1
|
Li H, Shan C, Zhu Y, Yao X, Lin L, Zhang X, Qian Y, Wang Y, Xu J, Zhang Y, Li H, Zhao L, Chen K. Helminth-induced immune modulation in colorectal cancer: exploring therapeutic applications. Front Immunol 2025; 16:1484686. [PMID: 40297577 PMCID: PMC12034720 DOI: 10.3389/fimmu.2025.1484686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer is one of the most lethal tumors, posing a financial and healthcare burden. This study investigates how helminths and pre-existing diseases such as colitis, obesity, diabetes, and gut microbiota issues influence colon cancer development and prognosis. The immune system's protective immunosuppressive response to helminth invasion minimizes inflammation-induced cell damage and DNA mutations, lowering the risk of colorectal cancer precursor lesions. Helminth infection-mediated immunosuppression can hasten colorectal cancer growth and metastasis, which is detrimental to patient outcomes. Some helminth derivatives can activate immune cells to attack cancer cells, making them potentially useful as colorectal cancer vaccines or therapies. This review also covers gene editing approaches. We discovered that using CRISPR/Cas9 to inhibit live helminths modulates miRNA, which limits tumor growth. We propose more multicenter studies into helminth therapy's long-term effects and immune regulation pathways. We hope to treat colorectal cancer patients with helminth therapy and conventional cancer treatments in an integrative setting.
Collapse
Affiliation(s)
- Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Ocean College, Beibu Gulf University, Qinzhou, China
| | - Chaojun Shan
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yunhuan Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaodong Yao
- School of Marxism, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaofen Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuncheng Qian
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuqing Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jialu Xu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yijie Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hairun Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ling Zhao
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Saad AE, Ashour DS, Rashad E. Immunomodulatory effects of chronic trichinellosis on Toxoplasma gondii RH virulent strain in experimental rats. Pathog Glob Health 2023; 117:417-434. [PMID: 36922743 PMCID: PMC10177679 DOI: 10.1080/20477724.2023.2191233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Mixed parasitic infections could affect the host immunological responses and re-design the pathogenesis of each other. The impact of Toxoplasma gondii (T. gondii) and Trichinella spiralis (T. spiralis) co-infection on the immune response remains unclear. The objective of the present study was to investigate the possible effect of chronic trichinellosis on the immune response of rats infected with T. gondii virulent RH strain. Animals were divided into four groups: group I: non-infected negative control; group II: infected with T. spiralis; group III: infected with T. gondii and group IV: infected with T. spiralis then infected with T. gondii 35 days post T. spiralis infection (co-infected group). The interaction between T. spiralis and T. gondii was evaluated by histopathological examination of liver and brain tissues, immunohistochemical expression of inducible nitric oxide synthase (iNOS), and β-catenin in the brain tissues, and CD4+ and CD8+ T cells percentages, and tumor necrosis factor (TNF)-alpha expression in the spleen tissues. Along with, splenic interleukin (IL)-4 and IL-10 mRNA expression levels were measured 15 days post-Toxoplasma infection. Our study revealed that prior infection with T. spiralis leads to attenuation of Th1 response against T. gondii, including iNOS, TNF-α, and CD8+ T-cell response with improvement of the histopathological changes in the tissues. In conclusion, in the co-infected rats, a balanced immune response has been developed with the end result, improvement of the histopathological changes in the liver and brain.
Collapse
Affiliation(s)
- Abeer E. Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Medical Parasitology sub-unit, Pathology Department, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings? Int J Biol Macromol 2023; 241:124649. [PMID: 37119907 DOI: 10.1016/j.ijbiomac.2023.124649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
Despite the tremendous progress in healthcare sectors, a number of life-threatening infectious, inflammatory, and autoimmune diseases are continuously challenging mankind throughout the globe. In this context, recent successes in utilizing helminth parasite-derived bioactive macromolecules viz. glycoproteins, enzymes, polysaccharides, lipids/lipoproteins, nucleic acids/nucleotides, and small organic molecules for treating various disorders primarily resulted from inflammation. Among the several parasites that infect humans, helminths (cestodes, nematodes, and trematodes) are known as efficient immune manipulators owing to their explicit ability to modulate and modify the innate and adaptive immune responses of humans. These molecules selectively bind to immune receptors on innate and adaptive immune cells and trigger multiple signaling pathways to elicit anti-inflammatory cytokines, expansion of alternatively activated macrophages, T-helper 2, and immunoregulatory T regulatory cell types to induce an anti-inflammatory milieu. Reduction of pro-inflammatory responses and repair of tissue damage by these anti-inflammatory mediators have been exploited for treating a number of autoimmune, allergic, and metabolic diseases. Herein, the potential and promises of different helminths/helminth-derived products as therapeutic agents in ameliorating immunopathology of different human diseases and their mechanistic insights of function at cell and molecular level alongside the molecular signaling cross-talks have been reviewed by incorporating up-to-date findings achieved in the field.
Collapse
Affiliation(s)
- Pritha Chakraborty
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India
| | | | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol 713340, India.
| |
Collapse
|
5
|
Bruschi F, Ashour D, Othman A. Trichinella-induced immunomodulation: Another tale of helminth success. Food Waterborne Parasitol 2022; 27:e00164. [PMID: 35615625 PMCID: PMC9125654 DOI: 10.1016/j.fawpar.2022.e00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
Trichinella spiralis is a unique parasite in that both the adults and larvae survive in two different intracellular niches in the same host. The immune response, albeit intense, is highly modulated to ensure the survival of both the host and the parasite. It is skewed to T helper 2 and regulatory arms. Diverse cells from both the innate and adaptive compartments of immunity, including dendritic cells, T regulatory cells, and alternatively activated macrophages are thought to mediate such immunomodulation. The parasite has also an outstanding ability to evade the immune system by several elaborate processes. The molecules derived from the parasites including Trichinella, particularly the components of the excretory-secretory products, are being continually identified and explored for the potential of ameliorating the immunopathology in animal models of diverse inflammatory and autoimmune human diseases. Herein we discuss the various aspects of Trichinella-induced immunomodulation with a special reference to the practical implications of the immune system manipulation in alleviating or possibly curing human diseases.
Collapse
Key Words
- AAM, alternatively activated macrophage
- AW, adult worm
- Allergy
- Autoimmune diseases
- Breg, regulatory B cell
- CAM, classically activated macrophage
- Cancer
- ES L1, ES product of T. spiralis muscle larva
- ES, excretory–secretory
- IFN- γ, interferon-γ
- IIL, intestinal infective larva
- IL, interleukin
- Immune evasion
- Immunomodulation
- ML, muscle larva
- NBL, newborn larva
- NOS, nitric oxide synthase
- TGF-β, transforming growth factor-β
- TLR, toll-like receptor
- TNF- α, tumor necrosis factor-α
- Th, T helper
- Tol-DC, tolerogenic dendritic cell
- Treg, regulatory T cell
- Trichinella
- Trichinella-derived molecules
- Ts-AES, ES from adult T. spiralis
Collapse
Affiliation(s)
- F. Bruschi
- School of Medicine, Department of Translational Research, N.T.M.S., Università di Pisa, Pisa, Italy
| | - D.S. Ashour
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - A.A. Othman
- Department of Medical Parasitology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Immunoreactivity of Brugia malayi Calreticulin and Its Domains with Sera of Different Categories of Bancroftian Filarial Patients. Acta Parasitol 2022; 67:784-793. [PMID: 35083711 DOI: 10.1007/s11686-021-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/29/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE We identified calreticulin in human filaria Brugia malayi (BmCRT) that shares 97% homology with Wuchereria bancrofti calreticulin (WbCRT), but only 56% with human calreticulin. We found that BmCRT binds C1q and prevents complement-mediated parasite death; immunization with BmCRT leads to parasite death in a rodent model of the infection. BmCRT could, therefore, be a potential vaccine candidate. In the present study, we determined the levels of BmCRT-reactive IgG and its isotype in bancroftian filarial subjects. METHODS Recombinant BmCRT (rBmCRT) was prepared, and the sera of endemic normal subjects (EN), microfilaraemics (Mf+) and chronic amicrofilaraemics (ChMf-) from a bancroftian filaria-endemic area and normal subjects from filaria-non-endemic area (NEN) were probed for IgG and its isotypes reacting with rBmCRT and its domains rN, rP and rC. RESULTS rBmCRT and its rN domain-reactive IgG levels were high in EN and Mf+ groups; rC domain and rP domain showed moderate and very little reactivity, respectively. NEN sera were non-reactive. Moderate levels of rBmCRT-reactive IgG1, IgG3 and IgG4 in EN and Mf+ groups and low levels of IgG2 in Mf+ were found; IgG1 and IgG3 reactivity was found for rBmCRT and its rN domain only, while IgG4 reactivity was moderate for rN domain and low for rP and rC domains. While IgG reactivity was seen in all the endemic subjects, IgG isotype reactivity was found mostly in EN and Mf+ subjects. CONCLUSIONS Moderate levels of rBmCRT (and its rN domain)-reactive IgG and its isotypes are present in bancroftian subjects. Preponderance of IgG1 and IgG3 isotypes which bind and activate complement has relevance to vaccine potential of BmCRT.
