1
|
Wang M, Yuan Y, Zhao Y, Hu Z, Zhang S, Luo J, Jiang CZ, Zhang Y, Sun D. PhWRKY30 activates salicylic acid biosynthesis to positively regulate antiviral defense response in petunia. HORTICULTURE RESEARCH 2025; 12:uhaf013. [PMID: 40190442 PMCID: PMC11966387 DOI: 10.1093/hr/uhaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 04/09/2025]
Abstract
Petunia (Petunia hybrida) plants are highly threatened by a diversity of viruses, causing substantial damage to ornamental quality and seed yield. However, the regulatory mechanism of virus resistance in petunia is largely unknown. Here, we revealed that a member of petunia WRKY transcription factors, PhWRKY30, was dramatically up-regulated following Tobacco rattle virus (TRV) infection. Down-regulation of PhWRKY30 through TRV-based virus-induced gene silencing increased green fluorescent protein (GFP)-marked TRV RNA accumulation and exacerbated the symptomatic severity. In comparison with wild-type (WT) plants, PhWRKY30-RNAi transgenic petunia plants exhibited a compromised resistance to TRV infection, whereas an enhanced resistance was observed in PhWRKY30-overexpressing (OE) transgenic plants. PhWRKY30 affected salicylic acid (SA) production and expression of arogenate dehydratase 1 (PhADT1), phenylalanine ammonia-lyase 1 (PhPAL1), PhPAL2b, nonexpressor of pathogenesis-related proteins 1 (PhNPR1), and PhPR1 in SA biosynthesis and signaling pathway. SA treatment restored the reduced TRV resistance to WT levels in PhWRKY30-RNAi plants, and application of SA biosynthesis inhibitor 2-aminoindan-2-phosphonic acid inhibited promoted resistance in PhWRKY30-OE plants. The protein-DNA binding assays showed that PhWRKY30 specifically bound to the promoter of PhPAL2b. RNAi silencing and overexpression of PhPAL2b led to decreased and increased TRV resistance, respectively. The transcription of a number of reactive oxygen species- and RNA silencing-associated genes was changed in PhWRKY30 and PhPAL2b transgenic lines. PhWRKY30 and PhPAL2b were further characterized to be involved in the resistance to Tobacco mosaic virus (TMV) invasion. Our findings demonstrate that PhWRKY30 positively regulates antiviral defense against TRV and TMV infections by modulating SA content.
Collapse
Affiliation(s)
- Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shasha Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Wang G, Hu B, Yao X, Wei Z, Chen J, Sun Z. A Stinkbug Salivary Protein Is Indispensable for Insect Feeding and Activates Plant Immunity. PLANT, CELL & ENVIRONMENT 2025; 48:2329-2342. [PMID: 39593264 DOI: 10.1111/pce.15308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Salivary proteins secreted by phytophagous insects play pivotal roles in plant-insect interactions. A salivary protein RpSP27, from the stinkbug Riptortus pedestris, a devastating pest on soybean, was selected for studying due to its ability to induce cell death and activate immune responses in plants. RpSP27 localized to the endoplasmic reticulum and triggered reactive oxygen species burst. Virus-induced gene silencing assays showed RAR1 plays an essential role in RpSP27-induced cell death in Nicotiana benthamiana. Expression analyses revealed that RpSP27 is predominantly expressed in R. pedestris salivary glands. RNA interference-mediated silencing of RpSP27 in R. pedestris significantly reduced insect survival rates and altered feeding behavior by decreasing the formation of salivary sheaths on soybeans and reducing probing and feeding duration. Furthermore, the silencing of RpSP27 in R. pedestris mitigated the staygreen syndrome in soybeans, characterized by delayed senescence and pod abnormalities. This study elucidated the role of RpSP27 in the interaction between R. pedestris and soybean, presenting a potential target for pest management strategies to protect soybean crops from the detrimental effects of R. pedestris feeding.
Collapse
Affiliation(s)
- Guoyi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Yao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
4
|
Jeong HW, Ryu TH, Lee HJ, Kim KH, Jeong RD. DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:449-465. [PMID: 37817492 PMCID: PMC10580055 DOI: 10.5423/ppj.oa.08.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense- and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.
Collapse
Affiliation(s)
- Hwi-Won Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Tae Ho Ryu
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| |
Collapse
|
5
|
Jacob P, Hige J, Dangl JL. Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants? NATURE PLANTS 2023; 9:1184-1190. [PMID: 37537398 DOI: 10.1038/s41477-023-01466-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) are intracellular immune receptors that are activated by their direct or indirect interactions with virulence effectors. NLR activation triggers a strong immune response and consequent disease resistance. However, the NLR-driven immune response can be targeted by virulence effectors. It is thus unclear how immune activation can occur concomitantly with virulence effector suppression of immunity. Recent observations suggest that the activation of effector-triggered immunity does not sustain defence gene expression in tissues in contact with the hemi-biotrophic pathogen Pseudomonas syringae pv. tomato. Instead, strong defence was observed on the border of the infection area. This response is reminiscent of localized acquired resistance (LAR). LAR is a strong defence response occurring in a ~2 mm area around cells in contact with the pathogen and probably serves to prevent the spread of pathogens. Here we propose that effector-triggered immunity is essentially a quarantining mechanism to prevent systemic pathogen spread and disease, and that the induction of LAR is a key component of this mechanism.
Collapse
Affiliation(s)
- Pierre Jacob
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Junko Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Sett S, Prasad A, Prasad M. Resistance genes on the verge of plant-virus interaction. TRENDS IN PLANT SCIENCE 2022; 27:1242-1252. [PMID: 35902346 DOI: 10.1016/j.tplants.2022.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/06/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Viruses are acellular pathogens that cause severe infections in plants, resulting in worldwide crop losses every year. The lack of chemical agents to control viral diseases exacerbates the situation. Thus, to devise proper management strategies, it is important that the defense mechanisms of plants against viruses are understood. Resistance (R) genes regulate plant defense against invading pathogens by eliciting a hypersensitive response (HR). Compatible interaction between plant R gene and viral avirulence (Avr) protein activates the necrotic cell death response at the site of infection, resulting in the cessation of disease. Here, we review different aspects of R gene-mediated dominant resistance against plant viruses in dicotyledonous plants and possible ways for developing crops with better disease resistance.
Collapse
Affiliation(s)
- Susmita Sett
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
7
|
Sharma S, Sanyal SK, Sushmita K, Chauhan M, Sharma A, Anirudhan G, Veetil SK, Kateriya S. Modulation of Phototropin Signalosome with Artificial Illumination Holds Great Potential in the Development of Climate-Smart Crops. Curr Genomics 2021; 22:181-213. [PMID: 34975290 PMCID: PMC8640849 DOI: 10.2174/1389202922666210412104817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Changes in environmental conditions like temperature and light critically influence crop production. To deal with these changes, plants possess various photoreceptors such as Phototropin (PHOT), Phytochrome (PHY), Cryptochrome (CRY), and UVR8 that work synergistically as sensor and stress sensing receptors to different external cues. PHOTs are capable of regulating several functions like growth and development, chloroplast relocation, thermomorphogenesis, metabolite accumulation, stomatal opening, and phototropism in plants. PHOT plays a pivotal role in overcoming the damage caused by excess light and other environmental stresses (heat, cold, and salinity) and biotic stress. The crosstalk between photoreceptors and phytohormones contributes to plant growth, seed germination, photo-protection, flowering, phototropism, and stomatal opening. Molecular genetic studies using gene targeting and synthetic biology approaches have revealed the potential role of different photoreceptor genes in the manipulation of various beneficial agronomic traits. Overexpression of PHOT2 in Fragaria ananassa leads to the increase in anthocyanin content in its leaves and fruits. Artificial illumination with blue light alone and in combination with red light influence the growth, yield, and secondary metabolite production in many plants, while in algal species, it affects growth, chlorophyll content, lipid production and also increases its bioremediation efficiency. Artificial illumination alters the morphological, developmental, and physiological characteristics of agronomic crops and algal species. This review focuses on PHOT modulated signalosome and artificial illumination-based photo-biotechnological approaches for the development of climate-smart crops.
