenship
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388 315, India.
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
39
|
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annu Rev Microbiol 2020; 73:407-433. [PMID: 31500538 DOI: 10.1146/annurev-micro-020518-115738] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the Cyanobacteria phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.
Collapse
Affiliation(s)
- Joseph E Sanfilippo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA;
| | - Laurence Garczarek
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - Frédéric Partensky
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
40
|
Hu PP, Hou JY, Xu YL, Niu NN, Zhao C, Lu L, Zhou M, Scheer H, Zhao KH. The role of lyases, NblA and NblB proteins and bilin chromophore transfer in restructuring the cyanobacterial light-harvesting complex ‡. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:529-540. [PMID: 31820831 DOI: 10.1111/tpj.14647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the β-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.
Collapse
Affiliation(s)
- Ping-Ping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Yun Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cheng Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| |
Collapse
|
41
|
Carrigee LA, Mahmoud RM, Sanfilippo JE, Frick JP, Strnat JA, Karty JA, Chen B, Kehoe DM, Schluchter WM. CpeY is a phycoerythrobilin lyase for cysteine 82 of the phycoerythrin I α-subunit in marine Synechococcus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148215. [PMID: 32360311 DOI: 10.1016/j.bbabio.2020.148215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/15/2022]
Abstract
Marine Synechococcus are widespread in part because they are efficient at harvesting available light using their complex antenna, or phycobilisome, composed of multiple phycobiliproteins and bilin chromophores. Over 40% of Synechococcus strains are predicted to perform a type of chromatic acclimation that alters the ratio of two chromophores, green-light-absorbing phycoerythrobilin and blue-light-absorbing phycourobilin, to optimize light capture by phycoerythrin in the phycobilisome. Lyases are enzymes which catalyze the addition of bilin chromophores to specific cysteine residues on phycobiliproteins and are involved in chromatic acclimation. CpeY, a candidate lyase in the model strain Synechococcus sp. RS9916, added phycoerythrobilin to cysteine 82 of only the α subunit of phycoerythrin I (CpeA) in the presence or absence of the chaperone-like protein CpeZ in a recombinant protein expression system. These studies demonstrated that recombinant CpeY attaches phycoerythrobilin to as much as 72% of CpeA, making it one of the most efficient phycoerythrin lyases characterized to date. Phycobilisomes from a cpeY- mutant showed a near native bilin composition in all light conditions except for a slight replacement of phycoerythrobilin by phycourobilin at CpeA cysteine 82. This demonstrates that CpeY is not involved in any chromatic acclimation-driven chromophore changes and suggests that the chromophore attached at cysteine 82 of CpeA in the cpeY- mutant is ligated by an alternative phycoerythrobilin lyase. Although loss of CpeY does not greatly inhibit native phycobilisome assembly in vivo, the highly active recombinant CpeY can be used to generate large amounts of fluorescent CpeA for biotechnological uses.
Collapse
Affiliation(s)
- Lyndsay A Carrigee
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Rania M Mahmoud
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Botany, Faculty of Science, University of Fayoum, Fayoum, Egypt
| | | | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Johann A Strnat
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Bo Chen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
42
|
Chen H, Zheng C, Jiang P, Ji G. Biosynthesis of a Phycocyanin Beta Subunit with Two Noncognate Chromophores in Escherichia coli. Appl Biochem Biotechnol 2019; 191:763-771. [PMID: 31853878 DOI: 10.1007/s12010-019-03219-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
Recombinant phycobiliprotein can be used as fluorescent label in immunofluorescence assay. In this study, pathway for phycocyanin beta subunit (CpcB) carrying noncognate chromophore phycoerythrobilin (PEB) and phycourobilin (PUB) was constructed in Escherichia coli. Lyase CpcS and CpcT could catalyze attachment of PEB to Cys84-CpcB and Cys155-CpcB, respectively. However, PEB was attached only to Cys84-CpcB when both CpcS and CpcT were present in E. coli. A dual plasmid expression system was used to control the expression of lyases and the attachment order of PEB to CpcB. The production of PEB-Cys155-CpcB was achieved by L-arabinose-induced expression of CpcS, CpcB, Ho1, and PebS, and then the attachment of PEB to Cys84-CpcB was achieved by IPTG-induced expression of CpcS. The doubly chromophorylated CpcB absorbed light maximally at 497.5 nm and 557.0 nm and fluoresced maximally at 507.5 nm and 566.5 nm. An amount of light energy absorbed by PUB-Cys155-CpcB is transferred to PEB-Cys84-CpcB in doubly chromophorylated CpcB, conferring a large stokes shift of 69 nm for this fluorescent protein. There are interactions between chromophores of CpcB which possibly together with the help of lyases lead to isomerization of PEB-Cys155-CpcB to PUB-Cys155-CpcB.