Collapse
|
7
|
Mitigation of Toxoplasma gondii-induced ileitis by Trichinellaspiralis infection pinpointing immunomodulation. J Parasit Dis 2022; 46:491-501. [DOI: 10.1007/s12639-022-01476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022] Open
|
8
|
Murthy PK. Strategies to Control Human Lymphatic Filarial Infection: Tweaking Host’s Immune System. Curr Top Med Chem 2019; 19:1226-1240. [DOI: 10.2174/1568026619666190618110613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022]
Abstract
Human lymphatic filariasis (LF), a parasitic infection caused by the nematodes Wuchereria bancrofti, Brugia malayi and B. timori, and transmitted by mosquito, results in a debilitating disease commonly identified as ‘elephantiasis’. LF affects millions of people in India and several other tropical and sub-tropical countries imposing a huge economic burden on governments due to disability associated loss of man-hours and for disease management. Efforts to control the infection by WHO’s mass drug administration (MDA) strategy using three antifilarials diethylcarbamazine, albendazole and ivermectin are only partly successful and therefore, there is an immediate need for alternative strategies. Some of the alternative strategies being explored in laboratories are: enhancing the immune competence of host by immunomodulation, combining immunomodulation with antifilarials, identifying immunoprophylactic parasite molecules (vaccine candidates) and identifying parasite molecules that can be potential drug targets. This review focuses on the advances made in this direction.
Collapse
Affiliation(s)
- Puvvada Kalpana Murthy
- Department of Zoology, University of Lucknow, University Road, Lucknow 226 007, Uttar Pradesh, India
| |
Collapse
|
9
|
Reaves BJ, Wallis C, McCoy CJ, Lorenz WW, Rada B, Wolstenholme AJ. Recognition and killing of Brugia malayi microfilariae by human immune cells is dependent on the parasite sample and is not altered by ivermectin treatment. Int J Parasitol Drugs Drug Resist 2018; 8:587-595. [PMID: 30279092 PMCID: PMC6287470 DOI: 10.1016/j.ijpddr.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
Mass administration of macrocyclic lactones targets the transmission of the causative agents of lymphatic filariasis to their insect vectors by rapidly clearing microfilariae (Mf) from the circulation. It has been proposed that the anti-filarial action of these drugs may be mediated through the host immune system. We recently developed an in vitro assay for monitoring the attachment to and killing of B. malayi Mf by human neutrophils (PMNs) and monocytes (PBMCs), however, the levels of both cell to worm attachment and leukocyte mediated Mf killing varied greatly between individual experiments. To determine whether differences in an individual's immune cells or the Mf themselves might account for the variability in survival, PMNs and PBMCs were isolated from 12 donors every week for 4 weeks and the cells used for survival assays with a different batch of Mf, thereby keeping donors constant but varying the Mf sample. Results from these experiments indicate that, overall, killing is Mf-rather than donor-dependent. To assess whether ivermectin (IVM) or diethylcarbamazine (DEC) increase killing, Mf were incubated either alone or with immune cells in the presence of IVM or DEC. Neither drug induced a significant difference in the survival of Mf whether cultured with or without cells, with the exception of DEC at 2 h post incubation. In addition, human PBMCs and PMNs were incubated with IVM or DEC for 1 h or 16 h prior to RNA extraction and Illumina sequencing. Although donor-to-donor variation may mask subtle differences in gene expression, principle component analysis of the RNASeq data indicates that there is no significant change in the expression of any genes from the treated cells versus controls. Together these data suggest that IVM and DEC have little direct effect on immune cells involved in the rapid clearance of Mf from the circulation.
Collapse
Affiliation(s)
- Barbara J Reaves
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Connor Wallis
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Ciaran J McCoy
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - W Walter Lorenz
- Institute for Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| | - Balazs Rada
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA.
| | - Adrian J Wolstenholme
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Schölmerich J, Fellermann K, Seibold FW, Rogler G, Langhorst J, Howaldt S, Novacek G, Petersen AM, Bachmann O, Matthes H, Hesselbarth N, Teich N, Wehkamp J, Klaus J, Ott C, Dilger K, Greinwald R, Mueller R. A Randomised, Double-blind, Placebo-controlled Trial of Trichuris suis ova in Active Crohn's Disease. J Crohns Colitis 2017; 11:390-399. [PMID: 27707789 PMCID: PMC5881737 DOI: 10.1093/ecco-jcc/jjw184] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS To investigate the efficacy and safety of three different dosages of embryonated, viable eggs of Trichuris suis [TSO] versus placebo for induction of remission in mildly-to-moderately active ileocolonic, uncomplicated Crohn's disease [CD]. METHODS Adults with active CD [n = 252] randomly received six fortnightly doses of 250, 2500, or 7500 TSO/15 ml suspension/day [TSO 250, TSO 2500, TSO 7500], or 15 ml placebo solution/day, in a double-blind fashion, with 4 weeks' follow-up. Primary endpoint was the rate of clinical remission [Crohn's Disease Activity Index [CDAI] < 150] at end of treatment, ie at Week 12 or withdrawal. Secondary endpoints included the course of clinical remission, rate of clinical response, change in CDAI, change in markers of inflammation, mucosal healing, and Physician's Global Assessment. RESULTS Clinical remission at Week 12 occurred in 38.5%, 35.2%, and 47.2% of TSO 250, TSO 2500, and TSO 7500 patients, respectively, and in 42.9% of placebo recipients. TSO induced a dose-dependent immunological response. There was no response regarding laboratory markers of inflammation. Other secondary efficacy variables also showed no advantage of TSO over placebo for treatment of active CD. Administration of TSO did not result in any serious adverse drug reaction. Review of non-serious suspected adverse drug reactions following TSO did not reveal any safety concerns. CONCLUSIONS Administration of 250-7500 TSO fortnightly over 12 weeks was safe and showed a dose-dependent immunological response, but no TSO dose showed a clinically relevant effect over placebo for induction of clinical remission or response in mildly-to-moderately active, ileocolonic CD.