Collapse
Affiliation(s)
- Sunita Sharma
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sibaji K. Sanyal
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kumari Sushmita
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Gireesh Anirudhan
- Integrated Science Education and Research Centre (ISERC), Institute of Science (Siksha Bhavana), Visva Bharati (A Central University), Santiniketan (PO), West Bengal, 731235, India
| | - Sindhu K. Veetil
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
8
|
Abebe DA, van Bentum S, Suzuki M, Ando S, Takahashi H, Miyashita S. Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism. Commun Biol 2021; 4:947. [PMID: 34373580 PMCID: PMC8352862 DOI: 10.1038/s42003-021-02482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/23/2021] [Indexed: 11/15/2022] Open
Abstract
Land plant genomes carry tens to hundreds of Resistance (R) genes to combat pathogens. The induction of antiviral R-gene-mediated resistance often results in a hypersensitive response (HR), which is characterized by virus containment in the initially infected tissues and programmed cell death (PCD) of the infected cells. Alternatively, systemic HR (SHR) is sometimes observed in certain R gene-virus combinations, such that the virus systemically infects the plant and PCD induction follows the spread of infection, resulting in systemic plant death. SHR has been suggested to be the result of inefficient resistance induction; however, no quantitative comparison has been performed to support this hypothesis. In this study, we report that the average number of viral genomes that establish cell infection decreased by 28.7% and 12.7% upon HR induction by wild-type cucumber mosaic virus and SHR induction by a single-amino acid variant, respectively. These results suggest that a small decrease in the level of resistance induction can change an HR to an SHR. Although SHR appears to be a failure of resistance at the individual level, our simulations imply that suicidal individual death in SHR may function as an antiviral mechanism at the population level, by protecting neighboring uninfected kin plants.
Collapse
Affiliation(s)
- Derib A Abebe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sietske van Bentum
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Machi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sugihiro Ando
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Miyashita
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
9
|
Transcription Factor Pso9TF Assists Xinjiang Wild Myrobalan Plum ( Prunus sogdiana) PsoRPM3 Disease Resistance Protein to Resist Meloidogyne incognita. PLANTS 2021; 10:plants10081561. [PMID: 34451606 PMCID: PMC8402125 DOI: 10.3390/plants10081561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
The root-knot nematode (Meloidogyne incognita) causes huge economic losses in the agricultural industry throughout the world. Control methods against these polyphagous plant endoparasites are sparse, the preferred one being the deployment of plant cultivars or rootstocks bearing resistance genes against Meloidogyne species. Our previous study has cloned one resistance gene, PsoRPM3, from Xinjiang wild myrobalan plum (Prunus sogdiana). However, the function of PsoRPM3 remains elusive. In the present study, we have investigated the regulatory mechanism of PsoRPM3 in plant defense responses to M. incognita. Our results indicate that fewer giant cells were detected in the roots of the PsoRPM3 transgenic tobacco than wild tobacco lines after incubation with M. incognita. Transient transformations of full-length and TN structural domains of PsoRPM3 have induced significant hypersensitive responses (HR), suggesting that TIR domain might be the one which caused HR. Further, yeast two-hybrid results revealed that the full-length and LRR domain of PsoRPM3 could interact with the transcription factor Pso9TF. The addition of Pso9TF increased the ROS levels and induced HR. Thus, our data revealed that the LRR structural domain of PsoRPM3 may be associated with signal transduction. Moreover, we did not find any relative inductions of defense-related genes PsoEDS1, PsoPAD4 and PsoSAG101 in P. sogdiana, which has been incubated with M. incognita. In summary, our work has shown the key functional domain of PsoRPM3 in the regulation of defense responses to M. incognita in P. sogdiana.
Collapse
|
10
|
Characterization of the Roles of SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 in Sw-5b-Mediated Resistance to Tomato Spotted Wilt Virus. Viruses 2021; 13:v13081447. [PMID: 34452313 PMCID: PMC8402918 DOI: 10.3390/v13081447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/23/2023] Open
Abstract
The tomato Sw-5b gene confers resistance to tomato spotted wilt virus (TSWV) and encodes a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal Solanaceae-specific domain (SD). Although our understanding of how Sw-5b recognizes the viral NSm elicitor has increased significantly, the process by which Sw-5b activates downstream defense signaling remains to be elucidated. In this study, we used a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate the roles of the SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 genes in the Sw-5b-mediated signaling pathway. We found that chaperone SGT1 was required for Sw-5b function, but co-chaperone RAR1 was not. Sw-5b-mediated immune signaling was independent of both EDS1 and NDR1. Silencing NPR1, which is a central component in SA signaling, did not result in TSWV systemic infection in Sw-5b-transgenic N. benthamiana plants. Helper NLR NRCs (NLRs required for cell death) were required for Sw-5b-mediated systemic resistance to TSWV infection. Suppression of NRC2/3/4 compromised the Sw-5b resistance. However, the helper NLRs ADR1 and NRG1 may not participate in the Sw-5b signaling pathway. Silencing ADR1, NRG1, or both genes did not affect Sw-5b-mediated resistance to TSWV. Our findings provide new insight into the requirement for conserved key components in Sw-5b-mediated signaling pathways.
Collapse
|
11
|
R-BPMV-Mediated Resistance to Bean pod mottle virus in Phaseolus vulgaris L. Is Heat-Stable but Elevated Temperatures Boost Viral Infection in Susceptible Genotypes. Viruses 2021; 13:v13071239. [PMID: 34206842 PMCID: PMC8310253 DOI: 10.3390/v13071239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022] Open
Abstract
In the context of climate change, elevated temperature is a major concern due to the impact on plant–pathogen interactions. Although atmospheric temperature is predicted to increase in the next century, heat waves during summer seasons have already become a current problem. Elevated temperatures strongly influence plant–virus interactions, the most drastic effect being a breakdown of plant viral resistance conferred by some major resistance genes. In this work, we focused on the R-BPMV gene, a major resistance gene against Bean pod mottle virus in Phaseolus vulgaris. We inoculated different BPMV constructs in order to study the behavior of the R-BPMV-mediated resistance at normal (20 °C) and elevated temperatures (constant 25, 30, and 35 °C). Our results show that R-BPMV mediates a temperature-dependent phenotype of resistance from hypersensitive reaction at 20 °C to chlorotic lesions at 35 °C in the resistant genotype BAT93. BPMV is detected in inoculated leaves but not in systemic ones, suggesting that the resistance remains heat-stable up to 35 °C. R-BPMV segregates as an incompletely dominant gene in an F2 population. We also investigated the impact of elevated temperature on BPMV infection in susceptible genotypes, and our results reveal that elevated temperatures boost BPMV infection both locally and systemically in susceptible genotypes.
Collapse
|
12
|
Wang S, Han K, Peng J, Zhao J, Jiang L, Lu Y, Zheng H, Lin L, Chen J, Yan F. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:990-1004. [PMID: 31012537 PMCID: PMC6589722 DOI: 10.1111/mpp.12808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
AGD2-LIKE DEFENCE RESPONSE PROTEIN 1 (ALD1) triggers plant defence against bacterial and fungal pathogens by regulating the salicylic acid (SA) pathway and an unknown SA-independent pathway. We now show that Nicotiana benthamiana ALD1 is involved in defence against a virus and that the ethylene pathway also participates in ALD1-mediated resistance. NbALD1 was up-regulated in plants infected with turnip mosaic virus (TuMV). Silencing of NbALD1 facilitated TuMV infection, while overexpression of NbALD1 or exogenous application of pipecolic acid (Pip), the downstream product of ALD1, enhanced resistance to TuMV. The SA content was lower in NbALD1-silenced plants and higher where NbALD1 was overexpressed or following Pip treatments. SA mediated resistance to TuMV and was required for NbALD1-mediated resistance. However, on NahG plants (in which SA cannot accumulate), Pip treatment still alleviated susceptibility to TuMV, further demonstrating the presence of an SA-independent resistance pathway. The ethylene precursor, 1-aminocyclopropanecarboxylic acid (ACC), accumulated in NbALD1-silenced plants but was reduced in plants overexpressing NbALD1 or treated with Pip. Silencing of ACS1, a key gene in the ethylene pathway, alleviated the susceptibility of NbALD1-silenced plants to TuMV, while exogenous application of ACC compromised the resistance of Pip-treated or NbALD1 transgenic plants. The results indicate that NbALD1 mediates resistance to TuMV by positively regulating the resistant SA pathway and negatively regulating the susceptible ethylene pathway.
Collapse
Affiliation(s)
- Shu Wang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Kelei Han
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Jiejun Peng
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
| | - Liangliang Jiang
- College of Plant ProtectionNanjing Agricultural UniversityNanjing210095China
| | - Yuwen Lu
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Hongying Zheng
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Lin Lin
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Jianping Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhou310021China
- Institute of Plant VirologyNingbo UniversityNingbo315211China
| |
Collapse
|
13
|
Li S, Zhao J, Zhai Y, Yuan Q, Zhang H, Wu X, Lu Y, Peng J, Sun Z, Lin L, Zheng H, Chen J, Yan F. The hypersensitive induced reaction 3 (HIR3) gene contributes to plant basal resistance via an EDS1 and salicylic acid-dependent pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:783-797. [PMID: 30730076 DOI: 10.1111/tpj.14271] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 05/20/2023]
Abstract
The hypersensitive-induced reaction (HIR) gene family is associated with the hypersensitive response (HR) that is a part of the plant defense system against bacterial and fungal pathogens. The involvement of HIR genes in response to viral pathogens has not yet been studied. We now report that the HIR3 genes of Nicotiana benthamiana and Oryza sativa (rice) were upregulated following rice stripe virus (RSV) infection. Silencing of HIR3s in N. benthamiana resulted in an increased accumulation of RSV RNAs, whereas overexpression of HIR3s in N. benthamiana or rice reduced the expression of RSV RNAs and decreased symptom severity, while also conferring resistance to Turnip mosaic virus, Potato virus X, and the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. Silencing of HIR3 genes in N. benthamiana reduced the content of salicylic acid (SA) and was accompanied by the downregulated expression of genes in the SA pathway. Transient expression of the two HIR3 gene homologs from N. benthamiana or the rice HIR3 gene in N. benthamiana leaves caused cell death and an accumulation of SA, but did not do so in EDS1-silenced plants or in plants expressing NahG. The results indicate that HIR3 contributes to plant basal resistance via an EDS1- and SA-dependent pathway.