Collapse
Affiliation(s)
- Huaxin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Caiyun Zheng
- College of Biotechnology Sericultural Research Institute, Jiangsu University of Science and Technology, Jiangsu, China
| | - Peng Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Gengsheng Ji
- College of Biotechnology Sericultural Research Institute, Jiangsu University of Science and Technology, Jiangsu, China
| |
Collapse
|
43
|
Hou YN, Ding WL, Hu JL, Jiang XX, Tan ZZ, Zhao KH. Very Bright Phycoerythrobilin Chromophore for Fluorescence Biolabeling. Chembiochem 2019; 20:2777-2783. [PMID: 31145526 DOI: 10.1002/cbic.201900273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 11/07/2022]
Abstract
Biliproteins have extended the spectral range of fluorescent proteins into the far-red (FR) and near-infrared (NIR) regions. These FR and NIR fluorescent proteins are suitable for the bioimaging of mammalian tissues and are indispensable for multiplex labeling. Their application, however, presents considerable challenges in increasing their brightness, while maintaining emission in FR regions and oligomerization of monomers. Two fluorescent biliprotein triads, termed BDFP1.2/1.6:3.3:1.2/1.6, are reported. In mammalian cells, these triads not only have extremely high brightness in the FR region, but also have monomeric oligomerization. The BDFP1.2 and BDFP1.6 domains covalently bind to biliverdin, which is accessible in most cells. The BDFP3.3 domain noncovalently binds phycoerythrobilin that is added externally. A new method of replacing phycoerythrobilin with proteolytically digested BDFP3.3 facilitates this labeling. BDFP3.3 has a very high fluorescence quantum yield of 66 %, with maximal absorbance at λ=608 nm and fluorescence at λ=619 nm. In BDFP1.2/1.6:3.3:1.2/1.6, the excitation energy that is absorbed in the red region by phycoerythrobilin in the BDFP3.3 domain is transferred to biliverdin in the two BDFP1.2 or BDFP1.6 domains and fluoresces at λ≈670 nm. The combination of BDFP3.3 and BDFP1.2/1.6:3.3:1.2/1.6 can realize dual-color labeling. Labeling various proteins by fusion to these new fluorescent biliproteins is demonstrated in prokaryotic and mammalian cells.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ji-Ling Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
44
|
Fuenzalida Werner JP, Mishra K, Huang Y, Vetschera P, Glasl S, Chmyrov A, Richter K, Ntziachristos V, Stiel AC. Structure-Based Mutagenesis of Phycobiliprotein smURFP for Optoacoustic Imaging. ACS Chem Biol 2019; 14:1896-1903. [PMID: 31389680 DOI: 10.1021/acschembio.9b00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photo- or optoacoustics (OA) imaging is increasingly being used as a non-invasive imaging method that can simultaneously reveal structure and function in deep tissue. However, the most frequent transgenic OA labels are current fluorescent proteins that are not optimized for OA imaging. Thus, they lack OA signal strength, and their absorption maxima are positioned at short wavelengths, thus giving small penetration depths and strong background signals. Here, we apply insights from our recent determination of the structure of the fluorescent phycobiliprotein smURFP to mutate a range of residues to promote the nonradiative decay pathway that generates the OA signal. We identified hydrophobic and aromatic substitutions within the chromophore-binding pocket that substantially increase the intensity of the OA signal and red-shift the absorption. Our results demonstrate the feasibility of structure-based mutagenesis to repurpose fluorescent probes for OA imaging, and they may provide structure-function insights for de novo engineering of transgenic OA probes.
Collapse
Affiliation(s)
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Paul Vetschera
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Andriy Chmyrov
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, D-81675 Munich, Germany
| | - Klaus Richter
- Center for Integrated Protein Science, Department of Chemistry, Technische Universität München, D-85748 Garching, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Technische Universität München, D-81675 Munich, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
45
|
Sonani RR, Rastogi RP, Patel SN, Chaubey MG, Singh NK, Gupta GD, Kumar V, Madamwar D. Phylogenetic and crystallographic analysis of Nostoc phycocyanin having blue-shifted spectral properties. Sci Rep 2019; 9:9863. [PMID: 31285455 PMCID: PMC6614406 DOI: 10.1038/s41598-019-46288-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023] Open
Abstract
The distinct sequence feature and spectral blue-shift (~10 nm) of phycocyanin, isolated from Nostoc sp. R76DM (N-PC), were investigated by phylogenetic and crystallographic analyses. Twelve conserved substitutions in N-PC sequence were found distributed unequally among α- and β-subunit (3 in α- and 9 in β-subunit). The phylogenetic analysis suggested that molecular evolution of α- and β-subunit of Nostoc-phycocyanin is faster than evolution of Nostoc-species. The divergence events seem to have occurred more frequently in β-subunit, compared to α-subunit (relative divergence, 7.38 for α-subunit and 9.66 for β-subunit). Crystal structure of N-PC was solved at 2.35 Å resolution to reasonable R-factors (Rwork/RFree = 0.199/0.248). Substitutions congregate near interface of two αβ-monomer in N-PC trimer and are of compensatory nature. Six of the substitutions in β-subunit may be involved in maintaining topology of β-subunit, one in inter-monomer interaction and one in interaction with linker-protein. The β153Cys-attached chromophore adopts high-energy conformational state resulting due to reduced coplanarity of B- and C-pyrrole rings. Distortion in chromophore conformation can result in blue-shift in N-PC spectral properties. N-PC showed significant in-vitro and in-vivo antioxidant activity comparable with other phycocyanin. Since Nostoc-species constitute a distinct phylogenetic clade, the present structure would provide a better template to build a model for phycocyanins of these species.