Collapse
Affiliation(s)
- Jürgen Schölmerich
- Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Frank W. Seibold
- Spital Netz Bern Tiefenau, Abt. Gastroenterologie, Bern, Switzerland
| | - Gerhard Rogler
- University of Zurich, Division of Gastroenterology and Hepatology, Zurich, Switzerland
| | - Jost Langhorst
- Kliniken Essen-Mitte, University of Duisburg-Essen, Integrative Gastroenterologie, Essen, Germany
| | - Stefanie Howaldt
- Hamburgisches Forschungsinstitut für CED, HaFCED GmbH&Co.KG, Hamburg, Germany
| | - Gottfried Novacek
- Medizinische Universität Wien, Universitätsklinik für Innere Medizin III, Vienna, Austria
| | - Andreas Munk Petersen
- Hvidovre University Hospital, Department of Gastroenterology and Department of Clinical Microbiology, Hvidovre, Denmark
| | | | - Harald Matthes
- Gemeinschaftskrankenhaus Havelhöhe, Abt. Gastroenterologie, Berlin, Germany
| | | | - Niels Teich
- Internistische Gemeinschaftspraxis für Verdauungs- und Stoffwechselkrankheiten Leipzig & Schkeuditz, Leipzig, Germany
| | - Jan Wehkamp
- Robert-Bosch-Krankenhaus, Abt. Innere Medizin I, Stuttgart, Germany
| | - Jochen Klaus
- Universitätsklinikum Ulm, Klinik für Innere Medizin I, Ulm, Germany
| | - Claudia Ott
- University Hospital of Regensburg, Dept. of Internal Medicine I, Regensburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Guernier V, Brennan B, Yakob L, Milinovich G, Clements ACA, Soares Magalhaes RJ. Gut microbiota disturbance during helminth infection: can it affect cognition and behaviour of children? BMC Infect Dis 2017; 17:58. [PMID: 28073356 PMCID: PMC5225537 DOI: 10.1186/s12879-016-2146-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022] Open
Abstract
Background Bidirectional signalling between the brain and the gastrointestinal tract is regulated at neural, hormonal, and immunological levels. Recent studies have shown that helminth infections can alter the normal gut microbiota. Studies have also shown that the gut microbiota is instrumental in the normal development, maturation and function of the brain. The pathophysiological pathways by which helminth infections contribute to altered cognitive function remain poorly understood. Discussion We put forward the hypothesis that gastrointestinal infections with parasitic worms, such as helminths, induce an imbalance of the gut-brain axis, which, in turn, can detrimentally manifest in brain development. Factors supporting this hypothesis are: 1) research focusing on intelligence and school performance in school-aged children has shown helminth infections to be associated with cognitive impairment, 2) disturbances in gut microbiota have been shown to be associated with important cognitive developmental effects, and 3) helminth infections have been shown to alter the gut microbiota structure. Evidence on the complex interactions between extrinsic (parasite) and intrinsic (host-derived) factors has been synthesised and discussed. Summary While evidence in favour of the helminth-gut microbiota-central nervous system hypothesis is circumstantial, it would be unwise to rule it out as a possible mechanism by which gastrointestinal helminth infections induce childhood cognitive morbidity. Further empirical studies are necessary to test an indirect effect of helminth infections on the modulation of mood and behaviour through its effects on the gut microbiota.
Collapse
Affiliation(s)
- Vanina Guernier
- School of Veterinary Science, University of Queensland, Gatton, 4343, QLD, Australia
| | - Bradley Brennan
- School of Public Health, University of Queensland, Herston, 4006, QLD, Australia.,Princess Alexandra Hospital, Metro South Health and Hospital Services, Brisbane, Australia
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Gabriel Milinovich
- School of Public Health, University of Queensland, Herston, 4006, QLD, Australia
| | - Archie C A Clements
- Research School of Population Health, Australian National University, Canberra, Australia
| | - Ricardo J Soares Magalhaes
- School of Veterinary Science, University of Queensland, Gatton, 4343, QLD, Australia. .,Children's Health Research Centre, University of Queensland, South Brisbane, 4101, QLD, Australia.
| |
Collapse
|
12
|
Rehman ZU, Knight JS, Koolaard J, Simpson HV, Pernthaner A. Immunomodulatory effects of adult Haemonchus contortus excretory/secretory products on human monocyte-derived dendritic cells. Parasite Immunol 2016; 37:657-69. [PMID: 26457886 DOI: 10.1111/pim.12288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
The levels of expression of surface molecules and release of cytokines and chemokines of human monocyte-derived dendritic cells were determined after their exposure to adult H. contortus excretory/secretory (ES) products or a combination of ES products and bacterial lipopolysaccharide (LPS). Worm products provoked a weak response and only partial maturation of the dendritic cells, consistent with the hyporesponsiveness and more tolerogenic immune environment present in parasitized animals and humans. Co-stimulation with LPS demonstrated that H. contortus secretions, like those of other helminths, contain immunomodulators capable of reducing some aspects of the strong T(H)1/T(H)2 response evoked by bacterial LPS. There were significant reductions in the release of some cytokine/chemokines by LPS-stimulated mdDCs and a trend (although not significant at P < 0.05) for reduced expression levels of CD40, CD80 and HLA-DR. A prominent feature was the variability in responses of dendritic cells from the four donors, even on different days in repeat experiments, suggesting that generalized conclusions may be difficult to make, except in genetically related animals. Such observations may therefore be applicable only to restricted populations. In addition, previous exposure to parasites in a target population for immunomodulatory therapy may be an important factor in assessing the likelihood of adverse reactions or failures in the treatment to worm therapy.
Collapse
Affiliation(s)
- Z U Rehman
- Institute of Veterinary Animal and Biological Sciences, Massey University, Palmerston North, New Zealand
| | - J S Knight
- The Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - J Koolaard
- Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - H V Simpson
- Institute of Veterinary Animal and Biological Sciences, Massey University, Palmerston North, New Zealand
| | - A Pernthaner
- The Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
13
|
Wolstenholme AJ, Maclean MJ, Coates R, McCoy CJ, Reaves BJ. How do the macrocyclic lactones kill filarial nematode larvae? INVERTEBRATE NEUROSCIENCE 2016; 16:7. [PMID: 27279086 DOI: 10.1007/s10158-016-0190-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/30/2016] [Indexed: 12/17/2022]
Abstract
The macrocyclic lactones (MLs) are one of the few classes of drug used in the control of the human filarial infections, onchocerciasis and lymphatic filariasis, and the only one used to prevent heartworm disease in dogs and cats. Despite their importance in preventing filarial diseases, the way in which the MLs work against these parasites is unclear. In vitro measurements of nematode motility have revealed a large discrepancy between the maximum plasma concentrations achieved after drug administration and the amounts required to paralyze worms. Recent evidence has shed new light on the likely functions of the ML target, glutamate-gated chloride channels, in filarial nematodes and supports the hypothesis that the rapid clearance of microfilariae that follows treatment involves the host immune system.
Collapse
Affiliation(s)
- Adrian J Wolstenholme
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA. .,Department of Infectious Diseases, College of Veterinary Medicine, 501 D. W. Brooks Drive, Athens, GA, 30602, USA.
| | - Mary J Maclean
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Ruby Coates
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Ciaran J McCoy
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA.,School of Biological Sciences, Medical Biology Centre, Queen's University, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Barbara J Reaves
- Department of Infectious Diseases and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
14
|
Fleming JO, Weinstock JV. Clinical trials of helminth therapy in autoimmune diseases: rationale and findings. Parasite Immunol 2015; 37:277-92. [PMID: 25600983 DOI: 10.1111/pim.12175] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/11/2015] [Indexed: 12/26/2022]
Abstract
Some helminths are major human pathogens. Recently, however, increased understanding of the immunoregulatory responses induced by this class of parasites, in combination with epidemiologic and animal studies, suggests that helminths may have therapeutic potential in autoimmune diseases (AD) and other conditions. This article reviews the rationale for and results of clinical trials to test the safety and efficacy of helminth therapy in AD. Also discussed are future prospects for investigation and the possibility that helminth treatment may serve as a probe to help reveal the pathogenesis of AD.
Collapse
Affiliation(s)
- J O Fleming
- Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | |
Collapse
|
15
|
Marciani DJ. Alzheimer's disease vaccine development: A new strategy focusing on immune modulation. J Neuroimmunol 2015; 287:54-63. [PMID: 26439962 DOI: 10.1016/j.jneuroim.2015.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
Despite significant advances in the development of Alzheimer's disease (AD) vaccines effective in animal models, these prototypes have been clinically unsuccessful; apparently the result of using immunogens modified to prevent inflammation. Hence, a new paradigm is needed that uses entire AD-associated immunogens, a notion supported by recent successful passive immunotherapy results, with adjuvants that induce Th2-only while inhibiting without abrogating Th1 immunity. Here, we discuss the obstacles to AD vaccine development and Th2-adjuvants that by acting on dendritic and T cells, would elicit regardless of the antigen a safe and effective antibody response, while preventing damaging neuroinflammation and ameliorating immunosenescence.