Collapse
Affiliation(s)
- Saisai Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinping Zhao
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yushan Zhai
- College of Plant Protection, Northwest A& F University, Yangling, 712100, China
| | - Quan Yuan
- College of Plant Protection, Northwest A& F University, Yangling, 712100, China
| | - Hehong Zhang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xinyang Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, China, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
14
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
15
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
16
|
Lim GH, Hoey T, Zhu S, Clavel M, Yu K, Navarre D, Kachroo A, Deragon JM, Kachroo P. COP1, a negative regulator of photomorphogenesis, positively regulates plant disease resistance via double-stranded RNA binding proteins. PLoS Pathog 2018; 14:e1006894. [PMID: 29513740 PMCID: PMC5871017 DOI: 10.1371/journal.ppat.1006894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/27/2018] [Accepted: 01/22/2018] [Indexed: 11/18/2022] Open
Abstract
The E3 ubiquitin ligase COP1 (Constitutive Photomorphogenesis 1) is a well known component of the light-mediated plant development that acts as a repressor of photomorphogenesis. Here we show that COP1 positively regulates defense against turnip crinkle virus (TCV) and avrRPM1 bacteria by contributing to stability of resistance (R) protein HRT and RPM1, respectively. HRT and RPM1 levels and thereby pathogen resistance is significantly reduced in the cop1 mutant background. Notably, the levels of at least two double-stranded RNA binding (DRB) proteins DRB1 and DRB4 are reduced in the cop1 mutant background suggesting that COP1 affects HRT stability via its effect on the DRB proteins. Indeed, a mutation in either drb1 or drb4 resulted in degradation of HRT. In contrast to COP1, a multi-subunit E3 ligase encoded by anaphase-promoting complex (APC) 10 negatively regulates DRB4 and TCV resistance but had no effect on DRB1 levels. We propose that COP1-mediated positive regulation of HRT is dependent on a balance between COP1 and negative regulators that target DRB1 and DRB4.
Collapse
Affiliation(s)
- Gah-Hyun Lim
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Timothy Hoey
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Shifeng Zhu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Marion Clavel
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, Perpignan, France
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Duroy Navarre
- U.S. Department of Agriculture–Agricultural Research Service, Washington State University, Prosser, WA, United States of America
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - Jean-Marc Deragon
- Université de Perpignan Via Domitia, CNRS UMR5096 LGDP, Perpignan, France
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| |
Collapse
|
17
|
Lukan T, Baebler Š, Pompe-Novak M, Guček K, Zagorščak M, Coll A, Gruden K. Cell Death Is Not Sufficient for the Restriction of Potato Virus Y Spread in Hypersensitive Response-Conferred Resistance in Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:168. [PMID: 29497431 PMCID: PMC5818463 DOI: 10.3389/fpls.2018.00168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/30/2018] [Indexed: 05/25/2023]
Abstract
Hypersensitive response (HR)-conferred resistance to viral infection restricts the virus spread and is accompanied by the induction of cell death, manifested as the formation of necrotic lesions. While it is known that salicylic acid is the key component in the orchestration of the events restricting viral spread in HR, the exact function of the cell death in resistance is still unknown. We show that potato virus Y (PVY) can be detected outside the cell death zone in Ny-1-mediated HR in potato plants (cv. Rywal), observed as individual infected cells or small clusters of infected cells outside the cell death zone. By exploiting the features of temperature dependent Ny-1-mediated resistance, we confirmed that the cells at the border of the cell death zone are alive and harbor viable PVY that is able to reinitiate infection. To get additional insights into this phenomenon we further studied the dynamics of both cell death zone expansion and occurrence of viral infected cell islands outside it. We compared the response of Rywal plants to their transgenic counterparts, impaired in SA accumulation (NahG-Rywal), where the lesions occur but the spread of the virus is not restricted. We show that the virus is detected outside the cell death zone in all lesion developmental stages of HR lesions. We also measured the dynamics of lesions expansion in both genotypes. We show that while rapid lesion expansion is observed in SA-depleted plants, virus spread is even faster. On the other hand the majority of analyzed lesions slowly expand also in HR-conferred resistance opening the possibility that the infected cells are eventually engulfed by cell death zone. Taken altogether, we suggest that the HR cell death is separated from the resistance mechanisms which lead to PVY restriction in Ny-1 genetic background. We propose that HR should be regarded as a process where the dynamics of events is crucial for effectiveness of viral arrest albeit the exact mechanism conferring this resistance remains unknown.
Collapse
Affiliation(s)
- Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maruša Pompe-Novak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Katja Guček
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anna Coll
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
18
|
A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci Rep 2017; 7:3557. [PMID: 28620210 PMCID: PMC5472582 DOI: 10.1038/s41598-017-03704-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Type-III secreted effectors (T3Es) play critical roles during bacterial pathogenesis in plants. Plant recognition of certain T3Es can trigger defence, often accompanied by macroscopic cell death, termed the hypersensitive response (HR). Economically important species of kiwifruit are susceptible to Pseudomonas syringae pv. actinidiae (Psa), the causal agent of kiwifruit bacterial canker. Although Psa is non-pathogenic in Arabidopsis thaliana, we observed that a T3E, HopZ5 that is unique to a global outbreak clade of Psa, triggers HR and defence in Arabidopsis accession Ct-1. Ws-2 and Col-0 accessions are unable to produce an HR in response to Pseudomonas-delivered HopZ5. While Ws-2 is susceptible to virulent bacterial strain Pseudomonas syringae pv. tomato DC3000 carrying HopZ5, Col-0 is resistant despite the lack of an HR. We show that HopZ5, like other members of the YopJ superfamily of acetyltransferases that it belongs to, autoacetylates lysine residues. Through comparisons to other family members, we identified an acetyltransferase catalytic activity and demonstrate its requirement for triggering defence in Arabidopsis and Nicotiana species. Collectively, data herein indicate that HopZ5 is a plasma membrane-localized acetyltransferase with autoacetylation activity required for avirulence.
Collapse
|
19
|
Vega-Arreguín JC, Shimada-Beltrán H, Sevillano-Serrano J, Moffett P. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp. FRONTIERS IN PLANT SCIENCE 2017; 8:205. [PMID: 28261255 PMCID: PMC5309224 DOI: 10.3389/fpls.2017.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/03/2017] [Indexed: 05/29/2023]
Abstract
The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.
Collapse
Affiliation(s)
- Julio C. Vega-Arreguín
- Boyce Thompson Institute for Plant Research, IthacaNY, USA
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Harumi Shimada-Beltrán
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Jacobo Sevillano-Serrano
- Laboratorio de Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores – León, Universidad Nacional Autónoma de MexicoLeón, Mexico
| | - Peter Moffett
- Boyce Thompson Institute for Plant Research, IthacaNY, USA
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, SherbrookeQC, Canada
| |
Collapse
|
20
|
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Front Microbiol 2017; 7:2139. [PMID: 28105028 PMCID: PMC5214455 DOI: 10.3389/fmicb.2016.02139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Collapse
Affiliation(s)
- Bianca C. Gouveia
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Iara P. Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - João Paulo B. Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Anésia A. Santos
- Department of General Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Elizabeth P. B. Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|
21
|
Navarro JA, Pallás V. An Update on the Intracellular and Intercellular Trafficking of Carmoviruses. FRONTIERS IN PLANT SCIENCE 2017; 8:1801. [PMID: 29093729 PMCID: PMC5651262 DOI: 10.3389/fpls.2017.01801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/04/2017] [Indexed: 05/03/2023]
Abstract
Despite harboring the smallest genomes among plant RNA viruses, carmoviruses have emerged as an ideal model system for studying essential steps of the viral cycle including intracellular and intercellular trafficking. Two small movement proteins, formerly known as double gene block proteins (DGBp1 and DGBp2), have been involved in the movement throughout the plant of some members of carmovirus genera. DGBp1 RNA-binding capability was indispensable for cell-to-cell movement indicating that viral genomes must interact with DGBp1 to be transported. Further investigation on Melon necrotic spot virus (MNSV) DGBp1 subcellular localization and dynamics also supported this idea as this protein showed an actin-dependent movement along microfilaments and accumulated at the cellular periphery. Regarding DGBp2, subcellular localization studies showed that MNSV and Pelargonium flower break virus DGBp2s were inserted into the endoplasmic reticulum (ER) membrane but only MNSV DGBp2 trafficked to plasmodesmata (PD) via the Golgi apparatus through a COPII-dependent pathway. DGBp2 function is still unknown but its localization at PD was a requisite for an efficient cell-to-cell movement. It is also known that MNSV infection can induce a dramatic reorganization of mitochondria resulting in anomalous organelles containing viral RNAs. These putative viral factories were frequently found associated with the ER near the PD leading to the possibility that MNSV movement and replication could be spatially linked. Here, we update the current knowledge of the plant endomembrane system involvement in carmovirus intra- and intercellular movement and the tentative model proposed for MNSV transport within plant cells.