Collapse
Affiliation(s)
- Ravi R Sonani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rajesh Prasad Rastogi
- Ministry of Environment, Forest & Climate Change, Indira Paryavaran Bhawan, New Delhi, 110003, India
| | - Stuti Nareshkumar Patel
- Post-Graduate Department of Biosciences, Satellite Campus, Sardar Patel University, Bakrol, Anand, 388 315, Gujarat, India
| | - Mukesh Ghanshyam Chaubey
- Shri A. N. Patel P. G. Institute of Science and Research, Sardar Patel University, Anand, Gujarat, 388001, India
| | - Niraj Kumar Singh
- Shri A. N. Patel P. G. Institute of Science and Research, Sardar Patel University, Anand, Gujarat, 388001, India
| | - Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Satellite Campus, Sardar Patel University, Bakrol, Anand, 388 315, Gujarat, India.
| |
Collapse
|
46
|
Kronfel CM, Biswas A, Frick JP, Gutu A, Blensdorf T, Karty JA, Kehoe DM, Schluchter WM. The roles of the chaperone-like protein CpeZ and the phycoerythrobilin lyase CpeY in phycoerythrin biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:549-561. [PMID: 31173730 DOI: 10.1016/j.bbabio.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/26/2019] [Accepted: 06/02/2019] [Indexed: 02/08/2023]
Abstract
Phycoerythrin (PE) present in the distal ends of light-harvesting phycobilisome rods in Fremyella diplosiphon (Tolypothrix sp. PCC 7601) contains five phycoerythrobilin (PEB) chromophores attached to six cysteine residues for efficient green light capture for photosynthesis. Chromophore ligation on PE subunits occurs through bilin lyase catalyzed reactions, but the characterization of the roles of all bilin lyases for phycoerythrin is not yet complete. To gain a more complete understanding about the individual functions of CpeZ and CpeY in PE biogenesis in cyanobacteria, we examined PE and phycobilisomes purified from wild type F. diplosiphon, cpeZ and cpeY knockout mutants. We find that the cpeZ and cpeY mutants accumulate less PE than wild type cells. We show that in the cpeZ mutant, chromophorylation of both PE subunits is affected, especially the Cys-80 and Cys-48/Cys-59 sites of CpeB, the beta-subunit of PE. The cpeY mutant showed reduced chromophorylation at Cys-82 of CpeA. We also show that, in vitro, CpeZ stabilizes PE subunits and assists in refolding of CpeB after denaturation. Taken together, we conclude that CpeZ acts as a chaperone-like protein, assisting in the folding/stability of PE subunits, allowing bilin lyases such as CpeY and CpeS to attach PEB to their PE subunit.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Avijit Biswas
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Andrian Gutu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tyler Blensdorf
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
47
|
Hirose Y, Chihong S, Watanabe M, Yonekawa C, Murata K, Ikeuchi M, Eki T. Diverse Chromatic Acclimation Processes Regulating Phycoerythrocyanin and Rod-Shaped Phycobilisome in Cyanobacteria. MOLECULAR PLANT 2019; 12:715-725. [PMID: 30818037 DOI: 10.1016/j.molp.2019.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Cyanobacteria have evolved various photoacclimation processes to perform oxygenic photosynthesis under different light environments. Chromatic acclimation (CA) is a widely recognized and ecologically important type of photoacclimation, whereby cyanobacteria alter the absorbing light colors of a supermolecular antenna complex called the phycobilisome. To date, several CA variants that regulate the green-absorbing phycoerythrin (PE) and/or the red-absorbing phycocyanin (PC) within the hemi-discoidal form of phycobilisome have been characterized. In this study, we identified a unique CA regulatory gene cluster encoding yellow-green-absorbing phycoerythrocyanin (PEC) and a rod-membrane linker protein (CpcL) for the rod-shaped form of phycobilisome. Using the cyanobacterium Leptolyngbya sp. PCC 6406, we revealed novel CA variants regulating PEC (CA7) and the rod-shaped phycobilisome (CA0), which maximize yellow-green light-harvesting capacity and balance the excitation of photosystems, respectively. Analysis of the distribution of CA gene clusters in 445 cyanobacteria genomes revealed eight CA variants responding to green and red light, which are classified based on the presence of PEC, PE, cpcL, and CA photosensor genes. Phylogenetic analysis further suggested that the emergence of CA7 was a single event and preceded that of heterocystous strains, whereas the acquisition of CA0 occurred multiple times. Taken together, these results offer novel insights into the diversity and evolution of the complex cyanobacterial photoacclimation mechanisms.