Collapse
Affiliation(s)
- Dante J Marciani
- Qantu Therapeutics, Inc., 612 E. Main Street, Lewisville, TX 75057, USA.
| |
Collapse
|
16
|
Rigante D, Esposito S. Infections and Systemic Lupus Erythematosus: Binding or Sparring Partners? Int J Mol Sci 2015; 16:17331-17343. [PMID: 26230690 PMCID: PMC4581196 DOI: 10.3390/ijms160817331] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 11/23/2022] Open
Abstract
Extensive work on experimental animal models clearly demonstrates that infectious agents can break immunological tolerance to self-antigens and induce autoimmune disorders, mainly systemic lupus erythematosus (SLE). The establishment of a causative link between infections and autoimmunity has been largely studied in a host of clinical studies, proving the role of infectious agents in the induction, as well as in the progression or exacerbation of SLE. However, we are far from a plain understanding of microbial-host interactions in the pathogenesis of SLE. Much serological, molecular and geoepidemiological evidence supports the relationship of different environmental infectious triggers in the inception of SLE-related autoimmune phenomena with adjuvant effects. The promotion of autoimmune responses through bystander activation or epitope spreading via multiple inflammatory pathways has been confirmed in animal models. Different viruses have been implicated in SLE pathogenesis, particularly Epstein-Barr virus, but also parvovirus B19, cytomegalovirus and retroviruses. SLE patients usually have an impaired immune response towards Epstein-Barr virus and dysregulation of the viral latency period. Furthermore, the accumulation of endogenous retroviral products might trigger the production of interferon and anti-DNA antibodies. In addition, protozoan infections might even protect from autoimmune processes and rescind an ongoing B cell activation. Herein, we discuss which type of infections induce, exacerbate or inhibit autoimmune disorders and analyze the principal infection-induced immunological mechanisms influencing the development of SLE.
Collapse
Affiliation(s)
- Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, 00168 Rome, Italy.
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| |
Collapse
|
17
|
Chauhan N, Sharma R, Hoti S. Identification and biochemical characterization of macrophage migration inhibitory factor-2 (MIF-2) homologue of human lymphatic filarial parasite, Wuchereria bancrofti. Acta Trop 2015; 142:71-8. [PMID: 25446175 DOI: 10.1016/j.actatropica.2014.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/24/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Homologues of human macrophage migration inhibitory factor (hMIF) have been reported from vertebrates, invertebrates and prokaryotes, as well as plants. Filarial parasites produce two homologues of hMIF viz., MIF-1 and MIF-2, which play important role in the host immune modulation. Earlier, we have characterized MIF-1 (Wba-mif-1) from Wuchereria bancrofti, the major causal organism of human lymphatic filariasis. Here, we are reporting the molecular and biochemical characterization of MIF-2 from this parasite (Wba-mif-2). The complete Wba-mif-2 gene and its cDNA were amplified, cloned and sequenced. The size of Wba-mif-2 gene and cDNA were found to be 4.275 kb and 363 bp, respectively. The gene annotation revealed the presence of a large intron of 3.912 kb interspersed with two exons of 183 bp and 180 bp. The alignment of derived amino acid sequences of Wba-MIF-2 with Wba-MIF-1 showed 44% homology. The conserved CXXC oxido-reductase catalytic site present in Wba-mif-1 was found absent in Wba-mif-2 coding sequence. The amplified Wba-mif-2 cDNA was cloned into an expression vector pRSET-B and transformed into salt inducible Escherichia coli strain GJ1158. The expressed recombinant Wba-MIF-2 protein showed tautomerase activity against L-dopachrome methyl ester and the specific activity was determined to be 18.57±0.77 μmol/mg/min. Three known inhibitors of hMIF tautomerase activity significantly inhibited the tautomerase activity of recombinant Wba-MIF-2. Although the conserved CXXC oxido-reductase motif is absent in Wba-mif-2, the recombinant protein showed significant oxido-reductase activity in the insulin reduction assay, possibly because of the presence of vicinal cysteine residues.
Collapse
|
18
|
Esposito S, Bosis S, Semino M, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis 2014; 33:1467-1475. [PMID: 24715155 DOI: 10.1007/s10096-014-2098-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/20/2014] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that presents a protean spectrum of clinical manifestations, and may affect any organ. The typical course of SLE is insidious, slow, and progressive, with potential exacerbations and remissions, and even dramatically acute and rapidly fatal outcomes. Recently, infections have been shown to be highly associated with the onset and/or exacerbations of SLE, and their possible causative and/or protective role has been largely emphasized in the medical literature. However, the etiopathogenesis of SLE is still obscure and far from being completely elucidated. Among infections, particularly Epstein-Barr virus (EBV), parvovirus B19, retrovirus, and cytomegalovirus (CMV) infections might play a pivotal pathogenetic role. The multifaceted interactions between infections and autoimmunity reveal many possibilities for either causative or protective associations. Indeed, some infections, primarily protozoan infections, might confer protection from autoimmune processes, depending on the unique interaction between the microorganism and host. Further studies are needed in order to demonstrate that infectious agents might, indeed, be causative of SLE, and to address the potential clinical sequelae of infections in the field of autoimmunity.
Collapse
Affiliation(s)
- S Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda n. 9, 20122, Milano, Italy,
| | | | | | | |
Collapse
|
19
|
Harnessing the helminth secretome for therapeutic immunomodulators. BIOMED RESEARCH INTERNATIONAL 2014; 2014:964350. [PMID: 25133189 PMCID: PMC4123613 DOI: 10.1155/2014/964350] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/24/2022]
Abstract
Helminths are the largest and most complex pathogens to invade and live within the human body. Since they are not able to outpace the immune system by rapid antigen variation or faster cell division or retreat into protective niches not accessible to immune effector mechanisms, their long-term survival depends on influencing and regulating the immune responses away from the mode of action most damaging to them. Immunologists have focused on the excretory and secretory products that are released by the helminths, since they can change the host environment by modulating the immune system. Here we give a brief overview of the helminth-associated immune response and the currently available helminth secretome data. We introduce some major secretome-derived immunomodulatory molecules and describe their potential mode of action. Finally, the applicability of helminth-derived therapeutic proteins in the treatment of allergic and autoimmune inflammatory disease is discussed.
Collapse
|
20
|
Fischer S, Agmon-Levin N, Shapira Y, Porat Katz BS, Graell E, Cervera R, Stojanovich L, Gómez Puerta JA, Sanmartí R, Shoenfeld Y. Toxoplasma gondii: bystander or cofactor in rheumatoid arthritis. Immunol Res 2014; 56:287-92. [PMID: 23553228 DOI: 10.1007/s12026-013-8402-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Parasitic infections may induce variable immunomodulatory effects and control of autoimmune disease. Toxoplasma gondii (T. gondii) is a ubiquitous intracellular protozoan that was recently associated with autoimmunity. This study was undertaken to investigate the seroprevalence and clinical correlation of anti-T. gondii antibodies in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We evaluated sera from European patients with RA (n = 125) and SLE (n = 164) for the prevalence of anti-T. gondii IgG antibodies (ATXAb), as well as other common infections such as Cytomegalovirus, Epstein-Barr, and Rubella virus. The rates of seropositivity were determined utilizing the LIAISON chemiluminescent immunoassays (DiaSorin, Italy). Our results showed a higher seroprevalence of ATXAb in RA patients, as compared with SLE patients [63 vs. 36 %, respectively (p = 0.01)]. The rates of seropositivity of IgG against other infectious agents were comparable between RA and SLE patients. ATXAb-seropositivity was associated with older age of RA patients, although it did not correlate with RA disease activity and other manifestations of the disease. In conclusion, our data suggest a possible link between exposure to T. gondii infection and RA.