Collapse
|
22
|
Moon JY, Lee JH, Oh C, Kang H, Park JM. Endoplasmic reticulum stress responses function in the HRT-mediated hypersensitive response in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2016; 17:1382-1397. [PMID: 26780303 PMCID: PMC6638521 DOI: 10.1111/mpp.12369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 05/08/2023]
Abstract
HRT is a plant coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) disease resistance protein that triggers the hypersensitive response (HR) on recognition of Turnip crinkle virus (TCV) coat protein (CP). The molecular mechanism and significance of HR-mediated cell death for TCV resistance have not been fully elucidated. To identify the genes involved in HRT/TCV CP-mediated HR in Nicotiana benthamiana, we performed virus-induced gene silencing (VIGS) of 459 expressed sequence tags (ESTs) of pathogen-responsive Capsicum annuum genes. VIGS of CaBLP5, which encodes an endoplasmic reticulum (ER)-associated immunoglobulin-binding protein (BiP), silenced NbBiP4 and NbBiP5 and significantly reduced HRT-mediated HR. The induction of ER stress-responsive genes and the accumulation of ER-targeted BiPs in response to HRT-mediated HR suggest that ER is involved in HR in N. benthamiana. BiP4/5 silencing significantly down-regulated HRT at the mRNA and protein levels, and affected SGT1 and HSP90 expression. Co-expression of TCV CP in BiP4/5-silenced plants completely abolished HRT induction. Transient expression of TCV CP alone induced selected ER stress-responsive gene transcripts only in Tobacco rattle virus (TRV)-infected plants, and most of these genes were induced by HRT/TCV CP, except for bZIP60, which was induced specifically in response to HRT/TCV CP. TCV CP-mediated induction of ER stress-responsive genes still occurred in BiP4/5-silenced plants, but HRT/TCV CP-mediated induction of these genes was defective. Tunicamycin, a chemical that inhibits protein N-glycosylation, inhibited HRT-mediated HR, suggesting that ER has a role in HR regulation. These results indicate that BiP and ER, which modulate pattern recognition receptors in innate immunity, also regulate R protein-mediated resistance.
Collapse
Affiliation(s)
- Ju Yeon Moon
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
- Department of Biosystems and BioengineeringUSTDaejeon305‐350South Korea
| | - Jeong Hee Lee
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
| | - Chang‐Sik Oh
- Department of HorticultureKyung Hee UniversityYongin446‐701South Korea
| | - Hong‐Gu Kang
- Department of BiologyTexas State UniversitySan MarcosTX78666USA
| | - Jeong Mee Park
- Molecular Biofarming Research CenterKRIBBDaejeon305‐600South Korea
- Department of Biosystems and BioengineeringUSTDaejeon305‐350South Korea
| |
Collapse
|
23
|
Shine MB, Yang JW, El-Habbak M, Nagyabhyru P, Fu DQ, Navarre D, Ghabrial S, Kachroo P, Kachroo A. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. THE NEW PHYTOLOGIST 2016; 212:627-636. [PMID: 27411159 DOI: 10.1111/nph.14078] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/23/2016] [Indexed: 05/05/2023]
Abstract
Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL) or the isochorismate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We investigated the relative contributions of PAL and ICS to defense-related SA accumulation in soybean (Glycine max). Soybean plants silenced for five PAL isoforms or two ICS isoforms were analyzed for SA concentrations and SA-derived defense responses to the hemibiotrophic pathogens Pseudomonas syringae and Phytophthora sojae. We show that, unlike in Arabidopsis, PAL and ICS pathways are equally important for pathogen-induced SA biosynthesis in soybean. Knock-down of either pathway shuts down SA biosynthesis and abrogates pathogen resistance. Moreover, unlike in Arabidopsis, pathogen infection is associated with the suppression of ICS gene expression. Pathogen-induced biosynthesis of SA via the PAL pathway correlates inversely with phenylalanine concentrations. Although infections with either virulent or avirulent strains of the pathogens increase SA concentrations, resistance protein-mediated response to avirulent P. sojae strains may function in an SA-independent manner. These results show that PAL- and ICS-catalyzed reactions function cooperatively in soybean defense and highlight the importance of PAL in pathogen-induced SA biosynthesis.
Collapse
Affiliation(s)
- M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Jung-Wook Yang
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Mohamed El-Habbak
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Padmaja Nagyabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Da-Qi Fu
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Duroy Navarre
- Department of Plant Pathology, USDA-Agricultural Research Service, Washington State University, Prosser, WA, 99350, USA
| | - Said Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
24
|
Chen QF, Xu L, Tan WJ, Chen L, Qi H, Xie LJ, Chen MX, Liu BY, Yu LJ, Yao N, Zhang JH, Shu W, Xiao S. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance. MOLECULAR PLANT 2015; 8:1536-49. [PMID: 26149542 PMCID: PMC5321072 DOI: 10.1016/j.molp.2015.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/12/2015] [Accepted: 06/28/2015] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants, exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons compared with the wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than the wild type, and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in the wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in the freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG.
Collapse
Affiliation(s)
- Qin-Fang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Le Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei-Juan Tan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Liang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hua Qi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Mo-Xian Chen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bin-Yi Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jian-Hua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Makandar R, Nalam VJ, Chowdhury Z, Sarowar S, Klossner G, Lee H, Burdan D, Trick HN, Gobbato E, Parker JE, Shah J. The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:943-53. [PMID: 25915452 DOI: 10.1094/mpmi-04-15-0079-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Fusarium graminearum causes Fusarium head blight (FHB) disease in wheat and other cereals. F. graminearum also causes disease in Arabidopsis thaliana. In both Arabidopsis and wheat, F. graminearum infection is limited by salicylic acid (SA) signaling. Here, we show that, in Arabidopsis, the defense regulator EDS1 (ENHANCED DISEASE SUSCEPTIBILITY1) and its interacting partners, PAD4 (PHYTOALEXIN-DEFICIENT4) and SAG101 (SENESCENCE-ASSOCIATED GENE101), promote SA accumulation to curtail F. graminearum infection. Characterization of plants expressing the PAD4 noninteracting eds1(L262P) indicated that interaction between EDS1 and PAD4 is critical for limiting F. graminearum infection. A conserved serine in the predicted acyl hydrolase catalytic triad of PAD4, which is not required for defense against bacterial and oomycete pathogens, is necessary for limiting F. graminearum infection. These results suggest a molecular configuration of PAD4 in Arabidopsis defense against F. graminearum that is different from its defense contribution against other pathogens. We further show that constitutive expression of Arabidopsis PAD4 can enhance FHB resistance in Arabidopsis and wheat. Taken together with previous studies of wheat and Arabidopsis expressing salicylate hydroxylase or the SA-response regulator NPR1 (NON-EXPRESSER OF PR GENES1), our results show that exploring fundamental processes in a model plant provides important leads to manipulating crops for improved disease resistance.
Collapse
Affiliation(s)
- Ragiba Makandar
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
- 2 Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Vamsi J Nalam
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
- 3 Department of Biology, Indiana University-Purdue University, Fort Wayne, IN 46805, U.S.A
| | - Zulkarnain Chowdhury
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Sujon Sarowar
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Guy Klossner
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| | - Hyeonju Lee
- 4 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Dehlia Burdan
- 4 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Harold N Trick
- 4 Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Enrico Gobbato
- 5 Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl von Linné Weg 10, 50829 Cologne, Germany
| | - Jane E Parker
- 5 Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl von Linné Weg 10, 50829 Cologne, Germany
| | - Jyoti Shah
- 1 Department of Biological Sciences, University of North Texas, Denton, TX 76203, U.S.A
| |
Collapse
|
26
|
Lv F, Zhou J, Zeng L, Xing D. β-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4719-32. [PMID: 25998906 DOI: 10.1093/jxb/erv231] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
β-cyclocitral (β-CC), a volatile oxidized derivative of β-carotene, can upregulate the expression of defence genes to enhance excess light (EL) acclimation. However, the signalling cascades underlying this process remain unclear. In this study, salicylic acid (SA) is involved in alleviating damage to promote β-CC-enhanced EL acclimation. In early stages of EL illumination, β-CC pretreatment induced SA accumulation and impeded reactive oxygen species (ROS) production in the chloroplast. A comparative analysis of two SA synthesis pathways in Arabidopsis revealed that SA concentration mainly increased via the isochorismate synthase 1 (ICS1)-mediated isochorismate pathway, which depended on essential regulative function of enhanced disease susceptibility 1 (EDS1). Further results showed that, in the process of β-CC-enhanced EL acclimation, nuclear localization of nonexpressor of pathogenesis-related genes 1 (NPR1) was regulated by SA accumulation and NPR1 induced subsequent transcriptional reprogramming of gluthathione-S-transferase 5 (GST5) and GST13 implicated in detoxification. In summary, β-CC-induced SA synthesis contributes to EL acclimation response by decreasing ROS production in the chloroplast, promoting nuclear localization of NPR1, and upregulating GST transcriptional expression. This process is a possible molecular regulative mechanism of β-CC-enhanced EL acclimation.