Collapse
Affiliation(s)
- Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan.
| | - Song Chihong
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Mai Watanabe
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Chinatsu Yonekawa
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Masahiko Ikeuchi
- Department of Life Sciences (Biology), The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toshihiko Eki
- Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
48
|
Zhao BQ, Ding WL, Tan ZZ, Tang QY, Zhao KH. A Large Stokes Shift Fluorescent Protein Constructed from the Fusion of Red Fluorescent mCherry and Far-Red Fluorescent BDFP1.6. Chembiochem 2019; 20:1167-1173. [PMID: 30609201 DOI: 10.1002/cbic.201800695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Indexed: 01/17/2023]
Abstract
Phycobiliproteins are constituents of phycobilisomes that can harvest orange, red, and far-red light for photosynthesis in cyanobacteria and red algae. Phycobiliproteins in the phycobilisome cores, such as allophycocyanins, absorb far-red light to funnel energy to the reaction centers. Therefore, allophycocyanin subunits have been engineered as far-red fluorescent proteins, such as BDFP1.6. However, most current fluorescent probes have small Stokes shifts, which limit their applications in multicolor bioimaging. mCherry is an excellent fluorescent protein that has maximal emittance in the red spectral range and a high fluorescence quantum yield, and thus, can be used as a donor for energy transfer to a far-red acceptor, such as BDFP1.6, by FRET. In this study, mCherry was fused with BDFP1.6, which resulted in a highly bright far-red fluorescent protein, BDFP2.0, with a large Stokes shift (≈79 nm). The excitation energy was absorbed maximally at 587 nm by mCherry and transferred to BDFP1.6 efficiently; thus emitting strong far-red fluorescence maximally at 666 nm. The effective brightness of BDFP2.0 in mammalian cells was 4.2-fold higher than that of iRFP670, which has been reported as the brightest far-red fluorescent protein. The large Stokes shift of BDFP2.0 facilitates multicolor bioimaging. Therefore, BDFP2.0 not only biolabels mammalian cells, including human cells, but also biolabels various intracellular components in dual-color imaging.
Collapse
Affiliation(s)
- Bao-Qing Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qi-Ying Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
49
|
Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol Adv 2019; 37:422-443. [DOI: 10.1016/j.biotechadv.2019.02.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
50
|
Chen H, Jiang P. Metabolic engineering of Escherichia coli for efficient biosynthesis of fluorescent phycobiliprotein. Microb Cell Fact 2019; 18:58. [PMID: 30894191 PMCID: PMC6425641 DOI: 10.1186/s12934-019-1100-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/28/2019] [Indexed: 01/27/2023] Open
Abstract
Background Phycobiliproteins (PBPs) are light-harvesting protein found in cyanobacteria, red algae and the cryptomonads. They have been widely used as fluorescent labels in cytometry and immunofluorescence analysis. A number of PBPs has been produced in metabolically engineered Escherichia coli. However, the recombinant PBPs are incompletely chromophorylated, and the underlying mechanisms are not clear. Results and discussion In this work, a pathway for SLA-PEB [a fusion protein of streptavidin and allophycocyanin that covalently binds phycoerythrobilin (PEB)] biosynthesis in E. coli was constructed using a single-expression plasmid strategy. Compared with a previous E. coli strain transformed with dual plasmids, the E. coli strain transformed with a single plasmid showed increased plasmid stability and produced SLA-PEB with a higher chromophorylation ratio. To achieve full chromophorylation of SLA-PEB, directed evolution was employed to improve the catalytic performance of lyase CpcS. In addition, the catalytic abilities of heme oxygenases from different cyanobacteria were investigated based on biliverdin IXα and PEB accumulation. Upregulation of the heme biosynthetic pathway genes was also carried out to increase heme availability and PEB biosynthesis in E. coli. Fed-batch fermentation was conducted for the strain V5ALD, which produced recombinant SLA-PEB with a chromophorylation ratio of 96.7%. Conclusion In addition to reporting the highest chromophorylation ratio of recombinant PBPs to date, this work demonstrated strategies for improving the chromophorylation of recombinant protein, especially biliprotein with heme, or its derivatives as a prosthetic group. Electronic supplementary material The online version of this article (10.1186/s12934-019-1100-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huaxin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Peng Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|