Collapse
Affiliation(s)
- Svetlana Fischer
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 52621, Tel HaShomer, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Arinola GO, Oluwole O, Oladokun R, Adedokun BO, Olopade OI, Olopade CO. Intestinal Helminthic Infection Increases Serum Levels of IL-2 and Decreases Serum TGF-Beta Levels in Nigerian Asthmatic Patients. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/oji.2014.41001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Abstract
Nematodes represent a diverse phylum of both free living and parasitic species. While the species Caenorhabditis elegans is a valuable model organism, parasitic nematodes or helminths pose a serious threat to human health. Indeed, helminths cause many neglected tropical diseases that afflict humans. Nematode glycoconjugates have been implicated in evasive immunomodulation, a hallmark of nematode infections. One monosaccharide residue present in the glycoconjugates of several human pathogens is galactofuranose (Galf). This five-membered ring isomer of galactose has not been detected in mammals, making Galf metabolic enzymes attractive therapeutic targets. The only known pathway for biosynthetic incorporation of Galf into glycoconjugates depends upon generation of the glycosyl donor UDP-Galf by the flavoenzyme uridine 5'-diphosphate (UDP) galactopyranose mutase (UGM or Glf). A putative UGM encoding gene (glf-1) was recently identified in C. elegans. We sought to assess the catalytic activity of the corresponding gene product (CeUGM). CeUGM catalyzes the isomerization of UDP-Galf and UDP-galactopyranose (UDP-Galp). In the presence of enzyme, substrate, and a hydride source, a galactose-N5-FAD adduct was isolated, suggesting the CeUGM flavin adenine dinucleotide (FAD) cofactor serves as a nucleophile in covalent catalysis. Homology modeling and protein variants indicate that CeUGM possesses an active site similar to that of prokaryotic enzymes, despite the low sequence identity (∼15%) between eukaryotic and prokaryotic UGM proteins. Even with the primary sequence differences, heterocyclic UGM inhibitors developed against prokaryotic proteins also inhibit CeUGM activity. We postulate that inhibitors of CeUGM can serve as chemical probes of Galf in nematodes and as anthelmintic leads. The available data suggest that CeUGM facilitates the biosynthetic incorporation of Galf into nematode glycoconjugates through generation of the glycosyl donor UDP-Galf.
Collapse
Affiliation(s)
- Darryl A. Wesener
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
| | - John F. May
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
| | - Elizabeth M. Huffman
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322 USA
| | - Laura L. Kiessling
- Department of Biochemistry, University of Wisconsin–Madison, 433 Babcock Drive, Madison, WI 53706-1544 USA
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322 USA
| |
Collapse
|
23
|
Doligalska M, Brodaczewska K, Donskow-Łysoniewska K. The antiapoptotic activity of Heligmosomoides polygyrus antigen fractions. Parasite Immunol 2013; 34:589-603. [PMID: 23009264 DOI: 10.1111/pim.12006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 08/31/2012] [Indexed: 11/30/2022]
Abstract
Our study identified Heligmosomoides polygyrus antigen factors with potential activity for regulation of T-cell proliferation and surviving of CD4(+) CD25(-) , CD4(+) CD25(hi) and CD3(+) CD8(+) cell populations. The antiapoptotic activity of antigenic fractions separated by HPLC was evaluated in vitro after exposure of cells to DEX and rTNF-α. Different populations of cells responded to antigen fractions in distinct pattern; the most sensitive population of cells to H. polygyrus products were CD4(+) CD25(hi) after exposure to DEX and CD3(+) CD8(+) T cells after exposure to rTNF-α. H. polygyrus antigens may influence survival of CD8(+) T cells by regulation of c-FLIP rather than Bcl-2, which affects survival of CD4(+) CD25(hi) Treg cells and CD4(+) T cells. Activation of NF-κB subunits, for example, p50 and p65 was essential for resistance of cells to apoptosis, and antigenic fractions F9 and F17 exerted different effect to F13. The most active fraction in inhibition of apoptosis was F9, which includes Hsp-60, calumenin, ferritin, galectin and thrombospondin. This study may provide new clues for recognition of factors that regulate the immune response during infection and which engage the TNF-α receptor-mediated and the mitochondria-mediated death pathway.
Collapse
Affiliation(s)
- M Doligalska
- Department of Parasitology, University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
24
|
Fleming J. Helminth therapy and multiple sclerosis. Int J Parasitol 2013; 43:259-74. [DOI: 10.1016/j.ijpara.2012.10.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022]
|
25
|
Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol 2013; 4:39. [PMID: 23429492 PMCID: PMC3576626 DOI: 10.3389/fimmu.2013.00039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways.
Collapse
Affiliation(s)
- Steven K Lundy
- Graduate Training Program in Immunology, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Internal Medicine-Rheumatology, University of Michigan Medical School Ann Arbor, MI, USA
| | | |
Collapse
|
26
|
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammation afflicting any part of the bowel wall as a result of a deregulated and inappropriate immune response. In recent years, experimental and clinical evidence has demonstrated that infection with parasitic worms could protect hosts from IBD. The aims of this study were to determine if the underlying mechanism of the host immune regulation inherent to Trichinella spiralis infection involves Foxp3-expressing regulatory T cells, and to gain insight about time-related interactions between intestinal nematode infection and induced colitis using an experimental model for ulcerative colitis. Mice were experimentally subjected to acetic acid-induced colitis, which was either preceded or followed by T. spiralis infection. Assessment of colitis was done by histopathological examination of the colon and determination of pentraxin 3 levels. Immunohistochemistry was done for demonstration of Foxp3-expressing regulatory T cells in colonic tissues. It was evident that T. spiralis infection ameliorated the severe inflammation induced by acetic acid, evidenced by amelioration of histopathological changes and diminution of pentraxin 3 levels. The amelioration was more pronounced when T. spiralis infection preceded the induction of colitis. Regarding the immunohistochemical staining of regulatory T cells, T. spiralis infection induced recruitment of Foxp3-expressing regulatory T cells to areas of inflammation. In conclusion, T. spiralis regulatory mechanism can improve inflammation of the colon through the 'inflammatory-regulatory' axis. Finally, it would be of great importance to apply these results to the development of new therapeutic approaches for the treatment of ulcerative colitis.
Collapse
|
27
|
Conway KL, Kuballa P, Khor B, Zhang M, Shi HN, Virgin HW, Xavier RJ. ATG5 regulates plasma cell differentiation. Autophagy 2013; 9:528-37. [PMID: 23327930 DOI: 10.4161/auto.23484] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a conserved homeostatic process in which cytoplasmic contents are degraded and recycled. Two ubiquitin-like conjugation pathways are required for the generation of autophagosomes, and ATG5 is necessary for both of these processes. Studies of mice deficient in ATG5 reveal a key role for autophagy in T lymphocyte function, as well as in B cell development and B-1a B cell maintenance. However, the role of autophagy genes in B cell function and antibody production has not been described. Using mice in which Atg5 is conditionally deleted in B lymphocytes, we showed here that this autophagy gene is essential for plasma cell homeostasis. In the absence of B cell ATG5 expression, antibody responses were significantly diminished during antigen-specific immunization, parasitic infection and mucosal inflammation. Atg5-deficient B cells maintained the ability to produce immunoglobulin and undergo class-switch recombination, yet had impaired SDC1 expression, significantly decreased antibody secretion in response to toll-like receptor ligands, and an inability to upregulate plasma cell transcription factors. These results build upon previous data demonstrating a role for ATG5 in early B cell development, illustrating its importance in late B cell activation and subsequent plasma cell differentiation.
Collapse
Affiliation(s)
- Kara L Conway
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Baldo BA. Cross-reactive antigens for natural IgE antibodies: allergens with the potential to transform a dormant to an active allergic response? Clin Exp Allergy 2013; 42:810-3. [PMID: 22909157 DOI: 10.1111/j.1365-2222.2012.03994.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Trichuris suis ova: Testing a helminth-based therapy as an extension of the hygiene hypothesis. J Allergy Clin Immunol 2012; 130:3-10; quiz 11-2. [DOI: 10.1016/j.jaci.2012.05.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 12/19/2022]
|
30
|
Little TJ, Allen JE, Babayan SA, Matthews KR, Colegrave N. Harnessing evolutionary biology to combat infectious disease. Nat Med 2012; 18:217-20. [PMID: 22310693 PMCID: PMC3712261 DOI: 10.1038/nm.2572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pathogens exhibit remarkable abilities to flout therapeutic intervention. This outcome is driven by evolution, either as a direct response to intervention (e.g. the evolution of antibiotic resistance), or through long-term coevolution generating host or parasite traits that interact with therapy in undesirable or unpredicted ways. To make progress, the concepts and techniques of evolutionary biology must be deeply integrated with traditional approaches to immunology and pathogen biology. An interdisciplinary approach can inform control strategies, or even patient treatment, positioning us to meet the current and future challenges of controlling infectious diseases.