Collapse
Affiliation(s)
- Feifei Lv
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lizhang Zeng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
27
|
Gao QM, Zhu S, Kachroo P, Kachroo A. Signal regulators of systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2015; 6:228. [PMID: 25918514 PMCID: PMC4394658 DOI: 10.3389/fpls.2015.00228] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/23/2015] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) is an important phytohormone that plays a vital role in a number of physiological responses, including plant defense. The last two decades have witnessed a number of breakthroughs related to biosynthesis, transport, perception and signaling mediated by SA. These findings demonstrate that SA plays a crictical role in both local and systemic defense responses. Systemic acquired resistance (SAR) is one such SA-dependent response. SAR is a long distance signaling mechanism that provides broad spectrum and long-lasting resistance to secondary infections throughout the plant. This unique feature makes SAR a highly desirable trait in crop production. This review summarizes the recent advances in the role of SA in SAR and discusses its relationship to other SAR inducers.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Shifeng Zhu
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Pradeep Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of KentuckyLexington, KY, USA
- *Correspondence: Aardra Kachroo, Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans drive, Lexington, KY 40546, USA
| |
Collapse
|
28
|
Gao F, Dai R, Pike SM, Qiu W, Gassmann W. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew. PLANT MOLECULAR BIOLOGY 2014; 86:381-93. [PMID: 25107649 DOI: 10.1007/s11103-014-0235-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/01/2014] [Indexed: 05/20/2023]
Abstract
The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses. We have examined the functions of defense genes associated with the salicylic acid (SA) pathway, including ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), EDS1-LIKE 2 (EDL2), EDL5 and PHYTOALEXIN DEFICIENT 4 (PAD4) of two grapevine species, Vitis vinifera cv. Cabernet Sauvignon, which is susceptible to E. necator, and V. aestivalis cv. Norton, which is resistant. Both VaEDS1 and VvEDS1 were previously found to functionally complement the Arabidopsis eds1-1 mutant. Here we show that the promoters of both VaEDS1 and VvEDS1 were induced by SA, indicating that the heightened defense of Norton is related to its high SA level. Other than Va/VvEDS1, only VaEDL2 complemented Arabidopsis eds1-1, whereas Va/VvPAD4 did not complement Arabidopsis pad4-1. Bimolecular fluorescence complementation results indicated that Vitis EDS1 and EDL2 proteins interact with Vitis PAD4 and AtPAD4, suggesting that Vitis EDS1/EDL2 forms a complex with PAD4 to confer resistance, as is known from Arabidopsis. However, Vitis EDL5 and PAD4 did not interact with Arabidopsis EDS1 or PAD4, correlating with their inability to function in Arabidopsis. Together, our study suggests a more complicated EDS1/PAD4 module in grapevine and provides insight into molecular mechanisms that determine disease resistance levels in Vitis species native to the North American continent.
Collapse
Affiliation(s)
- Fei Gao
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, 371C Life Sciences Center, Columbia, MO, 65211-7310, USA
| | | | | | | | | |
Collapse
|
29
|
Mandadi KK, Pyle JD, Scholthof KBG. Comparative analysis of antiviral responses in Brachypodium distachyon and Setaria viridis reveals conserved and unique outcomes among C3 and C4 plant defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1277-1290. [PMID: 25296115 DOI: 10.1094/mpmi-05-14-0152-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viral diseases cause significant losses in global agricultural production, yet little is known about grass antiviral defense mechanisms. We previously reported on host immune responses triggered by Panicum mosaic virus (PMV) and its satellite virus (SPMV) in the model C3 grass Brachypodium distachyon. To aid comparative analyses of C3 and C4 grass antiviral defenses, here, we establish B. distachyon and Setaria viridis (a C4 grass) as compatible hosts for seven grass-infecting viruses, including PMV and SPMV, Brome mosaic virus, Barley stripe mosaic virus, Maize mild mottle virus, Sorghum yellow banding virus, Wheat streak mosaic virus (WSMV), and Foxtail mosaic virus (FoMV). Etiological and molecular characterization of the fourteen grass-virus pathosystems showed evidence for conserved crosstalk among salicylic acid (SA), jasmonic acid, and ethylene pathways in B. distachyon and S. viridis. Strikingly, expression of PHYTOALEXIN DEFICIENT4, an upstream modulator of SA signaling, was consistently suppressed during most virus infections in B. distachyon and S. viridis. Hierarchical clustering analyses further identified unique antiviral responses triggered by two morphologically similar viruses, FoMV and WSMV, and uncovered other host-dependent effects. Together, the results of this study establish B. distachyon and S. viridis as models for the analysis of plant-virus interactions and provide the first framework for conserved and unique features of C3 and C4 grass antiviral defenses.
Collapse
|
30
|
Wang J, Shine MB, Gao QM, Navarre D, Jiang W, Liu C, Chen Q, Hu G, Kachroo A. Enhanced Disease Susceptibility1 Mediates Pathogen Resistance and Virulence Function of a Bacterial Effector in Soybean. PLANT PHYSIOLOGY 2014; 165:1269-1284. [PMID: 24872380 PMCID: PMC4081336 DOI: 10.1104/pp.114.242495] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/28/2014] [Indexed: 05/22/2023]
Abstract
Enhanced disease susceptibility1 (EDS1) and phytoalexin deficient4 (PAD4) are well-known regulators of both basal and resistance (R) protein-mediated plant defense. We identified two EDS1-like (GmEDS1a/GmEDS1b) proteins and one PAD4-like (GmPAD4) protein that are required for resistance signaling in soybean (Glycine max). Consistent with their significant structural conservation to Arabidopsis (Arabidopsis thaliana) counterparts, constitutive expression of GmEDS1 or GmPAD4 complemented the pathogen resistance defects of Arabidopsis eds1 and pad4 mutants, respectively. Interestingly, however, the GmEDS1 and GmPAD4 did not complement pathogen-inducible salicylic acid accumulation in the eds1/pad4 mutants. Furthermore, the GmEDS1a/GmEDS1b proteins were unable to complement the turnip crinkle virus coat protein-mediated activation of the Arabidopsis R protein Hypersensitive reaction to Turnip crinkle virus (HRT), even though both interacted with HRT. Silencing GmEDS1a/GmEDS1b or GmPAD4 reduced basal and pathogen-inducible salicylic acid accumulation and enhanced soybean susceptibility to virulent pathogens. The GmEDS1a/GmEDS1b and GmPAD4 genes were also required for Resistance to Pseudomonas syringae pv glycinea2 (Rpg2)-mediated resistance to Pseudomonas syringae. Notably, the GmEDS1a/GmEDS1b proteins interacted with the cognate bacterial effector AvrA1 and were required for its virulence function in rpg2 plants. Together, these results show that despite significant structural similarities, conserved defense signaling components from diverse plants can differ in their functionalities. In addition, we demonstrate a role for GmEDS1 in regulating the virulence function of a bacterial effector.
Collapse
Affiliation(s)
- Jialin Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| | - M B Shine
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| | - Qing-Ming Gao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| | - Duroy Navarre
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| | - Wei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| | - Chunyan Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| | - Guohua Hu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| | - Aardra Kachroo
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China (J.W., W.J., Q.C., G.H.);Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (J.W., M.B.S., Q.-M.G., A.K.);United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.); andLand Reclamation Research and Breeding Centre of Heilongjiang, Harbin 150090, China (C.L., G.H.)
| |
Collapse
|
31
|
Alternative splicing in plant immunity. Int J Mol Sci 2014; 15:10424-45. [PMID: 24918296 PMCID: PMC4100160 DOI: 10.3390/ijms150610424] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/01/2022] Open
Abstract
Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.
Collapse
|
32
|
Breitenbach HH, Wenig M, Wittek F, Jordá L, Maldonado-Alconada AM, Sarioglu H, Colby T, Knappe C, Bichlmeier M, Pabst E, Mackey D, Parker JE, Vlot AC. Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance. PLANT PHYSIOLOGY 2014; 165:791-809. [PMID: 24755512 PMCID: PMC4044859 DOI: 10.1104/pp.114.239665] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.