Collapse
Affiliation(s)
- Tom J Little
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
31
|
Joseph S, Verma S, Sahoo M, Dixit S, Verma A, Kushwaha V, Saxena K, Sharma A, Saxena J, Murthy P. Sensitization with anti-inflammatory BmAFI of Brugia malayi allows L3 development in the hostile peritoneal cavity of Mastomys coucha. Acta Trop 2011; 120:191-205. [PMID: 21875568 DOI: 10.1016/j.actatropica.2011.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 07/12/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Filarial parasites survive by inducing tolerance in host but the antigens and mechanisms involved are not clear. Recently we found that BmAFI, a Sephadex G-200 eluted fraction of Brugia malayi adult worm extract, stimulates IL-10 release from THP-1 cells. In the present study, we determined the SDS-PAGE profile of BmAFI and infective 3rd stage larva (L3), investigated the effect of pre-sensitization of host with BmAFI on the survival and development of L3 in the non-permissive peritoneal cavity (p.c.) of the permissive host Mastomys coucha and in the p.c. of non-permissive Swiss mice, and studied immunological correlates for the observed effects. The parasite development and burden in p.c., was determined in sensitized infected M. coucha and Swiss mice and the release of TGF-β, IL-4, IL-10, IL-13, IFN-γ and NO, cellular proliferative response to Con A and BmAFI and levels of IgG subclasses and IgE were determined in sensitized infected M. coucha. Cellular proliferative response to Con A and BmAFI, mRNA expression of GATA-3, CTLA-4 and T-bet were determined in sensitized Swiss mice. In addition, the parasitological parameter was also studied in BmAFI-sensitized M. coucha exposed to the infection by standard subcutaneous (s.c.) route to assess whether sensitization enhances the intensity of infection. BmAFI-sensitization permitted survival of L3 and their development to adult stage by day 60 p.i. in the p.c. of M. coucha; in non-sensitized animals L3 could molt to L4 only and no parasite could be recovered beyond day 30 p.i. In M. coucha that received infection by s.c. route, pre-sensitization with BmAFI enhanced the microfilaraemia and adult worm recovery. In sensitized Swiss mice L3 could successfully molt to L4 in p.c. with improved recovery of parasite. BmAFI sensitization upregulated TGF-β and IL-10 release, IgG1 and IgG2b levels, GATA-3 and CTLA-4 mRNA expression, suppressed the cellular proliferative response and downregulated Con A stimulated response, IgE, IL-13, IFN-γ and NO responses. Immunoblot analysis showed that the BmAFI antiserum also strongly reacts with some L3 molecules. The results show, for the first time, that sensitization with the anti-inflammatory BmAFI which shares some of its molecules with those in L3, facilitates parasite survival in the non-permissive p.c. of the permissive host M. coucha, render a non-permissive Swiss mouse partially permissive to infection and enhances parasite load in M. coucha receiving the infection through permissive s.c. route by evoking a modified Th2 type of response and anti-inflammatory milieu. In conclusion, the findings suggest that the anti-inflammatory BmAFI fraction facilitates survival of B. malayi infection even in non-permissive environment.
Collapse
|
32
|
ZHANG M, GAO Y, DU X, ZHANG D, JI M, WU G. Toll-like receptor (TLR) 2 and TLR4 deficiencies exert differential in vivo effects against Schistosoma japonicum. Parasite Immunol 2011; 33:199-209. [DOI: 10.1111/j.1365-3024.2010.01265.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Correlación entre la incidencia de malaria y la prevalencia de las geohelmintiasis en Colombia: enfoque ecológico. BIOMEDICA 2011. [DOI: 10.7705/biomedica.v30i4.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Extracts of the rat tapeworm, Hymenolepis diminuta, suppress macrophage activation in vitro and alleviate chemically induced colitis in mice. Infect Immun 2009; 78:1364-75. [PMID: 20028812 DOI: 10.1128/iai.01349-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Analysis of parasite-host interactions can reveal the intricacies of immunity and identify ways to modulate immunopathological reactions. We assessed the ability of a phosphate-buffered saline-soluble extract of adult Hymenolepis diminuta to suppress macrophage (human THP-1 cell line, murine peritoneal macrophages) activity in vitro and the impact of treating mice with this extract on colitis induced by dinitrobenzene sulfonic acid (DNBS). A high-molecular-mass fraction of adult H. diminuta (HdHMW) or excretory/secretory products reduced macrophage activation: lipopolysaccharide (LPS)-induced interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor alpha (TNF-alpha) and poly(I:C)-induced TNF-alpha and IL-6 were suppressed by HdHMW. The active component in the HdHMW extract was minimally sensitive to boiling and trypsin digestion, whereas the use of sodium metaperiodate, as a general deglycosylation strategy, indicated that the immunosuppressive effect of HdHMW was at least partially dependent on a glycan: treating the HdHMW with neuraminidase and alpha-mannosidase failed to inhibit its blockade of LPS-induced TNF-alpha production by THP-1 macrophages. Mice treated with DNBS developed colitis, as typified by wasting, shortening of the colon, macroscopic and microscopic tissue damage, and an inflammatory infiltrate. Mice cotreated with HdHMW (three intraperitoneal injections) displayed significantly less inflammatory disease, and this was accompanied by reduced TNF-alpha production and increased IL-10 and IL-4 production by mitogen-stimulated spleen cells. However, cotreatment of mice with neutralizing anti-IL-10 antibodies had only a minor impact on the anticolitic effect of the HdHMW. We speculate that purification of the immunosuppressive factor(s) from H. diminuta has the potential to lead to the development of novel immunomodulatory drugs to treat inflammatory disease.
Collapse
|
35
|
Harnett MM, Melendez AJ, Harnett W. The therapeutic potential of the filarial nematode-derived immunodulator, ES-62 in inflammatory disease. Clin Exp Immunol 2009; 159:256-67. [PMID: 19968663 DOI: 10.1111/j.1365-2249.2009.04064.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The dramatic recent rise in the incidence of allergic or autoimmune inflammatory diseases in the West has been proposed to reflect the lack of appropriate priming of the immune response by infectious agents such as parasitic worms during childhood. Consistent with this, there is increasing evidence supporting an inverse relationship between worm infection and T helper type 1/17 (Th1/17)-based inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes and multiple sclerosis. Perhaps more surprisingly, given that such worms often induce strong Th2-type immune responses, there also appears to be an inverse correlation between parasite load and atopy. These findings therefore suggest that the co-evolution of helminths with hosts, which has resulted in the ability of worms to modulate inflammatory responses to promote parasite survival, has also produced the benefit of protecting the host from pathological lesions arising from aggressive proinflammatory responses to infection or, indeed, aberrant inflammatory responses underlying autoimmune and allergic disorders. By focusing upon the properties of the filarial nematode-derived immunomodulatory molecule, ES-62, in this review we shall discuss the potential of exploiting the immunomodulatory products of parasitic worms to identify and develop novel therapeutics for inflammation.