Collapse
Affiliation(s)
- Heiko H Breitenbach
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Finni Wittek
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Lucia Jordá
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Ana M Maldonado-Alconada
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Hakan Sarioglu
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Thomas Colby
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Marlies Bichlmeier
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Elisabeth Pabst
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - David Mackey
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - Jane E Parker
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology (H.H.B., M.W., F.W., C.K., M.B., E.P., A.C.V.), and Research Unit Protein Science (H.S.), 85764 Neuherberg, Germany;Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions (L.J., J.E.P., A.C.V.) and Mass Spectrometry Unit (T.C.), 50829 Cologne, Germany;John Innes Centre, Norwich NR4 7UH, United Kingdom (A.M.M.-A.); andOhio State University, Department of Horticulture and Crop Science and Department of Molecular Genetics, Columbus, Ohio 43210 (D.M.)
| |
Collapse
|
33
|
Selote D, Shine MB, Robin GP, Kachroo A. Soybean NDR1-like proteins bind pathogen effectors and regulate resistance signaling. THE NEW PHYTOLOGIST 2014; 202:485-498. [PMID: 24372490 DOI: 10.1111/nph.12654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
Nonrace specific disease resistance 1 (NDR1) is a conserved downstream regulator of resistance (R) protein-derived signaling. We identified two NDR1-like sequences (GmNDR1a, b) from soybean, and investigated their roles in R-mediated resistance and pathogen effector detection. Silencing GmNDR1a and b in soybean shows that these genes are required for resistance derived from the Rpg1-b, Rpg3, and Rpg4 loci, against Pseudomonas syringae (Psg) expressing avrB, avrB2 and avrD1, respectively. Immunoprecipitation assays show that the GmNDR1 proteins interact with the AvrB2 and AvrD1 Psg effectors. This correlates with the enhanced virulence of Psg avrB2 and Psg avrD1 in GmNDR1-silenced rpg3 rpg4 plants, even though these strains are not normally more virulent on plants lacking cognate R loci. The GmNDR1 proteins interact with GmRIN4 proteins, but not with AvrB, or its cognate R protein Rpg1-b. However, the GmNDR1 proteins promote AvrB-independent activation of Rpg1-b when coexpressed with a phosphomimic derivative of GmRIN4b. The role of GmNDR1 proteins in Rpg1-b activation, their direct interactions with AvrB2/AvrD1, and a putative role in the virulence activities of Avr effectors, provides the first experimental evidence in support of the proposed role for NDR1 in transducing extracellular pathogen-derived signals.
Collapse
Affiliation(s)
- Devarshi Selote
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Guillaume P Robin
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
34
|
Zhu S, Lim GH, Yu K, Jeong RD, Kachroo A, Kachroo P. RNA silencing components mediate resistance signaling against turnip crinkle virus. PLANT SIGNALING & BEHAVIOR 2014; 9:e28435. [PMID: 24614040 PMCID: PMC4091425 DOI: 10.4161/psb.28435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Species-specific immunity is induced when an effector protein from a specific pathogen strain is perceived by a cognate resistance (R) protein in the plant. In Arabidopsis, the R protein HRT, which confers resistance to turnip crinkle virus (TCV), is activated upon recognition of the TCV coat-protein (CP), a potent suppressor of host RNA silencing. Recognition by HRT does not require RNA silencing suppressor function of CP and is not associated with the accumulation of TCV-specific small-RNA. However, several components of the host RNA silencing pathway participate in HRT-mediated defense against TCV. For example, the double stranded RNA binding protein (DRB) 4 interacts with the plasma membrane localized HRT, and is required for its stability. Intriguingly, TCV infection promotes the cytosolic accumulation of the otherwise primarily nuclear DRB4, and this in turn inhibits HRT-DRB4 interaction. These data together with differential localization of DRB4 in plants inoculated with avirulent and virulent viruses, suggests that sub-cellular compartmentalization of DRB4 plays an important role in activation of HRT.
Collapse
Affiliation(s)
- Shifeng Zhu
- † Current affiliation: Department of Plant Biology and Ecology; College of Life Sciences; Nankai University; Tianjin, PR China
| | - Gah-Hyun Lim
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Keshun Yu
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Rae-Dong Jeong
- ‡ Current affiliation: Korea Atomic Energy Research Institute; Jeongeup si Jeonlabukdo, South Korea
| | - Aardra Kachroo
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| | - Pradeep Kachroo
- Department of Plant Pathology; University of Kentucky; Lexington, KY USA
| |
Collapse
|
35
|
Ouibrahim L, Caranta C. Exploitation of natural genetic diversity to study plant-virus interactions: what can we learn from Arabidopsis thaliana? MOLECULAR PLANT PATHOLOGY 2013; 14:844-54. [PMID: 23790151 PMCID: PMC6638744 DOI: 10.1111/mpp.12052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development and use of cultivars that are genetically resistant to viruses is an efficient strategy to tackle the problems of virus diseases. Over the past two decades, the model plant Arabidopsis thaliana has been documented as a host for a broad range of viral species, providing access to a large panel of resources and tools for the study of viral infection processes and resistance mechanisms. Exploration of its natural genetic diversity has revealed a wide range of genes conferring virus resistance. The molecular characterization of some of these genes has unveiled resistance mechanisms distinct from those described in crops. In these respects, Arabidopsis represents a rich and largely untapped source of new genes and mechanisms involved in virus resistance. Here, we review the current status of our knowledge concerning natural virus resistance in Arabidopsis. We also address the impact of environmental conditions on Arabidopsis-virus interactions and resistance mechanisms, and discuss the potential of applying the knowledge gained from the study of Arabidopsis natural diversity for crop improvement.
Collapse
Affiliation(s)
- Laurence Ouibrahim
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, CEA/CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, Marseille, France
| | | |
Collapse
|
36
|
Zhu S, Jeong RD, Lim GH, Yu K, Wang C, Chandra-Shekara AC, Navarre D, Klessig DF, Kachroo A, Kachroo P. Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens. Cell Rep 2013; 4:1168-84. [PMID: 24055058 DOI: 10.1016/j.celrep.2013.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/19/2013] [Accepted: 08/08/2013] [Indexed: 11/27/2022] Open
Abstract
Plant viruses often encode suppressors of host RNA silencing machinery, which occasionally function as avirulence factors that are recognized by host resistance (R) proteins. For example, the Arabidopsis R protein, hypersensitive response to TCV (HRT), recognizes the turnip crinkle virus (TCV) coat protein (CP). HRT-mediated resistance requires the RNA-silencing component double-stranded RNA-binding protein 4 (DRB4) even though it neither is associated with the accumulation of TCV-specific small RNA nor requires the RNA silencing suppressor function of CP. HRT interacts with the cytosolic fraction of DRB4. Interestingly, TCV infection both increases the cytosolic DRB4 pool and inhibits the HRT-DRB4 interaction. The virulent R8A CP derivative, which induces a subset of HRT-derived responses, also disrupts this interaction. The differential localization of DRB4 in the presence of wild-type and R8A CP implies the importance of subcellular compartmentalization of DRB4. The requirement of DRB4 in resistance to bacterial infection suggests a universal role in R-mediated defense signaling.
Collapse
Affiliation(s)
- Shifeng Zhu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Song MY, Kim CY, Han M, Ryu HS, Lee SK, Sun L, He Z, Seo YS, Canal P, Ronald PC, Jeon JS. Differential requirement of Oryza sativa RAR1 in immune receptor-mediated resistance of rice to Magnaporthe oryzae. Mol Cells 2013; 35:327-34. [PMID: 23563801 PMCID: PMC3887888 DOI: 10.1007/s10059-013-2317-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 01/26/2023] Open
Abstract
The required for Mla12 resistance (RAR1) protein is essential for the plant immune response. In rice, a model monocot species, the function of Oryza sativa RAR1 (OsRAR1) has been little explored. In our current study, we characterized the response of a rice osrar1 T-DNA insertion mutant to infection by Magnaporthe oryzae, the causal agent of rice blast disease. osrar1 mutants displayed reduced resistance compared with wild type rice when inoculated with the normally virulent M. oryzae isolate PO6-6, indicating that OsRAR1 is required for an immune response to this pathogen. We also investigated the function of OsRAR1 in the resistance mechanism mediated by the immune receptor genes Pib and Pi5 that encode nucleotide binding-leucine rich repeat (NB-LRR) proteins. We inoculated progeny from Pib/osrar1 and Pi5/osrar1 heterozygous plants with the avirulent M. oryzae isolates, race 007 and PO6-6, respectively. We found that only Pib-mediated resistance was compromised by the osrar1 mutation and that the introduction of the OsRAR1 cDNA into Pib/osrar1 rescued Pib-mediated resistance. These results indicate that OsRAR1 is required for Pib-mediated resistance but not Pi5-mediated resistance to M. oryzae.