Collapse
Affiliation(s)
- M M Harnett
- Division of Immunology, Infection and Inflammation, Glasgow Biomedical Centre, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
36
|
McKay DM, Wallace JL. Acetic Acid Induced Ulceration in Rats Is Not Affected by Infection with Hymenolepis diminuta. J Parasitol 2009; 95:481-2. [DOI: 10.1645/ge-1776.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/25/2008] [Indexed: 11/10/2022] Open
|
37
|
Taylor MD, van der Werf N, Harris A, Graham AL, Bain O, Allen JE, Maizels RM. Early recruitment of natural CD4+ Foxp3+ Treg cells by infective larvae determines the outcome of filarial infection. Eur J Immunol 2009; 39:192-206. [PMID: 19089814 DOI: 10.1002/eji.200838727] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human helminth infections are synonymous with impaired immune responsiveness indicating suppression of host immunity. Using a permissive murine model of filariasis, Litomosoides sigmodontis infection of inbred mice, we demonstrate rapid recruitment and increased in vivo proliferation of CD4(+)Foxp3(+) Treg cells upon exposure to infective L3 larvae. Within 7 days post-infection this resulted in an increased percentage of CD4(+)T cells at the infection site expressing Foxp3. Antibody-mediated depletion of CD25(+) cells prior to infection to remove pre-existing 'natural' CD4(+)CD25(+)Foxp3(+) Treg cells, while not affecting initial larval establishment, significantly reduced the number of adult parasites recovered 60 days post-infection. Anti-CD25 pre-treatment also impaired the fecundity of the surviving female parasites, which had reduced numbers of healthy eggs and microfilaria within their uteri, translating to a reduced level of blood microfilaraemia. Enhanced parasite killing was associated with augmented in vitro production of antigen-specific IL-4, IL-5, IL-13 and IL-10. Thus, upon infection filarial larvae rapidly provoke a CD4(+)Foxp3(+) Treg-cell response, biasing the initial CD4(+) T-cell response towards a regulatory phenotype. These CD4(+)Foxp3(+) Treg cells are predominantly recruited from the 'natural' regulatory pool and act to inhibit protective immunity over the full course of infection.
Collapse
Affiliation(s)
- Matthew D Taylor
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhao M, Brown DM, Maccallum J, Proudfoot L. Effect of Nippostrongylus brasiliensis L3 ES on inflammatory mediator gene transcription in lipopolysaccharide lung inflammation. Parasite Immunol 2009; 31:50-6. [PMID: 19121083 DOI: 10.1111/j.1365-3024.2008.01073.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The anti-inflammatory properties of parasitic helminths have been largely linked to their excretory-secretory (ES) products. Some studies have noted a lack of TNF-alpha production and limited recruitment of neutrophils into the lungs after Nippostrongylus brasiliensis infection. We previously reported that instillation of ES from L3 larvae of N. brasiliensis to the lungs could inhibit the recruitment of neutrophils on a background of LPS-induced inflammation. A similar reduction in neutrophil recruitment was observed in this study. This reduction was associated with the significant inhibition in gene transcription of the adhesion molecule, ICAM-1, and the chemokine, MIP-2 in bronchoalveolar lavage (BAL) cells. The LPS-stimulated gene transcription of the pro-inflammatory cytokines TNF-alpha and IL-1beta was also significantly reduced by L3 ES. Inducible nitric oxide synthase (iNOS) is normally elevated in classically activated macrophages, however, in this case gene transcription of iNOS was inhibited by L3 ES and may suggest a phenotype change to anti-inflammatory. The general inhibition of pro-inflammatory mediators observed in this study suggests that infective stage L3 larvae excrete and/or secrete inhibitory products capable of modifying the normally potent LPS inflammatory response.
Collapse
Affiliation(s)
- M Zhao
- School of Life Sciences, Napier University, Edinburgh, UK
| | | | | | | |
Collapse
|
39
|
Abstract
Incidence of allergic diseases such as asthma has increased at an alarming rate in Western countries in the past few decades. However, in parts of the world in which parasitic nematode infections are highly prevalent, allergy remains uncommon. Hence, it has been postulated that nematodes offer humans protection against this type of disease. This article reviews the evidence to support this idea, considering data from human studies and results from investigations into the protective effects of nematodes in animal models of allergic disease. The evidence strongly favors a protective role for nematodes; thus, the search is on to find the molecules involved, with a view toward using them for therapeutic purposes. The article also describes the nature and mode of action of recently characterized nematode-derived molecules with antiallergic properties and highlights their therapeutic efficacy in allergy models.
Collapse
|
40
|
Caldas IR, Campi-Azevedo AC, Oliveira LFA, Silveira AMS, Oliveira RC, Gazzinelli G. Human schistosomiasis mansoni: immune responses during acute and chronic phases of the infection. Acta Trop 2008; 108:109-17. [PMID: 18577364 DOI: 10.1016/j.actatropica.2008.05.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 05/12/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
Abstract
Schistosoma mansoni infection may occur either as an acute infection in individuals who have recently visited an endemic area, with no previous contact with the parasite, or as a lasting chronic disease, if not interrupted by specific chemotherapy. The acute phase is characterized by symptoms such as fever, cough, diarrhea, anorexia, and arthralgias in combination with leukocytosis and eosinophilia, and a high cellular immune response to schistosome antigens especially those from the parasite's eggs. In the chronic phase, most patients living in endemic areas are asymptomatic, and their immune responses to egg antigens are modulated. A few develop periportal fibrosis of the liver, which may result in the hepatosplenic form of the disease. The humoral response (IgG, IgM and IgE) in acute patients to egg and worm antigens does not differ from the chronic phase. However, a high level of IgG and IgM antibodies to KLH were detected in acute patients. Acute patients express a considerably higher in vitro cellular responsiveness than do chronic patients, especially to egg antigens. They present a mixed profile of Th1 and Th2 cytokines. Ultrasound examinations of endemic population reveal a high heterogeneity between the patients as regards the presence and intensity of periportal fibrosis. Most patients are asymptomatic and their immune responses to schistosoma egg antigens (SEA) are modulated. In contrast, a high percentage of patients with incipient fibrosis (early stage of hepatosplenic) responded strongly to SEA. Patients with advanced hepatosplenic disease were likely to be non-responders to SEA. Most of the chronic patients presented a Th2 profile with low production of interferon-gamma (IFN-gamma). The intensity of infection favors the production of interleukin (IL)-10. After adjusting for age, sex, and intensity of infection, a strong correlation was observed between the production of IL-13 and the degree of fibrosis. Chronic asymptomatic patients and those with incipient fibrosis expressed very high levels of heterogeneity of their antibody responses. IgG response to soluble worm antigen preparation (SWAP) was distinct and significantly higher in hepatosplenic patients than in those asymptomatic or with incipient fibrosis. Levels of IgG4 to SEA were significantly higher in sera from patients with incipient fibrosis as compared to uninfected and hepatosplenic groups. Polyclonal idiotypic antibodies and their fragments F(ab')2, directly stimulate in culture T cells of schistosomiasis patients in presence of IL-1. Polyclonal idiotypic antibodies are able to modulate in vitro granuloma formation around SEA-polyacrylamide. The importance of idiotypes for protection or pathology in schistosomiasis is still not clear.
Collapse
|
41
|
Sitjà-Bobadilla A. Living off a fish: a trade-off between parasites and the immune system. FISH & SHELLFISH IMMUNOLOGY 2008; 25:358-372. [PMID: 18722790 DOI: 10.1016/j.fsi.2008.03.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/14/2008] [Accepted: 03/27/2008] [Indexed: 05/26/2023]
Abstract
Research in fish immune system and parasite invasion mechanisms has advanced the knowledge of the mechanisms whereby parasites evade or cope with fish immune response. The main mechanisms of immune evasion employed by fish parasites are reviewed and considered under ten headings. 1) Parasite isolation: parasites develop in immuno-privileged host tissues, such as brain, gonads, or eyes, where host barriers prevent or limit the immune response. 2) Host isolation: the host cellular immune response isolates and encapsulates the parasites in a dormant stage without killing them. 3) Intracellular disguise: typical of intracellular microsporidians, coccidians and some myxosporeans. 4) Parasite migration, behavioural and environmental strategies: parasites migrate to host sites the immune response has not yet reached or where it is not strong enough to kill them, or they accommodate their life cycles to the season or the age in which the host immune system is down-regulated. 5) Antigen-based strategies such as mimicry or masking, variation and sharing of parasite antigens. 6) Anti-immune mechanisms: these allow parasites to resist innate humoral factors, to neutralize host antibodies or to scavenge reactive oxygen species within macrophages. 7) Immunodepression: parasites either suppress the fish immune systems by reducing the proliferative capacity of lymphocytes or the phagocytic activity of macrophages, or they induce apoptosis of host leucocytes. 8) Immunomodulation: parasites secrete or excrete substances which modulate the secretion of host immune factors, such as cytokines, to their own benefit. 9) Fast development: parasites proliferate faster than the ability of the host to mount a defence response. 10) Exploitation of the host immune reaction. Knowledge of the evasion strategies adopted by parasites will help us to understand host-parasite interactions and may therefore help in the discovery of novel immunotherapeutic agents or targeted vaccines, and permit the selection of host-resistant strains.