Collapse
Affiliation(s)
- Min-Young Song
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701,
Korea
| | - Chi-Yeol Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701,
Korea
| | - Muho Han
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701,
Korea
| | - Hak-Seung Ryu
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701,
Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701,
Korea
| | - Li Sun
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032,
China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032,
China
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735,
Korea
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616,
USA
| | - Patrick Canal
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616,
USA
| | - Pamela C. Ronald
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701,
Korea
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616,
USA
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701,
Korea
| |
Collapse
|
39
|
Signalling network construction for modelling plant defence response. PLoS One 2012; 7:e51822. [PMID: 23272172 PMCID: PMC3525666 DOI: 10.1371/journal.pone.0051822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/06/2012] [Indexed: 12/28/2022] Open
Abstract
Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems, given that an adequate vocabulary is provided.
Collapse
|
40
|
SAG101 forms a ternary complex with EDS1 and PAD4 and is required for resistance signaling against turnip crinkle virus. PLoS Pathog 2011; 7:e1002318. [PMID: 22072959 PMCID: PMC3207898 DOI: 10.1371/journal.ppat.1002318] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/31/2011] [Indexed: 11/19/2022] Open
Abstract
EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance. Plant immunity to pathogens requires several proteins, including EDS1, PAD4, SAG101, and these are thought to act downstream of resistance protein-mediated signaling. EDS1 interacts with both PAD4 and SAG101 but no interaction has been detected between SAG101 and PAD4. We show that SAG101 interacts with PAD4 via EDS1 and that the SAG101-EDS1-PAD4 ternary complex is present in the nucleus. EDS1, which is present in the cytoplasm and nucleus, is detected preferentially in the nucleus in the presence of SAG101. The presence of PAD4 restores the cytoplasmic localization of EDS1. Conversely, the SAG101-EDS1-PAD4 ternary complex, which is detected primarily in the nucleus, is redirected to cytoplasm in the presence of an extranuclear form of EDS1. These results show that protein localization changes in relation to the subcellular localization and/or relative levels of their interacting partners. We further show that Arabidopsis plants encode two functional isoforms of EDS1. Both isoforms interact with self and each other, as well as form ternary complexes. SAG101, which is thought to serve as a substitute for PAD4, functions independently in defense signaling against turnip crinkle virus. Our results suggest that EDS1, PAD4, SAG101 function independently as well as in a ternary complex to mediate plant defense signaling.
Collapse
|
41
|
Mandal MK, Chanda B, Xia Y, Yu K, Sekine KT, Gao QM, Selote D, Kachroo A, Kachroo P. Glycerol-3-phosphate and systemic immunity. PLANT SIGNALING & BEHAVIOR 2011; 6:1871-4. [PMID: 22067992 PMCID: PMC3343732 DOI: 10.4161/psb.6.11.17901] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glycerol-3-phosphate (G3P), a conserved three-carbon sugar, is an obligatory component of energy-producing reactions including glycolysis and glycerolipid biosynthesis. G3P can be derived via the glycerol kinase-mediated phosphorylation of glycerol or G3P dehydrogenase (G3Pdh)-mediated reduction of dihydroxyacetone phosphate. Previously, we showed G3P levels contribute to basal resistance against the hemibiotrophic pathogen, Colletotrichum higginsianum. Inoculation of Arabidopsis with C. higginsianum correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in GLY1 encoded G3Pdh accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Recently, we showed that G3P is also a potent inducer of systemic acquired resistance (SAR) in plants. SAR is initiated after a localized infection and confers whole-plant immunity to secondary infections. SAR involves generation of a signal at the site of primary infection, which travels throughout the plants and alerts the un-infected distal portions of the plant against secondary infections. Plants unable to synthesize G3P are defective in SAR and exogenous G3P complements this defect. Exogenous G3P also induces SAR in the absence of a primary pathogen. Radioactive tracer experiments show that a G3P derivative is translocated to distal tissues and this requires the lipid transfer protein, DIR1. Conversely, G3P is required for the translocation of DIR1 to distal tissues. Together, these observations suggest that the cooperative interaction of DIR1 and G3P mediates the induction of SAR in plants.
Collapse
Affiliation(s)
- Mihir K Mandal
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Corina Vlot A, Feys BJ, Niefind K, Parker JE. Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity. THE NEW PHYTOLOGIST 2011; 191:107-119. [PMID: 21434927 DOI: 10.1111/j.1469-8137.2011.03675.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
• Enhanced Disease Susceptibility1 (EDS1) is an important regulator of plant basal and receptor-triggered immunity. Arabidopsis EDS1 interacts with two related proteins, Phytoalexin Deficient4 (PAD4) and Senescence Associated Gene101 (SAG101), whose combined activities are essential for defense signaling. The different sizes and intracellular distributions of EDS1-PAD4 and EDS1-SAG101 complexes in Arabidopsis leaf tissues suggest that they perform nonredundant functions. • The nature and biological relevance of EDS1 interactions with PAD4 and SAG101 were explored using yeast three-hybrid assays, in vitro analysis of recombinant proteins purified from Escherichia coli, and characterization of Arabidopsis transgenic plants expressing an eds1 mutant (eds1(L262P) ) protein which no longer binds PAD4 but retains interaction with SAG101. • EDS1 forms molecularly distinct complexes with PAD4 or SAG101 without additional plant factors. Loss of interaction with EDS1 reduces PAD4 post-transcriptional accumulation, consistent with the EDS1 physical association stabilizing PAD4. The dissociated forms of EDS1 and PAD4 are fully competent in signaling receptor-triggered localized cell death at infection foci. By contrast, an EDS1-PAD4 complex is necessary for basal resistance involving transcriptional up-regulation of PAD4 itself and mobilization of salicylic acid defenses. • Different EDS1 and PAD4 molecular configurations have distinct and separable functions in the plant innate immune response.
Collapse
Affiliation(s)
- Steffen Rietz
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Anika Stamm
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Stefan Malonek
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Stephan Wagner
- University of Cologne, Institute of Biochemistry, Zülpicher Strasse 47, 50674 Köln, Germany
| | - Dieter Becker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Nieves Medina-Escobar
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - A Corina Vlot
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Bart J Feys
- Imperial College London, Department of Biological Sciences, South Kensington Campus, London SW7 2AZ, UK
| | - Karsten Niefind
- University of Cologne, Institute of Biochemistry, Zülpicher Strasse 47, 50674 Köln, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| |
Collapse
|
43
|
Abstract
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
44
|
Jovel J, Walker M, Sanfaçon H. Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:706-18. [PMID: 21281112 DOI: 10.1094/mpmi-09-10-0224] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tomato ringspot virus (ToRSV, a Nepovirus sp.) systemically infects many herbaceous plants. Viral RNA accumulates in symptomatic leaves and in young, asymptomatic leaves that emerge late in infection. Here, we show that systemic infection by ToRSV is restricted in tobacco. After an initial hypersensitive response in inoculated leaves, only a few plants showed limited systemic symptoms. Viral RNA did not usually accumulate to detectable levels in asymptomatic leaves. ToRSV-derived small-interfering RNAs and PR1a transcripts were only detected in tissues that contained viral RNA, indicating local induction of RNA silencing and salicylic acid (SA)-dependent defense responses. Lesion size and viral systemic spread were reduced with SA pretreatment but enhanced in NahG transgenic lines deficient in SA accumulation, suggesting that SA-dependent mechanisms play a key role in limiting ToRSV spread in tobacco. Restriction of virus infection was enhanced in transgenic lines expressing the P1-HC-Pro suppressor of silencing. Knocking down the SA-inducible RNA-dependent RNA polymerase 1 exacerbated the necrotic reaction but did not affect viral systemic spread. ToRSV-infected tobacco plants were susceptible to reinoculation by ToRSV or Tobacco mosaic virus, although a small reduction in lesion size was observed. This moderate systemic resistance suggests inefficient induction or spread of RNA silencing and systemic acquired resistance signal molecules.
Collapse
Affiliation(s)
- Juan Jovel
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food, Canada
| | | | | |
Collapse
|
45
|
Pandey AK, Yang C, Zhang C, Graham MA, Horstman HD, Lee Y, Zabotina OA, Hill JH, Pedley KF, Whitham SA. Functional analysis of the Asian soybean rust resistance pathway mediated by Rpp2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:194-206. [PMID: 20977308 DOI: 10.1094/mpmi-08-10-0187] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Asian soybean rust is an aggressive foliar disease caused by the obligate biotrophic fungus Phakopsora pachyrhizi. On susceptible plants, the pathogen penetrates and colonizes leaf tissue, resulting in the formation of necrotic lesions and the development of numerous uredinia. The soybean Rpp2 gene confers resistance to specific isolates of P. pachyrhizi. Rpp2-mediated resistance limits the growth of the pathogen and is characterized by the formation of reddish-brown lesions and few uredinia. Using virus-induced gene silencing, we screened 140 candidate genes to identify those that play a role in Rpp2 resistance toward P. pachyrhizi. Candidate genes included putative orthologs to known defense-signaling genes, transcription factors, and genes previously found to be upregulated during the Rpp2 resistance response. We identified 11 genes that compromised Rpp2-mediated resistance when silenced, including GmEDS1, GmNPR1, GmPAD4, GmPAL1, five predicted transcription factors, an O-methyl transferase, and a cytochrome P450 monooxygenase. Together, our results provide new insight into the signaling and biochemical pathways required for resistance against P. pachyrhizi.