Collapse
Affiliation(s)
- A Sitjà-Bobadilla
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal s/n, 12595 Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
42
|
Wang LJ, Cao Y, Shi HN. Helminth infections and intestinal inflammation. World J Gastroenterol 2008; 14:5125-32. [PMID: 18777588 PMCID: PMC2744001 DOI: 10.3748/wjg.14.5125] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/14/2008] [Accepted: 08/21/2008] [Indexed: 02/06/2023] Open
Abstract
Evidence from epidemiological studies indicates an inverse correlation between the incidence of certain immune-mediated diseases, including inflammatory bowel diseases (IBD), and exposure to helminths. Helminth parasites are the classic inducers of Th2 responses. The Th2-polarized T cell response driven by helminth infection has been linked to the attenuation of some damaging Th1 driven inflammatory responses, preventing some Th1-mediated autoimmune diseases in the host, including experimentally induced colitis. Helminth parasites (the porcine whipworm, Trichuris suis) have been tested for treating IBD patients, resulting in clinical amelioration of the disease. As a result, there is a great deal of interest in the research community in exploring the therapeutic use of helminth parasites for the control of immune-mediated diseases, including IBD. However, recent studies have provided evidence indicating the exacerbating effects of helminths on bacterial as well as non-infectious colitis in animal models. Therefore, a better understanding of mechanisms by which helminths modulate host immune responses in the gut may reveal novel, more effective and safer approaches to helminth-based therapy of IBD.
Collapse
|
43
|
Abstract
There has been an alarming increase in the incidence of autoimmune and allergic diseases in Western countries in the past few decades. However, in countries endemic for parasitic helminth infections, such diseases remain relatively rare. Hence, it has been hypothesised that helminths may protect against the development of autoimmunity and allergy. This article reviews the evidence supporting this idea with respect to helminths of the phylum Nematoda (nematodes), considering data from human studies and animal models of inflammatory disease. The nature and mode of action of nematode-derived molecules with immunomodulatory properties are considered, and their therapeutic efficacy in models of autoimmunity and allergy described. The recent and future use of nematodes and their products in treating human disease are also discussed.
Collapse
Affiliation(s)
- William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
44
|
Audicana MT, Kennedy MW. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 2008; 21:360-79, table of contents. [PMID: 18400801 PMCID: PMC2292572 DOI: 10.1128/cmr.00012-07] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection of humans with the nematode worm parasite Anisakis simplex was first described in the 1960s in association with the consumption of raw or undercooked fish. During the 1990s it was realized that even the ingestion of dead worms in food fish can cause severe hypersensitivity reactions, that these may be more prevalent than infection itself, and that this outcome could be associated with food preparations previously considered safe. Not only may allergic symptoms arise from infection by the parasites ("gastroallergic anisakiasis"), but true anaphylactic reactions can also occur following exposure to allergens from dead worms by food-borne, airborne, or skin contact routes. This review discusses A. simplex pathogenesis in humans, covering immune hypersensitivity reactions both in the context of a living infection and in terms of exposure to its allergens by other routes. Over the last 20 years, several studies have concentrated on A. simplex antigen characterization and innate as well as adaptive immune response to this parasite. Molecular characterization of Anisakis allergens and isolation of their encoding cDNAs is now an active field of research that should provide improved diagnostic tools in addition to tools with which to enhance our understanding of pathogenesis and controversial aspects of A. simplex allergy. We also discuss the potential relevance of parasite products such as allergens, proteinases, and proteinase inhibitors and the activation of basophils, eosinophils, and mast cells in the induction of A. simplex-related immune hypersensitivity states induced by exposure to the parasite, dead or alive.
Collapse
Affiliation(s)
- M Teresa Audicana
- Allergy and Clinical Immunology Department, Santiago Apóstol Hospital, C/Olaguibel 29, 01004 Vitoria-Gasteiz, Basque Country, Spain.
| | | |
Collapse
|
45
|
Vanhoutte F, Breuilh L, Fontaine J, Zouain CS, Mallevaey T, Vasseur V, Capron M, Goriely S, Faveeuw C, Ryffel B, Trottein F. Toll-like receptor (TLR)2 and TLR3 sensing is required for dendritic cell activation, but dispensable to control Schistosoma mansoni infection and pathology. Microbes Infect 2007; 9:1606-13. [PMID: 18023390 DOI: 10.1016/j.micinf.2007.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/16/2007] [Accepted: 09/14/2007] [Indexed: 02/02/2023]
Abstract
Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs) and in the induction of immune responses. However, relatively little is known about their functions in innate/acquired responses to complex eukaryotic microorganisms, including helminth parasites. That Schistosoma mansoni eggs activate myeloid DCs through TLR2 and TLR3 has been shown by us and others, but the consequences of this combined activation are still unknown. We show that the engagement of both TLR2 and TLR3 by schistosome eggs is important for the production of inflammatory cytokines and interferon-stimulated genes, such as some chemokines, by DCs. Strikingly, DCs sensitized with ovalbumin in the presence of parasite eggs dramatically reduce the release of Th2-type cytokines by ovalbumin-specific T lymphocytes, an effect that fully depends on TLR3. Finally, although TLR2 and TLR3 have no role in host resistance and in egg-induced granuloma formation in S. mansoni-infected mice, they individually and additionally increase the Th1/Th2 balance of the immune response. Thus, TLR2 and TLR3 sensing is required to shape the immune response during murine schistosomiasis, but is dispensable to control infection and pathology.
Collapse
Affiliation(s)
- François Vanhoutte
- Institut National de la Recherche Médicale, U547, Institut Pasteur de Lille, Lille F-59019, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Monteiro RV, Dietz JM, Raboy B, Beck B, De Vleeschouwer K, Vleeschouwer KD, Baker A, Martins A, Jansen AM. Parasite community interactions: Trypanosoma cruzi and intestinal helminths infecting wild golden lion tamarins Leontopithecus rosalia and golden-headed lion tamarins L. chrysomelas (Callitrichidae, L., 1766). Parasitol Res 2007; 101:1689-98. [PMID: 17676342 DOI: 10.1007/s00436-007-0652-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 06/20/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
The parasite prevalence and infection intensity in primate wild populations can be affected by many variables linked to host and/or parasite ecology or either to interparasite competition/mutualism. In this study, we tested how host sex, age, and place of origin, as well parasitic concomitant infections affect the structure of golden lion and golden-headed lion tamarins parasite community, considering Trypanosoma cruzi and intestinal helminths infection in these primates. A total of 206 tamarins from two Atlantic Coastal rain forest areas in Brazil were tested during 4 years for prevalence of T. cruzi infection and helminth prevalence. Three intestinal helminth groups showed high prevalences in both tamarin species: Prosthenorchis sp., Spiruridae, and Trichostrongylidae. An association between presence of T. cruzi infection and higher intestinal helminth prevalence was found in both tamarin species. Two explanations for this association seem to be plausible: (1) lower helminth-linked mortality rates in T. cruzi-infected tamarins and (2) lower elimination rates of helminths in such tamarins. A higher frequency of T. cruzi-positive blood cultures was significantly correlated to female tamarins and to the presence of Trichostrongylidae infection. The possibility of an increase in the transmissibility of T. cruzi and the three analyzed helminths in lion tamarins with concomitant infections is discussed.
Collapse
Affiliation(s)
- Rafael V Monteiro
- Lab. Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ 21040-360, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|