Collapse
Affiliation(s)
- Ajay K Pandey
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service (USDA-ARS), 1301 Ditto Avenue, Ft. Detrick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gao QM, Venugopal S, Navarre D, Kachroo A. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. PLANT PHYSIOLOGY 2011; 155:464-76. [PMID: 21030507 PMCID: PMC3075765 DOI: 10.1104/pp.110.166876] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/27/2010] [Indexed: 05/19/2023]
Abstract
Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling component Enhanced Disease Susceptibility1 function redundantly in this low-18:1-derived pathway to induce SA signaling but do not function in the repression of JA responses. We show that repression of JA-mediated signaling under low-18:1 conditions is mediated via the WRKY50 and WRKY51 proteins. Knockout mutations in WRKY50 and WRKY51 lowered SA levels but did not restore pathogenesis-related gene expression or pathogen resistance to basal levels in the low-18:1-containing Arabidopsis (Arabidopsis thaliana) mutant, suppressor of SA insensitivity2 (ssi2). In contrast, both JA-inducible PDF1.2 (defensin) expression and basal resistance to Botrytis cinerea were restored. Simultaneous mutations in both WRKY genes (ssi2 wrky50 wrky51) did not further enhance the JA or Botrytis-related responses. The ssi2 wrky50 and ssi2 wrky51 plants contained high levels of reactive oxygen species and exhibited enhanced cell death, the same as ssi2 plants. This suggested that high reactive oxygen species levels or increased cell death were not responsible for the enhanced susceptibility of ssi2 plants to B. cinerea. Exogenous SA inhibited JA-inducible PDF1.2 expression in the wild type but not in wrky50 or wrky51 mutant plants. These results show that the WRKY50 and WRKY51 proteins mediate both SA- and low-18:1-dependent repression of JA signaling.
Collapse
Affiliation(s)
| | | | | | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546 (Q.-M.G., S.V., A.K.); United States Department of Agriculture-Agricultural Research Service, Washington State University, Prosser, Washington 99350 (D.N.)
| |
Collapse
|
47
|
Jeong RD, Kachroo A, Kachroo P. Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:1504-9. [PMID: 21057210 PMCID: PMC3115268 DOI: 10.4161/psb.5.11.13705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This light-perciving ability of plants requires the activities of proteins termed photoreceptors. In addition to various growth and developmental processes, light also plays a role in plant defense against pathogens and is required for activation of several defense genes and regulation of the cell death response. However, the molecular or biochemical basis of light modulated regulation of defense signaling is largely unclear. We demonstrate a direct role for blue-light photoreceptors in resistance (R) protein-mediated plant defense against Turnip Crinkle Virus (TCV) in Arabidopsis. The blue-light photoreceptors, cryptochrome (CRY) 2 and phototropin (PHOT) 2, are specifically required for maintaining the stability of the R protein HRT, and thereby resistance to TCV. Exogenous application of the phytohormone salicylic acid elevates HRT levels in phot2 but not in cry2 background. These data indicate that CRY2 and PHOT2 function distinctly in maintaining post-transcriptional stability of HRT. HRT-mediated resistance is also dependent on CRY1 and PHOT1 proteins, but these do not contribute to the stability of HRT. HRT interacts with the CRY2/PHOT2-interacting protein COP1, a E3 ubiquitin ligase. Exogenous application of a proteasome inhibitor prevents blue-light-dependent degradation of HRT, suggesting that HRT is degraded via the 26S proteasome. These and the fact that PHOT2 interacts directly with the R protein RPS2 suggest that blue-light photoreceptors might be involved in regulation and/or signaling mediated by several R proteins.
Collapse
Affiliation(s)
- Rae-Dong Jeong
- Department of Plant Pathology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
48
|
Mohr TJ, Mammarella ND, Hoff T, Woffenden BJ, Jelesko JG, McDowell JM. The Arabidopsis downy mildew resistance gene RPP8 is induced by pathogens and salicylic acid and is regulated by W box cis elements. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1303-15. [PMID: 20831409 DOI: 10.1094/mpmi-01-10-0022] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plants disease resistance (R) genes encode specialized receptors that are quantitative, rate-limiting defense regulators. R genes must be expressed at optimum levels to function properly. If expression is too low, downstream defense responses are not activated efficiently. Conversely, overexpression of R genes can trigger autoactivation of defenses with deleterious consequences for the plant. Little is known about R gene regulation, particularly under defense-inducing conditions. We examined regulation of the Arabidopsis thaliana gene RPP8 (resistance to Hyaloperonospora arabidopsidis, isolate Emco5). RPP8 was induced in response to challenge with H. arabidopsidis or application of salicylic acid, as shown with RPP8-Luciferase transgenic plants and quantitative reverse-transcription polymerase chain reaction of endogenous alleles. The RPP1 and RPP4 genes were also induced by H. arabidopsidis and salicylic acid, suggesting that some RPP genes are subject to feedback amplification. The RPP8 promoter contains three W box cis elements. Site-directed mutagenesis of all three W boxes greatly diminished RPP8 basal expression, inducibility, and resistance in transgenic plants. Motif searches indicated that the W box is the only known cis element that is statistically overrepresented in Arabidopsis nucleotide-binding leucine-rich repeat promoters. These results indicate that WRKY transcription factors can regulate expression of surveillance genes at the top of the defense-signaling cascade.
Collapse
Affiliation(s)
- Toni J Mohr
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | | | | | | | | | | |
Collapse
|
49
|
Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 2010; 107:13538-43. [PMID: 20624951 DOI: 10.1073/pnas.1004529107] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Light harvested by plants is essential for the survival of most life forms. This light perception ability requires the activities of proteins termed photoreceptors. We report a function for photoreceptors in mediating resistance (R) protein-derived plant defense. The blue-light photoreceptors, cryptochrome (CRY) 2 and phototropin (PHOT) 2, are required for the stability of the R protein HRT, and thereby resistance to Turnip Crinkle virus (TCV). Exposure to darkness or blue-light induces degradation of CRY2, and in turn HRT, resulting in susceptibility. Overexpression of HRT can compensate for the absence of PHOT2 but not CRY2. HRT does not directly associate with either CRY2 or PHOT2 but does bind the CRY2-/PHOT2-interacting E3 ubiquitin ligase, COP1. Application of the proteasome inhibitor, MG132, prevents blue-light-dependent degradation of HRT, consequently these plants show resistance to TCV under blue-light. We propose that CRY2/PHOT2 negatively regulate the proteasome-mediated degradation of HRT, likely via COP1, and blue-light relieves this repression resulting in HRT degradation.
Collapse
|
50
|
Gao F, Shu X, Ali MB, Howard S, Li N, Winterhagen P, Qiu W, Gassmann W. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant. PLANTA 2010; 231:1037-47. [PMID: 20145949 DOI: 10.1007/s00425-010-1107-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 01/20/2010] [Indexed: 05/08/2023]
Abstract
Vitis vinifera (grapevine) is the most economically important deciduous fruit crop, but cultivated grapevine varieties lack adequate innate immunity to a range of devastating diseases. To identify genetic resources for grapevine innate immunity and understand pathogen defense pathways in a woody perennial plant, we focus in this study on orthologs of the central Arabidopsis thaliana defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). The family of EDS1-like genes is expanded in grapevine, and members of this family were previously found to be constitutively upregulated in the resistant variety 'Norton' of the North American grapevine species Vitis aestivalis, while they were induced by Erysiphe necator, the causal agent of grapevine powdery mildew (PM), in the susceptible V. vinifera variety 'Cabernet Sauvignon'. Here, we determine the responsiveness of individual EDS1-like genes in grapevine to PM and salicylic acid, and find that EDS1-like paralogs are differentially regulated in 'Cabernet Sauvignon', while two are constitutively upregulated in 'Norton'. Sequencing of VvEDS1 and VaEDS1 cDNA and genomic clones revealed high conservation in the protein-encoding sequence and some divergence of the promoter sequence in the two grapevine varieties. Complementation of the Arabidopsis eds1-1 mutant showed that the EDS1-like gene with highest predicted amino acid sequence similarity to AtEDS1 from either grapevine varieties is a functional ortholog of AtEDS1. Together, our analyses show that differential susceptibility to PM is correlated with differences in EDS1 expression, not differences in EDS1 function, between resistant 'Norton' and susceptible 'Cabernet Sauvignon'.
Collapse
Affiliation(s)
- Fei Gao
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65203-7310, USA
| | | | | | | | | | | | | | | |
Collapse
|